DE10253218A1 - Verwendung von Proteinfettsäurekondensaten in Wasch- und Reinigungsmitteln - Google Patents

Verwendung von Proteinfettsäurekondensaten in Wasch- und Reinigungsmitteln Download PDF

Info

Publication number
DE10253218A1
DE10253218A1 DE10253218A DE10253218A DE10253218A1 DE 10253218 A1 DE10253218 A1 DE 10253218A1 DE 10253218 A DE10253218 A DE 10253218A DE 10253218 A DE10253218 A DE 10253218A DE 10253218 A1 DE10253218 A1 DE 10253218A1
Authority
DE
Germany
Prior art keywords
fatty acid
protein fatty
acid condensates
detergents
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10253218A
Other languages
English (en)
Inventor
Rolf Dr. Wachter
Rita Köster
Ditmar Kischkel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Personal Care and Nutrition GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Priority to DE10253218A priority Critical patent/DE10253218A1/de
Priority to US10/702,678 priority patent/US20040139553A1/en
Priority to EP03025614A priority patent/EP1420062A3/de
Publication of DE10253218A1 publication Critical patent/DE10253218A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/32Protein hydrolysates; Fatty acid condensates thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

Die Erfindung befindet sich auf dem Gebiet der Wasch- und Reinigungsmittel und betrifft die Verwendung von Proteinfettsäurekondensaten als anti-entzündliche, pflegende Wirkstoffe und als Gewebekonditionierer.

Description

  • Gebiet der Erfindung
  • Die Erfindung befindet sich auf dem Gebiet der Wasch- und Reinigungsmittel und betrifft die Verwendung von Proteinfettsäurekondensaten als anti-entzündliche, pflegende Wirkstoffe und als Gewebekonditionierer.
  • Stand der Technik
  • Proteine und ihre Derivate werden bereits seit mehr als 50 Jahren erfolgreich als Pflegekomponenten in Kosmetikprodukten eingesetzt, hergestellt aus einer Vielzahl natürlicher Quellen tierischer oder pflanzlicher Herkunft.
  • Die Aufgabe der vorliegenden Patentanmeldung hat darin bestanden, neue Wirkungen von Proteinfettsäurekondensaten für die Verwendung in Wasch- und Reinigungsmitteln zu finden. Die Aufgabe konnte durch die erfindungsgemäße Verwendung der Proteinfettsäurekondensaten als milde, pflegende Wirkstoffe, zur Gewebekonditionierung, zum Faserschutz, zur Faserglättung und dadurch verbesserter Hautverträglichkeit gelöst werden.
  • Beschreibung der Erfindung
  • Gegenstand der vorliegenden Erfindung ist Verwendung von Proteinfettsäurekondensaten als milde, pflegende Wirkstoffe in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen.
  • Ebenso Gegenstand der Erfindung ist die Verwendung von Proteinfettsäurekondensaten zur Gewebekonditionierung in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen, dadurch gekennzeichnet, dass durch die Proteinfettsäurekondensaten die Fasern repariert und geglättet werden.
  • In einer weiteren Ausführungsform wird Verwendung von Proteinfettsäurekondensaten zur Gewebekonditionierung in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen beschrieben, dadurch gekennzeichnet, dass durch die Proteinfettsäurekondensaten die Fasern umhüllt, verstärkt und geschützt werden.
  • Weiterhin wird die Verwendung von Proteinfettsäurekondensaten zur Gewebekonditionierung in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen beansprucht, dadurch gekennzeichnet, dass durch das Aufziehen der Proteinfettsäurekondensaten auf die Fasern deren elektrostatische Auflandung gemindert wird.
  • Desweiteren werden Proteinfettsäurekondensaten zur Gewebekonditionierung in Wasch- und Reinigungsmitteln beansprucht, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen, dadurch gekennzeichnet, dass durch das Aufziehen der Proteinfettsäurekondensate auf die Fasern deren Wiederanschmutzung gemindert wird.
  • Insbesondere bei der Verwendung in Waschmitteln, Weichspülern, Bügelhilfsmittel sowie Trockner-Zusätze, bewirken die eingesetzten Proteinfettsäurekondensate eine sehr gute dermatologische Verträglichkeit der Wäsche auch für die empfindliche Haut. Hier wirken die Proteinfettsäurekondensate, die durch den Wasch-, Weichspül- oder Trocknungsvorgang, oder durch direktes Auftragen (z.B. Bügelhilfsmittel) an der Faser haften, durch das Tragen der Textilfasern bzw. Textilien direkt auf die Haut.
  • Zusätzlich wird der Tragekomfort der Wäsche durch ein angenehmeres Tragegefühl verbessert. Dies wird durch die Gewebekonditionierung, insbesondere durch eine Glättung der Fasern bewirkt, die durch den Zusatz von Proteinfettsäurekondensaten repariert werden können. Die Fasern werden durch die Proteinfettsäurekondensaten umhüllt und erhalten so zusätzliche physiko-chemische Stabilität, sowie eine glattere Oberfläche. Durch die glattere Oberfläche wird die mechanische Reizung der Haut durch das Tragen der so behandelten Wäschestücke gemindert. Eine mechanische Reizung der Haut durch das Tragen der so behandelten Wäschestücke wird gemindert.
  • Darüber hinaus ist bei den Textilien, die mit proteinhaltigen Agentien behandelt wurden, eine geringere Wiederanschmutzung zu beobachten. Auch ist die elektrostatische Aufladung dieser Gewebe geringer.
  • Es wurde gefunden, dass Proteinfettsäurekondensate, insbesondere pflanzlicher Herkunft und speziell Weizenproteinfettsäurekondensaten eine ausgeprägte entzündungshemmende Wirkung aufweisen.
  • Immer mehr Konsumenten klagen über empfindliche, sensible oder sogar gereizte Haut. Die Wirkung der Proteinfettsäurekondensate stellt daher eine interessante Eigenschaft dar. Dieser Effekt wirkt sich üblicherweise nicht nur wohltuend und beruhigend auf die Haut aus, sondern ist in der Lage, Irritationen auf der Haut effektiv zu beheben oder zu vermeiden.
  • Auf diese Weise können sie die Haut beruhigen und das natürliche Gleichgewicht wieder herstellen oder erhalten. Daher bietet sich der Einsatz der Proteinfettsäurekondensate in Waschmitteln an. Ebenso können die Proteinfettsäurekondensate in Finishing-Produkten, wie Bügelhilfen, Weichspüler und Trockner-Zusätzen eingebracht werden.
  • Unter Trockner-Zusätzen sind u.a. Kissen oder Tücher zu verstehen, die die proteinfettsäurekondensathaltige Formulierung enthalten und beim Trocknen der Wäsche direkt in den Trockner gegeben werden. Die entzündungshemmende Wirkung von Proteinfettsäurekondensate entfaltet sich hier indirekt über die Glättung der Faser der getragenen Textilien, die hier eine geringere mechanische Irritation der Haut bewirken.
  • Proteinfettsäurekondensate
  • Proteinfettsäurekondensate sind Acylierungsprodukte von Proteinhydrolysaten und werden zur Gruppe der anionische Tenside gezählt. In einer bevorzugten Ausführungsform wird die Verwendung von Pflanzenproteinfettsäurekondensaten beansprucht. Insbesondere bevorzugt ist hierbei die Verwendung von Weizenproteinfettsäurekondensaten.
  • Zur Herstellung von Proteinhydrolysaten geht man üblicherweise von Proteinen aus, die durch saure, alkalische und/oder enzymatische Hydrolyse gespalten werden und danach ein durchschnittliches Molekulargewicht im Bereich von 100 bis 10000, vorzugsweise 100 bis 5000 aufweisen. Das Hydrolysat wird anschließend einer Schotten-Baumann-Acylierung vorzugsweise unter Einsatz von Fettsäurechloriden unterworfen.
  • Insbesondere zur Herstellung der Weizenproteinhydrolysate geht man von Weizenprotein aus, das ebenso durch saure, alkalische und/oder enzymatische Hydrolyse gespalten wird und danach ein durchschnittliches Molekulargewicht im Bereich von 600 bis 5000, vorzugsweise 600 bis 3500 aufweisen. Auch hier wird das Hydrolysat anschließend einer Schotten-Baumann-Acylierung vorzugsweise unter Einsatz von Fettsäurechloriden unterworfen.
  • Die im Sinne der Erfindung einzusetzenden Stoffe stellen formal Acylierungsprodukte von Proteinhydrolysaten, vorzugsweise Weizenproteinhydrolysate mit aliphatischen, gesättigte oder ungesättigte Fettsäuren der Formel (I) dar, R1CO-OH (I)
    in der R1CO für einen aliphatischen, gesättigten oder ungesättigten Acylrest mit 6 bis 22, vorzugsweise 12 bis 18 Kohlenstoffatomen steht.
  • Wie schon beschrieben, wird der Fettacylrest in Form von Fettsäurechloriden zur Reaktion gebracht. Wenn also im folgenden ausgeführt wird, von welchen Fettsäuren sich die Proteinfettsäurekondensate ableiten können, dann ist damit die Lehre zum technischen Handeln verknüpft, zu ihrer Herstellung die entsprechenden Fettsäurechloride einzusetzen.
  • Beispiele für Fettsäuren, von denen sich die Proteinfettsäurekondensate formal ableiten können, sind: Capronsäure, Caprylsäure, 2-Ethylhexansäure, Isononansäure, Caprinsäure, Laurinsäure, Isotridecansäure, Myristinsäure, Palmitinsäure, Palmoleinsäure, Stearinsäure, Isostearinsäure, Ölsäure, Elai- dinsäure, Petroselinsäure, Linolsäure, Linolensäure, Elaeostearinsäure, Arachinsäure, Gadoleinsäure, Behensäure und Erucasäure sowie deren technische Mischungen, die beispielsweise durch Druckspaltung von Fetten und Ölen oder Reduktion von Aldehyden aus der Roelen'schen Oxosynthese erhältlich sind.
  • Die Proteinfettsäurekondensate können in Form ihrer Alkali-, Erdalkali- und/oder Ammoniumsalze, vorzugsweise als Natrium-, Magnesium- und/oder Calciumsalze eingesetzt werden.
  • Zu den handelsüblichen Produkten zählt das Gluadin® WK (Cognis, Düsseldorf). Damit weisen Proteinfettsäurekondensate eine solch geringe Molekülgröße auf, dass diese "Microproteinwirkstoffe" sogar in der Lage sind, in die Textilfaser einzudringen und sie zu reparieren, stärken und schützen.
  • In der Aminosäurezusammensetzung der erfindungsgemäßen Proteinfettsäurekondensate ist insbesondere der hohe Gehalt an Glutaminsäure hervorzuheben. Glutaminsäure ist in der Natur allgemein weit verbreitet und daher in fast allen Proteinen zu finden. Den höchsten Gehalt weist allerdings Weizenprotein auf mit in der Regel mehr als 30 % Glutaminsäure. Von Gluten, dem Protein des Weizenklebers, aus dem Glutaminsäure zuerst gewonnen wurde, leitet sich daher auch der Name dieses Proteinbausteins ab. Obwohl es sich hierbei nicht um eine essentielle Aminosäure handelt, spielt Glutaminsäure eine wichtige Rolle in verschiedenen Stoffwechselprozessen. Die Einsatzmenge der Proteinfettsäurekondensate kann bezogen auf die Endformulierung 0,1 bis 10, vorzugsweise 0,2 bis 8 und insbesodere 0,5 bis 6 Gew.-% – berechnet als Aktivsubstanz- betragen.
  • Gewerbliche Anwendbarkeit
  • Auf Grund ihrer Wirkungen bieten sich Proteinfettsäurekondensate für die Verwendung in Wasch- und Reinigungsmitteln an. Die erfindungsgemäßen Proteinfettsäurekondensate können in festen (granulierten oder tablettierten), flüssigen und pastösen Waschmitteln, Weichspülern, Bügelhilfsmitteln und Trockner-Zusätzen verwendet werden. Besonders geeignet sind sie für die Verwendung in flüssigen Waschmitteln.
  • Diese Mittel können ferner weitere Tenside, Builder, Bleichmittel, Viskositätsregulatoren, Enzyme (ohne Proteasen), Enzymstabilisatoren, Schauminhibitoren, Perlglanzwachse, schmutzabweisende Polymere (soil repellents), andere als die erfindungsgemäßen Proteinhydrolysate, Parfümöle bzw. Duftstoffe, sowie Lösungsvermittler, anorganische Salze, und dergleichen enthalten.
  • Tenside
  • Als oberflächenaktive Stoffe können anionische, nichtionische, kationische und/oder amphotere bzw. amphotere Tenside enthalten sein, deren Anteil an den Mitteln üblicherweise bei etwa 1 bis 70, vorzugsweise 5 bis 50 und insbesondere 10 bis 30 Gew.-% beträgt.
  • Typische Beispiele für anionische Tenside sind Seifen, Alkylbenzolsulfonate, Alkansulfonate, Olefinsulfonate, Alkylethersulfonate, Glycerinethersulfonate, α-Methylestersulfonate, Sulfofettsäuren, Alkylsulfate, Fettalkoholethersulfate, Glycerinethersulfate, Fettsäureethersulfate, Hydroxymischethersulfate, Monoglycerid(ether)sulfate, Fettsäureamid(ether)sulfate, Mono- und Dialkylsulfosuccinate, Mono- und Dialkylsulfosuccinamate, Sulfotriglyceride, Amidseifen, Ethercarbonsäuren und deren Salze, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, N-Acylaminosäuren, wie beispielsweise Acyllactylate, Acyltartrate, Acylglutamate und Acylaspartate, Alkyloligoglucosidsulfate und Alkyl(ether)phosphate. Sofern die anionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
  • Typische Beispiele für nichtionische Tenside sind Fettalkoholpolyglycolether, Alkylphenolpolyglycolether, Fettsäurepolyglycolester, Fettsäureamidpolyglycolether, Fettaminpolyglycolether, alkoxylierte Triglyceride, Mischether bzw. Mischformale, gegebenenfalls partiell oxidierte Alk(en)yloligoglykoside bzw. Glucoronsäurederivate, Fettsäure-N-alkylglucamide, Polyolfettsäureester, Zuckerester, Sorbitanester, Polysorbate, Hydroxymischether und Aminoxide. Sofern die nichtionischen Tenside Polyglycoletherketten enthalten, können diese eine konventionelle, vorzugsweise jedoch eine eingeengte Homologenverteilung aufweisen.
  • Typische Beispiele für kationische Tenside sind quartäre Ammoniumverbindungen, wie beispielsweise das Dimethyldistearylammoniumchlorid, und Esterquats, insbesondere quaternierte Fettsäuretrialkanolaminestersalze.
  • Typische Beispiele für amphotere bzw. zwitterionische Tenside sind Alkylbetaine, Alkylamidobetaine, Aminopropionate, Aminoglycinate, Imidazoliniumbetaine und Sulfobetaine. Bei den genannten Tensiden handelt es sich ausschließlich um bekannte Verbindungen. Typische Beispiele für besonders geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretauride, Fettsäureglutamate, α-Olefinsulfonate, Ethercarbonsäuren, Alkyloligoglucoside, Fettsäureglucamide, Alkylamidobetaine und Amphoacetale.
  • Als feste Builder wird insbesondere feinkristalliner, synthetisches und gebundenes Wasser enthaltender Zeolith wie Zeolith NaA in Waschmittelqualität eingesetzt. Geeignet sind jedoch auch Zeolith NaX sowie Mischungen aus NaA und NaX. Der Zeolith kann als sprühgetrocknetes Pulver oder auch als ungetrocknete, von ihrer Herstellung noch feuchte, stabilisierte Suspension zum Einsatz kommen. Für den Fall, daß der Zeolith als Suspension eingesetzt wird, kann diese geringe Zusätze an nichtionischen Tensiden als Stabilisatoren enthalten, beispielsweise 1 bis 3 Gew.-%, bezogen auf Zeolith, an ethoxylierten C12-C18-Fettalkoholen mit 2 bis 5 Ethylenoxidgruppen oder ethoxylierte Isotridecanole. Geeignete Zeolithe weisen eine mittlere Teilchengröße von weniger als 10 μm (Volumenverteilung; Meßmethode: Coulter Counter) auf und enthalten vorzugsweise 18 bis 22, insbesondere 20 bis 22 Gew.% an gebundenem Wasser. Geeignete Substitute bzw. Teilsubstitute für Zeolithe sind kristalline, schichtförmige Natriumsilicate der allgemeinen Formel NaMSixO2x+1·yH2O, wobei M Natrium oder Wasserstoff bedeutet, x eine Zahl von 1,9 bis 4 und y eine Zahl von 0 bis 20 ist und bevorzugte Werte für x 2, 3 oder 4 sind. Bevorzugte kristalline Schichtsilicate sind solche, in denen M in der allgemeinen Formel für Natrium steht und x die Werte 2 oder 3 annimmt. Insbesondere sind sowohl β- als auch γ-Natriumdisilicate Na2Si2O5·yH2O bevorzugt. Die erfindungsgemäßen Pulverwaschmittel enthalten als feste Builder vorzugsweise 10 bis 60 Gew.-% Zeolith und/oder kristalline Schichtsilicate, wobei Mischungen von Zeolith und kristallinen Schichtsilicaten in einem beliebigen Verhältnis besonders vorteilhaft sein können. Insbesondere ist es bevorzugt, daß die Mittel 20 bis 50 Gew. % Zeolith und/oder kristalline Schichtsilicate enthalten. Besonders bevorzugte Mittel enthalten bis 40 Gew.-% Zeolith und insbesondere bis 35 Gew.-% Zeolith, jeweils bezogen auf wasserfreie Aktivsubstanz. Weitere geeignete Inhaltsstoffe der Mittel sind wasserlösliche amorphe Silicate; vorzugsweise werden sie in Kombination mit Zeolith und/oder kristallinen Schichtsilicaten eingesetzt. Insbesondere bevorzugt sind dabei Mittel, welche vor allem Natriumsilicat mit einem molaren Verhältnis (Modul) Na2O : SiO2 von 1:1 bis 1:4,5, vorzugsweise von 1:2 bis 1:3,5, enthalten. Der Gehalt der Mittel an amorphen Natriumsilicaten beträgt dabei vorzugsweise bis 15 Gew.-% und vorzugsweise zwischen 2 und 8 Gew.-%. Auch Phosphate wie Tripolyphosphate, Pyrophosphate und Orthophosphate können in geringen Mengen in den Mitteln enthalten sein. Vorzugsweise beträgt der Gehalt der Phosphate in den Mitteln bis 15 Gew.-%, jedoch insbesondere 0 bis 10 Gew.%. Außerdem können die Mittel auch zusätzlich Schichtsilicate natürlichen und synthetischen Ursprungs enthalten. Ihre Verwendbarkeit ist nicht auf eine spezielle Zusammensetzung bzw. Strukturformel beschränkt. Bevorzugt sind hier jedoch Smectite, insbesondere Bentonite. Geeignete Schichtsilicate, die zur Gruppe der mit Wasser quellfähigen Smectite zählen, sind z.B. solche der allgemeinen Formeln
    (OH)4Si8–yAly(MgxAl4–x)O20 Montmorrilonit
    (OH)4Si8–yAly(Mg6–zLiz)O20 Hectorit
    (OH)4Si8–yAly(Mg6–zAlz)O20 Saponit
    mit x = 0 bis 4, y = 0 bis 2, z = 0 bis 6. Zusätzlich kann in das Kristallgitter der Schichtsilicate gemäß den vorstehenden Formeln geringe Mengen an Eisen eingebaut sein. Ferner können die Schichtsilicate aufgrund ihrer innenaustauschenden Eigenschaften Wasserstoff-, Alkali-, Erdalkaliionen, insbesondere Na+ und Ca2+ enthalten. Die Hydratwassermenge liegt meist im Bereich von 8 bis 20 Gew. % und ist vom Quellzustand bzw. von der Art der Bearbeitung abhängig. Vorzugsweise werden Schichtsilicate verwendet, die aufgrund einer Alkalibehandlung weitgehend frei von Cal-ciumionen und stark färbenden Eisenionen sind. Brauchbare organische Gerüstsubstanzen sind beispielsweise die bevorzugt in Form ihrer Natriumsalze eingesetzten Polycarbonsäuren, wie Citronensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren, Aminocarbonsäuren, Nitri-lotriessigsäure (NTA), sofern ein derartiger Einsatz aus ökologischen Gründen nicht zu beanstanden ist, sowie Mischungen aus diesen. Bevorzugte Salze sind die Salze der Polycarbonsäuren wie Citro-nensäure, Adipinsäure, Bernsteinsäure, Glutarsäure, Weinsäure, Zuckersäuren und Mischungen aus diesen. Geeignete polymere Polycarboxylate sind beispielsweise die Natriumsalze der Polyacrylsäure oder der Polymethacrylsäure, beispielsweise solche mit einer relativen Molekülmasse von 800 bis 150000 (auf Säure bezogen). Geeignete copolymere Polycarboxylate sind insbesondere solche der Acrylsäure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure. Als besonders geeignet haben sich Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew. % Acryl-säure und 50 bis 10 Gew.-% Maleinsäure enthalten. Ihre relative Molekülmasse, bezogen auf freie Säu-ren, beträgt im allgemeinen 5000 bis 200000, vorzugsweise 10000 bis 120000 und insbesondere 50000 bis 100000. Der Einsatz polymerer Polycarboxylate ist nicht zwingend erforderlich. Falls jedoch polymere Polycarboxylate eingesetzt werden, so sind Mittel bevorzugt, welche biologisch abbaubare Polymere, beispielsweise Terpolymere, die als Monomere Acrylsäure und Maleinsäure bzw. deren Salze sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder die als Monomere Acrylsäure und 2-Alkylallylsulfonsäure bzw. deren Salze sowie Zuckerderivate enthalten. Insbesondere sind Terpolymere bevorzugt. Weitere geeignete Buildersubstanzen sind Polyacetale, welche durch Umsetzung von Dialdehyden mit Polyolcarbonsäuren, welche 5 bis 7 Kohlenstoffatome und mindestens 3 Hydroxylgruppen aufweisen, erhalten werden können.
  • Bevorzugte Polyacetale werden aus Dialdehyden wie Glyoxal, Glutaraldehyd, Terephthalaldehyd sowie deren Gemischen und aus Polyolcarbonsäuren wie Gluconsäure und/oder Glucoheptonsäure erhalten.
  • Für Flüssigwaschmittel eignen sich Builder, wie Ethylendiamintetraessigsäure, Nitrilotriessigsäure, Citronensäure sowie anor-ganische Phosphonsäuren, wie z.B. die neutral reagierenden Natriumsalze von 1-Hydroxyethan-1,1,-diphosphonat, die in Mengen von 0,5 bis 5, vorzugsweise 1 bis 2 Gew.-% zugegen sein können.
  • Unter den als Peroxy-Bleichmittel dienenden Verbindungen haben das Natriumperborat-Tetrahydrat und das Natriumperborat-Monohydrat eine besondere Bedeutung. Weitere Bleichmittel sind beispielsweise Peroxycarbonat, Citratperhydrate sowie H2O2-liefernde persaure Salze der Persäuren wie Perbenzoate, Peroxyphthalate oder Diperoxydodecandisäure. Sie werden üblicherweise in Mengen von 8 bis 25 Gew. % eingesetzt. Bevorzugt ist der Einsatz von Natriumperborat-Monohydrat in Mengen von 10 bis 20 Gew.-% und insbesondere von 10 bis 15 Gew.-%. Durch seine Fähigkeit, unter Ausbildung des Tetrahydrats freies Wasser binden zu können , trägt es zur Erhöhung der Stabilität des Mittels bei.
  • Als Viskositätsregulatoren können beispielsweise gehärtetes Rizinusöl, Salze von langkettigen Fettsäuren, die vorzugsweise in Mengen von 0 bis 5 Gew.-% und insbesondere in Mengen von 0,5 bis 2 Gew.-%, beispielsweise Natrium-, Kalium-, Aluminium-, Magnesium- und Titanstearate oder die Natrium- und/oder Kaliumsalze der Behensäure, sowie weitere polymere Verbindungen eingesetzt werden. Zu den letzteren gehören bevorzugt Polyvinylpyrrolidon, Urethane und die Salze polymerer Polycarboxylate, beispielsweise homopolymerer oder copolymerer Polyacrylate, Polymethacrylate und insbesondere Copolymere der Acrylsäure mit Maleinsäure, vorzugsweise solche aus 50 % bis 10 % Maleinsäure. Die relative Molekülmasse der Homopolymeren liegt im allgemeinen zwischen 1000 und 100000, die der Copolymeren zwischen 2000 und 200000, vorzugsweise zwischen 50000 bis 120000, bezogen auf die freie Säure. Insbesondere sind auch wasserlösliche Polyacrylate geeignet, die beispielsweise mit etwa 1 % eines Polyallylethers der Sucrose quervernetzt sind und die eine relative Molekülmasse oberhalb einer Million besitzen. Beispiele hierfür sind die unter dem Namen Carbopol® 940 und 941 erhältlichen Polymere mit verdickender Wirkung. Die quervernetzten Polyacrylate werden vorzugsweise in Mengen nicht über 1 Gew.-%, vorzugsweise in Mengen von 0,2 bis 0,7 Gew. % eingesetzt. Die Mittel können zusätzlich etwa 5 bis 20 Gew.-% eines partiell veresterten Copolymerisats enthalten. Diese partiell veresterten Polymere werden durch Copolymerisation von (a) mindestens einem C4-C28-Olefin oder Mischungen aus mindestens einem C4-C28-Olefin mit bis zu 20 Mol-% C1-C28-Alkylvinylethern und (b) ethylenisch ungesättigten Dicarbonsäureanhydriden mit 4 bis 8 Kohlenstoffatomen im Molverhältnis 1 : 1 zu Copolymerisaten mit K-Werten von 6 bis 100 und anschließende partielle Veresterung der Copolymerisate mit Umsetzungsprodukten wie C1-C13-Alkoholen, C8-C22-Fettsäuren, C1-C12-Alkylphenolen, sekundären C2-C30-Aminen oder deren Mischungen mit mindestens einem C2-C4-Alkylenoxid oder Tetrahydrofuran sowie Hydrolyse der Anhydridgruppen der Copolymerisate zu Carboxylgruppen erhalten, wobei die partielle Veresterung der Copolymerisate soweit geführt wird, daß 5 bis 50 % der Carboxylgruppen der Copolymerisate verestert sind. Bevorzugte Copolymerisate enthalten als ethylenisch ungesättigtes Dicarbonsäureanhydrid Maleinsäureanhydrid. Die partiell veresterten Copolymerisate können entweder in Form der freien Säure oder vorzugsweise in partiell oder vollständig neutralisierter Form vorliegen. Vorteilhafterweise werden die Copolymerisate in Form einer wäßrigen Lösung, insbesondere in Form einer 40 bis 50 Gew.%igen Lösung eingesetzt. Die Copolymerisate leisten nicht nur einen Beitrag zur Primär- und Sekundärwaschleistung des flüssigen Wasch- und Reinigungsmittels, sondern bewirken auch eine gewünschte Viskositätserniedrigung der konzentrierten flüssigen Waschmittel. Durch den Einsatz dieser partiell veresterten Copolymerisate werden konzentrierte wäßrige Flüssigwaschmittel erhalten, die unter dem alleinigen Einfluß der Schwerkraft und ohne Einwirkung sonstiger Scherkräfte fließfähig sind. Vorzugsweise beinhalten die konzentrierten wäßrigen Flüssigwaschmittel partiell veresterte Copolymerisate in Mengen von 5 bis 15 Gew. % und insbesondere in Mengen von 8 bis 12 Gew. %.
  • Als Enzyme kommen solche aus der Klasse der Lipasen, Amylasen, Cellulasen bzw. deren Gemische in Frage. Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacillus lichenformis und Strptomyces griseus gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Proteasen, die aus Bacillus lentes gewonnen werden, eingesetzt. Ihr Anteil kann etwa 0,2 bis 2 Gew. % betragen. Die Enzyme können an Trägerstoffen adsorbiert oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen.
  • Zusätzlich zu mono- und polyfunktionellen Alkoholen und Phosphonaten können die Mittel weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.% Natriumformiat eingesetzt werden. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
  • Beim Einsatz in maschinellen Waschverfahren kann es von Vorteil sein, den Mitteln übliche Schauminhibitoren zuzusetzen. Hierfür eignen sich beispielsweise Seifen natürlicher oder synthetischer Herkunft, die einen hohen Anteil an C18-C24-Fettsäuren aufweisen. Geeignete nichttensidartige Schauminhibitoren sind beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, gegebenenfalls silanierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit silanierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z.B. solche aus Siliconen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere silicon- oder paraffinhaltige Schauminhibitoren, an eine granulare, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden. Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
  • Der pH-Wert der erfindungsgemäßen und insbesondere bevorzugten konzentrierten Mittel beträgt im allgemeinen 7 bis 10,5, vorzugsweise 7 bis 9,5 und insbesondere 7 bis 8,5. Die Einstellung höherer pH-Werte, beispielsweise oberhalb von 9, kann durch den Einsatz geringer Mengen an Natronlauge oder an alkalischen Salzen wie Natriumcarbonat oder Natriumsilicat erfolgen. Die erfindungsgemäßen Flüssigwaschmittel weisen im allgemeinen Viskositäten zwischen 150 und 10000 mPas (Brookfield-Viskosimeter, Spindel 1, 20 Umdrehungen pro Minute, 20°C). Dabei sind bei den im wesentlichen wasserfreien Mitteln Viskositäten zwischen 150 und 5000 mPas bevorzugt. Die Viskosität der wäßrigen Mittel liegt vorzugsweise unter 2000 mPas und liegt insbesondere zwischen 150 und 1000 mPas.
  • Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäurediethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxy-substituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystearinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
  • Als schmutzabweisenden Polymere ("soil repellants") kommen solche Stoffe in Frage, die vorzugsweise Ethylenterephthalat- und/oder Polyethylenglycolterephthalatgruppen enthalten, wobei das Molverhältnis Ethylenterephthalat zu Polyethylenglycolterephthalat im Bereich von 50 : 50 bis 90 : 10 liegen kann. Das Molekulargewicht der verknüpfenden Polyethylenglycoleinheiten liegt insbesondere im Bereich von 750 bis 5000, d.h., der Ethoxylierungsgrad der Polyethylenglycolgruppenhaltigen Polymere kann ca. 15 bis 100 betragen. Die Polymeren zeichnen sich durch ein durchschnittliches Molekulargewicht von etwa 5000 bis 200.000 aus und können eine Block-, vorzugsweise aber eine Random-Struktur aufweisen. Bevorzugte Polymere sind solche mit Molverhältnissen Ethylenterephthalat/ Polyethylenglycolterephthalat von etwa 65 : 35 bis etwa 90 : 10, vorzugsweise von etwa 70 : 30 bis 80 : 20. Weiterhin bevorzugt sind solche Polymeren, die verknüpfende Polyethylenglycoleinheiten mit einem Molekulargewicht von 750 bis 5000, vorzugsweise von 1000 bis etwa 3000 und ein Molekulargewicht des Polymeren von etwa 10.000 bis etwa 50.000 aufweisen. Beispiele für handelsübliche Polymere sind die Produkte Milease® T (ICI) oder Repelotex® SRP 3 (Rhône-Poulenc).
  • Geeignete kationische Polymere sind beispielsweise kationische Cellulosederivate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrrolidon/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Polyethylenimin, kationische Siliconpolymere, wie z.B. Amodimethicone, Copolymere der Adipinsäure und Dimethylaminohydroxypro pyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyl-diallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1,3-propan, kationischer Guar-Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 der Firma Miranol.
  • Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat-Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvinylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmeth-acrylat/tert.Butylaminoethylmethacrylat/2-Hydroxypropylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
  • Als Parfümöle und Duftstoffe seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Butylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat, Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, α-Isomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl, Wacholderbeerenöl, Vetiver öl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, β-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
  • Als Aromen kommen beispielsweise Pfefferminzöl, Krauseminzöl, Anisöl, Sternanisöl, Kümmelöl, Eukalyptusöl, Fenchelöl, Citronenöl, Wintergrünöl, Nelkenöl, Menthol und dergleichen in Frage.

Claims (10)

  1. Verwendung von Proteinfettsäurekondensaten als milde, pflegende Wirkstoffe in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen.
  2. Verwendung von Proteinfettsäurekondensaten zur Gewebekonditionierung in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen, dadurch gekennzeichnet, dass durch die Proteinfettsäurekondensate die Fasern repariert und geglättet werden.
  3. Verwendung von Proteinfettsäurekondensate zur Gewebekonditionierung in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen, dadurch gekennzeichnet, dass durch die Proteinfettsäurekondensate die Fasern umhüllt, verstärkt und geschützt werden.
  4. Verwendung von Proteinfettsäurekondensate zur Gewebekonditionierung in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen, dadurch gekennzeichnet, dass durch das Aufziehen der Proteinfettsäurekondensate auf die Fasern deren elektrostatische Auflandung gemindert wird.
  5. Verwendung von Proteinfettsäurekondensate zur Gewebekonditionierung in Wasch- und Reinigungsmitteln, vorzugsweise in Waschmitteln, Bügelhilfsmitteln, Weichspülern und Trockner-Zusätzen, dadurch gekennzeichnet, dass durch das Aufziehen der Proteinfettsäurekondensate auf die Fasern deren Wiederanschmutzung gemindert wird.
  6. Verwendung nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man Pflanzen-Proteinfettsäurekondensate einsetzt.
  7. Verwendung nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass man Weizenproteinfettsäurekondensate einsetzt.
  8. Verwendung nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man Proteinfettsäurekondensate einsetzt, welche – bezogen auf den Proteinanteil – ein mittleres Molekulargewicht von 100 bis 10.000 Dalton aufweisen.
  9. Verwendung nach mindestens einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man Proteinfettsäurekondensate einsetzt, welche – bezogen auf den Proteinanteil – ein mittleres Molekulargewicht von 100 bis 5.000 Dalton aufweisen.
  10. Verwendung nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass man die Proteinfettsäurekondensate in Mengen von 0,1 bis 10 Gew.-% – bezogen auf die Endformulierung, berechnet als Aktivsubstanz – einsetzt.
DE10253218A 2002-11-15 2002-11-15 Verwendung von Proteinfettsäurekondensaten in Wasch- und Reinigungsmitteln Withdrawn DE10253218A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10253218A DE10253218A1 (de) 2002-11-15 2002-11-15 Verwendung von Proteinfettsäurekondensaten in Wasch- und Reinigungsmitteln
US10/702,678 US20040139553A1 (en) 2002-11-15 2003-11-06 Protein fatty acid condensates and methods of treating fabrics with compositions containing the same
EP03025614A EP1420062A3 (de) 2002-11-15 2003-11-06 Verwendung von Proteinfettsäurekondensaten in Wasch- und Reinigungsmitteln

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10253218A DE10253218A1 (de) 2002-11-15 2002-11-15 Verwendung von Proteinfettsäurekondensaten in Wasch- und Reinigungsmitteln

Publications (1)

Publication Number Publication Date
DE10253218A1 true DE10253218A1 (de) 2004-05-27

Family

ID=32115526

Family Applications (1)

Application Number Title Priority Date Filing Date
DE10253218A Withdrawn DE10253218A1 (de) 2002-11-15 2002-11-15 Verwendung von Proteinfettsäurekondensaten in Wasch- und Reinigungsmitteln

Country Status (3)

Country Link
US (1) US20040139553A1 (de)
EP (1) EP1420062A3 (de)
DE (1) DE10253218A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230323251A1 (en) * 2020-09-09 2023-10-12 Conopco, lnc., d/b/a UNILEVER Laundry composition

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH285457A (de) * 1949-12-21 1952-09-15 Tepha Ges Fuer Pharmazeutische Wasch- und Walkmittel.
DE931847C (de) * 1949-12-22 1955-08-18 Chem Fab Gruenau Ag Zweigniede Wasch- und Walkmittel
DE970958C (de) * 1953-07-16 1958-11-20 Chem Fab Gruenau Veb Verfahren zur Herstellung von waschaktiven Eiweissfettsaeurekondensationsprodukten
DE4433070C1 (de) * 1994-09-16 1996-04-04 Henkel Kgaa Milde Detergensgemische
US5952288A (en) * 1997-10-06 1999-09-14 Colgate-Palmolive Co. Protein containing cleaning compositions
US6048835A (en) * 1997-10-06 2000-04-11 Colgate-Palmolive Co. Animal and/or vegetable protein containing cleaning compositions
DE19904513A1 (de) * 1999-02-04 2000-08-10 Cognis Deutschland Gmbh Detergensgemische
DE19929511C2 (de) * 1999-06-29 2003-04-10 Cognis Deutschland Gmbh Hochkonzentriert fließfähige Aniontensidmischungen

Also Published As

Publication number Publication date
US20040139553A1 (en) 2004-07-22
EP1420062A2 (de) 2004-05-19
EP1420062A3 (de) 2004-08-11

Similar Documents

Publication Publication Date Title
EP1148868A1 (de) Detergensgemische
DE10253216A1 (de) Verwendung von niedermolekularen Proteinhydrolysaten in Wasch- und Reinigungsmitteln
EP1274826B1 (de) Verfahren zur herstellung von nichtionischen tensidgranulaten
DE69114149T2 (de) Detergentzusammensetzung.
EP1204634B1 (de) Verzweigte weitgehend ungesättigte fettalkoholsulfate
WO2001057170A1 (de) Tensidmischung mit fettalkoholalkoxylaten aus pflanzlichen rohstoffen
DE19852973C1 (de) Herstellung niedrigviskoser wäßriger Detergenszubereitungen
EP1204627B1 (de) Verfahren zur herstellung von verzweigten, weitgehend ungesättigten fettalkoholpolyglycolethern
EP1336651A1 (de) Wasch- und reinigungsaktive Zubereitungen, enthaltend feste granuläre nichtionische Tenside
DE10253217A1 (de) Verwendung von quaternierten Proteinhydrolysaten in Wasch- und Reinigungsmitteln
WO2016096478A1 (de) Wasch- und reinigungsmittel
DE10253218A1 (de) Verwendung von Proteinfettsäurekondensaten in Wasch- und Reinigungsmitteln
DE19851452A1 (de) Verwendung von Betainestern als mikrobizide Wirkstoffe
WO2001097610A1 (de) Verfahren zur antimikrobiellen behandlung von durch mikrobiellen befall gefährdeten materialien
DE10019140A1 (de) N, O-substituierte Biopolymere
EP1375633B1 (de) Waschmittel mit Polymeren
DE19944544A1 (de) Tensidgemische
DE19944547C1 (de) Tensidgemische
EP1007620A1 (de) Syndetseifen enthaltend fettsäurepolyglycolestersulfate
DE19855955A1 (de) Amidesterquats
EP0834551A2 (de) Fixierung von Duftstoffen aus Wasch- und Reinigungsmitteln an Oberflächen
DE10237412A1 (de) Schonendes Sulfatierverfahren
EP1050575A2 (de) Alkalische Wasch- und Reinigungsmittelzusammensetzung enthaltend Alkylbenzolsulfonate und Alkanolamine
DE19939537A1 (de) Verzweigte, weitgehend ungesättigte Fettalkoholethersulfate

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee