DE10211906A1 - Oxidation von o-Xylol zu o-Tolylsäure und anderen Oxidationsprodukten durch kontrollierte Zufuhr eines sauerstoffhaltigen Gases - Google Patents

Oxidation von o-Xylol zu o-Tolylsäure und anderen Oxidationsprodukten durch kontrollierte Zufuhr eines sauerstoffhaltigen Gases

Info

Publication number
DE10211906A1
DE10211906A1 DE2002111906 DE10211906A DE10211906A1 DE 10211906 A1 DE10211906 A1 DE 10211906A1 DE 2002111906 DE2002111906 DE 2002111906 DE 10211906 A DE10211906 A DE 10211906A DE 10211906 A1 DE10211906 A1 DE 10211906A1
Authority
DE
Germany
Prior art keywords
oxygen
reaction zone
xylene
liquid stream
volume
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE2002111906
Other languages
English (en)
Inventor
Beatrice Roesler
Andreas Brodhagen
Frank Rosowski
Thomas Ruehl
Hans-Josef Wolf
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE2002111906 priority Critical patent/DE10211906A1/de
Priority to AU2003214136A priority patent/AU2003214136A1/en
Priority to PCT/EP2003/002814 priority patent/WO2003078377A1/de
Publication of DE10211906A1 publication Critical patent/DE10211906A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

Beschrieben wird ein Verfahren zur Herstellung von Oxidationsprodukten des o-Xylols, die zu Phthalsäureanhydrid weiter oxidierbar sind, bei dem man einen o-Xylol-haltigen flüssigen Strom durch eine Reaktionszone führt und ein sauerstoffhaltiges Gas in den flüssigen Strom einperlt, wobei das Produkt von pro Zeiteinheit zugeführtem Volumen sauerstoffhaltigem Gas, gerechnet als Volumen unter Normbedingungen, und dem Sauerstoff-Volumenanteil des sauerstoffhaltigen Gases, dividiert durch das pro Zeiteinheit der Reaktionszone zugeführte Volumen flüssigen Stroms, weniger als 0,65 beträgt. Auf diese Weise wird eine unerwünschte Überoxidation vermieden und die Selektivität des Verfahrens erhöht.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Oxidationsprodukten des o-Xylols, die zu Phthalsäureanhydrid weiter oxidierbar sind, durch Oxidation von o-Xylol in flüssiger Phase.
  • Phthalsäureanhydrid gehört zu den technisch wichtigsten aromatischen Verbindungen. Es wird z. B. bei der Synthese von Alkydharzen, ungesättigten Polyesterharzen, Lacken, Kunststoffen, Weichmachern, Phthalocyaninfarbstoffen, Insektenabwehrmitteln, Denaturierungsmitteln sowie zur Herstellung zahlreicher Feinchemikalien verwendet.
  • Phthalsäureanhydrid wird technisch durch Oxidation von o-Xylol oder Naphthalin hergestellt. Es sind dabei zwei Oxidationsverfahren üblich. Zum einen wird die Oxidation in der Gasphase an einem heterogenen Katalysator, im Allgemeinen einem Vanadium-haltigen Katalysator, durchgeführt. Bei diesem Verfahren werden allerdings etwa 20 Mol-% des Ausgangsmaterials zu COx umgesetzt und gehen damit als Ausbeute verloren.
  • Wegen der besseren Selektivität der Oxidationsreaktion ist als Alternative eine zweistufige Reaktionsführung vorgeschlagen worden, bei der zunächst in flüssiger Phase o-Xylol mit einem sauerstoffhaltigen Gas, meist Luft, unter homogener Katalyse zu Intermediaten auf dem Weg zu Phthalsäureanhydrid, überwiegend o-Tolylsäure, 2-Methylbenzaldehyd, 2-Methylbenzylalkohol und Phthalid, oxidiert wird. Diese Intermediate werden isoliert, anschließend verdampft und in der Gasphase in einer zweiten Stufe zum Phthalsäureanhydrid oxidiert.
  • Ein derartiges zweistufiges Verfahren ist in der EP-A 0 256 352 beschrieben. Die Durchführung der o-Xyloloxidation in flüssiger Phase wird an einem Rührkesselreaktor veranschaulicht. Als Oxidationsmittel dient Druckluft, die über ein Tauchrohr eingeführt wird.
  • Wang Y., Xie Y. und Zhang J. berichten in der chinesischen wissenschaftlichen Zeitschrift "Erdölraffination und chemische Industrie" 2000, Band 31, über "Untersuchung zur Oxidation von o-Xylolen in der Flüssigkeitsphase zur Herstellung von o-Tolylsäure". Dabei wurden in einem Blasensäulenreaktor die Einflüsse der Reaktionsbedingungen, wie z. B. Reaktionstemperatur, Reaktionsdruck, Fließgeschwindigkeit der Luft sowie Reaktionszeit, auf die Ausbeute des Produkts o-Tolylsäure untersucht. Die Autoren kommen zu dem Schluss, dass es eine ideale Reaktionstemperatur, einen optimalen Druck des Reaktionssystems und eine ideale Reaktionszeit gibt. Mit der Zunahme der Luftmenge erhöhe sich die Ausbeute von o-Tolylsäure.
  • Cheng Z., Li G., Li W., Dai L., Niu Y., Hu J., Gu J., Mao X. und Li M. berichten in der chinesischen Zeitschrift "Journal der Brennstoffchemie" (Ranliao Huaxue Xuebao), 1981, Band 9, Heft 2, S. 152-162 über eine "Studie über die Kinetik der Oxidationsreaktion von o-Xylol".
  • Die DE 100 02 807 und DE 100 02 810 betreffen ebenfalls Verfahren zur Oxidation von o-Xylol mit Sauerstoff.
  • Die zweistufige Reaktionsführung der Oxidation von o-Xylol zu Phthalsäureanhydrid weist zwar im Allgemeinen eine bessere Selektivität auf als die einstufige Oxidation in der Gasphase. Dennoch besteht auch bei der Flüssigphasenoxidation die Gefahr einer Überoxidation des o-Xylols unter Bildung von COx, Essigsäure, Ameisensäure oder anderen Produkten, die durch Verlust eines oder mehrerer Kohlenstoffatome aus dem o-Xylol entstehen und nicht mehr durch weitere Oxidation in Phthalsäureanhydrid überführbar sind.
  • Der Erfindung liegt daher die Aufgabe zu Grunde, ein Verfahren zur Flüssigphasenoxidation von o-Xylol anzugeben, das möglichst selektiv zu solchen Oxidationsprodukten führt, die zu Phthalsäureanhydrid weiter oxidierbar sind.
  • Erfindungsgemäß wird diese Aufgabe durch ein Verfahren gelöst, bei dem man
    • a) einen o-Xylol-haltigen flüssigen Strom durch eine Reaktionszone führt,
    • b) ein sauerstoffhaltiges Gas in den flüssigen Strom einperlt, wobei das Produkt von pro Zeiteinheit zugeführtem Volumen sauerstoffhaltigem Gas, gerechnet als Volumen unter Normbedingungen, und dem Sauerstoff-Volumenanteil des sauerstoffhaltigen Gases, dividiert durch das pro Zeiteinheit der Reaktionszone zugeführte Volumen flüssigen Stroms weniger als 0,65 beträgt, und
    • c) aus der Reaktionszone ein Oxidationsprodukt des o-Xylols enthaltendes flüssiges Reaktionsgemisch Gas abführt.
  • Es stellte sich heraus, dass die obige Bedingung kritisch ist, um eine möglichst hohe Selektivität bezüglich solcher Oxidationsprodukte des o-Xylols zu erlangen, die zu Phthalsäureanhydrid weiter oxidierbar sind, insbesondere o-Tolylsäure, Methylbenzaldehyd, Methylbenzylalkohol, Phthalid, Di(methylbenzyl)phthalat, Methylbenzylmethylbenzoat, Mono(methylbenzyl)phthalat, Methylbenzylformylbenzoat, Formylbenzylmethylbenzoat, Monomethylphthalat, Methylbenzylformiat und Methylbenzylacetat, wovon o-Tolylsäure den Hauptanteil bildet. Soweit im Folgenden die "Selektivität" der Oxidationsreaktion angesprochen ist, ist die Selektivität bezüglich der Summe der vorstehend genannten Verbindungen gemeint.
  • Dieser Beobachtung liegen vermutlich folgende Zusammenhänge zu Grunde: Die Gefahr unerwünschter Überoxidation des o-Xylols besteht beim Auftreten lokaler Sauerstoff-Konzentrationsmaxima. Deshalb erfolgt im erfindungsgemäßen Verfahren die Zufuhr des sauerstoffhaltigen Gases in einer Weise, die lokale Sauerstoff- Konzentrationsmaxima weitgehend vermeidet. Zu diesem Zweck wird die Zufuhr des sauerstoffhaltigen Gases in die Reaktionszone so geregelt, dass das Produkt von pro Zeiteinheit zugeführtem Volumen sauerstoffhaltigem Gas, gerechnet als Volumen unter Normbedingungen von 0°C und 1013 mbar, (im Folgenden auch "Gasvolumenstrom") und dem Sauerstoff-Volumenanteil des sauerstoffhaltigen Gases (dieses Produkt entspricht dem fiktiven Volumen reinen Sauerstoffs, das mit dem sauerstoffhaltigen Gas eingeführt wird), dividiert durch das Volumen flüssigen Stroms, das der Reaktionszone pro Zeiteinheit zugeführt wird, (im Folgenden auch "Flüssigkeitsvolumenstrom") weniger als 0,65, vorzugsweise 0,01 bis 0,55, insbesondere 0,1 bis 0,5, besonders bevorzugt 0,15 bis 0,35 beträgt. Mit anderen Worten darf das Verhältnis des zugeführten fiktiven Volumens reinen Sauerstoffs zum pro Zeiteinheit in die Reaktionszone eingeführten Volumen flüssigen Stroms einen bestimmten Grenzwert nicht überschreiten.
  • Diese Bedingung kann durch die folgende Gleichung veranschaulicht werden:


    worin Vg,i der Gasvolumenstrom, ≙O2 der Sauerstoffvolumenanteil des sauerstoffhaltigen Gases und Vfl der Flüssigkeitsvolumenstrom ist.
  • Um diese Bedingung zu erfüllen, stehen folgende Maßnahmen zur Verfügung:
    • - Verringerung des Volumenstroms sauerstoffhaltigen Gases,
    • - Verringerung des Sauerstoffgehalts im sauerstoffhaltigen Gas, d. h. Verdünnung durch ein Inertgas,
    • - Erhöhung des Volumenstroms des flüssigen Stroms durch die Reaktionszone.
  • Vorzugsweise enthält das sauerstoffhaltige Gas neben Sauerstoff ein oder mehrere Inertgase, wie z. B. Stickstoff, Argon und/oder Kohlendioxid. Der Sauerstoff-Volumenanteil des sauerstoffhaltigen Gases beträgt vorzugsweise 10 bis 90 Vol.-%, vorzugsweise 15 bis 35 Vol.-%; der Rest wird von Inertgas gebildet. Die Verwendung von Luft als sauerstoffhaltiges Gas ist besonders bevorzugt. Es ist im Rahmen der Erfindung jedoch auch denkbar, sauerstoffreichere Gase oder sogar reinen Sauerstoff in die Reaktionszone einzudosieren.
  • In der Regel wird aus der Reaktionszone neben dem flüssigen Reaktionsgemisch ein Sauerstoff-abgereichertes Gas abgeführt. Der Sauerstoffvolumenanteil des Sauerstoff-abgereicherten Gases beträgt vorzugsweise 0,01 bis 7,5 Vol.-%, insbesondere 0,05 bis 6 Vol.-%, besonders bevorzugt 0,05 bis 2,0 Vol.-%, wobei der Rest von einem oder mehreren Inertgasen gebildet wird.
  • Zur Durchführung des erfindungsgemäßen Verfahrens sind beliebige Reaktionsapparate geeignet, bei denen durch geeignete Organe, wie Gasverteiler oder Düsen, eine Gasphase in eine flüssige Phase dispergiert wird. Geeignete Beispiele hierfür sind Rührkesselreaktoren, Blasensäulen, kaskadierte Blasensäulen, gepackte Blasensäulen oder hochbelastete Füllkörpersäulen.
  • In einer bevorzugten Ausführungsform führt man den flüssigen Strom durch eine längliche Reaktionszone, d. h. einen Reaktor nach Art eines Rohrreaktors, und speist das sauerstoffhaltige Gas an wenigstens zwei entlang der Reaktionszone in Strömungsrichtung des flüssigen Stroms beabstandet zueinander, z. B. äquidistant, angeordneten Einspeisungspunkten ein. Die Reaktionszone weist dabei vorzugsweise ein Verhältnis von Länge zu Durchmesser von mehr als 5, insbesondere mehr als 10 auf. Die Anzahl der Einspeisungspunkte kann z. B. 2 bis 15 oder 5 bis 10 betragen. Wird das sauerstoffhaltige Gas an mehr als einem Einspeisungspunkt in die Reaktionszone eingeführt, ist zur Berechnung des Gas-/Flüssigkeitsvolumenverhältnisses auf die Summe des an den einzelnen Einspeisungspunkten eingeführten Gasvolumenströme abzustellen.
  • Vorteilhafterweise ist die Reaktionszone zumindest in Teilbereichen mit oberflächenvergrößernden, wie geordneten Packungen oder einer regellosen Füllkörperschüttung versehen. Anstelle oder zusätzlich zu Packungen oder einer Füllkörperschüttung kann die Reaktionszone Einbauten aufweisen, die sich im Wesentlichen in einer Ebene senkrecht zur Strömungsrichtung des flüssigen Stroms erstrecken und beabstandet zueinander sind. Geeignete derartige Einbauten sind z. B. Lochbleche oder Ventilböden. Durch die Einbauten wird die Reaktionszone in mehrere Kammern unterteilt. Vielfach ist es vorteilhaft, einzelnen oder allen Kammern jeweils einen Einspeisungspunkt für das sauerstoffhaltige Gas zuzuordnen.
  • Die genannten Einbauten führen zu einer (Re-)dispergierung der Gasphase im flüssigen Strom und einer guten Vermischung quer zur Strömungsrichtung und verhindern gleichzeitig eine unerwünschte Rückvermischung des flüssigen Stroms in Strömungsrichtung.
  • Die Oxidation des o-Xylols verläuft exotherm. Die entstehende Reaktionswärme wird vorzugsweise abgeführt. Hierzu kann man in der Reaktionszone angeordnete oder am äußeren Reaktormantel angebrachte oder damit in wärmeleitender Verbindung stehende Wärmetauscher vorsehen, die von einem geeigneten Kühlmedium durchströmt werden. So ist es z. B. möglich, in der Reaktionszone angeordnete Kühlschlangen oder Kühlfinger vorzusehen. Bei Ausführungsformen des erfindungsgemäßen Verfahrens, bei denen ein Teilstrom des aus der Reaktionszone abgeführten flüssigen Reaktionsgemischs in die Reaktionszone zurückgeführt wird, besteht eine bevorzugte Art der Abfuhr der Reaktionswärme darin, den Rückführstrom zu kühlen, indem man ihn z. B. durch einen Wärmetauscher leitet. Selbstverständlich können verschiedene Arten der Wärmeabfuhr kombiniert werden.
  • Der Druck in der Reaktionszone beträgt vorzugsweise 10 bis 30 bar, insbesondere 15 bis 25 bar. Die Reaktionstemperatur beträgt vorzugsweise 120 bis 210°C, insbesondere 130 bis 180°C, besonders bevorzugt 140 bis 165°C. Als Reaktionstemperatur kann näherungsweise die Eintrittstemperatur des flüssigen Stroms in die Reaktionszone angesehen werden. Die Verweilzeit des flüssigen Stroms in der Reaktionszone beträgt im Allgemeinen 0,5 bis 4,5 Stunden, wobei in der Regel Verweilzeiten am unteren Ende des angegebenen Bereichs mit höheren Reaktionstemperaturen kombiniert werden und umgekehrt.
  • Das erfindungsgemäße Verfahren erfolgt vorzugsweise in Gegenwart eines Übergangsmetall-haltigen Katalysators. Als Katalysatoren sind einerseits im o-Xylol-haltigen Strom homogen lösliche Übergangsmetallsalze oder -komplexe, wie insbesondere Cobalt- und/oder Mangansalze oder -komplexe, geeignet. Cobaltsalze aliphatischer, alicyclischer oder aromatischer Carbonsäuren sind bevorzugt. Beispiele dafür umfassen Naphtenate, Acetate, Propionate, Butanoate, Pentanoate, Hexanoate, Heptanoate, Octanoate, 2-Ethylhexanoate, Nonanoate, Isononanoate, Decanoate, Laurinoate, Palmitate, Stearate, Benzoate, Tolylate, Phthalate und Citrate. Beispiele für andere Moleküle, die eine Löslichkeit der Übergangsmetalle bewirken, sind Acetylacetonat, Porphyrine, Salcomin, Salen oder Phthalocyanine. Ein geeigneter Katalysator ist z. B. Cobaltnaphtenat. Vorzugsweise wird der o-Xylol-haltige Zulauf außerhalb der Reaktionszone mit dem Katalysator versetzt, der geeigneterweise in Form einer Katalysatorstammlösung zudosiert wird. Hierdurch wird das Zusammentreffen lokaler hoher Katalysatorkonzentrationen mit den Reaktionspartnern o-Xylol und Sauerstoff vermieden, das sonst zu unerwünschter Überoxidation führen könnte. Im Allgemeinen wird der Katalysator in einer Menge von 2 bis 500 ppm, vorzugsweise 5 bis 50 ppm, gerechnet als Metall, bezogen auf o-Xylol-haltigen Zulauf, eingesetzt.
  • Alternativ sind im o-Xylol-haltigen Strom schwer- oder unlösliche, heterogene Katalysatoren, insbesondere schwer- oder unlösliche Übergangsmetallsalze oder -komplexe geeignet, wie z. B. Cobaltoxalat. Die heterogenen Katalysatoren können in Form einer Aufschlämmung in dem o-Xylol-haltigen Zulauf verwendet werden oder fest in der Reaktionszone angeordnet sein, z. B. als Schüttung oder Beschichtung an den Innenwänden der Reaktionszone.
  • Nach dem Verlassen der Reaktionszone wird der Reaktionsaustrag geeigneterweise aus einem Gas-Flüssig-Separator zugeführt, in dem das flüssige Reaktionsgemisch und das Sauerstoff-abgereicherte Gas voneinander getrennt werden. Als Gas-Flüssig-Separator ist z. B. ein Schwerkraftabscheider, d. h. ein mit niedriger Strömungsgeschwindigkeit durchströmtes Gefäß, in dem sich die Gasphase und die Flüssigphase auf Grund ihrer unterschiedlichen Dichte voneinander trennen, geeignet. Alternativ kann ein Drallabscheider, d. h. ein zylindrischer Behälter, in dem der gemischtphasige Reaktionsaustrag tangential zur Behälterwand eingeführt wird, verwendet werden.
  • In bevorzugten Ausführungsformen wird das abgetrennte flüssige Reaktionsgemisch zumindest teilweise in die Reaktionszone zurückgeführt. Die Rückführung eines Teils des flüssigen Reaktionsgemischs gestattet die Aufrechterhaltung eines ausreichend großen Flüssigkeitsvolumenstroms in der Reaktionszone. Außerdem wird dadurch, dass das flüssige Reaktionsgemisch im Mittel mehrfach durch die Reaktionszone geführt wird, eine für die Aufarbeitung praktikable Konzentration der Oxidationsprodukte im flüssigen Reaktionsgemisch erreicht. Parallel zu dem rückgeführten flüssigen Reaktionsgemisch wird vorzugsweise ein frischer o-Xylol-haltiger Zulauf in die Reaktionszone eingespeist. Das Verhältnis von Zulauf zu rückgeführtem flüssigem Reaktionsgemisch beträgt im Allgemeinen 1 : 10 bis 1 : 200, vorzugsweise 1 : 50 bis 1 : 100. Zweckmäßigerweise wird eine dem Zulaufstrom entsprechende Menge des aus der Reaktionszone abgeführten flüssigen Reaktionsgemischs als Produktstrom ausgeleitet. Aus dem Produktstrom können nach üblichen Verfahren, insbesondere durch Destillation, die Oxidationsprodukte des o-Xylols, insbesondere o-Tolylsäure, Methylbenzaldehyd, Methylbenzylalkohol, Phthalid, Methylbenzylmethylbenzoat und Monomethylbenzylphthalat, isoliert werden. Das abgetrennte, nicht umgesetzte o-Xylol wird mit frischem Katalysator versetzt und in die Oxidationsreaktion zurückgeführt.
  • Zur Herstellung von Phthalsäureanhydrid werden die Oxidationsprodukte anschließend verdampft und in einer zweiten Stufe in an sich bekannter Weise in der Gasphase in Gegenwart eines sauerstoffhaltigen Gases zu Phthalsäureanhydrid oxidiert. Zur Durchführung der zweiten Stufe verwendet man im Allgemeinen einen Festbettreaktor, vorzugsweise einen Rohrbündelreaktor. Als Katalysatoren eignen sich solche mit einer aktiven Masse aus Titandioxid in Form seiner Anatasmodifikation und/oder Vanadiumpentoxid.
  • Die Erfindung wird durch die nachstehenden Beispiele näher erläutert.
  • Beispiele
  • In einer Versuchsanlage, bestehend aus einem vertikal angeordneten Hochdruckreaktionsrohr einer Länge von 2 m und einem Durchmesser von 30 mm und einer in der Nähe des unteren Ende des Reaktionsrohres angeordneten Dosierstelle für Luft (21 Vol.-% Sauerstoff), wurde eine kontinuierliche Flüssigphasenoxidation von o- Xylol bei einem Druck von 20 bar durchgeführt. Das zugeführte o- Xylol wurde vor dem Einleiten in den Reaktor mit 21 ppm (Beispiel 1), 25 ppm (Beispiel 2) bzw. 50 ppm (Beispiel 3) Cobaltnaphtenat versetzt. Eine dem zugeführten o-Xylol entsprechende Menge Reaktionsgemisch wurde kontinuierlich aus dem Reaktor ausgetragen. Die Zusammensetzung der Oxidationsprodukte wurde durch Hochleistungsflüssigkeitschromatographie analysiert. Die Betriebsparameter und Analysenergebnisse sind in der folgenden Tabelle zusammengefasst.

  • Man sieht, dass die Selektivität sinkt, wenn der Sauerstoffeintrag zu hoch ist (Vergleichsbeispiel 3).

Claims (10)

1. Verfahren zur Herstellung von Oxidationsprodukten des o-Xylols, die zu Phthalsäureanhydrid weiter oxidierbar sind, bei dem man
a) einen o-Xylol-haltigen flüssigen Strom durch eine Reaktionszone führt,
b) ein sauerstoffhaltiges Gas in den flüssigen Strom einperlt, wobei das Produkt von pro Zeiteinheit zugeführtem Volumen sauerstoffhaltigem Gas, gerechnet als Volumen unter Normbedingungen, und dem Sauerstoff-Volumenanteil des sauerstoffhaltigen Gases, dividiert durch das pro Zeiteinheit der Reaktionszone zugeführte Volumen flüssigen Stroms weniger als 0,65 beträgt, und
c) aus der Reaktionszone ein Oxidationsprodukte des o-Xylols enthaltendes flüssiges Reaktionsgemisch abführt.
2. Verfahren nach einem der vorhergehenden Ansprüche, bei dem man das flüssige Reaktionsgemisch teilweise in die Reaktionszone zurückführt.
3. Verfahren nach Anspruch 2, wobei das Volumenverhältnis von o- Xylol-Zulauf zu rückgeführtem flüssigen Reaktionsgemisch 1 : 10 bis 1 : 200 beträgt.
4. Verfahren nach einem der vorhergehenden Ansprüche, wobei der Druck in der Reaktionszone 10 bis 25 bar beträgt.
5. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Reaktionstemperatur 130 bis 180°C beträgt.
6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die Verweilzeit des flüssigen Stroms in der Reaktionsphase 0,5 bis 4,5 Stunden beträgt.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei man aus der Reaktionszone außerdem ein Sauerstoff-abgereichertes Gas abführt, dessen Sauerstoff-Volumenanteil 0,01 bis 7,5 Vol.-% beträgt.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei man ein Übergangsmetallsalz oder -komplex als Katalysator verwendet.
9. Verfahren nach Anspruch 8, bei dem man als Katalysator ein im flüssigen Strom lösliches Cobaltsalz einer aliphatischen, alicyclischen oder aromatischen Carbonsäure verwendet.
10. Verfahren nach einem der vorhergehenden Ansprüche, wobei man den flüssigen Strom durch eine längliche Reaktionszone führt und das sauerstoffhaltige Gas an wenigstens zwei entlang der Reaktionszone in Strömungsrichtung des flüssigen Stroms beabstandet zueinander angeordneten Einspeisungspunkten einperlt.
DE2002111906 2002-03-18 2002-03-18 Oxidation von o-Xylol zu o-Tolylsäure und anderen Oxidationsprodukten durch kontrollierte Zufuhr eines sauerstoffhaltigen Gases Withdrawn DE10211906A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE2002111906 DE10211906A1 (de) 2002-03-18 2002-03-18 Oxidation von o-Xylol zu o-Tolylsäure und anderen Oxidationsprodukten durch kontrollierte Zufuhr eines sauerstoffhaltigen Gases
AU2003214136A AU2003214136A1 (en) 2002-03-18 2003-03-18 Oxidation of o-xylol to form o-toluic and other oxidation products by the controlled supply of an oxygen-containing gas
PCT/EP2003/002814 WO2003078377A1 (de) 2002-03-18 2003-03-18 Oxidation von o-xylol zu o-tolylsäure und anderen oxidationsprodukten durch kontrollierte zufuhr eines sauerstoffhaltigen gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE2002111906 DE10211906A1 (de) 2002-03-18 2002-03-18 Oxidation von o-Xylol zu o-Tolylsäure und anderen Oxidationsprodukten durch kontrollierte Zufuhr eines sauerstoffhaltigen Gases

Publications (1)

Publication Number Publication Date
DE10211906A1 true DE10211906A1 (de) 2003-10-02

Family

ID=27797870

Family Applications (1)

Application Number Title Priority Date Filing Date
DE2002111906 Withdrawn DE10211906A1 (de) 2002-03-18 2002-03-18 Oxidation von o-Xylol zu o-Tolylsäure und anderen Oxidationsprodukten durch kontrollierte Zufuhr eines sauerstoffhaltigen Gases

Country Status (3)

Country Link
AU (1) AU2003214136A1 (de)
DE (1) DE10211906A1 (de)
WO (1) WO2003078377A1 (de)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1213483B (it) * 1986-08-14 1989-12-20 Sisas Spa Procedimento per la produzione di anidride ftalica.
US5731466A (en) * 1995-11-01 1998-03-24 Mitsubishi Gas Chemical Company, Inc. Method for preparing alkylbenzoic acid

Also Published As

Publication number Publication date
AU2003214136A1 (en) 2003-09-29
WO2003078377A1 (de) 2003-09-25

Similar Documents

Publication Publication Date Title
EP3083549B1 (de) Verfahren zur herstellung von ungesättigten estern ausgehend von aldehyden durch direkte oxidative veresterung
DE3704720C2 (de)
EP0807619B1 (de) Verfahren zur Herstellung von Diarylcarbonaten
DE69813394T2 (de) Verfahren zur Herstellung von Methylmethacrylat
DE10211907A1 (de) Oxidation von o-Xylol zu o-Tolylsäure und anderen Oxidationsprodukten durch gestaffelte Zufuhr eines sauerstoffhaltigen Gases
DE2456099C2 (de) Verfahren zur Herstellung von Acrylsäuremethylester oder Mischungen von Acrylsäuremethylester und Acrylsäure
WO2009024549A2 (de) Verfahren und vorrichtung zur oxidation organischer verbindungen
EP0010295A1 (de) Verfahren zur Herstellung von Ethanol aus Synthesegas
WO2009024446A2 (de) Verfahren und vorrichtung zur oxidation organischer verbindungen
EP2411356B1 (de) Verfahren zur herstellung aliphatischer carbonsäuren aus aldehyden durch mikroreaktionstechnik
WO2001068626A1 (de) Verfahren zur herstellung von maleinsäureanhydrid
EP1057525A2 (de) Verfahren zur katalytischen Durchführung von Mehrphasenreaktionen, insbesondere Vinylierungen von Carbonsäuren
DE60119659T2 (de) Apparat und Verfahren zum Wärmeaustausch mit Fliessbetten
DE2632158C3 (de) Verfahren zur Herstellung von vicinalen Hydroxycarboxylaten und Dicarboxylaten
DE1793217A1 (de) Verfahren zum Epoxydieren von olefinischen Verbindungen
DE60114234T2 (de) Verbessertes verfahren zur herstellung von carbonsäuren
DE10211906A1 (de) Oxidation von o-Xylol zu o-Tolylsäure und anderen Oxidationsprodukten durch kontrollierte Zufuhr eines sauerstoffhaltigen Gases
DE2737894C2 (de)
DE1127342B (de) Verfahren zur Herstellung von organischen Loesungen gesaettigter aliphatischer oder aromatischer Percarbonsaeuren
DE2341147B2 (de) Verfahren zur herstellung von benzoesaeure
EP1317491B1 (de) Verfahren zur kontinuierlichen hydroformylierung von polyalkenen mit 30 bis 700 kohlenstoffatomen
EP1932821A1 (de) Verfahren zur Herstellung von Oxidationsprodukten des Cyclohexans
EP0040666B1 (de) Katalytisches Oxydations- und Dehydrierungsverfahren und Verwendung einer dafür geeigneten Umsetzungsvorrichtung
DE2632898A1 (de) Kobaltkatalysierte oxidation von gesaettigten, aliphatischen c tief 3 - c tief 7 -kohlenwasserstoffen zu essigsaeure
DE2056132C3 (de) Verfahren zur Herstellung von Glycerinacetaten

Legal Events

Date Code Title Description
8143 Withdrawn due to claiming internal priority