DE112006000639B4 - Turbolader mit elektrischer Rotationsmaschine einer Brennkraftmaschine - Google Patents

Turbolader mit elektrischer Rotationsmaschine einer Brennkraftmaschine Download PDF

Info

Publication number
DE112006000639B4
DE112006000639B4 DE112006000639.8T DE112006000639T DE112006000639B4 DE 112006000639 B4 DE112006000639 B4 DE 112006000639B4 DE 112006000639 T DE112006000639 T DE 112006000639T DE 112006000639 B4 DE112006000639 B4 DE 112006000639B4
Authority
DE
Germany
Prior art keywords
magnet
turbine shaft
turbocharger
turbine
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE112006000639.8T
Other languages
English (en)
Other versions
DE112006000639T5 (de
Inventor
Takayoshi Kitada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Publication of DE112006000639T5 publication Critical patent/DE112006000639T5/de
Application granted granted Critical
Publication of DE112006000639B4 publication Critical patent/DE112006000639B4/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/005Exhaust driven pumps being combined with an exhaust driven auxiliary apparatus, e.g. a ventilator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

Turbolader (1) mit einer elektrischen Rotationsmaschine (4), bei der ein Magnet (14) an einer Turbinenwelle (10) zwischen einer Turbine (6) und einem Verdichterlaufrad (8) angeordnet ist, so dass ein Rotor (12) der elektrischen Rotationsmaschine (4) an der Turbinenwelle (10) gebildet wird,wobei ein zylindrisches Element (20), an dem ein Magnethalter (21), der den Magnet (14) von einer äußeren Umfangsseite abdeckt, ein Endflächenabdeckabschnitt (23) zum Abdecken des Magneten (14) von einer Endflächenseite und ein Manschettenabschnitt (24), der an einem inneren Umfang eines Lagers (35) der Turbinenwelle (10) anzuordnen ist, miteinander integriert sind, an der Turbinenwelle (10) vorgesehen ist, undwobei Schmierflüssigkeit, die zu dem Lager (35) eingeführt wird, zwischen das Lager (35) und den Manschettenabschnitt (24) zugeführt wird,dadurch gekennzeichnet, dass das zylindrische Element (20) an seinem äußeren Umfang mit einem Schmierflüssigkeitsverteilungsabschnitt (23a) zum Verteilen der Schmierflüssigkeit in Richtung auf einen Stator (13) der elektrischen Rotationsmaschine (4) durch eine Rotation des Rotors (12) versehen ist.

Description

  • Technischer Bereich
  • Die vorliegende Erfindung betrifft einen Turbolader einer Brennkraftmaschine nach dem Oberbegriff von Anspruch 1, bei dem eine elektrische Rotationsmaschine an einer Turbinenwelle eingebaut ist.
  • Technologischer Hintergrund
  • Als Turbolader für eine Brennkraftmaschine ist ein Turbolader bekannt, der eine elektrische Rotationsmaschine hat, wobei die elektrische Rotationsmaschine an der Turbinenwelle montiert ist, wobei die Turbinenwelle elektrisch angetrieben wird, um die Ladewirkung zu vergrößern, oder Elektrizität unter Einsatz der Drehung der Turbinenwelle erzeugt wird, um Elektrizität aus Abgasenergie zurück zu gewinnen. Bei dem Turbolader dieser Art wird ein Rotor durch einen Wirbelstrom erhitzt, wenn die elektrische Rotationsmaschine betrieben wird, wobei die Turbinenseite der Abgaswärme ausgesetzt ist, so dass eine thermische Belastung schwerwiegend wird. Somit wird vorgeschlagen, eine Gegenmaßnahme gegen die Erhitzung der elektrischen Rotationsmaschine zu ergreifen. Als ein Beispiel davon wird ein Turbolader vorgeschlagen, bei dem ein Temperaturanstieg an der Seite des Stators erfasst wird, und wenn die Temperatur einen vorbestimmten Wert übersteigt, wird Ölnebel zu dem Rotor eingespritzt, um diesen zu kühlen (siehe JP H05-256155 A).
  • Wenn der Rotor einer hohen Temperatur ausgesetzt wird, besteht die sich als Nachteil auswirkende Möglichkeit, dass der Magnet, der in dem Rotor eingebaut ist, entmagnetisiert wird und der Wirkungsgrad der elektrischen Rotationsmaschine verschlechtert wird. Da ferner der Magnet aus einem relativ spröden Material besteht, ist es notwendig, den Magnet vor einer Zentrifugalkraft zu schützen, die verursacht wird, wenn die Turbinenwelle insbesondere bei einer hohen Temperatur mit einer hohen Drehzahl gedreht wird. Zum Drehen der Turbinenwelle bei einer hohen Drehzahl ist es notwendig, die Wellensteifigkeit der Turbinenwelle und der daran vorzusehenden Rotationsteile zu erhöhen und die Durchbiegung der Turbinenwelle zu unterdrücken, wenn die Rotationsteile an der Turbinenwelle montiert sind. Derartige Anforderungen können auch dann nicht ignoriert werden, wenn Gegenmaßnahmen gegen die Erhitzung des Rotors ergriffen werden. Dem Stand der Technik nach JP 2000 - 145 469 A ist ein Turbolader mit einer elektrischen Rotationsmaschine dargestellt.
  • Ferner ist in JP H03-115736 A ein Turbolader mit einer elektrischen Rotationsmaschine offenbart, bei dem Schmieröl zu Lagern des Turboladers zugeführt wird.
  • Offenbarung der Erfindung
  • Die vorliegende Erfindung wurde im Hinblick auf die vorstehend beschriebenen Umstände gemacht, und es ist eine Aufgabe der Erfindung, einen Turbolader bereitzustellen, der eine elektrische Rotationsmaschine mit einer starken Kühlwirkung für einen Rotor und einer starken Schutzwirkung für einen Magneten an dem Rotor hat, und die vorteilhaft ist, die Turbinenwelle bei einer hohen Drehzahl drehen zu lassen. Die Aufgabe wird erfindungsgemäß durch einen Turbolader mit der Kombination der Merkmale von Anspruch 1 gelöst. Weiter vorteilhafte Weiterbildungen der Erfindung sind in den abhängigen Ansprüchen definiert.
  • In einem Gesichtspunkt der vorliegenden Erfindung ist ein Turbolader vorgesehen, der eine elektrische Rotationsmaschine hat, bei der ein Magnet an einer Turbinenwelle zwischen einer Turbine und einem Verdichterlaufrad angeordnet ist, so dass ein Rotor der elektrischen Rotationsmaschine an der Turbinenwelle gebildet wird, wobei ein zylindrisches Element, an dem ein Magnethalter, der den Magnet von einer äußeren Umfangsseite abdeckt, und ein Manschettenabschnitt, der an einem inneren Umfang eines Lagers der Turbinenwelle angeordnet ist, miteinander integriert sind, an der Turbinenwelle vorgesehen ist.
  • Gemäß dem vorstehend beschriebenen Turbolader kann, da der Magnet durch dem Magnethalter abgedeckt ist, auch wenn die Zentrifugalkraft aufgebracht wird, wenn sich die Turbinenwelle mit einer hohen Drehzahl dreht, der Magnet an der Turbinenwelle gehalten werden und kann der Magnet somit geschützt werden. Da der Magnethalter und der Manschettenabschnitt miteinander integriert sind, ist der Widerstand gegenüber einer thermischen Leitung zwischen dem Magnethalter und dem Manschettenabschnitt gering, so dass Wärme des Rotors effizient von dem Magnethalter zu dem Manschettenabschnitt abgeführt wird, und kann diese Wärme, die auf den Manschettenabschnitt übertragen wird, unter Verwendung eines Kühlsystems eines Lagers abgeführt werden. Somit ist es möglich, die Kühlwirkung an dem Rotor zu verbessern und die Wärmeerzeugung des Rotors zu verhindern. Da der Magnethalter und der Manschettenabschnitt miteinander integriert sind, kann die Wellensteifigkeit des zylindrischen Elements verbessert werden. Die Anzahl der Rotationsteile, die an der Turbinenwelle zu montieren sind, kann verringert werden. Wenn die Rotationsteile an der Turbinenwelle montiert werden, ist es daher möglich, den Fall zu vermeiden, dass die Welle aufgrund verschiedenartiger Fehler, wie z. B. eines Gestaltungsfehlers der Rotationsteile oder eines Montagefehlers durchgebogen wird. Demgemäß ist es möglich, Faktoren zu verringern, die eine hohe Drehzahl der Turbine behindern, um dadurch einen Turbolader mit einer Struktur zu verwirklichen, die zum Erhöhen der Drehzahl vorteilhaft ist.
  • In einem Ausführungsbeispiel der vorliegenden Erfindung kann der Turbolader so konfiguriert werden, dass eine Schmierflüssigkeit zwischen dem Manschettenabschnitt und dem Magnethalter anhaften kann. Gemäß diesem Ausführungsbeispiel ist es möglich, das zylindrische Element durch die Schmierflüssigkeit an einer mittleren Lage zu kühlen, bevor Wärme von dem Magnethalter auf den Manschettenabschnitt übertragen wird. Somit kann die Kühlwirkung an dem Rotor weitergehend verbessert werden. In diesem Ausführungsbeispiel kann die Schmierflüssigkeit, die dem Lager zuzuführen ist, als Schmierflüssigkeit verwendet werden, die zwischen dem Manschettenabschnitt und dem Magnethalter anzuhaften ist. Wenn die Schmierflüssigkeit für das Lager verwendet wird, ist es möglich, die Schmierflüssigkeit zwischen den Manschettenabschnitt und den Magnethalter relativ einfach einzuführen, um die Kühlung des zylindrischen Elements zu nutzen.
  • Bei dem erfindungsgemäßen Turbolader ist das zylindrische Element an seinem äußeren Umfang mit einem Schmierflüssigkeitsverteilungsabschnitt zum Verteilen der Schmierflüssigkeit zu einem Stator der elektrischen Rotationsmaschine durch die Rotation des Rotors versehen. Gemäß einer solchen Struktur ist es möglich, nicht nur den Rotor zu kühlen, sondern ebenso auch den Stator, um die Wärmeerzeugung der elektrischen Rotationsmaschine zu unterdrücken. In diesem Fall kann ein Endflächenabdeckabschnitt zum Abdecken des Magneten von der Seite seiner Endfläche zwischen dem Magnethalter und dem Manschettenabschnitt vorgesehen werden, und kann der Endflächenabdeckabschnitt mit dem Schmierflüssigkeitsverteilungsabschnitt versehen werden. Da der Magnethalter zwischen den Rotor und den Magneten des Rotors zwischen gesetzt ist, ist es vorzuziehen, dass die elektrische Rotationsmaschine bezüglich des Wirkungsgrads der elektrischen Rotationsmaschine so dünn wie möglich eingerichtet ist. Da die Zentrifugalkraft, die auf den Magnethalter aufgebracht wird, wiederholt gemäß der Veränderung der Umlaufzahl der Turbinenwelle vergrößert und verringert wird, ist es andererseits notwendig, eine Bruchfestigkeit gegenüber der wiederholten Spannung ausreichend sicherzustellen. Demgemäß ist es beim Auslegen des Magnethalters vorzuziehen, dass die Dicke des Magnethalters so dünn wie möglich ist und die Gestalt vereinfacht ist, so dass eine Spannungskonzentration kaum erzeugt wird. Dagegen wird der Endflächenabdeckabschnitt an der Seite der Endfläche des Magneten angeordnet. Daher ist es einfach, die Dicke des Endflächenabdeckabschnitts im Vergleich mit dem Magnethalter sicherzustellen, und somit ist es möglich, die Festigkeit gegenüber einer wiederholten Spannung ausreichend zu erhalten, die durch die Zentrifugalkraft verursacht wird. Wenn demgemäß der Endflächenabdeckabschnitt mit einem Schmierflüssigkeitsverteilungsabschnitt versehen wird, ist es möglich, die Gestalt, Abmessung oder Position des Schmierflüssigkeitsverteilungsabschnitts zweckmäßig ohne Verschlechtern der Festigkeit des zylindrischen Elements geeignet einzurichten, so dass die Schmierflüssigkeit wirksam zu dem Rotor verteilt werden kann. Ferner ist es durch Entfernen eines Abschnitts des Endflächenabdeckabschnitts möglich, das Rotationsgleichgewicht (Massengleichgewicht um die Achse) einer Rotationskörperbaugruppe einfach einzustellen, die durch die Turbinenwelle und die Rotationsteile an der Welle gebildet wird.
  • In dem vorstehend beschriebenen Ausführungsbeispiel mit dem Endflächenabdeckabschnitt kann ein Vorsprung, der zu einem äußeren Umfang des Endflächenabdeckabschnitts vorsteht, als Schmierflüssigkeitsverteilungsabschnitt vorgesehen werden. Gemäß diesem Ausführungsbeispiel wird die Schmierflüssigkeit, die an der Fläche des zylindrischen Elements anhaftet, zu dem Vorsprung durch die Zentrifugalkraft eingeführt und kann die Schmierflüssigkeit zu einem Abschnitt um den Rotor (vorzugsweise zu dem Stator) von dem Vorsprung verteilt werden. Durch teilweises Entfernen des Vorsprungs kann das Rotationsgleichgewicht der Rotationskörperbaugruppe eingestellt werden.
  • In einem Ausführungsbeispiel des Turboladers gemäß der vorliegenden Erfindung kann der Turbolader ferner einen Schmierflüssigkeitspfad zum Einführen einer Schmierflüssigkeit, die zu dem Lager zuzuführen ist, in Richtung auf die Turbine aufweisen, der die Turbinenwelle durchdringt. Gemäß diesem Ausführungsbeispiel kann von der Turbine auf den Rotor übertragene Wärme mit der Schmierflüssigkeit gekühlt werden und kann die Erhitzung des Rotors effektiver unterdrückt werden.
  • Wie vorstehend erklärt ist, ist es gemäß der vorliegenden Erfindung, da das zylindrische Element, bei dem der Magnethalter, der den Magnet des Rotors abdeckt, und der Manschettenabschnitt des Lagers miteinander integriert sind, an der Turbinenwelle vorgesehen ist, möglich, den Magnet vor der Zentrifugalkraft zuverlässig zu schützen, um Wärme des Rotors zu dem Manschettenabschnitt effizient abzuführen, um dadurch die Wärme zu dem Kühlsystem des Lagers abzuführen, um die Anzahl der Rotationsteile zu verringern, die an der Turbinenwelle zu notieren sind, um die Wellensteifigkeit der Rotationskörperbaugruppe zu verbessern, um zu verhindern, dass die Welle durchgebogen wird, um dadurch den Turbolader mit einer Struktur zu verwirklichen, die vorteilhaft für eine hohe Drehzahl ist.
  • Figurenliste
    • 1 ist eine Schnittansicht eines Turboladers in seiner Axialrichtung gemäß einem Ausführungsbeispiel der vorliegenden Erfindung;
    • 2 ist eine Schnittansicht eines zylindrischen Elements, das an einer Turbinenwelle montiert ist, und dessen Lagerabschnitten;
    • 3 ist eine perspektivische Ansicht, die ein Ende des zylindrischen Elements zeigt;
    • 4 ist eine Schnittansicht, die ein Ausführungsbeispiel zeigt, bei dem beide Seiten des Magnethalters des zylindrischen Elements mit Vorsprüngen als Schmierflüssigkeitsverteilungsabschnitte versehen sind; und
    • 5 ist eine Ansicht, die ein Ausführungsbeispiel gemäß der vorliegenden Erfindung zeigt, das ferner einen Schmierflüssigkeitspfad zum Einführen der Schmierflüssigkeit, die zu dem Lager zugeführt wird, zu der Seite der Turbine aufweist.
  • Bester Weg zum Ausführen der Erfindung
  • 1 zeigt ein Ausführungsbeispiel, bei dem die vorliegende Erfindung auf einem Turbolader einer Brennkraftmaschine für ein Automobil angewendet wird. Der Turbolader 1 weist einen Abgasturbinenabschnitt 2, einen Verdichterabschnitt 3 und eine elektrische Rotationsmaschine 4 auf, die dazwischen angeordnet ist. Der Abgasturbinenabschnitt 2 weist ein Turbinengehäuse 5, das so vorgesehen ist, dass es einen Abschnitt des Abgasdurchgangs der Brennkraftmaschine bildet, und eine Turbine 6 auf, die in dem Turbinengehäuse 5 vorgesehen ist. Auf der anderen Seite weist der Verdichterabschnitt 3 ein Verdichtergehäuse 7, das so vorgesehen ist, dass es einen Abschnitt eines Einlassdurchgangs der Brennkraftmaschine bildet, und ein Laufrad (Verdichterlaufrad) 8 auf, das in dem Verdichtergehäuse 7 vorgesehen ist. Ein Lagergehäuse 9 ist zwischen dem Turbinengehäuse 5 und dem Verdichtergehäuse 7 vorgesehen. Die Turbine 6 ist an einem Ende mit einer Turbinenwelle 10 versehen, so dass die Turbinenwelle 10 sich einheitlich drehen kann und in die axiale Richtung nicht getrennt werden kann. Die Turbinenwelle 10 durchdringt das Lagergehäuse 9, erreicht das Innere des Verdichtergehäuses 7, und das Laufrad 8 ist an einem Spitzenende der Turbinenwelle 10 so montiert, dass das Laufrad 8 sich einheitlich drehen kann. Die Verbindungsstrukturen der Turbine 6, des Laufrads 8 und der Turbinenwelle 10 sind nicht auf diejenigen beschränkt, die in der Zeichnung gezeigt sind, und die Strukturen können abgewandelt werden. Das Turbinengehäuse 5, das Verdichtergehäuse 7 und das Lagergehäuse 9 sind als unabhängige Teile aufgebaut, und sie können miteinander kombiniert werden, um das Turboladergehäuse 11 zu bilden. In 1 sind die Verbindungspositionen der Gehäuse 5, 7 und 9 nicht klar gezeigt, können aber geeignet eingerichtet werden.
  • Die elektrische Rotationsmaschine 4 weist einen Rotor 12, der an der Turbinenwelle 10 vorgesehen ist, und einen Stator 13 auf, der in dem Lagergehäuse 9 vorgesehen ist. Der Rotor 12 ist durch Montieren eines Magneten 14 an einem äußeren Umfang der Turbinenwelle 10 ausgebildet, so dass der Magnet 14 sich einheitlich mit der Turbinenwelle 10 drehen kann. Der Stator 13 weist einen Statorkern 15 und Spulenwicklungen 16 auf, die an entgegengesetzten Enden des Statorkerns 15 angeordnet sind. Der Statorkern 15 ist so angeordnet, dass er den Magnet 14 von außen umgibt, und jede der Spulenwicklungen 16 weicht zu dem Abgasturbinenabschnitt 2 oder dem Verdichterabschnitt 3 von dem Magnet 14 ab. Das Lagergehäuse 9 ist mit einem Wasserdurchgang 17 versehen, der näher an dem äußeren Umfang als der Statorkern 15 vorgesehen ist, und Kühlwasser zum Kühlen des Turboladers 1 wird in den Wasserdurchgang 17 eingeführt.
  • Ein zylindrisches Element 20 ist über einen äußeren Umfang der Turbinenwelle 10 gepasst. Wie in 2 im Einzelnen gezeigt ist, weist das zylindrische Element 20 ein zylindrisches Magnethalterohr (Magnethalter) 21, das den Magnet 14 abdeckt, und ein paar Wellenendrohre 22 auf, die einstückig mit dem Magnethalterohr 21 verbunden sind, um die beiden Enden des Magnethalterohrs 21 zu verschließen. Jedes Wellenendrohr 22 weist einen Endflächenabdeckabschnitt 23, der das Ende des Magnethalterohrs 21 verschließt und den Magnet 14 von der Seite der Endfläche abdeckt, und einen Manschettenabschnitt 24 mit einem kleinen Durchmesser auf, der einstückig von dem Endflächenabdeckabschnitt 23 nach axial außen weisend verbunden ist. Der Außendurchmesser des Endflächenabdeckabschnitts 23 verringert sich graduell in Richtung auf den Manschettenabschnitt 24. Anders gesagt ist die äußere Umfangsfläche des Endflächenabdeckabschnitts 23 in einer abgeschrägten Fläche ausgebildet, deren Durchmesser graduell in Richtung auf den Manschettenabschnitt 24 verringert wird, und ist der Manschettenabschnitt 24 in einer zylindrischen Gestalt mit einem konstanten Außendurchmesser ausgebildet.
  • Das Magnethalterohr 21 ist einstückig mit dem äußeren Umfang des Endflächenabdeckabschnitts 23 verbunden. Es ist notwendig, dass das Magnethalterohr 21 der Wärmeerzeugung des Magneten 14 widerstehen kann, und das Magnethalterohr 21 hat eine derartig hohe Steifigkeit, dass der Magnet 14 gegenüber der Zentrifugalkraft gehalten werden kann, die durch die hohe Drehzahl der Turbinenwelle 10 verursacht wird. Demgemäß besteht das Magnethalterohr 21 vorzugsweise aus einem hitzebeständigen Material, wie z. B. Edelstahl, Titan oder Ähnlichem. Obwohl das Wellenendrohr 22 aus verschiedenartigen Rohrmaterialien, wie z. B. einem Stahlrohr bestehen kann, ist es vorzuziehen, dass das Wellenendrohr 22 aus dem Material besteht, das eine hervorragende thermische Leitfähigkeit und ein geringes Gewicht hat. Zum einstückigen Ausbilden (Verbinden) des Magnethalterohrs 21 und des Wellenendrohrs 22 können verschiedenartige Verbindungsverfahren, wie z. B. Schweißen, Löten oder Presspassen verwendet werden. Der Endflächenabdeckabschnitt 23 und der Manschettenabschnitt 24 können einstückig aus dem gleichen Material geformt werden oder sie können einstückig durch das Verbindungsverfahren, wie z. B. Schweißen, Löten oder Presspassen ausgebildet werden. In jedem Fall kann in einem Zustand, in welchem das zylindrische Element 20 in der Turbinenwelle 10 eingebaut ist, das zylindrische Element 20 als einziges zylindrisches Bauteil existieren, das einstückig mit dem Magnethalterohr 21 und zumindest einem der Manschettenabschnitte 24 vorgesehen ist, so dass sie nicht auseinander genommen werden können.
  • Wie in 1 gezeigt ist, stößt ein Ende des zylindrischen Elements 20 an der Seite der Turbine 6 gegen einen vergrößerten Abschnitt 10a der Turbinenwelle 10. Ein Druckbund 25 stößt gegen das Ende des zylindrischen Elements 20 an der Seite des Laufrads 8, ein Dichtringbund 26 und das Laufrad 8 sind in der Reihenfolge an der entgegengesetzten Seite des Druckbunds 25 montiert, das Laufrad 8 wird durch eine Mutter 27 in die axiale Richtung festgezogen, und diese Rotationsteile, insbesondere der Magnet 14, das zylindrische Element 20, der Druckbund 25, der Dichtringbund 26 und das Laufrad 8 werden an der Turbinenwelle 10 so montiert, dass sie sich einheitlich drehen können, aber sie sich in die axiale Richtung nicht bewegen können. Diese Rotationsteile, die Turbine 6 und die Turbinenwelle 10 bilden die Rotationskörperbaugruppe 28 des Turboladers 1. Die Dichtringe 30 und 31 sind an den äußeren Umfängen des vergrößerten Abschnitts 10a der Turbinenwelle 10 und dem Dichtringbund 26 montiert. Die Dichtringe 30 und 31 gelangen in Kontakt mit dem Turboladergehäuse 11 über den gesamten Umfang. Damit wird ein Raum zwischen dem Inneren von jeweils dem Turbinengehäuse 5 und dem Verdichtergehäuse 7 und einem Inneren des Lagergehäuses 9 abgedichtet. Ein scheibenförmiges Drucklager 23 wird an dem Turboladergehäuse 11 montiert. Das Drucklager 32 greift mit dem äußeren Umfang des Druckbunds 25 ein, um dadurch zu beschränken, dass die Rotationskörperbaugruppe 28 sich in die axiale Richtung mit Bezug auf das Turboladergehäuse 11 bewegt.
  • Ringförmige Lager 35 sind in dem Lagergehäuse 9 so vorgesehen, dass sie die Manschettenabschnitte 24 des zylindrischen Elements 20 umgeben. Das Lager 35 an der Seite der Turbine 6 ist zwischen einem Paar Halteringen 36 eingefasst, um dadurch das Lager 35 an einer festliegenden Position in die axiale Richtung mit Bezug auf das Lagergehäuse 9 zu beschränken, das Lager 35 an der Seite des Verdichters ist zwischen dem Haltering 36 und dem Druckbund 25 eingefasst, um dadurch das Lager 35 an einer festliegenden Position in die axiale Richtung mit Bezug auf das Lagergehäuse 9 zu beschränken. Der Innendurchmesser jedes Lagers 35 ist geringfügig größer als der Außendurchmesser des jeweiligen Manschettenabschnitts 24. Daher ergeben sich geringfügige radiale Spalte zwischen den Lagern 35 und den Manschettenabschnitten 24. Die radialen Spalte sind in Richtung auf den äußeren Umfang jedes Endflächenabdeckabschnitts 23 geöffnet.
  • Das Lagergehäuse 9 ist mit Schmierflüssigkeitsströmungspfaden 40 zum Einführen von Schmierflüssigkeit in Richtung auf den äußeren Umfang des jeweiligen Lagers 35 von der Fläche des Lagergehäuses 9 versehen. Jedes Lager 35 ist mit einem radialen Durchgangsloch 35a (siehe 2) ausgebildet, das in Verbindung mit dem Schmierflüssigkeitsströmungspfad 40 steht. Daher wird Schmierflüssigkeit, die zu den Schmierflüssigkeitsströmungspfaden 40 eingeführt wird, zu den Spalten zwischen den Lagern 35 und den Manschettenabschnitten 24 durch die Durchgangslöcher 35a zugeführt, bildet die Schmierflüssigkeit einen Film und werden somit die Manschettenabschnitte 24 in die radiale Richtung gestützt. Das Turboladergehäuse 11 ist ferner mit Ablaufpfaden 41 und 42 zum Ausstoßen der Schmierflüssigkeit ausgebildet, die zu den Lagern 35 zugeführt wird.
  • Gemäß dem Turbolader 1, der die vorstehend beschriebene Struktur hat, wird, da der Magnet 14 mit dem Magnethalterohr 21 des zylindrischen Elements 20 von dem äußeren Umfang des Magneten 14 abgedeckt wird, der Magnet 14 durch die Zentrifugalkraft nicht von der Turbinenwelle 10 getrennt, auch wenn die Turbinenwelle 10 sich mit einer hohen Drehzahl dreht, und somit kann der Magnet 14 zuverlässig an der Turbinenwelle 10 gehalten werden. Wärme, die in dem Rotor 12 erzeugt wird, wird zu den Manschettenabschnitten 24 von dem Magnethalterohr 21 durch die Endflächenabdeckabschnitte 23 freigesetzt, und die Wärme, die zu den Manschettenabschnitten 24 eingeführt wird, wird sukzessive durch die Schmierflüssigkeit der Lager 35 entfernt. Da das Magnethalterohr 21, die Endflächenabdeckabschnitte 23 und die Manschettenabschnitte 24 miteinander integriert sind, ist die Wärmeleitfähigkeit dazwischen hoch. Demgemäß ist es weniger wahrscheinlich, dass die Wärme sich in dem Rotor 12 ansammelt, und kann die Kühleffizienz an dem Rotor 12 verbessert werden. Die Spalte zwischen dem Lager 35 und den Manschettenabschnitten 24 werden in Richtung auf den äußeren Umfang der Endflächenabdeckabschnitte 23 geöffnet. Daher wird Schmierflüssigkeit, die zu den Lagern 35 zugeführt wird, zu den Endflächenabdeckabschnitten 23 freigesetzt und haftet an deren Flächen an, so dass das zylindrische Element 20 weitergehend durch die angehaftete Schmierflüssigkeit gekühlt werden kann und die Kühleffizienz an dem Rotor 12 weitergehend verbessert werden kann. Die an den Rückflächen der Endflächenabdeckabschnitte 23 anhaftende Schmierflüssigkeit bewegt sich zu den Eckabschnitten 23a (siehe 2) des äußeren Umfangs der Endflächenabdeckabschnitte 23 durch die Zentrifugalkraft, die durch die Drehung der Turbinenwelle 10 verursacht wird, und verteilt sich zu den Spulenwicklungen 16 des Stators 13 von diesem. Bei dem Turbolader 1 dienen nämlich die Eckabschnitte 23a des äußeren Umfangs der Endflächenabdeckabschnitte 23 als Schmierflüssigkeitsverteilungsabschnitt. Demgemäß werden die Spulenwicklungen 16 ebenso durch die Schmierflüssigkeit gekühlt und wird die Wärme der elektrischen Rotationsmaschine 4 weitergehend effektiv unterdrückt.
  • Da ferner das zylindrische Element 20 eine integrierte Struktur von dem Magnethalterohr 21 zu den Manschettenabschnitten 24 hat, ist die Steifigkeit des zylindrischen Elements 20 selbst hoch. Im Vergleich mit einem Fall, bei dem die Manschettenabschnitte 24 und das zylindrische Element 20 als separate Teile ausgebildet sind und sie an der Turbinenwelle 10 zusammengebaut werden, wird die Anzahl der Rotationsteile, die die Rotationskörperbaugruppe 28 bilden, verringert. Da die Anzahl der Rotationsteile verringert wird, ist es möglich, eine Wellendurchbiegung aufgrund eines Gestaltungsfehlers der Rotationsteile (beispielsweise einer Abweichung der senkrechten Ausrichtung der Rotationsteilendfläche mit Bezug auf eine Rotationsachse der Turbinenwelle 10) oder von Montagefehlern der Rotationsteile zu beschränken. Demgemäß kann die Anpassungsfähigkeit des Turboladers 1 an die hohe Drehzahl der Turbinenwelle 10 verbessert werden.
  • Ferner wird eine ausreichende Dicke für die Endflächenabdeckabschnitte 23 im Vergleich mit dem Magnethalterohr 21 sichergestellt, und wenn somit Abschnitte der äußeren Umfangseckabschnitte 23a der Endflächenabdeckabschnitte 23 mit Nuten 23b versehen werden, die in den 2 und 3 gezeigt sind, kann das Rotationsgleichgewicht der Rotationskörperbaugruppe 28 ohne Verschlechtern der Festigkeit des zylindrischen Elements 20 korrigiert werden. Demgemäß kann die Anpassungsfähigkeit des Turboladers 1 mit Bezug auf die hohe Drehzahl der Turbinenwelle 10 weitergehend verbessert werden. Die Dicke des Magnethalterohrs 21 ist beschränkt, so dass ein Spalt zwischen dem Magnet 14 und dem Statorkern 15 mehr als notwendig vergrößert wird. Die wiederholte Spannung wird auf das Magnethalterohr 21 aufgebracht, da die Zentrifugalkraft gemäß der Veränderung der Drehzahl der Turbinenwelle 10 vergrößert oder verringert wird, wobei es notwendig ist, dass die Gestalt des Magnethalterohrs 21 vereinfacht wird, um die Erzeugung einer Spannungskonzentration zu verhindern. Von derartigen Umständen ausgehend ist eine Beschränkung viel geringer, wenn die Endflächenabdeckabschnitte 23 mit den Nuten 23b versehen werden, im Vergleich mit einem Fall, dass das Magnethalterohr 21 mit den Nuten 23b versehen wird, und kann das Rotationsgleichgewicht entsprechend einfach korrigiert werden. Die Nuten 23b sind nicht auf die Eckabschnitte 23a beschränkt, und sie können an einer geeigneten Position der Endflächenabdeckabschnitte 23 vorgesehen werden, wie durch die gestrichelte Linie in 3 gezeigt ist.
  • Die vorliegende Erfindung ist nicht auf das vorstehend beschriebene Ausführungsbeispiel beschränkt und kann mit verschiedenartigen Ausführungsformen ausgeführt werden. Beispielsweise ist der Endflächenabdeckabschnitt 23 nicht auf die abgeschrägte Gestalt beschränkt und kann mit einer scheibenförmigen Gestalt ausgebildet werden, die eine im Wesentlichen konstante Dicke in die axiale Richtung hat, wie in 4 gezeigt ist. Wie in 4 gezeigt ist, können Vorsprünge 23c an einem äußeren Umfang der Endflächenabdeckabschnitte 23 als Schmierflüssigkeitsverteilungsabschnitt vorgesehen werden. Die Vorsprünge 23c können kontinuierlich über den gesamten Umfang der Endflächenabdeckabschnitte 23 vorgesehen werden oder eine Vielzahl von Vorsprüngen 23c kann separat voneinander in die Umfangsrichtung bei geeigneten Abständen voneinander vorgesehen werden. Wenn derartige Vorsprünge 23c vorgesehen werden, kann die Schmierflüssigkeit, die an einer Fläche des zylindrischen Elements 20 anhaftet, an den Vorsprüngen 23c unter Einsatz der Zentrifugalkraft gesammelt werden, wobei die Schmierflüssigkeit effizient zu den Spulenwicklungen 16 des Stators 13 verteilt werden kann, um den Kühlvorgang zu vereinfachen. Wenn die Vorsprünge 23c teilweise ausgeschnitten werden, ist es möglich, das Rotationsgleichgewicht einfach zu korrigieren. Obwohl in dem vorstehend genannten Ausführungsbeispiel die Schmierflüssigkeit an den Lagern 35 zu den Flächen der Endflächenabdeckabschnitte 23 des zylindrischen Elements 20 eingeführt wird, kann die Schmierflüssigkeit zu den Flächen der Endflächenabdeckabschnitte 23 von einer anderen Position eingeführt werden.
  • 5 zeigt ein Beispiel, bei dem der Manschettenabschnitt 24 an der Seite der Turbine 6 mit einem Durchgangsloch 24a ausgebildet ist, das sich in die radiale Richtung erstreckt, und die Turbinenwelle 10 mit einem Schmierflüssigkeitspfad zum Einführen einer Schmierflüssigkeit versehen ist, der durch das Durchgangsloch 24a zu der Turbine 6 führt. Als ein Beispiel weist der Schmierflüssigkeitspfad 45 eine Flüssigkeitsreservoirvertiefung 45a, die den Schaltkreis der Turbinenwelle 10 in die Umfangsrichtung bildet, einen radialen Durchgang 45b, dessen beide Enden zu der Flüssigkeitsreservoirvertiefung 45a geöffnet sind, einen axialen Durchgang 45c, der an einer Achse der Turbinenwelle 10 vorgesehen ist und von dem ein Ende in Verbindung mit dem Durchgangsloch 45b steht, und einen zweiten radialen Durchgang 45d auf, der in Verbindung mit dem axialen Durchgang 45c steht und dessen beide Enden zu dem äußeren Umfang des vergrößerten Abschnitts 10a geöffnet sind. Durch Vorsehen eines derartigen Schmierflüssigkeitspfads 45 kann die Schmierflüssigkeit an dem Lager 35 das Ende der Turbinenwelle 10 an der Seite der Turbine 6 kühlen, um dadurch zu unterdrücken, dass Wärme von der Turbine 6 auf den Rotor 12 übertragen wird, und kann die Kühleffizienz weitergehend verbessert werden.
  • Die Struktur der Rotationskörperbaugruppe 28, die vorstehend beschrieben ist, ist nur ein Beispiel, wobei die Struktur der Rotationskörperbaugruppe 28 geeignet geändert werden kann, solange die Rotationskörperbaugruppe 28 das zylindrische Element 20 hat, das einstückig aus dem Magnethalterohr 21 zu zumindest einem der Manschettenabschnitte 24 ausgebildet ist. Der Verbindungsaufbau der Turbine 6 und des Laufrads 8 mit Bezug auf die Turbinenwelle 10 kann ebenso geeignet geändert werden, und die Struktur zum Positionieren der Turbinenwelle 10 in die axiale Richtung kann ebenso geeignet geändert werden.

Claims (6)

  1. Turbolader (1) mit einer elektrischen Rotationsmaschine (4), bei der ein Magnet (14) an einer Turbinenwelle (10) zwischen einer Turbine (6) und einem Verdichterlaufrad (8) angeordnet ist, so dass ein Rotor (12) der elektrischen Rotationsmaschine (4) an der Turbinenwelle (10) gebildet wird, wobei ein zylindrisches Element (20), an dem ein Magnethalter (21), der den Magnet (14) von einer äußeren Umfangsseite abdeckt, ein Endflächenabdeckabschnitt (23) zum Abdecken des Magneten (14) von einer Endflächenseite und ein Manschettenabschnitt (24), der an einem inneren Umfang eines Lagers (35) der Turbinenwelle (10) anzuordnen ist, miteinander integriert sind, an der Turbinenwelle (10) vorgesehen ist, und wobei Schmierflüssigkeit, die zu dem Lager (35) eingeführt wird, zwischen das Lager (35) und den Manschettenabschnitt (24) zugeführt wird, dadurch gekennzeichnet, dass das zylindrische Element (20) an seinem äußeren Umfang mit einem Schmierflüssigkeitsverteilungsabschnitt (23a) zum Verteilen der Schmierflüssigkeit in Richtung auf einen Stator (13) der elektrischen Rotationsmaschine (4) durch eine Rotation des Rotors (12) versehen ist.
  2. Turbolader (1) gemäß Anspruch 1, der so konfiguriert ist, dass die Schmierflüssigkeit an dem Endflächenabdeckabschnitt (23) haften kann.
  3. Turbolader (1) gemäß Anspruch 2, wobei die Schmierflüssigkeit, die zwischen das Lager (35) und den Manschettenabschnitt (24) zugeführt wird, zu dem Endflächenabdeckabschnitt (23) abgeführt wird.
  4. Turbolader (1) gemäß Anspruch 1, wobei der Endflächenabdeckabschnitt (23) mit dem Schmierflüssigkeitsverteilungsabschnitt (23a) versehen ist.
  5. Turbolader gemäß Anspruch 4, wobei ein Vorsprung, der zu einem äußeren Umfang des Endflächenabdeckabschnitts (23) vorsteht, als Schmierflüssigkeitsverteilungsabschnitt (23a) vorgesehen ist.
  6. Turbolader gemäß einem der Ansprüche 1 bis 5, ferner mit einem Schmierflüssigkeitspfad (40) zum Einführen von zu dem Lager (35) zuzuführender Schmierflüssigkeit in Richtung auf die Turbine (6), der die Turbinenwelle (10) durchdringt.
DE112006000639.8T 2005-04-14 2006-04-07 Turbolader mit elektrischer Rotationsmaschine einer Brennkraftmaschine Expired - Fee Related DE112006000639B4 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005-116754 2005-04-14
JP2005116754A JP4595640B2 (ja) 2005-04-14 2005-04-14 内燃機関の回転電機付きターボ過給機
PCT/JP2006/307873 WO2006112372A1 (en) 2005-04-14 2006-04-07 Turbosupercharger having rotary electric machine of internal combustion engine

Publications (2)

Publication Number Publication Date
DE112006000639T5 DE112006000639T5 (de) 2008-03-06
DE112006000639B4 true DE112006000639B4 (de) 2021-03-04

Family

ID=36589156

Family Applications (1)

Application Number Title Priority Date Filing Date
DE112006000639.8T Expired - Fee Related DE112006000639B4 (de) 2005-04-14 2006-04-07 Turbolader mit elektrischer Rotationsmaschine einer Brennkraftmaschine

Country Status (4)

Country Link
JP (1) JP4595640B2 (de)
CN (1) CN101160462B (de)
DE (1) DE112006000639B4 (de)
WO (1) WO2006112372A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122339B3 (de) 2021-08-30 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrisch unterstützbare Turbomaschine

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5529714B2 (ja) 2010-11-12 2014-06-25 三菱重工業株式会社 電動過給機の回転軸支持構造
JP5615231B2 (ja) * 2011-06-08 2014-10-29 三菱電機株式会社 電動機内蔵過給装置のバランス調整構造とその方法
CN102312723A (zh) * 2011-09-23 2012-01-11 优华劳斯汽车***(上海)有限公司 涡轮增压机
KR102013371B1 (ko) * 2012-04-30 2019-10-21 보르그워너 인코퍼레이티드 내부 전기 모터를 구비한 터보차저를 위한 베어링 시스템
KR101429846B1 (ko) * 2013-02-06 2014-08-12 한승주 자기 구동 공기충전장치
KR101429848B1 (ko) * 2013-02-13 2014-08-12 한승주 자기 구동 확장공기충전장치
GB2530508B (en) * 2014-09-24 2019-02-20 Ford Global Tech Llc A turbocharged engine and a method of making same
JP6565644B2 (ja) * 2015-12-01 2019-08-28 トヨタ紡織株式会社 モータ及びこれを備える電動過給機
WO2017176610A1 (en) * 2016-04-07 2017-10-12 Borgwarner Inc. Electric charging device with rotor cooling
JP6477655B2 (ja) 2016-10-14 2019-03-06 トヨタ自動車株式会社 スペーサ及び電動過給機
US10677253B2 (en) * 2016-12-12 2020-06-09 Garrett Transportation I Inc. Turbocharger assembly
US10330002B2 (en) 2016-12-12 2019-06-25 Garrett Transportation I Inc. Turbocharger assembly
US10550849B2 (en) 2016-12-12 2020-02-04 Garrett Transportation I Inc. Turbocharger assembly
US10495097B2 (en) 2016-12-12 2019-12-03 Garrett Transporation I Inc. Turbocharger assembly
FR3064134B1 (fr) * 2017-03-15 2019-03-22 Valeo Systemes De Controle Moteur Compresseur de suralimentation electrique avec support d'aimant
KR102552016B1 (ko) * 2018-03-15 2023-07-05 현대자동차 주식회사 모터용 로터 조립체

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115736A (ja) * 1989-09-28 1991-05-16 Isuzu Motors Ltd 回転電機付ターボチャージャ
JP2000145469A (ja) * 1998-11-09 2000-05-26 Isuzu Motors Ltd 発電・電動機を備えたターボチャージャの組立方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63248926A (ja) * 1987-04-04 1988-10-17 Isuzu Motors Ltd タ−ボチヤ−ジヤのシヤフト構造
JPH02241339A (ja) * 1989-03-14 1990-09-26 Hitachi Ltd ターボチャージヤ直結回転機用永久磁石回転子
JPH03115739A (ja) * 1989-09-28 1991-05-16 Isuzu Motors Ltd 回転電機付ターボチャージャ
US6085527A (en) * 1997-05-15 2000-07-11 Turbodyne Systems, Inc. Magnet assemblies for motor-assisted turbochargers
US6305169B1 (en) * 1999-02-22 2001-10-23 Ralph P. Mallof Motor assisted turbocharger
JP2002349277A (ja) * 2001-05-24 2002-12-04 Isuzu Motors Ltd ターボチャージャの軸受部油膜剛性制御装置
US6845617B1 (en) * 2003-12-20 2005-01-25 Honeywell International Inc Center housing design for electric assisted turbocharger

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03115736A (ja) * 1989-09-28 1991-05-16 Isuzu Motors Ltd 回転電機付ターボチャージャ
JP2000145469A (ja) * 1998-11-09 2000-05-26 Isuzu Motors Ltd 発電・電動機を備えたターボチャージャの組立方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021122339B3 (de) 2021-08-30 2022-11-03 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Elektrisch unterstützbare Turbomaschine

Also Published As

Publication number Publication date
JP4595640B2 (ja) 2010-12-08
DE112006000639T5 (de) 2008-03-06
WO2006112372A1 (en) 2006-10-26
JP2006291923A (ja) 2006-10-26
CN101160462B (zh) 2011-06-08
CN101160462A (zh) 2008-04-09

Similar Documents

Publication Publication Date Title
DE112006000639B4 (de) Turbolader mit elektrischer Rotationsmaschine einer Brennkraftmaschine
DE69917138T2 (de) Bürstenloser Pumpenmotor aus trennbarem Blechpaket mit flüssigem Kühlsystem
DE69907639T2 (de) Abgedichtes magnetlager für umwalzgebläse
DE112017002583T5 (de) Lageraufbau für einen turbolader und turbolader
EP3485230B1 (de) Verbindungselement zum verbinden einer motorwelle eines motors mit einem drehgeber und motor
EP1391587B1 (de) Abgasturbolader
EP2411688B1 (de) Thermisch entkoppelte lageranordnung
DE102013213435A1 (de) Kühlsystem für eine dynamoelektrische Maschine
DE102015208281A1 (de) Rotor für Axialflussmaschine
DE102004007322A1 (de) Statoranordnung für eine elektrische Maschine
DE112016002606B4 (de) Turbolader
WO2017186381A1 (de) Elektrische maschine
EP3076524A1 (de) Maschinenkomponente einer elektrischen maschine und verfahren zu deren herstellung
DE2256142A1 (de) Elektromotor mit kuehlvorrichtung
EP2284426A2 (de) Strömungsmaschine
DE112020001860T5 (de) Motorrotor
EP0690204B1 (de) Kondensationsturbine mit mindestens zwei Dichtungen zur Abdichtung des Turbinengehäuses
EP3431769B1 (de) Vakuumpumpe
EP2913533B1 (de) Statorscheibe
DE112016002607B4 (de) Turbolader
WO2018078150A1 (de) Rotationssystem mit axialer gaslagerung
EP2022950B1 (de) Strömungs-oder Verdrängungsmaschine
EP3318763B1 (de) Vakuumdichtung, doppeldichtung, vakuumsystem und vakuumpumpe
EP3091191A1 (de) Dichtungsanordnung für eine dampfturbine
DE102019214793A1 (de) Anordnung zur Lagerung und Abdichtung einer Rotorwelle

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee