DE10304410A1 - Drinking water treatment plant evaporates impure or brackish water using a variety of heat energy sources for collection in supply basin - Google Patents

Drinking water treatment plant evaporates impure or brackish water using a variety of heat energy sources for collection in supply basin Download PDF

Info

Publication number
DE10304410A1
DE10304410A1 DE2003104410 DE10304410A DE10304410A1 DE 10304410 A1 DE10304410 A1 DE 10304410A1 DE 2003104410 DE2003104410 DE 2003104410 DE 10304410 A DE10304410 A DE 10304410A DE 10304410 A1 DE10304410 A1 DE 10304410A1
Authority
DE
Germany
Prior art keywords
water
thermal evaporation
evaporation system
container
capacitor area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE2003104410
Other languages
German (de)
Inventor
Alexander Zein
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to DE2003104410 priority Critical patent/DE10304410A1/en
Publication of DE10304410A1 publication Critical patent/DE10304410A1/en
Ceased legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D1/00Evaporating
    • B01D1/0011Heating features
    • B01D1/0017Use of electrical or wave energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0057Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes
    • B01D5/006Condensation of vapours; Recovering volatile solvents by condensation in combination with other processes with evaporation or distillation
    • B01D5/0066Dome shaped condensation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/02Treatment of water, waste water, or sewage by heating
    • C02F1/04Treatment of water, waste water, or sewage by heating by distillation or evaporation
    • C02F1/14Treatment of water, waste water, or sewage by heating by distillation or evaporation using solar energy
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/138Water desalination using renewable energy
    • Y02A20/142Solar thermal; Photovoltaics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/211Solar-powered water purification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/208Off-grid powered water treatment
    • Y02A20/212Solar-powered wastewater sewage treatment, e.g. spray evaporation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)

Abstract

In a thermal process to extract drinking water from salt water, brackish water or other impure source, the impure water is heated to evaporation temperature. Evaporated water is then cooled by a condenser and the resulting droplets gathered in channels for discharge through tubes to a collecting tank. The heat energy required is derived from fossil fuel and/or electrical energy from public supplies, or solar energy.

Description

Die Erfindung betrifft ein Thermisches-Verdunstungs-System zur Trinkwasseraufbereitung aus Meer-, Brack-, oder Abwasser und/oder zur Entsalzung von Meerwasser.The invention relates to a thermal evaporation system for drinking water treatment from sea, brackish or wastewater and / or for desalination of sea water.

Bekannte Verfahren zur Entsalzung von Meerwasser sind z. B. Osmose un Umkehrosmose, basierend auf dem Prinzip des Filtrierens von Meerwasser über synthetische Membranen, dabei wird das zu behandelnde Medium durch die Poren der Membranen gepreßt. Die hierzu erforderlichen Drücke liegen bei bis zu 60 bar, der entsprechende Energieaufwand herfür ist also sehr groß. Auch dürfen bei Betrachtung unter den Aspekten Wirtschaftlichkeit und Umweltverträglichkeit der zur Herstellung solcher Membranen notwendige Rohstoff- und Energieaufwand und die bei der Fertigung anfallenden umweltbelastenden Abfallstoffe nicht außer Acht gelassen werden.Known desalination processes of sea water are e.g. B. osmosis and reverse osmosis, based on the principle of filtering seawater over synthetic membranes, the medium to be treated passes through the pores of the membranes pressed. The pressures required for this are up to 60 bar, so the corresponding energy expenditure is necessary very large. Also allowed when considering the aspects of economy and environmental compatibility the raw material and energy required to manufacture such membranes and the environmentally harmful waste materials that arise during production not except Be careful.

Bei der thermischen Meerwasserentsalzung und Aufbereitung von Brack- oder Abwässern wird dem zu behandelnden Medium Energie in thermischer Form zugeführt. Hierbei geht das Medium vom flüssigen, über den siedenden in den gasförmigen Aggregatzustand über. Erfolgt der Übergang vom flüssigen in den gasförmigen Aggregatzustand bei Temperaturen unterhalb des Siedepunktes, so spricht man von Verdunsten, wobei beim Verdunsten wesentlich geringere Mengen pro Zeiteinheit in den gasförmigen Zustand übergehen, als beim Verdampfen. Während das Verdunsten an der Oberfläche des Mediums stattfindet, erfolgt das Verdampfen durch Gasbildung im Inneren der Flüssigkeit, hieraus ist ersichtlich, daß zum Verdunsten große Oberflächen notwendig sind. Wird derart ein belastetes Medium zum Verdampfen gebracht, so entsteht Wasserdampf, welcher als Kondensat aufgefangen werden kann. Entsprechende Vorrichtungen werden Destillen genannt. Das entstehende Destillat ist bei entsprechender Verdampfungsrate reines Wasser ohne Belastungsrückstände wie z. B. Salze oder andere kontaminierte Stoffe. Bei konstantem Druck stimmen Siedetemperatur und Kondensationstemperatur überein, d. h., daß beim Kondensieren die zum Verdampfen zugeführte Wärme in Form von Kondensationswärme wieder frei wird. Bei einem reinen Destillat sollte daher darauf geachtet werden, daß die Verdampfung unter Normaldruck bei maximal Siedetemperatur stattfindet. Um eine Kontaminierung durch Kohäsion zu verhindern, sollte ein Sieden der Oberfläche des flüssigen Mediums weitgehend unterbleiben. Es bieten sich daher Arbeitstemperaturen von ca. 80° bis maximal 90°C an, wobei Energieaufwand bei ca. 150 kW/h bis 180 kW/h pro m3 kondensierten Wassers liegt. Aus o. g. Gründen der Reinheit des erforderlichen Destillats ist von höheren Temperaturen, theoretisch sind 120°C möglich, im Drucksystem abzuraten. Als Abfallprodukt während und nach dem Verdampfungsvorgang fällt Wasser als reines Destillat zur weiteren Verwendung und in der Destille abgeschiedene Feststoffe an.In thermal seawater desalination and treatment of brackish or waste water, the medium to be treated is supplied with energy in thermal form. Here, the medium changes from the liquid to the boiling to the gaseous state. If the transition from the liquid to the gaseous state of matter takes place at temperatures below the boiling point, one speaks of evaporation, whereby evaporation turns into much smaller quantities per unit time than the evaporation. While the evaporation takes place on the surface of the medium, the evaporation takes place by gas formation inside the liquid, from which it can be seen that large surfaces are required for the evaporation. If a contaminated medium is vaporized in this way, water vapor is generated, which can be collected as condensate. Corresponding devices are called stills. The resulting distillate is pure water with no evaporation residues such as e.g. B. salts or other contaminated substances. At constant pressure, the boiling temperature and the condensation temperature are the same, that is to say that during the condensation, the heat supplied for evaporation is released again in the form of condensation heat. In the case of a pure distillate, care should therefore be taken that the evaporation takes place under normal pressure at the maximum boiling temperature. To prevent contamination by cohesion, boiling of the surface of the liquid medium should be largely avoided. There are therefore working temperatures from approx. 80 ° to a maximum of 90 ° C, with energy consumption being approx. 150 kW / h to 180 kW / h per m 3 of condensed water. For the above reasons, the purity of the distillate required, higher temperatures, theoretically 120 ° C, are advisable in the printing system. As a waste product during and after the evaporation process, water is obtained as pure distillate for further use and solids separated in the still.

Weitere Abfälle und Rückstände sind vom verwendeten Primärenergieträger abhängig, der in thermische Energie umgewandelt, den Verdampfungsprozeß in Gang setzt.Further waste and residues depend on the primary energy source used converted into thermal energy, the evaporation process in motion puts.

Als Primärenergie kommen regenerative Energieformen in thermischer Form aus Sonneneinstrahlung, in elektrischer Form über Solarzellen, in elektrischer Form aus Windkrafträdern und in geothermer Form durch Ausnutzung hoher Bodentemperaturen in Betracht. Auch fossile Energieträger in Form von Gas, Öl, Kohle, aber auch Holz und/oder andere kohlenstoffhaltigen organischen Brennstoffe können Verwendung finden.The primary energy is regenerative Forms of energy in thermal form from solar radiation, in electrical Shape over Solar cells, in electrical form from wind turbines and in geothermal form by taking advantage of high soil temperatures. Even fossil fuels in the form of gas, oil, Coal, but also wood and / or other carbon-containing organic Fuels can Find use.

Eine erfindungsgemäße Anlage besteht u. a. aus einem Kessel (1), der aufzubereitendes Wasser (12) enthält. Dieser ist so ausgebildet, das er von unten her durch Befeuerung (2) beheitzt werden kann, oder je nach Variante durch Heizelemente (3) im Inneren des Kessels (1) das Wasser (12) erhitzt werden kann. An der Oberfläche des Wasserspiegels verdunstendes Wasser steigt nach oben und kondensiert an den als Kondensatorfläche (4) ausgebildeten oberen Abschluß dieses Kessels (1), der etwa kegelförmig (mit Spitze nach oben) gestaltet ist. Am oberen Ende des etwa zylinderförmigen Kesselmantels ist auf der Innenseite umlaufend eine Kondensatauffangrinne (14) angebracht, die an einer Stelle am Kesselmantelumfang eine tiefste Stelle mit einem Ablaufrohr (5) besitzt, durch das Kondensat nach außen abfließen kann. Über dem oberen etwa kegelförmigen Behälterabschluß befindet sich etwa äquidistant dazu eine weitere etwa kegelförmige Abdeckung, die zusammen mit dem am Kesselumfang nach oben fortgesetzten Zylindermantel ein Gehäuse für die Kondensatorkühlluft bildet. Am Zylindermantel dieses Gehäuses sind Ausschnitte (6) angebracht, die einen von außen her zentral nach innen und oben verlaufenden Kondensatorkühlluftstrom ermöglichen. An der Außenseite der Kondensatorfläche (4), in radialer Richtung verlaufende Kühlflächen (9) unterstützen die Wärmeableitung von der Kondensatorfläche (4) zum Kühlluftstrom. Im Bereich der Kegelspitze der oberen Kondensatorkühlluftgehäusewand wird die Kühlluft durch ein Rohr (7) nach oben abgeleitet. In diesem Rohr (7) kann je nach Bedarf ein den Kühlluftstrom unterstützender Lüfter angebracht werden. Des weiteren sind am Umfang des nach oben führenden Rohres (7) Solarkollektoren (8) angebracht, die Wärme an die Rohrmantelfläche weiterleiten, die darin nach oben strömende Luft weiter erwärmen und so den Kondensatorkühlluftstrom verstärken. Die Zufuhr des aufzubereitenden Mediums erfolgt durch ein von außen her in den Kessel führendes Rohr (10), das unterhalb der umlaufenden Kondenswasserauffangrinne (14) angebracht ist. In der Nähe des unteren Kesselbodens ist am Kesselmantel ein Rohr (11) positioniert, durch das Schmutzwasser nach außen abfließen kann.A system according to the invention consists, among other things, of a boiler ( 1 ), the water to be treated ( 12 ) contains. This is designed so that it can be fired from below ( 2 ) can be heated, or depending on the variant with heating elements ( 3 ) inside the boiler ( 1 ) the water ( 12 ) can be heated. Water evaporating on the surface of the water level rises and condenses on the surface of the condenser ( 4 ) trained upper end of this boiler ( 1 ), which is roughly conical (with the top pointing up). At the upper end of the approximately cylindrical boiler shell, a condensate collecting channel ( 14 ) attached which has a deepest point with a drain pipe at a point on the circumference of the boiler ( 5 ) through which condensate can flow to the outside. About the upper approximately conical container closure is approximately equidistant from this another approximately conical cover which, together with the cylinder jacket which continues upwards on the boiler circumference, forms a housing for the condenser cooling air. There are cutouts on the cylinder jacket of this housing ( 6 ) attached, which enable a condenser cooling air flow running centrally from the outside inwards and upwards. On the outside of the capacitor surface ( 4 ), cooling surfaces running in the radial direction ( 9 ) support heat dissipation from the condenser surface ( 4 ) to the cooling air flow. In the area of the cone tip of the upper condenser cooling air housing wall, the cooling air is passed through a pipe ( 7 ) derived upwards. In this tube ( 7 ) a fan supporting the cooling air flow can be attached as required. Furthermore, on the circumference of the pipe leading upwards ( 7 ) Solar collectors ( 8th ) attached, transfer the heat to the pipe surface, further heat the air flowing upwards, thus increasing the condenser cooling air flow. The medium to be processed is fed into the boiler from the outside of the pipe ( 10 ), which underneath the surrounding condensate drainage channel ( 14 ) is attached. There is a tube on the boiler jacket near the bottom of the boiler ( 11 ) through which dirty water can flow outwards.

Werden mehrere Einheiten der oben beschriebene Anlage zusammengeschaltet, so ermöglicht dies das Wegschalten einer oder mehrerer Einzelanlagen, z. B. zur Wartung oder Reinigung, ohne daß das gesammte System abgeschaltet werden muß.Be multiple units of the above system described interconnected, so this enables disconnection one or more individual systems, e.g. B. for maintenance or cleaning, without that entire system must be switched off.

Das sich hieraus ergebende Konzept aus möglichst regenerativ über Kollektoren beheizten thermischen Destillen, Komponentenbauweise, Berücksichtigung der Architektur und Bauplanung in Form von Speicherbecken u. a. ermöglicht nicht nur preiswerte, sondern höchst effektive Meerwasserentsalzungsanlagen. Durch sinnvolle Auswahl der Baukomponenten und entsprechende Konstruktion und Planung ergeben sich nahezu wartungsfreie Anlagen, mit Wartungsintervallen von mehr als 6 Monaten. Je nach Konstruktion sind zu wartende Teile einer solchen Anlage Partikelschutz- bzw. Grobfilter, Funktion der Hauptpumpen, der wesentlichen Anlagenkomponenten, Füllstand der Wärmeträger der Wärmetauschsysteme, Undichtigkeiten und dergleichen mehr. Kostenintensivere Wartungen und Austausch teurer Membranen sind nicht mehr notwendig. Aus dem dargestelltem Funktionsprinzip ergibt sich somit eine höchst effektive und sichere Anlage zur Meerwasserentsalzung, die entgegen anderen Systemen beliebig und ohne großen Aufwand erweitert werden kann. Auch bei Beschädigung einzelner Komponenten ist ein großer Anlagenkomplex in der Lage, den Betrieb aufrecht zu erhalten.The resulting concept from if possible regenerative about Collectors heated thermal stills, component design, consideration of architecture and construction planning in the form of storage pools u. a. allows not only inexpensive, but top effective desalination plants. Through sensible selection of the construction components and the corresponding construction and planning almost maintenance-free systems, with maintenance intervals of more than 6 months. Depending on the construction, parts to be serviced are one such system particle protection or coarse filter, function of the main pumps, the essential system components, the level of the heat transfer medium of the heat exchange systems, Leaks and the like. More expensive maintenance and replacement of expensive membranes is no longer necessary. From the The functional principle shown results in a highly effective and safe plant for seawater desalination that opposes others Systems arbitrarily and without large Effort can be expanded. Even if individual components are damaged is a big Plant complex able to maintain operations.

Claims (12)

Thermisches-Verdunstungs-System zur Trinkwasseraufbereitung aus Meer-, Brack-, oder Abwasser und/oder zur Entsalzung von Meerwasser, dadurch gekennzeichnet, daß das aufzubereitende Wasser auf Verdunstungstemperatur erhitzt wird, der verdunstete Wasseranteil sich an Kondensatoren niederschlägt und in dafür angebrachten Sammelrinnen und Ablaufrohren in einen anderen Behälter geleitet wird, wobei die für das Erhitzen des Wassers erforderliche Energie durch Verfeuerung fossiler Brennstoffe erfolgt und/oder mit elektrischer Energie, die dem Stromnetz entnommen wird oder durch Solarenergie erzeugt wird.Thermal evaporation system for the treatment of drinking water from sea, brackish or waste water and / or for the desalination of sea water, characterized in that the water to be treated is heated to the evaporation temperature, the evaporated water component is deposited on the condensers and in the collecting troughs and drain pipes attached to it is passed into another container, the energy required for heating the water being produced by burning fossil fuels and / or using electrical energy which is taken from the power grid or generated by solar energy. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das aufzubereitende Wasser in einem Behälter erhitzt wird, über dem sich ein Verdunstungsraum mit etwa kegelförmigen oberen Abschluß befindet, der als Kondensatorfläche wirkt.Thermal evaporation system according to claim 1, characterized characterized that the water to be treated is heated in a container above which there is an evaporation chamber with an approximately conical upper end, the as a capacitor area acts. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß sich über der Kondensatorfläche eine Kollektorfläche befindet, die sich aufgrund der dunklen Farbe und der Oberflächenbeschaffenheit der Oberseite bei Lichteinwirkung erwärmt.Thermal evaporation system according to claim 1, characterized characterized in that a collector which is due to the dark color and surface texture the top warmed when exposed to light. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß sich am unteren Kegelumfang des oberen Wasserbehälterabschlusses umlaufend eine Auffangrinne befindet, die an der Innenseite der Kegelmantelfäche abfließendes Kondenswasser sammelt.Thermal evaporation system according to claim 1, characterized characterized that itself one at the lower cone circumference of the upper end of the water tank Drainage channel is located, the condensate flowing off on the inside of the conical surface collects. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das auf der Behälterinnenseite in der umlaufenden Auffangrinne gesammelte Kondenswasser durch ein Ablaufrohr in der Behälterwand nach außen abfließen kann.Thermal evaporation system according to claim 1, characterized characterized that the on the inside of the container condensed water collected in the circumferential gutter through a Drain pipe in the tank wall outward flow away can. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß über der etwa kegelförmigen Kondensatorfläche eine derartige Gehäusegestaltung vorliegt, daß, ausgehend vom unteren Kegelumfang, ein zur Kegelspitze hin etwa zentraler Luftstrom erfolgen kann.Thermal evaporation system according to claim 1, characterized characterized that about the conical capacitor area such a housing design is that starting from the lower cone circumference, approximately central towards the cone tip Airflow can take place. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß die obere Abdeckung des Luftstromraums auf der äußeren Oberfläche als Kollektorfläche ausgebildet ist.Thermal evaporation system according to claim 1, characterized characterized that the top cover of the airflow space on the outer surface as collector is trained. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß der zentrale Luftstrom über der etwa kegelförmigen Kondensatorfläche in einem Rohr nach oben abgeführt wird.Thermal evaporation system according to claim 1, characterized characterized in that the central airflow over the approximately conical capacitor area dissipated upwards in a pipe becomes. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß das Rohr, in dem der Luftstrom über der Spitze der Kondensatorfläche abgeleitet wird, außen am Umfang mit Kollektorflächen versehen ist.Thermal evaporation system according to claim 1, characterized characterized that the Pipe in which the air flow over the top of the capacitor area is derived outside on the circumference with collector surfaces is provided. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß der Kühlluftstrom für die Kondensatorfläche durch einen Lüfter unterstützt wird.Thermal evaporation system according to claim 1, characterized in that the Cooling air flow for the capacitor area is supported by a fan. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß die Bodenfläche des Wasserbehälters, in dem der Aufbereitungsprozeß abläuft, in der Mitte eine tiefste Stelle besitzt.Thermal evaporation system according to claim 1, characterized in that the floor area the water tank, in which the preparation process takes place, in the middle has a deepest point. Thermisches Verdunstungssystem nach Anspruch 1, dadurch gekennzeichnet, daß durch die Behälterwand des Wasserbehälters, in dem der Aufbereitungsprozeß abläuft, über dem Behälterboden ein Rohr etwa tangential zum etwa kreisförmigen Behälterboden positioniert ist.Thermal evaporation system according to Claim 1, characterized in that through the container wall of the water container in which the treatment process takes place, above the container bottom a tube is positioned approximately tangentially to the approximately circular container bottom.
DE2003104410 2003-02-04 2003-02-04 Drinking water treatment plant evaporates impure or brackish water using a variety of heat energy sources for collection in supply basin Ceased DE10304410A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE2003104410 DE10304410A1 (en) 2003-02-04 2003-02-04 Drinking water treatment plant evaporates impure or brackish water using a variety of heat energy sources for collection in supply basin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2003104410 DE10304410A1 (en) 2003-02-04 2003-02-04 Drinking water treatment plant evaporates impure or brackish water using a variety of heat energy sources for collection in supply basin

Publications (1)

Publication Number Publication Date
DE10304410A1 true DE10304410A1 (en) 2004-08-12

Family

ID=32695190

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2003104410 Ceased DE10304410A1 (en) 2003-02-04 2003-02-04 Drinking water treatment plant evaporates impure or brackish water using a variety of heat energy sources for collection in supply basin

Country Status (1)

Country Link
DE (1) DE10304410A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880881A1 (en) * 2005-01-14 2006-07-21 Mansour Sahnoune Replication device for the separation of salt from seawater, comprises a retention basin is placed on a tank for reserving water and formation of a dew point, and a peripheral water trap
WO2011020576A3 (en) * 2009-08-20 2011-04-14 Richard Wilhelm Reaction device for the sublimation and/or thermal desorption and/or distillation and/or extraction of substances
CN107062924A (en) * 2017-06-01 2017-08-18 北京首创污泥处置技术股份有限公司 Condense captation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2518535A1 (en) * 1975-04-25 1976-11-04 Lobschat Pure water from water contg. foreign matter - controlled vapourisation and condensation, hot water stored in adiabatic vessel
DE8220249U1 (en) * 1982-07-15 1982-10-21 Schmidt, Gunter Adolf, 8000 München DEVICE FOR CONVERTING SALTWATER INTO FRESHWATER
DE4132916A1 (en) * 1991-10-04 1993-04-08 Richard Schaenzlin Up-wind power plant with solar collectors - and heat exchanger for mechanical energy and drinking water prodn.
DE19649146A1 (en) * 1996-11-27 1998-05-28 Fritz Lange Solar-powered salt water desalination boiler heated by parabolic mirror

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2518535A1 (en) * 1975-04-25 1976-11-04 Lobschat Pure water from water contg. foreign matter - controlled vapourisation and condensation, hot water stored in adiabatic vessel
DE8220249U1 (en) * 1982-07-15 1982-10-21 Schmidt, Gunter Adolf, 8000 München DEVICE FOR CONVERTING SALTWATER INTO FRESHWATER
DE4132916A1 (en) * 1991-10-04 1993-04-08 Richard Schaenzlin Up-wind power plant with solar collectors - and heat exchanger for mechanical energy and drinking water prodn.
DE19649146A1 (en) * 1996-11-27 1998-05-28 Fritz Lange Solar-powered salt water desalination boiler heated by parabolic mirror

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2880881A1 (en) * 2005-01-14 2006-07-21 Mansour Sahnoune Replication device for the separation of salt from seawater, comprises a retention basin is placed on a tank for reserving water and formation of a dew point, and a peripheral water trap
WO2011020576A3 (en) * 2009-08-20 2011-04-14 Richard Wilhelm Reaction device for the sublimation and/or thermal desorption and/or distillation and/or extraction of substances
CN107062924A (en) * 2017-06-01 2017-08-18 北京首创污泥处置技术股份有限公司 Condense captation
CN107062924B (en) * 2017-06-01 2023-10-27 北京首创污泥处置技术有限公司 Condensing water collecting device

Similar Documents

Publication Publication Date Title
US10857478B2 (en) Stacked type falling film evaporator, zero liquid discharge system comprising the same, and zero liquid discharging method using the same
US20160368785A1 (en) Methods and systems to reduce air pollution combined with water desalination of power station's marine waste water
EP2716341A1 (en) Device and method for liquid treatment by mechanical vapor recompression
US10144655B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
DE2260421A1 (en) EVAPORATION PROCESS
EP2464603B1 (en) Method and device for desalinating sea water
CA2630582C (en) A pipeline system for producing desalinated water from salt water
DE20301711U1 (en) Assembly with conical cover evaporates salt water, brackish water for condensation and recovery of drinking water
DE2334481C3 (en) Device for obtaining pure water from sea water
DE10304410A1 (en) Drinking water treatment plant evaporates impure or brackish water using a variety of heat energy sources for collection in supply basin
WO2010063633A1 (en) Solar condensation system with cascade evaporation
DE102009051845A1 (en) Solar-thermal hybrid power plant for use in sea water desalination plant, has controllable sewage sludge firing equipment arranged downstream for overheating of water vapor at day time and for steam generation at night
DE19649146A1 (en) Solar-powered salt water desalination boiler heated by parabolic mirror
JP2015020163A (en) Nanofiber membrane distillation apparatus
WO2014195110A1 (en) System and method for processing water
US10414670B2 (en) Systems and methods for distillation of water from seawater, brackish water, waste waters, and effluent waters
DE202017001429U1 (en) Solar desalination plant according to the multi-stage distillation process with and without sand storage
DE3534094A1 (en) EVAPORATION OF SEPARATE WATER FROM MUELL DEPONIES
DE102009037306A1 (en) Method for desalination of sea water, comprises filling the sea water in a container so that an evaporation area remains in the upper end of the container and heating an air stream in heating station arranged at flow side of the container
JPS59501958A (en) Methods for producing concentrates and distillates
CN205740616U (en) A kind of Ta Neishi rectification under vacuum system purified for low temperature seawater
DE102004036438A1 (en) Thermal evaporation plant producing potable water from sea-, brackish- or waste waters, includes lower toroidal section with polyurethane layer insulation
WO2005102934A2 (en) Water treatment plant and thermal evaporation system
DE4239636A1 (en) Solar energy operated desalination plant - has air flow passing through evaporation chamber to condenser where water vapour is separated into cool air and drinking water
DE102004050145A1 (en) Water purification plant, especially for desalinating sea water, with impure water supply and steam pressure distillation device supplied with heat from solar channel collector

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8131 Rejection