DE10231827B4 - Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens - Google Patents

Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens Download PDF

Info

Publication number
DE10231827B4
DE10231827B4 DE2002131827 DE10231827A DE10231827B4 DE 10231827 B4 DE10231827 B4 DE 10231827B4 DE 2002131827 DE2002131827 DE 2002131827 DE 10231827 A DE10231827 A DE 10231827A DE 10231827 B4 DE10231827 B4 DE 10231827B4
Authority
DE
Germany
Prior art keywords
gas turbine
booster
booster stage
compressor
conditioning device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE2002131827
Other languages
English (en)
Other versions
DE10231827A1 (de
Inventor
Dr. Liebig Erhard
Michael Vollmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia IP UK Ltd
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of DE10231827A1 publication Critical patent/DE10231827A1/de
Application granted granted Critical
Publication of DE10231827B4 publication Critical patent/DE10231827B4/de
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/30Adding water, steam or other fluids for influencing combustion, e.g. to obtain cleaner exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • F02C7/1435Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages by water injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/70Application in combination with
    • F05D2220/72Application in combination with a steam turbine

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Verfahren zum Betrieb einer Gasturbine mit mindestens einem Verdichter (2) und mindestens einer Turbine (4), bei der in einem Ansaugkanal (1) des Verdichters (2) zumindest eine Booster-Stufe (3) und zusätzlich eine Konditioniervorrichtung (7) zur Konditionierung von Ansaugluft im Ansaugkanal (1) angeordnet sind, mit einem Abgaskanal (6) und einem Abhitzekessel (5) zwischen der Turbine (4) und dem Abgaskanal (6), bei welchem Verfahren die Booster-Stufe (3) und die Konditioniervorrichtung (7) in Abhängigkeit von den konkreten Betriebsbedingungen einzeln oder in Kombination betrieben werden, wobei bei einem hohen Leistungsbedarf oder bei der Notwendigkeit zur Bereitstellung von Reserveleistung die Booster-Stufe (3) und die Konditioniervorrichtung (7) gleichzeitig betrieben werden, dadurch gekennzeichnet, dass im Teillastbereich mittels der Booster-Stufe (3) der Ansaugdruck am Verdichter (2) abgesenkt wird.

Description

  • Technisches Anwendungsgebiet
  • Die vorliegende Erfindung betrifft Verfahren zum Betrieb einer Gasturbine mit mindestens einem Verdichter und mindestens einer Turbine, bei der in zumindest einem Ansaugkanal des Verdichters eine Booster-Stufe und eine Konditioniervorrichtung zur Konditionierung der Ansaugluft angeordnet sind sowie eine Gasturbine zur Durchführung des Verfahrens.
  • Die Erfindung lässt sich in vielen technischen Bereichen einsetzen, beispielsweise als Kompressorantrieb oder in einer Gasturbinen- oder Kombianlage zur Energieerzeugung unter Normalbedingungen sowie insbesondere bei wechselnden Umgebungsbedingungen oder besonderen Netzanforderungen. An derartige Anlagen werden hohe Anforderungen hinsichtlich des Wirkungsgrades und der erbrachten Leistung gestellt.
  • Stand der Technik
  • Bei der Leistungs- und Wirkungsgradsteigerung von Gasturbinen werden unterschiedliche Konzepte verfolgt.
  • So ist aus der US 3,979,903 eine Gasturbine bekannt, bei der im Ansaugkanal des Verdichters eine Booster-Stufe (sog. Air-Intake-Booster) mit einem Booster-Gebläse angeordnet ist. Dieses Booster-Gebläse wird mit annähernd konstanter Leistung über eine separate Turbine angetrieben und ermöglicht eine Leistungssteigerung der Gasturbine.
  • Durch den Betrieb dieses Booster-Gebläses wird der Ansaugdruckverlust über den Luftansaugkanal verringert bzw. der Druck am Verdichtereintritt der Gasturbine erhöht. Dies führt zu einer Erhöhung des Ansaug-Luftmassenstroms, aus dem eine Leistungserhöhung der Gasturbine resultiert. Ein solches Booster-Gebläse kann in Spitzenlastzeiten oder bei Notwendigkeit der Bereitstellung einer zusätzlichen Reserveleistung eingesetzt werden. Weiterhin können durch den Betrieb dieses Booster-Gebläses jahreszeitliche, standort- und klimatisch bedingte Einflüsse auf die Leistung der Gasturbine ausgeglichen werden.
  • Eine weitere Möglichkeit zur Leistungssteigerung einer Gasturbine besteht in der Anordnung von einem oder mehreren Booster-Gebläsen im Abgaskanal der Turbine. Diese sog. Exhaust-Gas-Booster führen zu einer Absenkung des Druckes im Abgaskanal und somit zu einer Vergrösserung des Expansionsgefälles der aus der Turbine austretenden Heissgase. Die Vergrösserung des Expansionsgefälles resultiert wiederum in einer Leistungssteigerung der Gasturbine. Die Booster-Gebläse im Abgaskanal können, wie auch die Air-Intake-Booster, in Spitzenlastzeiten sowie bei Notwendigkeit der Bereitstellung einer zusätzlichen Reserveleistung zugeschaltet werden. Sie können ebenso zum Ausgleich jahreszeitlich, standort- und klimatisch bedingter Einflüsse auf die Leistung der Gasturbine eingesetzt werden.
  • Einen anderen Weg geht die EP 0 945 607 A2 zur Leistungssteigerung einer Kombianlage. In dieser Druckschrift wird vorgeschlagen, die Ansaugluft für den Verdichter vor dem Eintritt in den Verdichter mit einem speziellen Kühlsystem zu kühlen. Durch diese Kühlung erhöht sich die Dichte der angesaugten Luft und somit der Luftmassenstrom, so dass daraus eine Leistungssteigerung der Gasturbine resultiert.
  • Bei einer derartigen Anlage entsteht jedoch aufgrund der für die Kühlung der Ansaugluft erforderlichen konstruktiven Massnahmen ein Druckverlust im Ansaugkanal, der unabhängig von der Wirkung des konkreten Systems zu einer Leistungsminderung der Anlage führt.
  • Die Schrift US 4667465 beschreibt eine Gasturbinenanlage, die in erster Linie auf eine Verminderung der NOx-Emissionen, darüber hinaus aber auch auf eine Leistungssteigerung gerichtet ist. Zu diesem Zwecke ist im Luftansaugkanal der Gasturbine eine Kühleinrichtung für die Ansaugluft in Form einer Wasservernebelungsanlage („Fogging-Subsystem”) angeordnet. Durch Verdunstung des eingesprühten Wassernebels wird einerseits der Ansaugluft Wärme entzogen und dadurch deren Massenstrom erhöht, und andererseits vermindert der Wasserdampf die Flammentemperatur in der Brennkammer.
  • Ergänzend angeordnete Wärmeübertragungsschlangen sollen die Vereisungsgefahr in diesem Bereich vermindern und ermöglichen die Zugabe eines höheren Wasseranteils.
  • Zum Ausgleich des Druckverlusts im Ansaugkanal ist dem „Fogging-Subsystem” ein Gebläse vorgeschaltet.
  • Weiterhin ist bei einem derartigen System der Betriebsbereich, in dem eine merkliche Leistungssteigerung erreicht wird, in Abhängigkeit von den Umgebungsbedingungen begrenzt. So kann beispielsweise eine Kühlung der Ansaugluft bei tiefen Aussentemperaturen kaum noch nennenswerte Effekte bringen bzw. bereits die Auslegungsgrenzen des Systems überschreiten. Eine weitere Alternative zur Leistungssteigerung, basierend auf einer Kühlung der Ansaugluft, stellt die Schrift US 6012279 vor. Danach erfolgt die Verdichtung der Ansaugluft in zwei Kompressionsstufen mit einer dazwischengeschalteten Kühlstufe. Die Ansaugluft durchläuft zunächst einen ersten Verdichter („Low Pressure Compressor”), an dessen Ausgang wird ein Teil oder der gesamte Luftstrom in einen Zwischenkühler eingeleitet, wo er einen Teil seiner Kompressionswärme an ein Kühlmittel, vorzugsweise ein Prozessmedium, abgibt. Anschließend wird die Luft in einem zweiten Verdichter („High Pressure Compressor”) auf Arbeitsdruck verdichtet und der Brennkammer zugeführt. Bei dem ersten und zweiten Verdichter kann es sich um zwei getrennte Verdichter handeln oder um zwei Verdichterstufen innerhalb eines gemeinsamen Gehäuses.
  • Darstellung der Erfindung
  • Ausgehend von diesem bekannten Stand der Technik liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren zum Betrieb einer Gasturbine sowie eine Gasturbine bereitzustellen, die einen verbesserten Wirkungsgrad im Teillastbereich, insbesondere im unteren Teillastbereich, ermöglichen.
  • Diese Aufgabe wird mit einem Verfahren zum Betrieb einer Gasturbine gemäß Patentanspruch 1 sowie eine Gasturbine gemäß Anspruch 5 gelöst. Vorteilhafte Ausgestaltungen des Verfahrens sowie der Gasturbine sind Gegenstand der Unteransprüche.
  • Das erfindungsgemäße Verfahren zum Betrieb einer Gasturbine, die beispielsweise in einer Gasturbinen- oder Kombianlage eingesetzt werden kann und in bekannter Weise mit mindestens einem Verdichter zur Verdichtung angesaugter Verbrennungsluft sowie mindestens einer Turbine ausgestattet ist und zumindest eine Booster-Stufe (Air-Intake-Booster) und eine Konditioniervorrichtung zur Konditionierung von Ansaugluft im Ansaugkanal des Verdichters, sowie einen Abgaskanal und einen Abhitzekessel zwischen Turbine und Abgaskanal aufweist, und bei welchem Verfahren die Booster-Stufe und die Konditioniervorrichtung einzeln oder in Kombination betrieben werden, wobei bei hohem Leistungsbedarf oder bei der Notwendigkeit zur Bereitstellung von Reserveleistung die Booster-Stufe und die Konditioniervorrichtung gleichzeitig betrieben werden, zeichnet sich dadurch aus, dass im Teillastbereich mittels der Booster-Stufe der Ansaugdruck am Verdichter abgesenkt wird.
  • Gemäß einer ersten bevorzugten Ausführungsart erfolgt die Absenkung des Ansaugdruckes durch Verringern des Strömungsquerschnittes mittels verstellbarer Lüfterblätter der Booster-Stufe.
  • Gemäß einer alternativen Ausführungsart wird der Ansaugdruck durch Rückwärtslauf der Booster-Stufe abgesenkt.
  • Die Senkung des Ansaugdrucks am Verdichter bietet den Vorteil, mit sinkendem Luftmassenstrom bei gleicher Leistung höhere Prozesstemperaturen fahren zu können. Dies führt neben einer Anhebung des Teillastwirkungsgrades zu einer Verringerung der Emissionen.
  • Eine Gasturbine zur Durchführung des Verfahrens zeichnet sich dadurch aus, dass die zumindest eine Booster-Stufe mit verstellbaren Lüfterblättern ausgerüstet ist oder die Booster-Stufe im Rückwärtslauf betrieben wird.
  • Die Booster-Stufe und die Konditioniervorrichtung werden beim Betrieb der Gasturbine in Abhängigkeit von den konkreten Betriebsbedingungen einzeln oder in Kombination betrieben. Bei einem hohen Leistungsbedarf bzw. bei der Notwendigkeit zur Bereitstellung von Reserveleistung werden die Booster-Stufe und die Konditioniervorrichtung gleichzeitig betrieben. Im Normalbetrieb können Booster-Stufe und Konditioniervorrichtung derart aufeinander abgestimmt betrieben werden, dass eine möglichst wirtschaftliche Betriebsweise bei gegebener Leistung erreicht wird. In Schwachlastzeiten erfolgt der Betrieb von Booster-Stufe und Konditioniervorrichtung unter der Massgabe eines hohen Teillastwirkungsgrades.
  • Die zumindest eine Booster-Stufe kann im Hauptansaugkanal oder auch in Bypasskanälen zum Hauptansaugkanal angeordnet sein. Die Booster-Stufe kann jeweils aus einem (grossen) oder mehreren (kleinen) Booster-Gebläsen aufgebaut sein. Die einzelnen Booster-Gebläse einer jeweiligen Booster-Stufe können im Bezug auf die Ansaugluft in Reihen- oder Parallelschaltung angeordnet sein. Die Anordnung der Booster-Gebläse ist unabhängig von Einbauten im Ansaugkanal, wie beispielsweise der Luftkonditionierung, einem Luftfilter oder einem Schalldämpfer. Die Booster-Gebläse einer Booster-Stufe können in Strömungsrichtung sowohl vor, nach als auch vor und nach einem Einbau angeordnet sein.
  • Der Einsatz von Air-Intake-Boostern ermöglicht zunächst, den Druckverlust, der durch die Konditioniervorrichtung hervorgerufen wird, zu kompensieren. Ferner lassen sich die Auslegungsspielräume der Anlage durch Steigerung des Ansaugdruckes sowohl konstruktiv, strömungstechnisch als auch wärmetechnisch deutlich erweitern. Die kombinierte Anwendung eines oder mehrerer Booster-Gebläse und der Konditioniervorrichtung im Ansaugkanal führt zu einer Vervielfachung der Vorteile der einzelnen Systeme bezüglich der Leistungs- und Wirkungsgradsteigerung der Anlage. Der Bereich möglicher Betriebsarten wird ebenfalls deutlich erweitert, da je nach Betriebs- bzw. Umgebungsbedingungen die Leistungs- oder Wirkungsgradsteigerung jeweils mit dem System erreicht werden kann, das unter den jeweiligen Bedingungen am effektivsten arbeitet. Hierbei sind selbstverständlich sämtliche Betriebsarten, d. h. einzelner, gleichzeitiger oder aufeinander folgender Betrieb der Booster-Stufen und der Konditioniervorrichtung möglich.
  • Während für netzseitige Spitzenlastzeiten oder bei Abruf von Reserveleistung, d. h. in Zeiten mit einer hohen Stromvergütung, eine Kombination von Leistungseffekten angestrebt wird, besteht die Zielstellung im Normalbetrieb in einer möglichst wirtschaftlichen Kombination von Leistung und Wirkungsgrad, während in Schwachlastzeiten mit geringen Stromvergütungen ein möglichst hoher (Teillast-)Wirkungsgrad bei möglicherweise geringer Leistung im Mittelpunkt der Betriebsführung steht. Die vorliegende Erfindung ermöglicht durch die auf die jeweilige Betriebsbedingung abstimmbare Kombination des Betriebs der Booster-Stufe mit dem Betrieb der Konditioniervorrichtung die Realisierung dieser Zielstellungen auch in Abhängigkeit von tages- und jahreszeitlichen Klimaschwankungen.
  • Vorzugsweise ist hierfür eine Steuerung vorgesehen, die den Betrieb der Konditioniervorrichtung und den Betrieb der Booster-Stufe entsprechend steuert. Vorzugsweise werden die Booster-Gebläse durch drehzahlgeregelte Antriebe angetrieben. Durch die vorzugsweise eingesetzte Steuerung lässt sich auf diese Weise der Leistungsbedarf der Booster-Stufe minimieren.
  • Um die Booster-Stufe auch bei Netzausfall für spezielle Aufgaben betreiben zu können, ist eine Auslegung der Antriebe der Booster-Gebläse als Niederspannungsantriebe vorteilhaft.
  • Kurze Beschreibung der Zeichnungen
  • Die vorliegende Gasturbine wird nachfolgend anhand eines Ausführungsbeispiels in Verbindung mit den Figuren ohne Beschränkung des allgemeinen Erfindungsgedankens nochmals erläutert. Hierbei zeigen:
  • 1 eine schematische Darstellung einer Gasturbine gemäss der vorliegenden Erfindung;
  • 2 ein Diagramm, das die Wirkungsgrad- und Leistungssteigerung einer Anlage mit Booster-Stufe und ohne Konditioniervorrichtung in Abhängigkeit der Erhöhung des Eingangsdrucks der Verdichterstufe zeigt; und
  • 3 ein Diagramm, das die Leistungs- und Wirkungsgradsteigerung einer Anlage gemäss der vorliegenden Erfindung in Abhängigkeit der Erhöhung des Eingangsdrucks der Verdichterstufe in Kombination mit der Kühlung der Ansaugluft zeigt.
  • Wege zur Ausführung der Erfindung
  • 1 zeigt den grundsätzlichen Aufbau einer Gasturbinenanlage mit einer Gasturbine gemäss einem Ausführungsbeispiel der vorliegenden Erfindung, ohne auf Details, wie den genauen Aufbau des Verdichters, der Turbine, der Brennkammer oder der sonstigen Elemente einer derartigen Anlage einzugehen. Diese Details sind dem Fachmann hinreichend bekannt.
  • Weiterhin wird in diesem Beispiel nicht auf den genauen Aufbau der Booster-Stufe (Air-Intake-Booster) oder der Konditioniervorrichtung eingegangen, deren Gestaltungs- und Auslegungsvielfalt ebenfalls der Fachliteratur entnommen werden kann.
  • Unter einer Gasturbine wird in dem vorliegenden Kontext eine Anlage bestehend aus mindestens einem Verdichter, mindestens einer Brennkammer und mindestens einer Turbine verstanden. Eine Gasturbinenanlage schliesst einen Generator zur Stromerzeugung ein. Unter einer Kombianlage versteht man die Kopplung eines Gas- und eines Dampfprozesses in Form einer Gasturbinenanlage und einer Dampfturbinenanlage. Die Wärme der Abgase der Turbine der Gasturbinenanlage dient dabei zur Dampferzeugung in einem Abhitzekessel. Der erzeugte Dampf wird mittels der Dampfturbinenanlage zur Stromerzeugung genutzt.
  • Bei der in 1 dargestellten Gasturbinenanlage ist im Ansaugkanal 1 des Verdichters 2 eine Booster-Stufe (Air-Intake-Booster) 3 angeordnet. Diese Booster-Stufe 3 im Ansaugkanal 1 kann in Strömungsrichtung sowohl vor oder auch nach dem nicht dargestellten Gasturbinen-Luftfiltersystem im Ansaugkanal 1 angeordnet sein.
  • Stromab der Booster-Stufe 3 ist eine Konditioniervorrichtung 7 zur Kühlung oder Erwärmung der Ansaugluft im Ansaugkanal 1 angeordnet.
  • Die Booster-Stufe 3 verringert die Druckverluste über den gesamten Ansaugkanal 1 der Gasturbine bzw. erhöht den Ansaugdruck für den Verdichter 2 und somit den Luftmassenstrom. Durch die Booster-Stufe 3 werden damit in jedem Falle die Druckverluste kompensiert oder überkompensiert, die durch die Luftkonditioniervorrichtung 7 hervorgerufen werden. Andererseits wird durch die Luftkonditionierung, insbesondere Kühlung, der Ansaugluft deren Dichte und somit der Luftmassenstrom zusätzlich erhöht, der in den Verdichter 2 eintritt.
  • Die über den Verdichter 2 angesaugte Verbrennungsluft wird in einer Brennkammer 10 nach Beimischung des Brennstoffes als Brennstoff-Luft-Gemisch verbrannt und treibt als komprimiertes Heissgas unter Expansion die Turbine 4 an. Die von der Gasturbine, im vorliegenden Fall bestehend aus Verdichter 2, Brennkammer 10 und Turbine 4, abgegebene Nutzleistung dient wiederum zum Antrieb eines Generators 11. Der Turbine 4 ist ein Abhitzekessel 5 nachgeschaltet, in dem den heissen Abgasen Wärme entzogen und zur Erzeugung von Dampf für eine hier nicht dargestellte Dampfturbinenanlage eingesetzt wird. An den Abhitzekessel 5 schliesst sich der Abgaskanal 6 an.
  • Die Booster-Stufe 3 kann aus einem oder mehreren parallel oder in Reihe zum Ansaugluftstrom geschalteten Booster-Gebläsen bestehen. Jedes Booster-Gebläse verfügt über einen Antrieb 8. Vorzugsweise werden die Booster-Gebläse über drehzahlgeregelte Antriebe 8 angetrieben, wie dies in der 1 schematisch dargestellt ist. Durch diese drehzahlgeregelten Antriebe 8 lässt sich der Betrieb der Gasturbinenanlage jederzeit optimal sich verändernden Betriebsbedingungen anpassen, um so eine möglichst wirtschaftliche Fahrweise der Anlage zu ermöglichen.
  • Das vorliegende beispielhafte System enthält eine Steuerung 9 für die Booster-Stufe 3 (Antriebe 8 der Booster-Gebläse) sowie die Konditioniervorrichtung 7. Durch diese Steuerung 9 können die Booster-Stufe 3 und die Konditioniervorrichtung 7 entweder einzeln oder in Kombination betrieben werden (vgl. 2 und 3). Zur Anpassung an unterschiedliche Netzanforderungen und/oder Umgebungsbedingungen können die Booster-Stufe 3 und die Konditioniervorrichtung 7 über die Steuerung 9 auch in weiten Bereichen in ihrer Leistung angepasst und aufeinander abgestimmt werden.
  • Die Steuerung 9 wirkt selbstverständlich auch auf die Brennstoffzufuhr für die Brennkammer 10. Auf diese Weise kann auch eine Regelung der Booster-Stufe 3, der Konditioniervorrichtung 7 sowie der Brennkammer in Abhängigkeit von der Leistung des Generators 11 erreicht werden.
  • Die Antriebe 8 der Booster-Gebläse werden vorzugsweise als Niederspannungsantriebe ausgelegt und folglich von der Niederspannungsebene aus versorgt. Im Gegensatz zum Anfahrumrichter, welcher von der Mittelspannungsebene gespeist wird, bietet die Niederspannungsversorgung der Booster-Antriebe auch die Möglichkeit eines Betriebes unter den Bedingungen des Netzausfalls.
  • Die Anordnung einer Booster-Stufe 3 erlaubt auch ein vereinfachtes Purging, d. h. das aus sicherheitstechnischen Gründen notwendige Spülen der Anlage mit Luft zur Ausblasung von brennbaren Substanzen. Vor dem Zünden einer Gasturbine müssen die nachgeschalteten Systeme unter Einhaltung bestimmter Parameter (Zeit, Geschwindigkeit, Massen- bzw. Volumenstrom) mit Luft gespült werden (Purging). Dazu muss die Gasturbine über eine bestimmte Zeit mit einer bestimmten Drehzahl gedreht werden, um mittels des Verdichters die geforderten Strömungsbedingungen zu erreichen. Das Beschleunigen und das Drehen des Wellenstranges zu bzw. auf einer relativ hohen Drehzahl wird heute üblicherweise über einen Anfahrumrichter und einen Betrieb des Generators 11 als Motor realisiert. Durch einen Betrieb der Booster-Stufe 3 kann vor oder während dem Anfahren der Gasturbine ein effizientes Spülen des Abhitzekessels 5 und des Abgaskanals 6 unterstützt bzw. erreicht werden.
  • Weiterhin kann es zur Verkürzung der Revisionszeiten von Gasturbine und Abhitzekessel 5 zweckmässig sein, diese möglicherweise bereits während, insbesondere aber nach dem Abfahren zusätzlich zu kühlen. Dieses zusätzliche Kühlen realisiert man bisher üblicherweise wiederum, indem man über den Anfahrumrichter und den Generator 11 die Welle dreht und mittels des Verdichters 2 die Gasturbine und den Abhitzekessel 5 mit kalter Luft durchströmt. Die gleiche Aufgabe kann nun mittels der Booster-Stufe 3 realisiert werden.
  • Im Teillastbereich, insbesondere im unteren Teillastbereich, wenn das Potential der Massenstromregelung über die verstellbaren Leitschaufeln am Verdichtereintritt ausgeschöpft ist, nimmt der Wirkungsgrad der Gasturbine mit sinkender Leistung sehr stark ab.
  • Aus diesem Grund wird erfindungsgemäß mittels der Booster-Stufe 3 der Ansaugdruck am Verdichter 2 abgesenkt und damit der Ansaugluftmassenstrom verringert. Das bietet, wie gesagt, den Vorteil, mit sinkendem Luftmassenstrom bei gleicher Leistung höhere Prozesstemperaturen fahren zu können. Dies führt neben einer Anhebung des Teillastwirkungsgrades zu einer Verringerung der Emissionen.
  • Möglichkeiten der Absenkung des Ansaugdruckes mittels der Booster-Stufe 3 bestehen im Verringern des Strömungsquerschnittes mittels der verstellbaren Lüfterblätter oder im Rückwärtslauf der Booster-Stufe 3.
  • Die 2 und 3 zeigen im Folgenden einen Vergleich der Leistung bzw. des Wirkungsgrades einer Gasturbinenanlage (GT) und einer Kombianlage (CCPP) mit Booster-Stufe im Ansaugkanal ohne und mit zusätzlicher Luftkonditioniervorrichtung.
  • Beide Diagramme beziehen sich auf eine Anlage, die mit Methan unter ISO-Bedingungen betrieben wird, wobei die Ansaugdruckverluste 10 × 102 Pa (10 mbar) und die Abgasdruckverluste 30 × 102 Pa (30 mbar) betragen.
  • 2 zeigt hierbei den Fall ohne die zusätzliche Luftkonditioniervorrichtung. Durch den Betrieb der Booster-Stufe im Ansaugkanal mit unterschiedlicher Leistung wird ein unterschiedlicher Eingangsdruck der angesaugten Luft am Verdichtereintritt erreicht. Das Diagramm zeigt sowohl die Ausgangsleistung als auch den Wirkungsgrad einer Gasturbinenanlage sowie einer Kombianlage. Die lineare Erhöhung der Leistung bzw. des Wirkungsgrades mit zunehmendem Eingangsdruck in den Verdichter ist deutlich zu erkennen.
  • 3 zeigt die gleichen Grössen bei einer Gasturbinen- und Kombianlage, bei denen die Konditioniervorrichtung mittels Verdampfungskühlung eine Abkühlung der Ansaugluft (Wirkungsgrad der Verdampfungskühlung 85%) herbeiführt. Durch einen Vergleich mit dem Diagramm der 2 sind nochmals erhöhte Werte der Ausgangsleistung sowie des Wirkungsgrades zu erkennen, die durch die Kombination von Booster-Stufe und Konditioniervorrichtung erreicht werden.
  • Bezugszeichenliste
  • 1
    Ansaugkanal
    2
    Verdichter
    3
    Booster-Stufe (Air-Intake-Booster)
    4
    Turbine
    5
    Abhitzekessel
    6
    Abgaskanal
    7
    Ansaugluft-Konditioniervorrichtung
    8
    Antrieb
    9
    Steuerung
    10
    Brennkammer
    11
    Generator

Claims (11)

  1. Verfahren zum Betrieb einer Gasturbine mit mindestens einem Verdichter (2) und mindestens einer Turbine (4), bei der in einem Ansaugkanal (1) des Verdichters (2) zumindest eine Booster-Stufe (3) und zusätzlich eine Konditioniervorrichtung (7) zur Konditionierung von Ansaugluft im Ansaugkanal (1) angeordnet sind, mit einem Abgaskanal (6) und einem Abhitzekessel (5) zwischen der Turbine (4) und dem Abgaskanal (6), bei welchem Verfahren die Booster-Stufe (3) und die Konditioniervorrichtung (7) in Abhängigkeit von den konkreten Betriebsbedingungen einzeln oder in Kombination betrieben werden, wobei bei einem hohen Leistungsbedarf oder bei der Notwendigkeit zur Bereitstellung von Reserveleistung die Booster-Stufe (3) und die Konditioniervorrichtung (7) gleichzeitig betrieben werden, dadurch gekennzeichnet, dass im Teillastbereich mittels der Booster-Stufe (3) der Ansaugdruck am Verdichter (2) abgesenkt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Ansaugdruck am Verdichter (2) durch Verringern des Strömungsquerschnitts mittels verstellbarer Lüfterblätter der Booster-Stufe (3) abgesenkt wird.
  3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Ansaugdruck am Verdichter (2) durch Rückwärtslauf der Booster-Stufe (3) abgesenkt wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in Abhängigkeit der Netzbedingungen der Wirkungsgrad und/oder die Leistung der Gasturbine durch Ansteuerung der Booster-Stufe (3) und der Konditioniervorrichtung (7) optimiert werden.
  5. Gasturbine zur Durchführung des Verfahrens gemäß Anspruch 1, dadurch gekennzeichnet, dass die zumindest eine Booster-Stufe (3) mit verstellbaren Lüfterblättern ausgerüstet ist oder die Booster-Stufe (3) im Rückwärtslauf betrieben wird.
  6. Gasturbine nach Anspruch 5, dadurch gekennzeichnet, dass die Konditioniervorrichtung (7) stromab der Booster-Stufe (3) angeordnet ist.
  7. Gasturbine nach einem der Ansprüche 5 bis 6, dadurch gekennzeichnet, dass die Konditioniervorrichtung (7) eine Kühlvorrichtung ist.
  8. Gasturbine nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass eine Steuerung (9) für den Betrieb der Konditioniervorrichtung (7) und der Booster-Stufe (3) vorgesehen ist.
  9. Gasturbine nach einem der Ansprüche 5 bis 8, dadurch gekennzeichnet, dass die Booster-Stufe (3) aus einem oder mehreren parallel oder in Reihe angeordneten Booster-Gebläsen besteht.
  10. Gasturbine nach Anspruch 9, dadurch gekennzeichnet, dass die Booster-Gebläse Antriebe (8) aufweisen, die als Niederspannungsantriebe ausgelegt sind.
  11. Gasturbine nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass die Booster-Gebläse durch einen drehzahlgeregelten Antrieb angetrieben werden.
DE2002131827 2001-07-26 2002-07-15 Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens Expired - Fee Related DE10231827B4 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH13952001 2001-07-26
CH1395/01 2001-07-26

Publications (2)

Publication Number Publication Date
DE10231827A1 DE10231827A1 (de) 2003-04-24
DE10231827B4 true DE10231827B4 (de) 2014-08-21

Family

ID=4565442

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2002131827 Expired - Fee Related DE10231827B4 (de) 2001-07-26 2002-07-15 Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens

Country Status (1)

Country Link
DE (1) DE10231827B4 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009059959A2 (en) * 2007-11-06 2009-05-14 Van Bakkum Theodorus Istvan Apparatus and method for generating energy
ES2634028B1 (es) * 2016-02-26 2018-10-15 Alejandro DESCO SÁNCHEZ Turbina de gas con dos etapas de compresión y enfriamiento intermedio mediante máquina frigorífica

Also Published As

Publication number Publication date
DE10231827A1 (de) 2003-04-24

Similar Documents

Publication Publication Date Title
EP2473726B1 (de) Gasturbogruppe
DE102007018420B4 (de) System und Verfahren zur Konditionierung einer Gasturbinenzuluft
EP1752616B1 (de) Gasturbinenanlage
EP1914407B1 (de) Verfahren zum Betrieb einer Gasturbinenanlage
DE69201312T2 (de) Erdgasturbine mit Wasserdampfeinspritzung im halboffenen Kreislauf.
EP0808994B1 (de) Verfahren zum Betrieb einer Kombianlage
DE69635318T2 (de) Injektionsvorrichtung für tröpfchenförmige Flüssigkeit
EP0695860B1 (de) Luftspeicherturbine
DE10307374A1 (de) Verfahren zum Betrieb eines teilgeschlossenen, aufgeladenen Gasturbinenkreislaufs sowie Gasturbinensystem zur Durchführung des Verfahrens
CH697810A2 (de) Gasturbinensystem für den Betrieb bei niedrigen Lasten bei Einhaltung der Emissionsgrenzwerte.
CH697807A2 (de) Verbrennungsgasturbinenvorrichtung mit Kühlung von Heissgaswegteilen durch von externem Verdichter zugeführtem Kühlmedium sowie Betriebsverfahren dazu.
EP1219801B1 (de) Gasturbinenanlage
DE102004039164A1 (de) Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
DE102012011294A1 (de) Verfahren zum Kühlen einer Gasturbinenanlage sowie Gasturbinenanlage zur Durchführung des Verfahrens
EP0646705A1 (de) Verfahren zur Erstellung eines Teillastbetriebes bei einer Gasturbogruppe
DE102014104452A1 (de) System und Verfahren zur Erhöhung der Gasturbinenausgangsleistung
DE10216953B4 (de) Vorrichtung und Verfahren zur Versorgung einer Brennstoffzelle mit Prozessluft und deren Verwendung
DE102014111697A1 (de) Systeme und Verfahren zum Enteisen eines Einlaufsiebs einer Gasturbine und zum Entfeuchten von Lufteinlauffiltern
EP1084327A1 (de) Gasturbine sowie verfahren zur kühlung einer turbinenstufe
DE112010003300T5 (de) Gasturbine und Verfahren zum Betreiben einer Gasturbine
CH698412B1 (de) Kraftwerk-Turbinensystem.
CH709625A2 (de) Gasturbine für niedrigen Teillastbetrieb mit einem Turbinenkühlsystem, das ein Gemisch aus Kompressorzapfluft und Umgebungsluft verwendet.
DE1476806A1 (de) Verfahren und Vorrichtung zum Bereitschafts-Leerlaufbetrieb eines Gasturbogenerators,der an ein elektrisches Kraftversorgungsnetz angeschlossen ist
CH698411A2 (de) Kraftwerksturbinensystem.
EP0462458B1 (de) Verfahren zur Erhöhung des verdichterbedingten Druckgefälles der Gasturbine einer Krafterzeugungsmaschine

Legal Events

Date Code Title Description
OR8 Request for search as to paragraph 43 lit. 1 sentence 1 patent law
8127 New person/name/address of the applicant

Owner name: ALSTOM TECHNOLOGY LTD, BADEN, CH

8141 Disposal/no request for examination
8170 Reinstatement of the former position
8110 Request for examination paragraph 44
8105 Search report available
R163 Identified publications notified

Effective date: 20110407

R016 Response to examination communication
R082 Change of representative

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

Representative=s name: DREISS PATENTANWAELTE PARTNERSCHAFT, DE

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

R082 Change of representative

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

R081 Change of applicant/patentee

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Free format text: FORMER OWNER: GENERAL ELECTRIC TECHNOLOGY GMBH, BADEN, CH

R082 Change of representative

Representative=s name: DREISS PATENTANWAELTE PARTG MBB, DE

R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee