DE102019209109A1 - Konverter und Verfahren zum Frischen geschmolzenen Metalls - Google Patents

Konverter und Verfahren zum Frischen geschmolzenen Metalls Download PDF

Info

Publication number
DE102019209109A1
DE102019209109A1 DE102019209109.1A DE102019209109A DE102019209109A1 DE 102019209109 A1 DE102019209109 A1 DE 102019209109A1 DE 102019209109 A DE102019209109 A DE 102019209109A DE 102019209109 A1 DE102019209109 A1 DE 102019209109A1
Authority
DE
Germany
Prior art keywords
converter
side wall
decarburization
nozzles
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102019209109.1A
Other languages
English (en)
Inventor
Sabrine Khadhraoui
Fabian Krause
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Group GmbH
Original Assignee
SMS Group GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Group GmbH filed Critical SMS Group GmbH
Priority to DE102019209109.1A priority Critical patent/DE102019209109A1/de
Priority to EP20181026.4A priority patent/EP3757234A1/de
Publication of DE102019209109A1 publication Critical patent/DE102019209109A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4673Measuring and sampling devices
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/35Blowing from above and through the bath
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/48Bottoms or tuyéres of converters
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C2300/00Process aspects
    • C21C2300/06Modeling of the process, e.g. for control purposes; CII
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/068Decarburising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/072Treatment with gases
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

Die Erfindung betrifft einen Konverter zum Frischen geschmolzenen Metalls, insbesondere einer Eisen- oder Stahlschmelze, umfassend ein Konvertergefäß sowie mindestens eine Toplanze und wenigstens zwei in der Seitenwand des Konvertergefäßes angeordnete Seitenwanddüsen, dadurch gekennzeichnet, dass die Seitenwanddüsen so ausgebildet und angeordnet sind, dass durch sie ein im Wesentlichen zueinander gegenläufiger Strom an Prozessgas in das Konvertergefäß hinein erzeugbar ist und ein Verfahren zur Steuerung und / oder Regelung des Frischprozesses unter besonderer Berücksichtigung der Zustände am Anfang des Entkohlungsvorganges. Des Weiteren betrifft die Erfindung ein Verfahren zur Steuerung des Entkohlungsvorganges einer metallischen Schmelze in einem metallurgischen Reaktor, vorzugsweise einem erfindungsgemäßen Konverter.

Description

  • Gebiet der Erfindung
  • Die Erfindung betrifft einen Konverter zum Frischen geschmolzenen Metalls, insbesondere einer Eisen- oder Stahlschmelze, umfassend ein Konvertergefäß sowie mindestens eine Toplanze und wenigstens zwei in der Seitenwand des Konvertergefäßes angeordnete Seitenwanddüsen. Des Weiteren betrifft die Erfindung ein Verfahren zur Steuerung des Entkohlungsvorganges einer metallischen Schmelze in einem metallurgischen Reaktor, vorzugsweise einem Konverter.
  • Stand der Technik
  • Der Linz-Donauwitz (LD)-Prozess ist ein Stahlerzeugungsprozess, bei dem Sauerstoff auf eine Oberfläche einer kohlenstoffreichen (Roh-)Eisenschmelze in einem Konverter geblasen wird. Die Ausführung und Bauform des Konverters als geeigneter metallurgischer Reaktor sind aus dem Stand der Technik bekannt (z.B. GB 1 276 029 ). Zu Beginn des Prozesses wird die Eisenschmelze in den Konverter eingefüllt. Für den Entkohlungsvorgang wird Sauerstoff durch eine üblicherweise wassergekühlte Lanze unter hohem Druck und mit Überschall auf die Badoberfläche geblasen. Die Lanze weist typischerweise eine oder mehrere Düsen auf. Darüber hinaus kann eine Einblaseinrichtung auch über zusätzliche Seitenwanddüsen und / oder Bodendüsen verfügen. Ein Einblaseinrichtung bestehend aus einer Blaslanze, Bodendüsen und Seitenwanddüsen ist beispielsweise im EP 0 030 360 beschrieben.
  • Dem Konverter können vor Beginn des Prozesses, aber auch u.U. im laufenden Prozess, Kalk und / oder andere Schlackebildner stückig zugeführt oder als Pulver in den Konverter eingeblasen werden. Die dadurch gebildete Schlacke hat die Aufgabe, unerwünschte Begleitelemente in oxidierter Form aufzunehmen und die feuerfeste Zustellung zu schützen. Dazu wird mit Hilfe der Einblaseinrichtung eine Emulsion aus Schlacke und Stahl erzeugt. Der Sauerstoff reagiert in einer mehrstufigen Reaktion mit dem in der Eisenschmelze gelösten Kohlenstoff zu Kohlenmonooxid (CO) und / oder Kohlendioxid (CO2) und reduziert dadurch den Kohlenstoffgehalt in der Eisenschmelze. Ein mögliches Zwischenprodukt in der Reaktionskette ist z.B. Eisenoxid (FeO).
  • Die Kontrolle des Frischprozesses, insbesondere der Entkohlungsrate, und die Anlagensteuerung erfolgt typischerweise mit der bekannten Automatisierungstechnik. Zur Beschreibung der ablaufenden chemischen Reaktionen werden üblicherweise empirische Modelle eingesetzt. Ein Eingriff in den Frischprozess erfolgt normalerweise über eine Anpassung des Abstandes der Lanzenspitze zur Badoberfläche.
  • Die aus dem Stand der Technik bekannten Verfahren weisen jedoch den Nachteil auf, dass die Kontrolle der Entkohlungsgeschwindigkeit in der frühen Phase des Frischprozesses nicht ausreichend flexibel ist. Da im Konverter nicht ideale Mischungs- und / oder Temperaturverteilungen vorliegen können, können reaktionskinetische Effekte die Entkohlungsgeschwindigkeit dominieren und dadurch einen ungewollten Auswurf oder ein Überschäumen von Eisenschmelze und / oder Schlacke hervorrufen. Eine bei Bedarf gewünschte Erhöhung der Mischungsintensität wird bisher durch ein Absenken der Lanzenspitze erreicht. Das Absenken der Lanzenspitze führt aber auch zu einer ungewollten Erhöhung der Entkohlungsgeschwindigkeit im Einflussbereich der Lanzenspitze. Die Entkohlungsreaktion entzieht der Schlacke das für eine reaktive Schlacke notwendige Eisenoxid im Prozessverlauf zu früh.
  • Aufgabe der Erfindung
  • Es war daher eine Aufgabe der Erfindung, eine Vorrichtung und ein Verfahren bereitzustellen, die es ermöglichen, die Mischungsintensität innerhalb des Konverters mit einfachen Mitteln und ohne nennenswerten Einfluss auf die Entkohlungsreaktion zu erhöhen und dadurch reaktionskinetische Effekte zu vermeiden.
  • Diese Aufgabe wird durch einen Konverter mit den Merkmalen des Anspruches 1 und durch das Verfahren mit den Merkmalen des Anspruch 7 gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind sowohl in den jeweils abhängigen Unteransprüchen als auch in der nachfolgenden Beschreibung der Erfindung dargelegt.
  • Zusammenfassung der Erfindung
  • Gemäß einem ersten Aspekt der Erfindung wird ein Konverter zur Verfügung gestellt, der zum Frischen geschmolzenen Metalls, insbesondere einer Eisen- oder Stahlschmelze, auegelegt ist. Dieser Konverter weist ein Konvertergefäß sowie mindestens eine Toplanze und wenigstens zwei in der Seitenwand des Konverters angeordnete Seitenwanddüsen auf. Erfindungsgemäß sind die Seitenwanddüsen so ausgebildet und angeordnet, dass durch sie ein im Wesentlichen zueinander gegenläufiger Strom an Prozessgas in das Konvertergefäß hinein erzeugt wird.
  • Das Konvertergefäß weist eine typische Bauform auf, die einer umgestülpten Glocke mit zulaufendem Hals ähnelt. Die Grundfläche des Konvertergefäßes ist üblicherweise rund ausgebildet und bildet die Basis für eine umlaufende Seitenwand. Durch den Hals des Konvertergefäßes kann eine Toplanze zum Aufblasen eines Prozessgases auf die Metallschmelze und Schlacke innerhalb des Konvertergefäßes geführt werden. Das Innere des Konvertergefäßes wiederum ist zum Schutz der metallenen Außenhaut mit einer feuerfesten Ausmauerung zugestellt. Die Bauform des Konvertergefäßes und die Ausmauerung sind dabei so gewählt, dass eine der Bauform und Ausmauerung entsprechende Menge und folglich Füllhöhe an Metallschmelze und Schlacke aufgenommen werden kann. Weder ein Unter- noch ein Überschreiten dieser Nennmenge für jedes Konvertergefäß sind gewünscht, dementsprechend kann die Ausmauerung, die Bauform sowie die Anordnung der Toplanze sowie anderer für die Zufuhr von Prozessgasen vorgesehener Düsen gezielt auf den Badspiegel sowohl für die Metallschmelze als auch die Schlacke abgestimmt werden.
  • Erfindungsgemäß erfolgt die Zugabe von Prozessgas nicht nur über die Toplanze, sondern zudem auch über Seitenwanddüsen, die in der Lage sind, einen gegenläufigen Strom an Prozessgasen in das Konvertergefäß hinein zu erzeugen. Seine Eigenschaft als Prozessgas erreicht dieses, wenn es am Prozess innerhalb des Konverters teilnimmt, demnach mit der Schlacke und ggf. auch der Metallschmelze wechselwirkt. Durch den gegenläufigen Strom des Prozessgases wird folglich auch ein zueinander gegenläufiger Strom an Schlacke und ggf. Metallschmelze bewirkt, wodurch mit besonders einfachen Mitteln gegenläufige und einander vermischende oder zumindest begegnende Schlacke- und ggf. auch Metallströme erzeugt werden.
  • Dies bewirkt eine erhöhte Vermischung der beteiligten Phasen oder eine Erhöhung der Mischungsintensität. Hierdurch wird gleichzeitig die Temperaturverteilung verringert, das Risiko für ein Überspritzen (sog. slopping) oder die übermäßige Bildung von Schaumschlacke verringert und schlussendlich der gesamte Frischprozess sicherer und beherrschbarer gestaltet.
  • Definitionen:
  • Prozessgas:
    Mischung aus Sauerstoff und Inertgas in variablen Anteilen Thermodynamisches quasistatisches thermodynamisches Gleichgewicht,
    Gleichgewicht:
    chemische Reaktionen und Zustandsänderungen laufen so ab, dass kinetische Effekte vernachlässigbar klein sind
    Entkohlungsvorgang:
    Zuführen eines Sauerstoffträgers in den metallurgischen Reaktor zur Oxidation eines Kohlenstoffgehaltes der metallischen Schmelze. Darüber hinaus können auch andere unerwünschte Elemente (P, Cr, Si,...) durch Oxidation aus der Schmelze entfernt werden.
    Mischungsintensität:
    Menge der einem Stoff oder Stoffgemisch, insbesondere der Schlacke, bereitgestellten Energie in einer Mischzeit zur Erreichung einer Mischungsgüte
    Düse:
    Einblasöffnung, durch die ein oder mehrere Prozessgase in den Konverter eingeblasen und /oder Pulver mit Hilfe eines Fördergases dem Konverter zugeführt werden kann
    Im Wesentlichen zueinander gegenläufiger Strom:
    ein Strom an Prozessgas oder -gasen, der in der Lage ist, die Vermischung der beteiligten Stoffe zu bewirken, bevorzugt ein exakt gegenläufiger Strom von Prozessgasen, vektoriell betrachtet mit gleicher Richtung und entgegengesetzter Orientierung. Erfindungsgemäß werden aber auch solche Ströme an Prozessgas als im Wesentlichen gegenläufig zueinander betrachtet, die jeweils eine Abweichung von bis zu +/- 20° bezogen auf eine exakte Ausrichtung zueinander aufweisen. Ebenso werden solche Ströme als im Wesentlichen gegenläufig zueinander angesehen, die seitlich versetzt zueinander, gegebenenfalls parallel zueinander und/oder mit einer Abweichung von jeweils bis zu +/- 20° bezogen auf eine exakte Ausrichtung zueinander angeordnet sind. Entscheidend ist, ob die Ströme in der Lage sind, die Mischungsintensität innerhalb der beteiligten Stoffe, insbesondere der Schlacke, signifikant zu erhöhen, vorzugsweise um wenigstens 20, besonders bevorzugt um wenigstens 30%.
  • Gemäß einer bevorzugten Ausgestaltung der Erfindung sind die Seitenwanddüsen auf Höhe des in dem Konverter während des Betriebs vorliegenden Schlackespiegels oberhalb der Metallschmelze angeordnet. Vorzugsweise sind wenigstens vier Seitenwanddüsen, besonders bevorzugt in Kombination mit wenigstens einer Bodendüse, in dem Konvertergefäß angeordnet. Hierdurch wird ein Konverter zur Verfügung gestellt, bei dem die Seitenwanddüsen gezielt zur Beeinflussung der Mischungsintensität der Schlacke eingesetzt werden können, ohne die Entkohlungsrate innerhalb der Metallschmelze unerwünscht zu erhöhen. Über die Toplanze kann dabei gezielt und unverändert der Frischprozess und insbesondere die Entkohlungsrate gesteuert werden, etwaig vorhandene Bodendüsen wiederum können gezielt zur Bewegung des Metallbads eingesetzt werden.
  • In einer weiteren, ebenso bevorzugten Ausführungsform der Erfindung befinden sich an dem dem Inneren des Konvertergefäßes zugewandten Ende der Toplanze wenigstens zwei seitliche Austrittsöffnungen für Prozessgas, welche so angeordnet sind, dass durch sie ein im Wesentlichen tangentialer Strom oder tangentiale Ströme an Prozessgas bezogen auf den Umfang des Endes der Toplanze erzeugbar ist/sind.
  • Der tangentiale Strom oder die tangentialen Ströme aus der Toplanze werden vorzugsweise im Wesentlichen gegenläufig zu dem Strom oder den Strömen aus den Seitenwanddüsen erzeugt. Hierdurch wir die Erhöhung der Mischungsintensität innerhalb des Konvertergefäßes besonders effektiv und flexibel einstellbar.
  • Gemäß einem zweiten Aspekt der Erfindung wird Verfahren zur Verfügung gestellt, bei dem eine Abweichung zwischen einem thermodynamischen Gleichgewichtszustand und einem Ist-Zustand in dem metallurgischen Reaktor während des Entkohlungsvorganges der metallischen Schmelze mittels eines Vergleiches zwischen dem thermodynamischen Gleichgewicht einerseits und dem Ist-Zustand andererseits bewertet und / oder vorhergesagt wird. Erfindungsgemäß wird die Mischungsintensität der beteiligter Stoffe in dem metallurgischen Reaktor mittels mindestens einer Einblaseinrichtung für Prozessgase und / oder Stäube gesteuert oder geregelt. Darüber hinaus steuert oder regelt mindestens eine Einblaseinrichtung für Prozessgase und / oder Stäube die CO/CO2-Bildungsrate und dadurch unter anderem auch die Entkohlungsgeschwindigkeit in dem metallurgischen Reaktor. Bei Auftreten einer Abweichung, nämlich der bewerteten und / oder vorhergesagten Abweichung, wird abhängig von dieser Bewertung und / oder der Vorhersage der Entkohlungsvorgang so gesteuert oder geregelt, dass die Mischungsintensität erhöht und / oder die Entkohlungsgeschwindigkeit und / oder die CO/CO2-Bildungsrate reduziert wird.
  • Hierdurch wird ein Verfahren zur Verfügung gestellt, mit dem gezielt durch eine Minimierung und / oder eine Verminderung der beschriebenen Abweichung ein Auswurf (slopping) und / oder ein Überschäumen von metallischer Schmelze und / oder Schlacke verhindert wird. Dies wird vorzugsweise ohne jegliche Beeinflussung der Entkohlungsrate, insbesondere ohne Veränderung der Entfernung der Austrittsdüse(n) für Prozessgas der Toplanze zum Badspiegel oder eine Veränderung der Blasrate über die Toplanze erreicht.
  • In einer bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens werden kontinuierlich auf der Basis von Eingangsgrößen mittels einer Berechnung des thermodynamischen Gleichgewichtes mögliche Verläufe des Entkohlungsvorganges vorhergesagt. Bevorzugt wird mittels manueller Eingaben, Messungen oder empirischer Modelle der Ist-Zustand des metallurgischen Reaktors bestimmt. Dadurch kann auf Basis eines Vergleiches zwischen dem Ist-Zustand und vorhergesagten möglichen Entkohlungsvorgängen die Abweichung bestimmt und einer kritischen oder unkritischen Kategorie zugeordnet werden. Die unkritische Kategorie ist dabei vorzugsweise gekennzeichnet durch eine hinreichend hohe CO/CO2-Bildungsrate und dadurch eine hinreichend hohe Entkohlungsgeschwindigkeit zur Vermeidung einer Übersättigung der metallischen Schmelze mit Sauerstoff. Weiterhin ist die unkritische Kategorie bevorzugt definiert durch eine hinreichend geringe CO/CO2-Bildungsrate und / oder Entkohlungsgeschwindigkeit zur Bildung von einem hinreichenden Eisenoxidgehalt (FeO) in der Schlacke.
  • Unter Berücksichtigung von mathematischen Methoden und Modellen kann das erfindungsgemäße Verfahren eine Vorhersage über mögliche Verläufe des Entkohlungsvorganges, einer realen Entkohlungsgeschwindigkeit und somit auch über die die Abweichung zwischen beiden treffen. Dazu wird, vorzugsweise kontinuierlich, die Abweichung durch einen Vergleich einer Vorhersage des theoretischen thermodynamischen Gleichgewichtes innerhalb des metallurgischen Reaktors, vorzugsweise des Konverters, mit einem Ist-Zustand bestimmt. Der Ist-Zustand wird mit Hilfe einer Kombination aus verschiedenen Eingangsparametern berechnet. Als beispielhaft können hierfür mögliche Eingangsparameter eine Temperaturmessung, eine Messung der Zusammensetzung des Abgases oder eine Massenbilanz des metallurgischen Reaktors bezeichnet werden.
  • Vorzugsweise ist ein unkritischer Prozessablauf dadurch gekennzeichnet, dass die CO/CO2-Bildungsrate und / oder die Entkohlungsgeschwindigkeit ausreichend hoch ist, um eine Übersättigung der Stahlschmelze mit Sauerstoff zu vermeiden. Zur Bildung von genug Eisenoxid (FeO) für eine reaktive Schlacke sollte idealerweise die CO-Bildungsrate und / oder die Entkohlungsgeschwindigkeit ausreichend gering sein. Wird der Entkohlungsvorganges innerhalb dieser Grenzen durchgeführt, werden dadurch die nachteiligen reaktionskinetischen Effekte vermieden. Insgesamt ist es von Vorteil, wenn der Entkohlungsvorgang in einem Bereich abläuft, in dem das thermodynamische Gleichgewicht innerhalb der beteiligten Stoffe, insbesondere der Schlacke, nicht ursächlich zu dem Auswurf oder dem Überschäumen führt.
  • Verfahrensseitig wird somit eine Anleitung an den Fachmann gegeben, mittels derer er in die Lage versetzt wird, den Entkohlungsvorgang, insbesondere den Frischprozess, mit einfachen Mitteln zu steuern und die Mischungsintensität der gewünschten Phasen innerhalb des metallurgischen Reaktors, insbesondere die Mischungsintensität innerhalb einer auf einer Metallschmelze aufschwimmenden Schlacke, zur Vermeidung von thermodynamischen Ungleichgewichten, je nach Bedarf zu steuern. Gleichzeitig werden das Auftreten übermäßiger Mengen an Schaumschlacke und/oder der unerwünschte Auswurf von Schlacke und/oder Metall aus dem metallurgischen Reaktor infolge thermodynamischer Ungleichgewichte vermieden. Dies alles führt zu einem stabileren und sicheren Prozessablauf sowie zu einer Verlängerung der Standzeit des metallurgischen Reaktors.
  • Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird ein Prozessgas und / oder Staub mittels einer Einblaseinrichtung in den metallurgischen Reaktor eingeblasen. Die Einblaseinrichtung kann aus einer Toplanze, Seitenwanddüsen und / oder Bodendüsen bestehen. Dabei weist die Toplanze mindestens eine oder mehrere Düsen auf. Bei einem Einsatz der Toplanze, einer oder mehrerer Bodendüsen, und/oder einer oder mehrerer Seitenwanddüsen kann der Druck, der Volumenstrom und / oder die Zusammensetzung des Prozessgases für einzelne oder alle Düsen unabhängig voneinander gesteuert oder geregelt werden.
  • Wird mittels eines Fördergases Pulver eingeblasen, kann dies vorzugsweise durch den Einsatz der Toplanze, einer oder mehrerer Bodendüsen, und / oder einer oder mehrerer Seitenwanddüsen erfolgen. Für die Steuerung und / oder Regelung der unterschiedlichen oben genannten Parameter der Einblaseinrichtung, wie z.B. Druck, Volumenstrom, Zusammensetzung des Prozessgas oder Abstand der Lanzenspitze, werden Vorgaben gemacht. Durch diese Vorgaben wird unter anderem die Mischungsintensität in dem metallurgischen Reaktor dahingehend beeinflusst, dass Scherströmungen in den unterschiedlichen Bereichen des metallurgischen Reaktors erzeugt werden. Diese Scherströmungen führen erfindungsgemäß zu einer erhöhten Vermischung der beteiligten Stoffe, insbesondere innerhalb der auf dem Metallbad aufschwimmenden Schlacke, und erhöhen mit einfachen Mitteln die Mischungsintensität bei gleichzeitiger Verringerung thermodynamischer Ungleichgewichte.
  • Bevorzugt umfasst die Beeinflussung der Mischungsintensität der beteiligten Stoffe die Erhöhung der Mischintensität innerhalb der Schlacke, vorzugsweise wird allein die Erhöhung der Mischintensität der Schlacke ohne Beeinflussung der Badbewegung innerhalb der Metallschmelze umfasst.
  • Gemäß einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird dieses insbesondere in einer frühen Phase des Entkohlungsvorganges zur Vermeidung von unerwünschtem Auswurf (slopping) und / oder Überschäumen eingesetzt. Dadurch werden vorteilhafterweise reaktionskinetische Effekte in dem metallurgischen Reaktor vermieden, wobei der Abstand der Toplanze zur Badoberfläche vorteilhafterweise nicht verändert werden muss.
  • Die Prozessüberwachung erfolgt vorzugsweise unter Auswertung von Abgasmessungen während des Entkohlungsvorganges. Bevorzugte gehen dabei die Ergebnisse der Abgasmessung und die Bewertung der gemessenen Parameter, insbesondere die Rate der CO-Bildung, online in die Prozesssteuerung ein. Die Abweichung gibt dann vorzugsweise einen Hinweis auf eine verzögerte Entkohlungsreaktion. Hierdurch wird der Entkohlungsprozess mit einfachen und leicht beherrschbaren Mitteln unterstützt und gibt dem Anlagenbetreiber gezielt Daten zur Hand, mittels derer der Prozess gezielt und sicher gesteuert werden kann. Insbesondere kann anhand der gemessenen Parameter bestimmt werden, ob und wie auf den Prozess eingewirkt werden sollte, um eine optimale Prozessführung zu gewährleisten.
  • Bevorzugt wird das erfindungsgemäße Verfahren gemäß dem zweiten Aspekt der Erfindung in einem Konverter gemäß dem ersten Aspekt der Erfindung angewendet. Somit sind die gleichen Effekte, die im Zusammenhang mit den einzelnen Aspekten offenbart sind, mit beiden Aspekten der Erfindung erreichbar.
  • Vorzugsweise erfolgt dabei die Erhöhung der Mischintensität innerhalb der Schlacke ausschließlich durch Erhöhung des Volumenstroms an Prozessgas aus den Seitenwanddüsen und ggf. der wenigstens einen Bodendüse. Hierdurch wird ein Verfahren geschaffen, das die Mischungsintensität gezielt innerhalb der Schlacke einzustellen in der Lage ist, ohne gleichzeitig die Entkohlungsrate oder den Rest des Frischprozesses in ungewünschter Weise zu beeinflussen.
  • Bevorzugt ist dann das Prozessgas aus den Seitenwanddüsen und ggf. der wenigstens einen Bodendüse sauerstofffrei. Hierdurch wird die Entkohlungsrate ganz wesentlich allein über die Toplanze gesteuert, während die Seitenwanddüsen und ggf. auch die Bodendüsen(n) zur Erhöhung der Mischungsintensität innerhalb der Schlacke und ggf. der Metallschmelze und zur Verringerung thermodynamischer Ungleichgewichte beitragen.
  • Figurenliste
  • Die Erfindung wird nachfolgend unter Bezugnahme auf Zeichnungen näher erläutert. In den Zeichnungen sind:
    • 1: eine Seitenansicht auf einen Konverter mit typischer Bauform des Konvertergefäßes und mit Toplanze sowie Seitenwanddüsen,
    • 2a): eine erste schematische Darstellung erfindungsgemäß erzeugter gegenläufiger Scherströme innerhalb des Konvertergefäßes, und
    • 2b): eine zweite schematische Darstellung erfindungsgemäß erzeugter gegenläufiger Scherströme innerhalb des Konvertergefäßes.
  • Detaillierte Beschreibung von Ausführungsformen:
  • 1 zeigt einen typischen Aufbau eines metallurgischen Reaktors, hier eines BOF-Konverters 100. Der BOF 100 wird üblicherweise dazu verwendet, eine metallische Schmelze 500 zu entkohlen. Weiterhin ist dargestellt eine drehbare Aufhängung 110 des BOF, eine Toplanze 210, unter einem Winkel α zur Horizontalen einblasende Seitenwanddüsen 220, eine Schlackeschicht 400 und die metallische Schmelze 500. Die Seitenwanddüsen 220 sind so innerhalb der Seitenwand des BOF 100 angeordnet, dass sie bei üblichen oder Nennbedingungen, folglich einem Betrieb mit vorgesehener Füllmenge und-höhe sowohl in Bezug auf die Metallschmelze 500 als auch die Schlacke 400, den Strom an Prozessgas allein auf oder in die Schlacke 400 richten.
  • Bei einer als kritische bewerteten Abweichung der Entkohlungsrate, die ein Indiz für einen zu erwartenden Auswurf an Schlacke 400 oder Metallschmelze 500 aus dem BOF 100 oder für ein Überschäumen der Schlacke 400, kann mit Hilfe der Blaseinrichtung 200, aufweisend die Toplanze 210 und die Seitenwanddüsen 220, der Entkohlungsvorgang beeinflusst werden. Dabei kann sowohl ein Mischungsvorgang im BOF als auch die Entkohlungsgeschwindigkeit durch Vorgaben für die Steuerung oder Regelung der Toplanze 210 und / oder der Seitenwanddüsen 220 angepasst werden. Typischerweise wird der Mischungsvorgang im BOF 100 intensiviert und / oder die Entkohlungsgeschwindigkeit durch eine Reduktion der Sauerstoffzufuhr reduziert. Durch diese Vorgaben kehrt dann der Entkohlungsvorgang in den Bereich des thermodynamischen Gleichgewichtes zurück und die Abweichung kann eliminiert oder zumindest als unkritisch bewertet werden.
  • Für das erfindungsgemäße Verfahren ist es vorteilhaft, dass eine Blaseinrichtung 200 für den BOF 100 aus mehreren Düsen besteht. Die Düsen können in einer Toplanze 210, als Seitenwanddüse 220 oder als (nicht dargestellte) Bodendüse im BOF 100 verbaut sein. Idealerweise kann für jede Düse für das Prozessgas die Zusammensetzung, der Druck, die Temperatur oder der Volumenstrom einzeln und / oder unabhängig voneinander gesteuert oder geregelt werden. Wird mit Hilfe der Düsen auch ein Pulver eingeblasen, sollte die Zufuhr auch unabhängig von der Düse steuer- oder regelbar sein. Weiterhin ist es für den Einsatz einer Toplanze 210 vorteilhaft, wenn der Abstand der Spitze zur Badoberfläche regel- oder steuerbar ist. Durch die steuer- oder regelbare Zufuhr des Prozessgases und / oder Pulvers in den BOF 100 ist es möglich, sowohl die Entkohlungsgeschwindigkeit direkt zu beeinflussen als auch über einen Impulseintrag ein Mischungsvorgang beispielsweise innerhalb der Schlackeschicht 400 zu verändern. Dazu wird vorzugsweise ein durch eine Seitenwanddüse 220 eingetragener Impuls derart genutzt, dass Anteile und Intensitäten von Scherströmungen im BOF 100 an den Entkohlungsvorgang angepasst werden. Dazu ist es hilfreich, auch die Ausrichtung der Düsen in der Blaseinrichtung 200 zueinander zu betrachten und anzupassen.
  • Die 2a) und b) zeigen zwei mögliche Varianten einer Düsenausrichtung in der horizontalen Ebene zur Erzeugung von Scherströmungen: a) Die Seitenwanddüsen 220 werden gegenläufig ausgerichtet, so dass die Scherströmung im Einflussbereich der Seitenwanddüsen 220 erzeugt wird. b) Die Ausrichtung der Düsen in der Toplanze 210 ist gegenläufig zu der Ausrichtung der Seitenwanddüsen 220. Die Scherströmungen bilden sich im Bereich zwischen dem Einflussbereich der Toplanze 200 und den Seitenwanddüsen 300.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • GB 1276029 [0002]
    • EP 0030360 [0002]

Claims (23)

  1. Konverter zum Frischen geschmolzenen Metalls, insbesondere einer Eisen- oder Stahlschmelze, umfassend ein Konvertergefäß sowie mindestens eine Toplanze und wenigstens zwei in der Seitenwand des Konvertergefäßes angeordnete Seitenwanddüsen, dadurch gekennzeichnet, dass die Seitenwanddüsen so ausgebildet und angeordnet sind, dass durch sie ein im Wesentlichen zueinander gegenläufiger Strom an Prozessgas in das Konvertergefäß hinein erzeugbar ist.
  2. Konverter gemäß Anspruch 1, dadurch gekennzeichnet, dass die Seitenwanddüsen auf Höhe des in dem Konverter während des Betriebs vorliegenden Schlackespiegels oberhalb der Metallschmelze angeordnet sind.
  3. Konverter gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass wenigstens vier Seitenwanddüsen, vorzugsweise in Kombination mit wenigstens einer Bodendüse, in dem Konvertergefäß angeordnet sind.
  4. Konverter gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass an dem Inneren des Konvertergefäßes zugewandten Ende der Toplanze wenigstens zwei seitliche Austrittsöffnungen für Prozessgas angeordnet sind, welche so ausgebildet sind, dass durch sie ein im Wesentlichen tangentialer Strom oder tangentiale Ströme an Prozessgas bezogen auf den Umfang des Endes der Toplanze erzeugbar ist/sind.
  5. Konverter gemäß Anspruch 4, dadurch gekennzeichnet, dass der tangentiale Strom oder die tangentialen Ströme aus der Toplanze im Wesentlichen gegenläufig zu dem Strom oder den Strömen aus den Seitenwanddüsen erzeugbar sind.
  6. Konverter gemäß einem der voranstehenden Ansprüche, dadurch gekennzeichnet, dass durch die Ströme aus den Seitenwanddüsen und/oder der Toplanze die Vermischung der Schlacke innerhalb des Konvertergefäßes einstellbar ist.
  7. Verfahren zur Steuerung des Entkohlungsvorganges einer metallischen Schmelze in einem metallurgischen Reaktor, vorzugsweise einem Konverter, wobei - eine Abweichung zwischen einem thermodynamischem Gleichgewichtszustand und einem Ist-Zustand in dem metallurgischen Reaktor während des Entkohlungsvorganges der metallischen Schmelze mittels eines Vergleiches zwischen dem thermodynamischen Gleichgewicht einerseits und dem Ist-Zustand andererseits bewertet und / oder vorhergesagt wird; - eine Mischungsintensität beteiligter Stoffe in dem metallurgischen Reaktor mittels mindestens einer Einblaseinrichtung für Prozessgase und / oder Stäube gesteuert oder geregelt wird; und / oder - eine Entkohlungsgeschwindigkeit und / oder eine CO/CO2-Bildungsrate in dem metallurgischen Reaktor mittels mindestens einer Einblaseinrichtung für Prozessgase und / oder Stäube gesteuert oder geregelt wird; und - bei Auftreten der bewerteten und / oder vorhergesagten Abweichung abhängig von der Bewertung und / oder Vorhersage so der Entkohlungsvorgang gesteuert oder geregelt wird, dass ◯ die Mischungsintensität erhöht wird; und / oder ◯ die Entkohlungsgeschwindigkeit und / oder die CO/CO2-Bildungsrate reduziert wird.
  8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass - mögliche Verläufe des Entkohlungsvorganges mittels einer Berechnung des thermodynamischen Gleichgewichtes kontinuierlich auf der Basis von Eingangsgrößen vorhergesagt werden.
  9. Verfahren nach einem der Ansprüche 7 oder 8, dadurch gekennzeichnet, dass mittels manueller Eingaben, Messungen oder empirischer Modelle der Ist-Zustand des metallurgischen Reaktors bestimmt wird.
  10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, dass - auf Basis eines Vergleiches zwischen dem Ist-Zustand und vorhergesagten möglichen Entkohlungsvorgängen die Abweichung bestimmt wird; und - die Abweichung einer kritischen oder unkritischen Kategorie zugeordnet wird.
  11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die unkritische Kategorie gekennzeichnet ist durch - eine hinreichend hohe CO/CO2-Bildungsrate und dadurch eine hinreichend hohe Entkohlungsgeschwindigkeit zur Vermeidung einer Übersättigung der metallischen Schmelze mit Sauerstoff; und - die hinreichend geringe CO/CO2-Bildungsrate und / oder Entkohlungsgeschwindigkeit zur Bildung von einem hinreichendem Eisenoxidgehalt (FeO) in der Schlacke.
  12. Verfahren nach einem der Ansprüche 7 bis 11, dadurch gekennzeichnet, dass - Prozessgas und / oder Staub mittels einer Einblaseinrichtung in den metallurgischen Reaktor eingeblasen werden; - die Einblaseinrichtung bestehen kann aus einer Toplanze, Seitenwanddüsen und / oder Bodendüsen; - die Toplanze mindestens eine oder mehrere Düsen aufweist; - bei einem Einsatz der Toplanze, einer oder mehrerer Bodendüsen, und / oder einer oder mehrerer Seitenwanddüsen der Druck, der Volumenstrom und / oder die Zusammensetzung des Prozessgases für einzelne oder alle Düsen unabhängig voneinander gesteuert oder geregelt werden können; und / oder - bei dem Einsatz einer Toplanze der Abstand der Lanzenspitze zur Badoberfläche gesteuert oder geregelt werden kann; und / oder - bei einem Einsatz der Toplanze, einer oder mehrerer Bodendüsen, und / oder einer oder mehrerer Seitenwanddüsen mittels eines Fördergases Pulver eingeblasen werden kann.
  13. Verfahren nach einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, dass - Vorgaben für die Steuerung oder Regelung von Druck, Volumenstrom und / oder Zusammensetzung des Prozessgase der Einblaseinrichtung gemacht werden; und / oder - Vorgaben für die Steuerung oder Regelung von Druck, Volumenstrom eines Fördergases für den Staub und / oder den Staub der Einblaseinrichtung gemacht werden.
  14. Verfahren nach einem der Ansprüche 7 bis 13, dadurch gekennzeichnet, dass zur Beeinflussung der Mischungsintensität in dem metallurgischen Reaktor mittels mindestens einer Einblaseinrichtung für Prozessgase und / oder Stäube die Art, Anzahl, Position und / oder Ausrichtung der Einblaseinrichtungen im metallurgischen Reaktor und die Vorgaben für die Einblaseinrichtung so gewählt sind, dass Scherströmungen in den unterschiedlichen Bereichen des metallurgischen Reaktors erzeugt werden.
  15. Verfahren nach einem der Ansprüche 7 bis 14, dadurch gekennzeichnet, dass - das Verfahren in einer frühen Phase des Entkohlungsvorganges zur Vermeidung von unerwünschtem Auswurf und / oder Überschäumen eingesetzt wird; und / oder - reaktionskinetische Effekte in dem metallurgischen Reaktor vermieden werden.
  16. Verfahren nach einem der Ansprüche 7 bis 15, dadurch gekennzeichnet, dass der Abstand der Toplanze zur Badoberfläche nicht verändert wird.
  17. Verfahren nach einem der Ansprüche 7 bis 16, dadurch gekennzeichnet, dass die Prozessüberwachung unter Auswertung von Abgasmessungen während des Entkohlungsvorganges erfolgt.
  18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die Abgasmessung und die Bewertung der gemessenen Parameter, insbesondere die Rate der CO-Bildung, online in die Prozesssteuerung eingeht.
  19. Verfahren nach einem der Ansprüche 7 bis 18, dadurch gekennzeichnet, dass die Abweichung einen Hinweis auf eine verzögerte Entkohlungsreaktion gibt.
  20. Verfahren nach einem der Ansprüche 7 bis 19, dadurch gekennzeichnet, dass die Beeinflussung der Mischungsintensität der beteiligten Stoffe die Erhöhung der Mischintensität innerhalb der Schlacke umfasst, vorzugsweise allein die Erhöhung der Mischintensität der Schlacke ohne Beeinflussung der Badbewegung innerhalb der Metallschmelze, umfasst.
  21. Verfahren nach einem der Ansprüche 7 bis 20, dadurch gekennzeichnet, dass es in einem Konverter gemäß einem der Ansprüche 1 bis 6 angewendet wird.
  22. Verfahren nach Anspruch 21, dadurch gekennzeichnet, dass zur Erhöhung der Mischintensität innerhalb der Schlacke ausschließlich durch Erhöhung des Volumenstroms an Prozessgas aus den Seitenwanddüsen und ggf. der wenigstens einen Bodendüse erfolgt.
  23. Verfahren nach einem der Ansprüche 21 oder 22, dadurch gekennzeichnet, dass das Prozessgas aus den Seitenwanddüsen und ggf. der wenigstens einen Bodendüse sauerstofffrei ist.
DE102019209109.1A 2019-06-24 2019-06-24 Konverter und Verfahren zum Frischen geschmolzenen Metalls Pending DE102019209109A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102019209109.1A DE102019209109A1 (de) 2019-06-24 2019-06-24 Konverter und Verfahren zum Frischen geschmolzenen Metalls
EP20181026.4A EP3757234A1 (de) 2019-06-24 2020-06-19 Konverter und verfahren zum frischen geschmolzenen metalls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102019209109.1A DE102019209109A1 (de) 2019-06-24 2019-06-24 Konverter und Verfahren zum Frischen geschmolzenen Metalls

Publications (1)

Publication Number Publication Date
DE102019209109A1 true DE102019209109A1 (de) 2020-12-24

Family

ID=71111292

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102019209109.1A Pending DE102019209109A1 (de) 2019-06-24 2019-06-24 Konverter und Verfahren zum Frischen geschmolzenen Metalls

Country Status (2)

Country Link
EP (1) EP3757234A1 (de)
DE (1) DE102019209109A1 (de)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2029083B1 (de) 1969-01-25 1974-02-01 Demag Ag
ATE5202T1 (de) 1979-12-11 1983-11-15 Eisenwerk-Gesellschaft Maximilianshuette Mbh Stahlerzeugungsverfahren.
JPS5891110A (ja) * 1981-11-26 1983-05-31 Kawasaki Steel Corp 上底吹き転炉
JPS61194106A (ja) * 1985-02-20 1986-08-28 Sumitomo Metal Ind Ltd 炉内coガス燃焼方法
JPS61279608A (ja) * 1985-06-05 1986-12-10 Sumitomo Metal Ind Ltd 溶融還元による高クロム合金の製造方法
CN108004368A (zh) * 2016-11-01 2018-05-08 北京明诚技术开发有限公司 智能化自动炼钢方法及装置

Also Published As

Publication number Publication date
EP3757234A1 (de) 2020-12-30

Similar Documents

Publication Publication Date Title
DE69906125T2 (de) Integrierte vorrichtung zum einspritzen von technologischen gasen und feststoffen sowie verfahren zur anwendung dieser vorrichtung zum behandeln metallischer schmelzen
EP0037809B1 (de) Verfahren zur Herstellung von flüssigem Roheisen oder Stahlvormaterial sowie Anlage zur Durchführung des Verfahrens
EP0418656A1 (de) Verfahren und Vorrichtung zum zumindest zeitweise gleichzeitigen Beaufschlagen einer Metallschmelze mit einem Gas und feinkörnigen Feststoffen
DE2525355A1 (de) Verfahren und vorrichtung zum frischen von eisen
DE3247757A1 (de) Blaslanze zur pulver-aufblase-veredlung und verfahren zur entkohlung und veredlung (raffination) von stahl unter einsatz derselben
DE112019000054T5 (de) Verfahren zum Entschlacken während der Herstellung eines Stahls mit ultraniedrigem Phosphorgehalt und Verfahren zur Herstellung eines Stahls mit ultraniedrigem Phosphorgehalt
DE3785715T2 (de) Verfahren zum betreiben eines hochofens.
EP0600236A1 (de) Mittel zur Behandlung von Metallschmelzen
DE2813900A1 (de) Verfahren zur behandlung von fluessigem stahl, der besonders zur herstellung von maschinendraht bestimmt ist
DE19748310C1 (de) Verfahren und Einrichtung zur Steuerung der Schaumschlackenbildung in einem Lichtbogenofen
DE2347638A1 (de) Verfahren und vorrichtung zum frischen von roheisen
DE102019209109A1 (de) Konverter und Verfahren zum Frischen geschmolzenen Metalls
EP3108017B1 (de) Verfahren zum umwälzen eines metallbades und ofenanlage
DE102022118640A1 (de) Verfahren zur Herstellung einer Eisenschmelze in einem elektrischen Einschmelzer
DE2710377C2 (de) Verfahren zur Herstellung von Stahl aus Metallschwamm unter Verwendung von Glasplasmen als Energieträger
DE1608309B2 (de) Kontinuierliches verfahren zur herstellung von stahl aus roheisen und vorrichtung zur durchfuehrung desselben
DE68915234T2 (de) Verfahren zum Einschmelzen kalter Stoffe, die Eisen enthalten.
EP0140001B1 (de) Verfahren zur Herstellung von Stählen mit hohem Reinheitsgrad und geringen Gasgehalten in Stahlwerken und Stahlgiessereien
DE2730599C3 (de) Verfahren zur Steuerung eines Stahlfrischprozesses für Stähle mit einem C-Gehalt im Bereich von 0,1 bis 0,8 Gew.-%
DE2321853C3 (de) Verfahren zum Frischen von Roheisenschmelzen von Stahl
DE2237253A1 (de) Verfahren und vorrichtung zum einblasen pulverigen materials in ein bad aus fluessigem metall
DE2651922C3 (de) Verfahren zum Steuern des Frischablaufs beim Frischen von Roheisen
WO1990014568A1 (de) Verfahren und vorrichtung zum schmelzen von metallen im kokslos betriebenen kupolofen
DE2403902A1 (de) Verfahren zur herstellung kohlenstoffarmer chromstaehle und ferrochromlegierungen
DE102016001246A1 (de) Verfahren und Einrichtung zur Entschwefelung einer Eisenschmelze