DE10335446A1 - Laser welding of plastic components involves location of energy absorber film between the two components - Google Patents

Laser welding of plastic components involves location of energy absorber film between the two components Download PDF

Info

Publication number
DE10335446A1
DE10335446A1 DE10335446A DE10335446A DE10335446A1 DE 10335446 A1 DE10335446 A1 DE 10335446A1 DE 10335446 A DE10335446 A DE 10335446A DE 10335446 A DE10335446 A DE 10335446A DE 10335446 A1 DE10335446 A1 DE 10335446A1
Authority
DE
Germany
Prior art keywords
film
laser
joining
welding
joining partners
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10335446A
Other languages
German (de)
Inventor
Andreas Mindt
Jens Jaworski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Volkswagen AG
Original Assignee
Volkswagen AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Volkswagen AG filed Critical Volkswagen AG
Priority to DE10335446A priority Critical patent/DE10335446A1/en
Publication of DE10335446A1 publication Critical patent/DE10335446A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/342Preventing air-inclusions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • B29C65/168Laser beams making use of an absorber or impact modifier placed at the interface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • B29C65/1658Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined scanning once, e.g. contour laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1664Laser beams characterised by the way of heating the interface making use of several radiators
    • B29C65/1667Laser beams characterised by the way of heating the interface making use of several radiators at the same time, i.e. simultaneous laser welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1674Laser beams characterised by the way of heating the interface making use of laser diodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1687Laser beams making use of light guides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1696Laser beams making use of masks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7375General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured
    • B29C66/73755General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being fully cured, i.e. fully cross-linked, fully vulcanized
    • B29C66/73756General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined uncured, partially cured or fully cured the to-be-joined area of at least one of the parts to be joined being fully cured, i.e. fully cross-linked, fully vulcanized the to-be-joined areas of both parts to be joined being fully cured
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/737General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined
    • B29C66/7377General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline
    • B29C66/73775General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline
    • B29C66/73776General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the state of the material of the parts to be joined amorphous, semi-crystalline or crystalline the to-be-joined area of at least one of the parts to be joined being crystalline the to-be-joined areas of both parts to be joined being crystalline
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7394General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset
    • B29C66/73941General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoset characterised by the materials of both parts being thermosets

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

The process joins a first component (4) transparent to the wavelength of the laser (6) with a second component (10). A laser energy absorbing film (14) is located between the first and second components during welding to compensate for gap variation between components. Independent claims are included for: (a) use of an absorbing film between two components to be joined; and (b) the process equipment which includes the absorbing film.

Description

Die Erfindung betrifft ein Verfahren zum Durchstrahlschweißen, insbesondere zum Laserdurchstrahlschweißen, eine Vorrichtung zur Durchführung des Verfahrens sowie die Verwendung einer absorbierenden Folie beim Laserdurchstrahlschweißen.The The invention relates to a method for transmission welding, in particular for laser transmission welding, a device for carrying out the method and the use of an absorbent film in the Laser transmission welding.

Das Durchstrahlschweißen, insbesondere das Laserdurchstrahlschweißen, verbindet ein transparentes Bauteil mit einem absorbierenden Bauteil. Diese optischen Eigenschaften müssen nur für Laserwellenlängen erfüllt sein. Das transparente Bauteil wird von dem Laser durchstrahlt, ohne dass der Laserstrahl dabei zu sehr geschwächt wird. Durch die Absorption am darunter liegenden Bauteil entsteht eine sehr dünne lokale Schmelze an beiden Bauteilen, sofern sie dicht aneinander fixiert sind. Das Laserdurchstrahlverfahren ermöglicht somit eine hohe Schweißqualität, insbesondere bei Kunststoffen. Die geringe Schmelzbildung und das nahezu perfekte Schweißbild, die sehr feine, eng begrenzte Schmelzbildung und die typischerweise dichten Schweißnähte wie auch die hohe Festigkeit, der geringe Verzug und die hohe Schonung der Bauteile haben dazu geführt, dass das Laserdurchstrahlschweißen in der Medizin-/Biotechnologie aber auch für die hohen Ansprüche der Automobilindustrie eingesetzt werden kann. Nachteilhafterweise ist die Qualität der Schweißnaht vor allem von der Schmelze und somit von dem Verhältnis des transparenten Materials zu dem Material mit der hohen Absorptionskonstante sowie von der Wellenlänge des Laserstrahls abhängig. Für viele Anwendungen ist es nicht möglich, die Wellenlänge des Laserstrahls so nachhaltig zu verändern, dass eine neue qualitativ höherwertige Schmelze und somit eine bessere und stabilere Schweißnaht generiert werden kann. Ein weiterer Nachteil ist, dass ein eventueller auftretender größerer Spalt zwischen den Materialien, die auch als Fügepartner bezeichnet werden, beim Laserdurchstrahlschweißen kaum überbrückt werden kann. Das liegt unter anderem daran, dass das Aufschmelzen der Fügepartner indirekt über die Fügepartner selbst erfolgt. Der für eine Verschweißung erforderliche Wärmeübergang zwischen den beiden Teilen verschlechtert sich drastisch mit dem Auftreten eines Fügespaltes. Aufgrund des geringen Schmelzvolumens und der damit verbundenen geringen Schmelzexpansion können nur sehr schmale Spalte überbrückt werden. Die nicht gleichmäßige Erwärmung der beiden Fügepartner führt zu einer Bildung einer Schweißlinse, die nicht in der Mitte zwischen den Schweißteilen liegt, sondern ihre stärkere Ausbildung im stärker absorbierenden Fügepartner hat. Bei zu hoher Laserleistung, beispielsweise um den Spalt zwischen den Fügepartnern zu überwinden, entstehen kleine Lunker, Luft- oder Gaseinschlüsse durch verdampfendes Material.The Transmission welding, in particular the laser transmission welding, connects a transparent Component with an absorbent component. These optical properties have to only for Laser wavelengths Fulfills be. The transparent component is irradiated by the laser, without the laser beam being weakened too much. By the absorption the underlying component creates a very thin local Melt on both components, provided they are tightly fixed are. The laser transmission method thus enables a high welding quality, in particular in plastics. The low melting and the almost perfect welding pattern, the very fine, narrow-enameled and typically dense welds like also the high strength, the low distortion and the high protection of the components have led that the laser transmission welding in the medical / biotechnology but also for the high demands of the Automotive industry can be used. Disadvantageously the quality the weld especially from the melt and thus from the ratio of transparent material to the high absorption constant material as well from the wavelength depending on the laser beam. For many Applications it is not possible the wavelength the laser beam so sustainable that a new qualitative higher quality melt and thus a better and more stable weld can be generated. Another disadvantage is that an eventual larger gap between the materials, which are also referred to as joining partners, during laser transmission welding hardly be bridged can. This is partly due to the fact that the melting of the joining partners indirectly via the joining partners even done. The for a weld required heat transfer between the two parts worsens drastically with the Occurrence of a joint gap. Due to the low melt volume and the associated low melt expansion can only very narrow gaps are bridged. The non-uniform heating of the two joining partners leads to a formation of a nugget, which is not in the middle between the welded parts, but theirs more Training in the stronger absorbing joining partner Has. If the laser power is too high, for example around the gap between the joining partners to overcome, small voids, air or gas inclusions caused by evaporating material.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung bereitzustellen, die die bekannten Nachteile verhindert und die eine einfache und effektive und gute Ausbildung der Schweißverbindung ermöglichen.Of the Invention is therefore the object of a method and a To provide apparatus that prevents the known disadvantages and that a simple and effective and good training of the welded joint enable.

Die Erfindung löst dieses Problem durch Bereitstellung eines Verfahrens zum Laserdurchstrahlschweißen zwischen einem ersten, für den eingesetzten Wellenlängenbereich eines Lasers transparenten Fügepartner und einem zweiten Fügepartner, wobei zwischen dem ersten und dem zweiten Fügepartner eine absorbierende Folie positioniert ist.The Invention solves this problem by providing a method for laser transmission welding between a first, for the wavelength range used a laser transparent joining partner and a second joining partner, wherein between the first and the second joining partner an absorbent Slide is positioned.

Überraschenderweise führt der Einsatz einer Folie mit hoher Absorptionskonstante zur Ausbildung einer Schmelze, die in der Mitte zwischen den Schweißteilen liegt, wodurch eine stärkere Ausbildung der Schweißlinse im absorbierenden Bauteil vermieden werden kann. Die Folie weist eine Absorptionskonstante auf, die höher ist als die des ersten Fügepartners, durch den der Laserstrahl hindurchdringt. Die Absorptionskonstante muss hierbei so hoch gewählt sein, dass sich eine Schweißnaht zwischen den Fügepartnern ausbildet. Der Wert der Absorptionskonstante lässt sich durch Routineversuche eines Fachmanns problemlos ermitteln. Der Begriff hohe Absorptionskonstante im Sinne der Erfindung bedeutet also im Zusammenhang mit der absorbierenden Folie eine Absorptionskonstante, die so gewählt ist, dass sie beim Auftreffen des Laserstrahls während des Durchstrahlschweißens zum Aufschmelzen der Folie führt und sich eine Schweißverbindung ausbildet.Surprisingly leads the Use of a film with high absorption constant to form a Melt, which lies in the middle between the welded parts, whereby a more Training the weld nugget can be avoided in the absorbent member. The foil points an absorption constant which is higher than that of the first joining partner, through which the laser beam penetrates. The absorption constant must be so high be that a weld between the joining partners formed. The value of the absorption constant can be determined by routine tests of a Determine expert easily. The term high absorption constant in the context of the invention therefore means in connection with the absorbent Foil an absorption constant that is chosen so that they hit of the laser beam during of transmission welding leads to melting of the film and a welded joint formed.

Die beiden Fügepartner müssen aufgrund der Verwendung der Absorptionsfolie nicht mehr im gesamten Bereich ihrer aufeinander zugewandten Flächen dicht aufeinander liegen. Die Absorptionsfolie absorbiert die Energie des Laserstrahls, wärmt sich auf und bildet so eine Schmelze, die mögliche Fugen auffüllt und die Fügepartner an den Kontaktflächen so lange erwärmt, bis diese ebenfalls auf- beziehungsweise anschmelzen. Durch die Vorgänge kommt es zu thermischen Platzwechselvorgängen der Molekülketten im Grenzbereich zwischen den beiden Lagen und somit zur Ausbildung einer Schweißverbindung. Durch den Einsatz einer die Wellenlänge des Lasers absorbierende Folie kann vorteilhafterweise auf das Einfärben eines Bauteiles, insbesondere des zweiten Fügepartners, verzichtet werden.The two joining partners have to due to the use of the absorption foil no longer throughout Area of their facing surfaces are close to each other. The absorption foil absorbs the energy of the laser beam and warms up and forms a melt that fills up possible joints and the joining partners at the contact surfaces warmed up so long until they also melt or melt. By the Events are coming to thermal space-exchange processes of the molecular chains in the border area between the two layers and thus for training a welded joint. By using a wavelength absorbing laser Film can advantageously be applied to the coloring of a component, in particular the second joining partner, be waived.

Dies ist vor allem für große Bauteile von Bedeutung, da das Zumischen der absorbierenden Farbpigmente mit Kosten und einem technischen Mehraufwand an den Fertigungsanlagen verbunden ist. Toleranzen in der Fügefläche können durch das erfindungsgemäße Verfahren besser ausgeglichen werden, da bei Einsatz einer Folie mit etwas niedrigerem Schmelzpunkt diese früher eine Schmelze bildet. Diese Schmelze füllt den Spalt zwischen den Bauteilen aus und sorgt für einen – für die Wärmeleitung nötigen – Kontakt zwischen der Schmelze und dem Fügepartner, wobei Toleranzen der Fügefläche besonders vorteilhaft ausgeglichen werden können, wenn die Folie eine gewisse Elastizität aufweist. Es ist weiterhin vorteilhaft, wenn die Dicke der Folie möglichst gering gehalten wird, da die Energiezufuhr durch den Laser ausreichen soll, eine genügende Schmelze zu bilden. Abhängig ist die Dicke selbstverständlich von der Breite des zu überbrückenden Fügespalts und von der Elastizität der Folie. Für das anmeldungsgemäße Verfahren besteht die Folie mit der hohen Absorptionskonstante bevorzugt aus dem gleichen thermoplastischen Grundwerkstoff wie die Fügepartner, das heißt den Materialien, die verschweißt werden sollen. Die Schmelztemperatur der Folie und der Fügepartner sollte im Wesentlichen im gleichen Bereich liegen. Die Folie ist bevorzugt mit absorbierenden Stoffen compoundiert, das heißt die Folie ist für den Laser undurchsichtig. Bevorzugt liegt der Schmelzpunkt der Folie mit der hohen Absorptionskonstante 2 bis 15K unter dem Schmelzpunkt des Werkstoffes der Fügepartner.This is especially important for large components, since the admixing of the absorbent Color pigments associated with costs and a technical overhead on the production lines. Tolerances in the joining surface can be better compensated by the inventive method, since when using a film with a slightly lower melting point, this former forms a melt. This melt fills the gap between the components and ensures - necessary for the heat conduction - contact between the melt and the joining partner, with tolerances of the joining surface can be compensated for particularly advantageous if the film has a certain elasticity. It is also advantageous if the thickness of the film is kept as low as possible, since the energy supply by the laser should be sufficient to form a sufficient melt. Of course, the thickness depends on the width of the joint gap to be bridged and on the elasticity of the film. For the method according to the application, the film with the high absorption constant preferably consists of the same thermoplastic base material as the joining partners, that is to say the materials which are to be welded. The melting temperature of the film and the joining partners should be substantially in the same range. The film is preferably compounded with absorbent materials, that is, the film is opaque to the laser. The melting point of the film with the high absorption constant 2 to 15K is preferably below the melting point of the material of the joining partners.

In einer weiteren bevorzugten Ausführungsform der Erfindung ist die Folie durch Zusatzstoffe elastischer als der Werkstoff der Fügepartner. In einer anderen bevorzugten Ausführungsform der Erfindung umfassen die Fügepartner Thermoplaste. Bevorzugt sind die Thermoplaste im Sinne der Erfindung Polymere, die bei der Gebrauchstemperatur weiche oder harte Werkstoffe sind und die oberhalb der Gebrauchstemperatur einen Fließübergang besitzen. Im Sinne der Erfindung können die Thermoplaste bevorzugt aus linearen oder verzweigten Polymeren bestehen, die im Fall amphoterer Thermoplaste oberhalb der Gasübergangstemperatur im Falle der kristallinen Thermoplaste oberhalb der Schmelztemperatur prinzipiell fließfähig werden. Die Thermoplaste sind bevorzugt vernetzte Elastomere oder Duroplaste. Zu diesen gehören beispielsweise die Polyolefine, Vinylpolymere, Polyamide, Polyester, Polyacetate, Polycarbonate, zum Teil auch Polyurethane und Ionomere. Die Thermoplaste im Sinne der Erfindung umfassen also Polymere, deren Eigenschaftsniveau sich von dem der Massenkunststoffe bis zu den der Hochleistungskunststoffe, wie zum Beispiel der Spezialkunststoffe erstreckt. Eine Übergangsgruppe zwischen diesen beiden Kunststoffklassen bilden beispielsweise technische Thermoplaste wie zum Beispiel PMMA, PET, PC, POM, SAN, ABS und/oder PC/ABS.In a further preferred embodiment the invention is the film by additives more elastic than the Material of the joining partners. In another preferred embodiment of the invention the joining partners Thermoplastics. Preference is given to the thermoplastics in the context of the invention Polymers that are soft or hard materials at service temperature are and above the service temperature, a flow transition have. For the purposes of the invention, the thermoplastics may be preferred consist of linear or branched polymers, which in the case of amphoteric Thermoplastics above the gas transition temperature in the case of crystalline thermoplastics above the melting temperature in principle be flowable. The thermoplastics are preferably crosslinked elastomers or thermosets. Belong to these for example, the polyolefins, vinyl polymers, polyamides, polyesters, Polyacetates, polycarbonates, in part also polyurethanes and ionomers. The thermoplastics according to the invention thus comprise polymers, their property level is that of bulk plastics up to to the high-performance plastics, such as special plastics extends. A transition group between these two classes of plastic form, for example, technical Thermoplastics such as PMMA, PET, PC, POM, SAN, ABS and / or PC / ABS.

In einer weiteren besonders bevorzugten Ausführungsform der Erfindung ist der Laser ein Dioden- oder ein Nd:YAG-Laser. Je nach Transmissionsverhalten der einzusetzenden Fügepartner ist die Laserstrahlquelle auszuwählen. Einige Thermoplaste zeigen bei 1064 nm eine höhere Transmission als im Wellenlängenbereich von beispielsweise 810 nm. Bei diesen Materialien ist vorteilhafterweise mit einem Nd:YAG-Laser eine höhere Wanddicke schweißbar.In Another particularly preferred embodiment of the invention the laser is a diode or Nd: YAG laser. Depending on the transmission behavior the joining partner to be used select the laser beam source. Some thermoplastics show a higher transmission at 1064 nm than in the wavelength range of, for example, 810 nm. These materials are advantageously with a Nd: YAG laser a higher Weldable wall thickness.

Bevorzugt wird das erfindungsgemäße Laserdurchstrahlschweißen als Konturschweißen, Simultanschweißen, Quasisimultanschweißen und/oder Maskenschweißen durchgeführt. Für alle Varianten gilt, dass die mindestens zwei oder mehreren Fügepartner schon vor dem Schweißprozess durch eine geeignete Fixierungsvorrichtung zusammengehalten werden. Bei dem Konturschweißen wird eine Fügenaht mit dem Laserstrahl abgefahren, so dass nur eine lokale Plastifizierung durch das Aufschmelzen stattfindet. Die Bewegung des Lasers kann mit verschiedenen Systemen durchgeführt werden, beispielsweise kann der Laserstrahl an einen Lichtwellenleiter eingekoppelt sein, der an einem Roboterarm gefertigt wird oder die beiden Fügepartner werden auf einem Zweiachsentisch befestigt und unter einem fest stehenden Laserstrahl bewegt. Es kann jedoch aber auch vorgesehen sein, dass die Laserstrahlquelle auf einer Zweiachsenverfahreinheit über die Fügeteile bewegt wird. Durch die nur lokal stattfindende Plastifizierung kommt der Genauigkeit der Fügepartner eine hohe Bedeutung zu, mit dieser erfindungsgemäßen Verfahrensvariante können durch die erwärmungsbedingte Volumenzunahme der absorbierenden Folie kleine bis mittelkleine Spalten überbrückt werden. Die dabei gebräuchlichen Verfahrensgeschwindigkeiten liegen je nach Laserleistung (zum Beispiel im Bereich von 10 bis 100 W) und Material- und Wanddicke bei 5 bis 100 mm/s. Vorteilhafterweise ist dieses Verfahren äußerst flexibel einsetzbar und besonders für kleine oder häufig wechselnde Konturen geeignet. Beim erfindungsgemäßen Simultanschweißen werden oberhalb des gesamten Fügenahtverlaufes Laserdioden platziert. Dadurch kann die gesamte Fügenaht gleichzeitig bestrahlt und plastifiziert werden. Sofern die Schweißvorrichtung mit einer Wegmessung ausgerüstet ist, ist es vorteilhafterweise möglich, auch Toleranzen zwischen den Fügepartnern durch einen definierten Fügeweg auszugleichen. Die Schweißzeit ist vorteilhafterweise unabhängig von der Fügenahtlänge und liegt je nach eingesetzter Leistung bei 1 bis 5 s. Beim erfindungsgemäßen Quasisimultanschweißen wird die gesamte Fügefläche quasi gleichzeitig plastifiziert, wobei der Laserstrahl ähnlich wie beim Laserbeschriften mit Hilfe von Umlenkspiegeln mit einer Frequenz von bis zu 50 Hz über die Fügefläche gelenkt wird. Dabei findet eine quasi gleichmäßige Erwärmung der absorbierenden Folie statt. Mit entsprechenden Vorrichtungen ist es wie beim Simultanschweißen möglich, einen Toleranzausgleich mittels eines Fügeweges durchzuführen. Mit dem Quasisimultanschweißen sind auch dreidimensionale Fügebahnverläufe und -radien nahezu uneingeschränkt möglich, da verstellbare Optiken einen Höhenausgleich ermöglichen. Bedingt durch die hohe benötigte Laserleistung von vorteilhafterweise größer 100 W und die Anforderung nach einer guten Fokussierbarkeit kommen hierzu bevorzugt Nd:YAG-Laserquellen zum Einsatz. Beim erfindungsgemäßen Maskenschweißen wird ein Laserstrahl so weit rechteckig aufgeweitet, dass eine Fläche entsteht, die die gesamte Bauteilbreite bestrahlen kann. Damit nur die Fügenaht plastifiziert wird, setzt man zwischen die Strahlenquelle und das Bauteil eine so genannte Maske, die den Strahl nur im Bereich der Fügenaht durchlässt. Die Strahllinie wird dann über das Bauteil geführt und bewirkt so an der Fügefläche eine Plastifizierung, die im Wesentlichen dadurch entsteht, dass der Laserstrahl durch die Absorption durch die Folie in Wärme umgewandelt wird und eine Plastifizierung hervorruft. Durch die dabei entstehende örtliche Volumenzunahme entsteht ein flächiger Kontakt zwischen den Fügepartnern und durch die auftretende Wärmeleitung werden beide Fügepartner plastifiziert. Beim erfindungsgemäßen Maskenschweißen kann es auch vorgesehen sein, dass die Masken insbesondere durch die Form der absorbierenden Folie gebildet werden. Selbstverständlich ist es auch möglich, dass die Absorption der Fügepartner und der Folie in Verbindung mit der eingesetzten Maske beim Maskenschweißen miteinander abgeglichen werden. Je höher die Absorptionskonstante des vom Laserstrahl abgewandten Fügepartners, umso geringer kann die Absorptionskonstante der eingesetzten Folie sein. Sofern beide Fügepartner für den Laser transparent sind, wird die Plastifizierung im Wesentlichen nur durch die Folie hervorgerufen. Durch Ausbildung eines bestimmten Musters der Folie kann beispielsweise beim Maskenverfahren auf die Maske verzichtet werden, da eine Plastifizierung nur an den Stellen vorgenommen wird, an denen der Laser auf die absorbierende Folie trifft.The laser transmission welding according to the invention is preferably carried out as contour welding, simultaneous welding, quasi-simultaneous welding and / or mask welding. For all variants, the at least two or more joining partners are held together by a suitable fixing device before the welding process. In contour welding, a joining seam is traversed with the laser beam, so that only a local plasticization takes place as a result of the melting. The movement of the laser can be carried out with various systems, for example, the laser beam can be coupled to an optical waveguide which is manufactured on a robot arm or the two joining partners are mounted on a two-axis table and moved under a fixed laser beam. However, it can also be provided that the laser beam source is moved on a Zweiachsenverfahreinheit on the Fügeteile. Due to the plasticization takes place only locally, the accuracy of the joining partners is of great importance, with this process variant of the invention can be bridged by the warming-induced volume increase of the absorbent film small to medium-sized columns. Depending on the laser power (for example in the range from 10 to 100 W) and the material and wall thickness, the process speeds used are between 5 and 100 mm / s. Advantageously, this method is extremely flexible and particularly suitable for small or frequently changing contours. In the simultaneous welding according to the invention, laser diodes are placed above the entire joining seam course. As a result, the entire joint seam can be irradiated and plasticized simultaneously. If the welding device is equipped with a displacement measurement, it is advantageously possible to compensate for tolerances between the joining partners by a defined Fügeweg. The welding time is advantageously independent of the joint seam length and is depending on the power used at 1 to 5 s. In Quasisimultanschweißen invention the entire joining surface is virtually simultaneously plasticized, the laser beam is similar to the laser marking with the help of deflecting mirrors with a frequency of up to 50 Hz is directed over the joint surface. In this case, a quasi-uniform heating of the absorbent film takes place. With appropriate devices, it is like the simultaneous Welding possible to perform a tolerance compensation by means of a joining path. With the Quasiimultanschweißen three-dimensional Fügebahnverläufe and radii are almost unrestricted possible because adjustable optics allow height compensation. Due to the high required laser power of advantageously greater than 100 W and the requirement for good focusability, preference is given to using Nd: YAG laser sources for this purpose. When mask welding according to the invention, a laser beam is expanded so far rectangular that a surface is created which can irradiate the entire component width. So that only the joining seam is plasticized, a so-called mask is inserted between the radiation source and the component, which lets the beam through only in the area of the joint seam. The beam line is then passed over the component and thus causes on the joining surface a plasticization, which essentially arises from the fact that the laser beam is converted by the absorption by the film into heat and causes plasticization. As a result of the resulting local increase in volume, there is a surface contact between the joining partners and, due to the heat conduction occurring, both joining partners are plasticized. In mask welding according to the invention, it can also be provided that the masks are formed in particular by the shape of the absorbent film. Of course, it is also possible that the absorption of the joining partners and the film in conjunction with the mask used during mask welding are matched. The higher the absorption constant of the joining partner facing away from the laser beam, the lower the absorption constant of the film used can be. If both joining partners are transparent to the laser, the plasticization is essentially caused only by the film. By forming a specific pattern of the film, the mask can be dispensed with, for example, in the mask process, since plasticization is only carried out at the points at which the laser strikes the absorbent film.

Einfärbungen mit Gasruß können als Laserstrahlabsorbieren zusätzlich zur Absorption eingesetzt werden. Hierbei ist zu beachten, dass die Eindringtiefe mit dem Anteil des Gasrußes variiert. Je höher der Anteil desto größer die Absorption und desto geringer die Eindringtiefe und damit das aufgeschmolzene Materialvolumen. Für das Konturschweißen ist zur Spaltüberbrückung ein hohes Aufschmelzvolumen und damit eine hohe Eindringtiefe erforderlich. Beim Simultan- beziehungsweise Quasisimultanschweißen mit Abschmelzweg ist eine hohe Absorption mit geringer Eindringtiefe zur schnelleren Plastifizierung bevorzugt.coloring with carbon black can as Laser beam absorb additionally be used for absorption. It should be noted that the penetration depth varies with the proportion of the carbon black. The higher the Share the bigger the Absorption and the lower the penetration depth and thus the molten Volume of material. For the contour welding is for gap bridging on high melting volume and thus a high penetration depth required. Simultaneous or quasi-simultaneous welding with Abschmelzweg is a high absorption with low penetration preferred for faster plasticization.

Die Erfindung betrifft auch die Verwendung einer absorbierenden Folie beim Laserdurchstrahlschweißen. Durch die Verwendung der Folie können Toleranzen in der Fügefläche besser ausgeglichen werden, da beim Einsatz dieser Folie insbesondere mit etwas niedrigerem Schmelzpunkt sich früher eine Schmelze bildet. Weiterhin sei auf die Vorteile, die zu dem Verfahren oben ausgeführt worden sind, hingewiesen. Weiterhin betrifft die Erfindung eine Vorrichtung zum Durchstrahlschweißen, bei der zwischen mindestens zwei Fügepartnern eine Absorptionsfolie positioniert ist.The The invention also relates to the use of an absorbent film during laser transmission welding. By using the film can tolerances better in the joining surface be compensated because when using this slide in particular with something lower melting point earlier forms a melt. Furthermore, let's look at the benefits to that Procedure outlined above been pointed out. Furthermore, the invention relates to a Apparatus for transmission welding, in which between at least two joining partners an absorption foil is positioned.

Weitere bevorzugte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.Further preferred embodiments of the invention will become apparent from the others, in the subclaims mentioned features.

Die Erfindung wird nachfolgend in einem Ausführungsbeispiel anhand der zugehörigen Zeichnung näher erläutert, ohne auf dieses Ausführungsbeispiel beschränkt zu sein. Die einzige Figur zeigt eine schematische Darstellung des Laserdurchstrahlschweißens mit der erfindungsgemäßen Folie.The Invention will be described below in an embodiment with reference to the accompanying drawings explained in more detail, without to this embodiment limited to be. The single FIGURE shows a schematic representation of the Laser beam welding with the film according to the invention.

Die Figur zeigt das Laserdurchstrahlschweißen anhand zweier Materialien 2. Hierbei ist es vorgesehen, dass ein Material, welches auch als der erste Fügepartner 4 bezeichnet werden kann, für den eingesetzten Wellenlängenbereich des Lasers 6, das heißt für den Laserstrahl 8, transparent ist. Der zweite Fügepartner 10 kann ein Material mit einer von dem ersten Fügepartner 4 verschiedenen Absorptionskonstante sein, es kann jedoch auch vorgesehen sein, dass der zweite Fügepartner 10 eine ähnliche oder identische Absorptionskonstante wie der erste Fügepartner 4 aufweist. Die beiden Materialien 2 sind so aufeinander angeordnet, dass die Fügeflächen 12 eng anliegen, wobei zwischen den beiden Fügepartnern 4, 10 eine Folie 14 angeordnet ist. Die Folie 14 kann beispielsweise dazu dienen, den Spalt 16 zwischen den Fügepartnern 4, 10 auszugleichen. Während des Laserdurchstrahlschweißens wird von einem Laser 6 ein Laserstrahl 8 auf den ersten Fügepartner 4 projiziert, wobei das Material 2 des ersten Fügepartners 4 transparent für den Laserstrahl 8 ist, so dass dieser durch das Material 2 des ersten Fügepartners 4 hindurchdringen kann. Bei dem Laserstrahl 8 kann es sich beispielsweise um Lichtwellen eines Diodenlasers oder eines Nd:YAG-Lasers handeln. Nachdem der Laserstrahl 8 weitgehend ungehindert durch die obere transparente Schicht des ersten Fügepartners 4 gedrungen ist, trifft er am Auftreffpunkt 18 auf die Folie 14, die zwischen den beiden Fügeflächen 12 in dem Spalt 16 positioniert ist. Die Folie 14, die eine hohe Absorptionskonstante aufweist, verhindert die weitere Ausbreitung des Laserstrahls 8 im zweiten Fügepartner 10. Durch die Einstrahlung des Laserstrahls 8 auf den Auftreffpunkt 18 schmilzt dieser auf, wodurch eine linsenförmige Schmelze 20 entsteht. Die Schmelze 20 kann hierbei durch Erwärmung der beiden Fügeflächen 12 an dem jeweiligen Auftreffpunkt 18 erzeugt werden. Hierbei wird die Schmelze 20 sowohl von einem ersten Schmelzbereich 22 in dem ersten Fügepartner 4 und von einem zweiten Schmelzbereich 24 in dem zweiten Fügepartner 10 gebildet. Selbstverständlich kann es auch vorgesehen sein, dass die Folie 14 so ausgebildet wird, dass die Schmelze 20 im Wesentlichen nur durch einen ersten Schmelzbereich 22 gebildet wird, insbesondere dann, wenn die Absorptionskonstante der Folie 14 so hoch ist, dass kaum Energie des Laserstrahls 8 auf den zweiten Fügepartner 10 aufgebracht werden kann. Bevorzugt ist jedoch die Erzeugung einer Schmelze 20 im Material 2 des ersten und zweiten Fügepartners 4, 10. Durch das Aufschmelzen der beiden Fügeflächen 12 dehnt sich die Schmelze 20 aus und erwärmt nach Kontakt beide Fügeflächen 12 punktuell, so dass es durch thermische Platzwechselvorgänge der Molekülketten im Grenzbereich zwischen den beiden Fügeflächen 12 zur Ausbildung der Schweißverbindung 26 kommt. Die ausgebildete Schweißbverbindung 26 verbindet die beiden Fügepartner 4, 10 miteinander. Durch das geringe gebildete Schmelzvolumen 28 kommt es vorteilhafterweise zu einem geringen Verzug der Materialien 2 der beiden Fügepartner 4, 10. Der Spalt 16 kann mit Vorteil bei dem erfindungsgemäßen Verfahren des Laserdurchstrahlschweißens etwas weniger groß gewählt werden als bei den bekannten Verfahren ohne die Folie 14, da diese Unregelmäßigkeiten, die durch eine nicht streng planare Fügefläche 12 der beiden Fügepartner 4, 10 entstehen können, ausgeglichen werden können. Durch dieses bessere Ausgleichen durch die Folie 14 kommt es bei dem Wärmeübergang zwischen den beiden Fügepartnern 4, 10 zu einem geringeren Energie- und Wärmeverlust als bei bekannten Verfahren. Die Folie 14 ermöglicht vorteilhafterweise eine gleichmäßige Erwärmung der beiden Fügepartner 4, 10, so dass sich eine Schweißlinse 30 in Form einer Schmelze 20 bildet, die in der Mitte zwischen den Fügepartnern 4, 10 gebildet wird. Dadurch wird die stärkere Ausbildung der Schweißlinse 30 im absorbierenden Bauteil gemäß den bekannten Verfahren beim Laserdurchstrahlschweißen vermieden. Mit Vorteil wird hierdurch die Bildung von Lunkern, Luft- oder Gaseinschlüssen durch verdampfendes Material 2 vermieden. Durch die Verwendung der Folie 14 ist das Material 2 der beiden Fügepartner 4, 10 nahezu frei wählbar, da es gegenüber den bekannten Verfahren des Laserdurchstrahlschweißens nicht erforderlich ist, dass eines der beiden Materialien eine Absorptionskonstante aufweist, die ein Durchdringen des Laserstrahls 8 verhindert, wodurch eine Schmelze 20 gebildet werden kann. Erfindungsgemäß sorgt die Folie 14 für die Absorption der Energie des Laserstrahls 8, wodurch sich die Absorptionsfolie aufwärmt und eine Schmelze 20 bildet, wobei diese Schmelze 20 sowohl von der Folie 14 allein als auch anteilmäßig von den Fügeflächen 12 der beiden Fügepartner 4, 10 gebildet werden kann. Die Schmelze 20 füllt mögliche Fugen beziehungsweise Unebenheiten der Fügeflächen 12 auf und erwärmt die Fügepartner 4, 10 an dem Auftreffpunkt 18, der auch als Kontaktfläche bezeichnet werden kann, bis diese anschmelzen. Durch diesen Vorgang wird die Schweißverbindung 26 zwischen den beiden Fügepartnern 4, 10 gebildet. Um die oben genannten Vorteile realisieren zu können, sollte die Folie 14 vorteilhafterweise folgende Eigenschaften besitzen: Sie sollte aus dem gleichen thermoplastischen Grundwerkstoff beziehungsweise Material 2 wie der erste und zweite Fügepartner 4 und 10 bestehen. Dieses führt zu einer im Wesentlichen gleichen Schmelztemperatur von Folie 14 und dem Material 2 des ersten und zweiten Fügepartners 4, 10. Die Folie 14 ist hierbei so beschaffen, dass sie für die Wellenlänge des eingesetzten Laserstrahls 8 nicht transparent ist. Die Ausbildung der Schweißverbindung 26 kann zusätzlich dadurch verbessert werden, wenn der Schmelzpunkt der Folie 14 gering unter dem Schmelzstoff des Materials 2 liegt. In die Folie 14 können weiterhin Zusatzstoffe eingebracht werden, die dafür sorgen, dass die Folie 14 insgesamt elastischer als das Material 2 ist.The figure shows the laser transmission welding using two materials 2 , It is provided that a material, which also as the first joining partner 4 can be designated for the wavelength range of the laser used 6 that is for the laser beam 8th , is transparent. The second joint partner 10 can be a material with one of the first joining partners 4 be different absorption constant, but it can also be provided that the second joining partner 10 a similar or identical absorption constant as the first joining partner 4 having. The two materials 2 are arranged on each other so that the joining surfaces 12 close fitting, being between the two joining partners 4 . 10 a slide 14 is arranged. The foil 14 can serve, for example, the gap 16 between the joining partners 4 . 10 compensate. During laser transmission welding is done by a laser 6 a laser beam 8th on the first joint partner 4 projected, with the material 2 of the first joining partner 4 transparent to the laser beam 8th is, so this through the material 2 of the first joining partner 4 can penetrate. At the laser beam 8th it may be, for example, light waves of a diode laser or a Nd: YAG laser. After the laser beam 8th largely unhindered by the upper transparent layer of the first joining partner 4 squat, he hits at the point of impact 18 on the slide 14 between the two joining surfaces 12 in the gap 16 is positioned. The foil 14 , which has a high absorption constant, prevents further propagation of the laser beam 8th in the second joining partner 10 , By the irradiation of the laser beam 8th on the impact point 18 this melts, creating a lenticular melt 20 arises. The melt 20 can do this by heating the two joining surfaces 12 at the respective impact point 18 be generated. This is the melt 20 both from a first melting range 22 in the first joining partner 4 and a second melting range 24 in the second joint partner 10 educated. Of course, it can also be provided that the film 14 is formed so that the melt 20 essentially only by a first melting range 22 is formed, especially if the absorption constant of the film 14 so high is that hardly any energy of the laser beam 8th on the second joint partner 10 can be applied. However, preference is given to the production of a melt 20 in the material 2 of the first and second joining partners 4 . 10 , By melting the two joining surfaces 12 the melt expands 20 and heated after contact both joining surfaces 12 punctually, causing it by thermal space change processes of the molecular chains in the boundary region between the two joining surfaces 12 for the formation of the welded joint 26 comes. The trained Schweißbverbindung 26 connects the two joining partners 4 . 10 together. Due to the low melt volume formed 28 it comes advantageously to a low distortion of the materials 2 the two joining partners 4 . 10 , The gap 16 can be selected with advantage in the inventive method of laser transmission welding a little less large than in the known methods without the film 14 because these irregularities are caused by a not strictly planar joining surface 12 the two joining partners 4 . 10 can arise, can be compensated. Through this better balancing through the film 14 it comes with the heat transfer between the two joining partners 4 . 10 to a lower energy and heat loss than in known methods. The foil 14 advantageously allows a uniform heating of the two joining partners 4 . 10 , so that is a nugget 30 in the form of a melt 20 that forms in the middle between the joining partners 4 . 10 is formed. This will increase the training of the weld nugget 30 avoided in the absorbent member according to the known methods in the laser transmission welding. Advantageously, thereby the formation of voids, air or gas inclusions by evaporating material 2 avoided. By using the foil 14 is the material 2 the two joining partners 4 . 10 Almost freely selectable, since it is not required over the known methods of laser transmission welding that one of the two materials has an absorption constant, which is a penetration of the laser beam 8th prevents it from melting 20 can be formed. According to the invention, the film provides 14 for absorbing the energy of the laser beam 8th , whereby the absorption foil heats up and a melt 20 forms, this melt 20 both from the slide 14 alone as well as proportionally from the joining surfaces 12 the two joining partners 4 . 10 can be formed. The melt 20 fills possible joints or unevenness of the joint surfaces 12 and heats up the joining partners 4 . 10 at the point of impact 18 , which can also be referred to as a contact surface, until they melt. This process will make the weld 26 between the two joining partners 4 . 10 educated. In order to realize the above advantages, the film should 14 advantageously have the following properties: It should be made of the same thermoplastic base material or material 2 like the first and second joining partner 4 and 10 consist. This leads to a substantially same melting temperature of the film 14 and the material 2 of the first and second joining partners 4 . 10 , The foil 14 is in this case such that they are responsible for the wavelength of the laser beam used 8th is not transparent. The formation of the welded joint 26 In addition, it can be improved if the melting point of the film 14 slightly below the melting point of the material 2 lies. In the foil 14 In addition, additives can be added, which ensure that the film 14 altogether more elastic than the material 2 is.

22
Materialmaterial
44
erster Fügepartnerfirst joining partner
66
Laserlaser
88th
Laserstrahllaser beam
1010
zweiter Fügepartnersecond joining partner
1212
Fügeflächejoining surface
1414
Foliefoil
1616
Spaltgap
1818
Auftreffpunktof impact
2020
Schmelzemelt
2222
erster Schmelzbereichfirst melting range
2424
zweiter Schmelzbereichsecond melting range
2626
Schweißverbindungwelded joint
2828
Schmelzvolumenmelt volume
3030
Schweißlinsenugget

Claims (11)

Verfahren zum Durchstrahlschweißen mit einem Laser (6) zwischen einem ersten, für den eingesetzten Wellenlängenbereich des Lasers (6) transparenten Fügepartner (4) und einem zweiten Fügepartner (10), dadurch gekennzeichnet, dass zwischen dem ersten und dem zweiten Fügepartner (4, 10) eine absorbierende Folie (14) positioniert ist.Method for transmission welding with a laser ( 6 ) between a first, for the used wavelength range of the laser ( 6 ) transparent joining partner ( 4 ) and a second joint partner ( 10 ), characterized in that between the first and the second joint partner ( 4 . 10 ) an absorbent film ( 14 ) is positioned. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Folie (14) aus dem gleichen thermoplastischen Grundwerkstoff wie die Fügepartner (4, 10) besteht.Method according to claim 1, characterized in that the film ( 14 ) made of the same thermoplastic base material as the joining partners ( 4 . 10 ) consists. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Folie (14) mit absorbierenden Stoffen coumpoundiert ist.Method according to claim 1 or 2, characterized in that the film ( 14 ) with absorb the substances are coumpoundiert. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Schmelzpunkt der Folie (14) 2 bis 15 K unterhalb des Schmelzstoffes der Fügepartner (4, 10) liegt.Method according to one of the preceding claims, characterized in that the melting point of the film ( 14 ) 2 to 15 K below the melting point of the joining partners ( 4 . 10 ) lies. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Folie (14) elastischer als die Fügepartner (4, 10) ausgebildet ist.Method according to one of the preceding claims, characterized in that the film ( 14 ) more elastic than the joining partners ( 4 . 10 ) is trained. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Fügepartner (4, 10) Thermoplaste umfassen.Method according to one of the preceding claims, characterized in that the joining partners ( 4 . 10 ) Thermoplastics include. Verfahren nach dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass als Thermoplaste Duroplaste und/oder Elastomere eingesetzt werden.Method according to the preceding claim, characterized characterized in that as thermoplastics thermosets and / or elastomers be used. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass als Laser (6) ein Diodenlaser oder ein Nd:YAG-Laser eingesetzt wird.Method according to one of the preceding claims, characterized in that as laser ( 6 ) a diode laser or a Nd: YAG laser is used. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Durchstrahlschweißen als Konturschweißen, Simultanschweißen, als Quasisimultanschweißen und/oder als Maskenschweißen durchgeführt wird.Method according to one of the preceding claims, characterized characterized in that the transmission welding as contour welding, simultaneous welding, as Quasi-simultaneous welding and / or as mask welding carried out becomes. Verwendung einer absorbierenden Folie (14) beim Laserdurchstrahlschweißen, wobei die Folie (14) zwischen mindestens zwei Fügepartnern (4, 10) positioniert ist.Use of an absorbent film ( 14 ) in laser transmission welding, wherein the film ( 14 ) between at least two joint partners ( 4 . 10 ) is positioned. Vorrichtung zum Laserdurchstrahlschweißen, dadurch gekennzeichnet, dass zwischen mindestens zwei Fügepartnern (4, 10) eine Folie (14) positioniert ist.Device for laser transmission welding, characterized in that between at least two joining partners ( 4 . 10 ) a film ( 14 ) is positioned.
DE10335446A 2003-07-31 2003-07-31 Laser welding of plastic components involves location of energy absorber film between the two components Withdrawn DE10335446A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE10335446A DE10335446A1 (en) 2003-07-31 2003-07-31 Laser welding of plastic components involves location of energy absorber film between the two components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10335446A DE10335446A1 (en) 2003-07-31 2003-07-31 Laser welding of plastic components involves location of energy absorber film between the two components

Publications (1)

Publication Number Publication Date
DE10335446A1 true DE10335446A1 (en) 2005-02-17

Family

ID=34072040

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10335446A Withdrawn DE10335446A1 (en) 2003-07-31 2003-07-31 Laser welding of plastic components involves location of energy absorber film between the two components

Country Status (1)

Country Link
DE (1) DE10335446A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669186A1 (en) * 2003-10-02 2006-06-14 Ube Industries, Ltd. Material for laser welding and method for laser welding
EP2108502A1 (en) * 2008-04-11 2009-10-14 The Boeing Company Method of making a transparency
US20120009006A1 (en) * 2010-07-12 2012-01-12 Robert Bosch Gmbh Method for Producing a Multilayer System and Corresponding Multilayer System
DE102013013415A1 (en) * 2013-08-09 2015-02-12 Fresenius Medical Care Deutschland Gmbh cassette module
DE102015219120A1 (en) 2015-10-02 2017-04-06 Robert Bosch Gmbh Method for joining components by means of an absorbent coating
DE102016206612A1 (en) * 2016-04-19 2017-08-03 Continental Automotive Gmbh Method for joining a metallic molding with a thermoplastic molding
CN111070699A (en) * 2018-11-27 2020-04-28 艾默生科技有限公司布兰森超声分公司 Waveguide section for plastic welding, device for plastic welding, welding method and method for producing a waveguide section

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560291A (en) * 1964-03-27 1971-02-02 Mobil Oil Corp Bonding thermoplastic resin films by means of radiation from a laser source
DE19925203A1 (en) * 1999-06-01 2000-12-07 Fraunhofer Ges Forschung Laser welding of two or more transparent plastics components uses additional energy to convert a material between the components into another capable of absorbing more laser light
WO2002000144A1 (en) * 2000-06-28 2002-01-03 Coloplast A/S Method for welding components of a multi-layer construction
EP1117502B1 (en) * 1998-10-01 2003-01-08 The Welding Institute Welding method
EP1297944A1 (en) * 2001-09-29 2003-04-02 Institut für angewandte Biotechnik und Systemanalyse an der Universität Witten/Herdecke GmbH Process for laser beam welding of plastic parts
JP2003136600A (en) * 2001-11-02 2003-05-14 Honda Motor Co Ltd Laser bonding method for resin members
JP2003170290A (en) * 2001-12-10 2003-06-17 Japan Science & Technology Corp Laser beam transmission welding method and apparatus therefor
JP2003181931A (en) * 2001-12-21 2003-07-03 Yasuo Kurosaki Method for connecting transparent thermoplastic resin member by laser

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3560291A (en) * 1964-03-27 1971-02-02 Mobil Oil Corp Bonding thermoplastic resin films by means of radiation from a laser source
EP1117502B1 (en) * 1998-10-01 2003-01-08 The Welding Institute Welding method
DE19925203A1 (en) * 1999-06-01 2000-12-07 Fraunhofer Ges Forschung Laser welding of two or more transparent plastics components uses additional energy to convert a material between the components into another capable of absorbing more laser light
WO2002000144A1 (en) * 2000-06-28 2002-01-03 Coloplast A/S Method for welding components of a multi-layer construction
EP1297944A1 (en) * 2001-09-29 2003-04-02 Institut für angewandte Biotechnik und Systemanalyse an der Universität Witten/Herdecke GmbH Process for laser beam welding of plastic parts
JP2003136600A (en) * 2001-11-02 2003-05-14 Honda Motor Co Ltd Laser bonding method for resin members
JP2003170290A (en) * 2001-12-10 2003-06-17 Japan Science & Technology Corp Laser beam transmission welding method and apparatus therefor
JP2003181931A (en) * 2001-12-21 2003-07-03 Yasuo Kurosaki Method for connecting transparent thermoplastic resin member by laser

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1669186A1 (en) * 2003-10-02 2006-06-14 Ube Industries, Ltd. Material for laser welding and method for laser welding
EP1669186A4 (en) * 2003-10-02 2012-12-26 Ube Industries Material for laser welding and method for laser welding
EP2108502A1 (en) * 2008-04-11 2009-10-14 The Boeing Company Method of making a transparency
US20120009006A1 (en) * 2010-07-12 2012-01-12 Robert Bosch Gmbh Method for Producing a Multilayer System and Corresponding Multilayer System
US8790484B2 (en) * 2010-07-12 2014-07-29 Robert Bosch Gmbh Method for producing a multilayer system and corresponding multilayer system
DE102013013415A1 (en) * 2013-08-09 2015-02-12 Fresenius Medical Care Deutschland Gmbh cassette module
US10926014B2 (en) 2013-08-09 2021-02-23 Fresenius Medical Care Deutschland Gmbh Cassette module
DE102015219120A1 (en) 2015-10-02 2017-04-06 Robert Bosch Gmbh Method for joining components by means of an absorbent coating
DE102016206612A1 (en) * 2016-04-19 2017-08-03 Continental Automotive Gmbh Method for joining a metallic molding with a thermoplastic molding
CN111070699A (en) * 2018-11-27 2020-04-28 艾默生科技有限公司布兰森超声分公司 Waveguide section for plastic welding, device for plastic welding, welding method and method for producing a waveguide section
CN111070699B (en) * 2018-11-27 2022-05-17 艾默生科技有限公司布兰森超声分公司 Waveguide section for plastic welding, device for plastic welding, welding method and method for producing a waveguide section

Similar Documents

Publication Publication Date Title
EP0997261B9 (en) Laser welding method and apparatus for joining a plurality of plastic articles with each other or with other materials
EP0751865B2 (en) Plastic workpiece and process for producing it
EP2747984B1 (en) Method and device for laser welding of two plastic members to be joined
EP1297944A1 (en) Process for laser beam welding of plastic parts
DE19919191A1 (en) Welding method and apparatus
DE102005015119A1 (en) Laser welding of resin materials
DE102005018727A1 (en) Method and device for welding two workpieces made of thermoplastic materials by means of laser radiation
WO2004058485A1 (en) Method and device for welding thermoplastic material shaped parts, particularly for contour-welding three-dimensional shaped parts
DE19832168A1 (en) Laser butt-welding of diverse transparent thermoplastics employs flexible optical conductor of convenient length and conventional optics
DE102004030619A1 (en) Method for joining workpieces made of plastic
DE102013221385A1 (en) Method for producing a geometrically three-dimensionally structured workpiece and workpiece
DE10335446A1 (en) Laser welding of plastic components involves location of energy absorber film between the two components
DE10004538A1 (en) Laser welding of filled and non-filled plastic components involves transmitting a beam at the welding face between both plastic layers and cooling the upper surface of the beam transmitting layer
WO2019149938A1 (en) Clamping device and associated laser welding apparatus
EP1987944B1 (en) Transmission laser welding device and process for joining plastic parts
EP3849782B1 (en) Print head for a printer for three-dimensional application of a material, printer and method
EP1382433A1 (en) Process for seaming plastic parts with a laser beam
EP3826824A1 (en) Additive production device and associated additive production method
EP3419811B1 (en) Method for welding a connection between a first joining surface of a first molded part and a second joining face of a second molded part
EP1254760A1 (en) Process and device for laser welding of plastics material
DE2656804C3 (en) Process for T- or butt welding of laminated bodies with an inner layer made of thermoplastic foam plastic
DE2165620C3 (en) Device for the areal ultrasonic welding of plastic-containing or plastic-coated foils
DE102005047511B4 (en) Method for connecting two plastic parts
EP1475219B1 (en) Tool provided with a laserbeam for joining synthetic materials by the use of a filler material
DE10243005A1 (en) Laser welding and marking for workpiece containing two thermoplastics uses single process with different wavelengths for welding and for marking

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8141 Disposal/no request for examination