DE102018009737A1 - Windkraftanlagengetriebe mit zumindest einem Gleitlager - Google Patents

Windkraftanlagengetriebe mit zumindest einem Gleitlager Download PDF

Info

Publication number
DE102018009737A1
DE102018009737A1 DE102018009737.5A DE102018009737A DE102018009737A1 DE 102018009737 A1 DE102018009737 A1 DE 102018009737A1 DE 102018009737 A DE102018009737 A DE 102018009737A DE 102018009737 A1 DE102018009737 A1 DE 102018009737A1
Authority
DE
Germany
Prior art keywords
polymer
chromium
antimony
weight
wind turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102018009737.5A
Other languages
English (en)
Inventor
Johannes Sebastian Hölzl
Anita Gruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Miba Gleitlager Austria GmbH
Original Assignee
Miba Gleitlager Austria GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Miba Gleitlager Austria GmbH filed Critical Miba Gleitlager Austria GmbH
Priority to DE102018009737.5A priority Critical patent/DE102018009737A1/de
Priority to PCT/AT2019/060428 priority patent/WO2020118336A1/de
Publication of DE102018009737A1 publication Critical patent/DE102018009737A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D15/00Transmission of mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/70Bearing or lubricating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/203Multilayer structures, e.g. sleeves comprising a plastic lining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/041Coatings or solid lubricants, e.g. antiseize layers or pastes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0421Guidance of lubricant on or within the casing, e.g. shields or baffles for collecting lubricant, tubes, pipes, grooves, channels or the like
    • F16H57/0424Lubricant guiding means in the wall of or integrated with the casing, e.g. grooves, channels, holes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/042Guidance of lubricant
    • F16H57/0421Guidance of lubricant on or within the casing, e.g. shields or baffles for collecting lubricant, tubes, pipes, grooves, channels or the like
    • F16H57/0426Means for guiding lubricant into an axial channel of a shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0469Bearings or seals
    • F16H57/0471Bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/0467Elements of gearings to be lubricated, cooled or heated
    • F16H57/0479Gears or bearings on planet carriers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/04Features relating to lubrication or cooling or heating
    • F16H57/048Type of gearings to be lubricated, cooled or heated
    • F16H57/0482Gearings with gears having orbital motion
    • F16H57/0486Gearings with gears having orbital motion with fixed gear ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/50Bearings
    • F05B2240/53Hydrodynamic or hydrostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05B2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclic, planetary or differential type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2280/00Materials; Properties thereof
    • F05B2280/10Inorganic materials, e.g. metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/26Systems consisting of a plurality of sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/30Alloys based on one of tin, lead, antimony, bismuth, indium, e.g. materials for providing sliding surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/40Imides, e.g. polyimide [PI], polyetherimide [PEI]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/40Imides, e.g. polyimide [PI], polyetherimide [PEI]
    • F16C2208/42Polyamideimide [PAI]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/60Polyamides [PA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/31Wind motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/02Gearboxes; Mounting gearing therein
    • F16H2057/02039Gearboxes for particular applications
    • F16H2057/02078Gearboxes for particular applications for wind turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/08General details of gearing of gearings with members having orbital motion
    • F16H2057/085Bearings for orbital gears
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

Die Erfindung betrifft ein Windkraftanlagengetriebe, insbesondere Planetengetriebe (1), mit zumindest einem Gleitlager (13, 19, 27, 28, 33), an welchem eine Gleitfläche (17, 22, 29, 30, 34) ausgebildet ist. Die Gleitfläche (17, 22, 29, 30, 34) ist an einer Polymerschicht (37) ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus.

Description

  • Die Erfindung betrifft ein Planetengetriebe, sowie eine mit dem Planetengetriebe ausgestattete Windkraftanlage.
  • Ein gattungsgemäßes Planetengetriebe ist etwa aus der WO 2011127509 A1 derselben Anmelderin bekannt.
  • Ein weiteres gattungsgemäßes Planetengetriebe ist aus der EP 2 383 480 B1 bekannt. Das aus der EP 2 383 480 B1 bekannte Planetengetriebe weist den Nachteil auf, dass es bei einem Netzausfall und somit bei einem Ausfall der Nebenaggregate zu einer Beschädigung des Planetengetriebes kommen kann.
  • Aufgabe der vorliegenden Erfindung war es, die Nachteile des Standes der Technik zu überwinden und ein Planetengetriebe für eine Windkraftanlage mit einer erhöhten Ausfallssicherheit anzugeben.
  • Diese Aufgabe wird durch eine Vorrichtung und ein Verfahren gemäß den Ansprüchen gelöst.
  • Erfindungsgemäß ist ein Windkraftanlagengetriebe, insbesondere Planetengetriebe, mit zumindest einem Gleitlager vorgesehen, an welchem eine Gleitfläche ausgebildet ist, wobei die Gleitfläche an einer Polymerschicht ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus.
  • Überraschenderweise hat sich herausgestellt, dass Polymere mit Imidgruppen als eines der wesentlichen Strukturmerkmale, eine nicht vorhersehbare Verbesserung in Hinblick auf den Verschleiß sowie die Verringerung der Ausbruchneigung zeigt, wenn als Metalloxidpartikel ein Bismutvanadat oder ein Chrom-Antimon-Rutil oder eine Mischung daraus eingesetzt werden. Es wird vermutet, dass dies darauf zurückzuführen ist, dass durch die Reaktivität der Imidgruppen aufgrund der beiden, dem Stickstoffatom benachbarten Sauerstoffatome des die Matrix der Polymerschicht bildenden Polymers, und der damit bewirkten Ladungsverschiebung in der Polymerkette die Einbindung des Bismutvanadats bzw. des Chrom-Antimon-Rutils über deren anionische bzw. kationische Ladungsträger verbessert ist, wodurch die Polymermatrix in einem nicht erwarteten Umfang verstärkt wird. Es ist damit nicht nur die Ausbildung einer Einlaufschicht, wie diese aus dem Stand der Technik bekannt ist, möglich, sondern kann damit die im normalen Betrieb des Gleitlagerelementes nach dem Einlauf mit dem jeweiligen Gleitpartner in Kontakt stehende Gleitschicht an sich aus der Polymerschicht auch für spezielle, hoch belastete Anwendungen eines Gleitlagerelementes hergestellt werden. Ein erfindungsgemäß aufgebautes Windkraftanlagengetriebe weist eine überraschend gute Ausfallsicherheit bei Mangelschmierung auf, welche beispielsweise bei einem Stromausfall und/oder bei einem Ausfall der Nebenaggregate einer Windkraftanlage auftritt.
  • Weiters kann vorgesehen sein, dass das Gleitlager als hydrostatisches Gleitlager oder als hydrodynamisches Gleitlager ausgebildet ist. Besonders in Verbindung mit derartigen Gleitlagern lassen sich effiziente Windkraftanlagengetriebe realisieren. Überraschenderweise eignet sich der obig genannte Aufbau besonders bei derartigen Gleitlagern gut, um Schäden bei Mangelschmierung, beispielsweise bei einem Stromausfall zu vermeiden.
  • Insbesodere kann vorgesehen sein, dass ein Planetenradradialgleitlager ausgebildet ist, welches zur Lagerung eines Planetenrades an einem Planetenradbolzen dient, wobei das Planetenradradialgleitlager die Gleitfläche aufweist, die an einer Polymerschicht ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus. Besonders durch den Einsatz der beschriebenen Polymerschicht in einem Planetenradradialgleitlager lässt sich eine überraschend gute Ausfallsicherheit der Windkraftanlage erzielen.
  • Weiters kann vorgesehen sein, dass ein Planetenträgerradialgleitlager ausgebildet ist, welches zur Lagerung eines Planetenträgers im Planetengetriebegehäuse dient, wobei das Planetenträgerradialgleitlager die Gleitfläche aufweist, die an einer Polymerschicht ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus.
  • Weiters kann vorgesehen sein, dass ein Axialgleitlager ausgebildet ist, welches zur Axiallagerung des Planetenrades im Planetenträger dient, wobei das Axialgleitlager die Gleitfläche aufweist, die an einer Polymerschicht ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus.
  • Gemäß einer Ausführungsvariante der Gleitlagerelemente ist bevorzugt vorgesehen, dass die Metalloxidpartikel in einem Gesamtanteil in der Polymerschicht enthalten sind, der ausgewählt ist aus einem Bereich von 2 Gew.-% bis 13 Gew.-%. Es hat sich im Zuge der durchgeführten Tests herausgestellt, dass zwar mit einem Anteil von weniger als 2 Gew.-% an diesen Metalloxidpartikeln eine Verbesserung der tribologischen Eigenschaften der Polymerschicht beobachtet werden kann, allerdings kann die Dauerbelastbarkeit der Polymerschicht ab einem Anteil von 2 Gew.-% deutlich verbessert werden, wodurch Polymerschichten mit diesen Mindestanteilen an Metalloxidpartikeln eine bessere Eignung zur Verwendung als Gleitschicht eines Gleitlagers aufweisen. Andererseits nimmt bei einem Anteil von mehr als 13 Gew.-% die Tragfähigkeit der Polymerschicht in einem Ausmaß ab, das die Verwendung der Polymerschicht als Gleitschicht negativ beeinflusst.
  • Weiter kann vorgesehen sein, dass das Bismutvanadat oxidische Beimengungen von Wolfram und/oder Molybdän enthält. Beide Metalle finden sich auch in typischen Festschmierstoffen, wie MoS2 oder WS2, die bekanntermaßen in derartigen Polymerschichten in Gleitlagern eingesetzt werden. Es kann damit nicht nur die Einbindung der Metalloxidpartikel in die Polymermatrix verbessert werden, sondern kann damit auch die Materialverträglichkeit in Hinblick auf die eingesetzten Festschmierstoffpartikel verbessert werden. Darüber hinaus kann damit aber auch die Schmierfähigkeit der Polymerschicht insofern verbessert werden, als aus diesen Beimengungen selbst mit den sulfidischen Bestandteilen des Schmieröls bei den erhöhten Temperaturen im Betrieb des Gleitlagerelementes gegebenenfalls wiederum Festschmierstoffpartikel gebildet werden können.
  • Gemäß einer weiteren Ausführungsvariante dazu kann vorgesehen sein, dass der Gesamtanteil an Wolframoxid(en) und/oder Molybdänoxid(en) an dem Bismutvanadat ausgewählt ist aus einem Bereich von 5 Gew.-% bis 20 Gew.-%. Bei einem Anteil von weniger als 5 Gew.-% konnte zwar eine gewisse Verbesserung der tribologischen Eigenschaften der Polymerschicht erreicht werden, allerdings in einem Ausmaß, das den Einsatz an Bismutvanadat mit diesen Beimengungen wirtschaftlich nicht rechtfertigen kann. Bei einem Anteil von mehr als 20 Gew.-% konnte keine weitere Verbesserung der tribologischen Eigenschaften der Polymerschicht beobachtet werden.
  • Der Anteil an Antimonoxid(en) an dem Chrom-Antimon-Rutil ist vorzugsweise ausgewählt aus einem Bereich von 5 Gew.-% bis 14 Gew.-%. Der Einsatz von Antimonoxiden zur Stärkung der Polymermatrix ist aus dem Stand der Technik bekannt. Als Beimengung zum Rutil bewirken die Antimonionen eine Ladungsverzerrung innerhalb der Rutilstruktur, wodurch die Einbindung der Metalloxidpartikel in die Polymermatrix verbessert werden kann. Bei Mengenanteilen an Antimonoxid(en) an dem Chrom-Antimon-Rutil außerhalb des genannten Bereichs konnte entweder nur eine geringfügige Verbesserung der tribologischen Eigenschaften der Polymerschicht im Vergleich zu Polymerschichten mit reinem TiO2 beobachtet werden (bei geringeren Anteilen), oder die Polymerschicht wurde zu hart (bei höheren Anteilen).
  • Es kann weiter vorgesehen sein, dass der Anteil an Chromoxid(en) an dem Chrom-Antimon-Rutil ausgewählt ist aus einem Bereich von 1 Gew.-% bis 8 Gew.-%. Der Einsatz von Chromoxiden zur Stärkung der Polymermatrix ist ebenfalls aus dem Stand der Technik bekannt. Als oxidische Beimengung zu Rutil wird aber überraschenderweise eine deutliche Verbesserung dieses Effektes beobachtet, der über jenen hinausgeht, der durch die Zugabe von Chromoxiden allein zu erwarten wäre. Es wird vermutet, dass diese Steigerung des Effektes ebenfalls auf die bessere Einbindung der oxidischen Beimengungen von Chrom in die Polymermatrix zurückgeht, wodurch die Stärkung der Polymermatrix unmittelbarer auf die Polymerketten wirkt. Ebenso wie voranstehend zu Molybdän und Wolfram beschrieben, wird zwar unterhalb von 1 Gew.-% der Effekt der oxidischen Beimengungen an Chrom beobachtet, allerdings in einem Ausmaß, das den Zusatz von reinem Rutil ohne die oxidischen Beimengungen an Chrom favorisiert. Bei einem Anteil von mehr als 8 Gew.-% an diesen Beimengungen wird die Polymermatrix zu hart, worunter die gesamte Tribologie des Gleitlagerelementes leidet.
  • Vorzugsweise nehmen die Sb5+-lonen und die Cr2+-lonen zu mehr als 50 Atom% des Gesamtanteils an Chrom und Antimon in dem Chrom-Antimon-Rutil die Gitterplätze von Ti3+ ein und ersetzen dieses somit teilweise. Bekanntlich weist die idealisierte Rutilstruktur ausschließlich oktaedrisch koordinierte Titanatome auf. Diese idealisierte Struktur ist gekennzeichnet durch Ti4+-Ionen und O2-Ionen. In der realen Struktur von Rutil kommen aber auch Ti3+ und Ti5+ vor, beispielsweise infolge von Oberflächendefekten. Von Vorteil, dass dabei mehr als 50 Atom-% der Ti3+ Plätze von Chrom und Antimon eingenommen werden, ist, dass an solchen Gitterplätzen offenbar eine verbesserte Anbindung des Chrom-Antimon-Rutils an die Polymerstruktur erfolgen kann.
  • Es kann weiter vorgesehen sein, dass das Antimon und das Chrom in dem Chrom-Antimon-Rutil in einem Verhältnis zueinander vorliegen, das ausgewählt ist aus einem Bereich von 1,5 : 1 bis 3 : 1. Der genaue Mechanismus der Wirkung ist noch nicht vollständig geklärt. In Versuchen hat sich dieses Mischungsverhältnis jedoch als besonders vorteilhaft gezeigt.
  • Nach einer anderen Ausführungsvariante des Gleitlagerelementes kann vorgesehen sein, dass ein Anteil von zumindest 60 % der Metalloxidpartikel - bezogen auf den Gesamtanteil der Metalloxidpartikel in der Polymerschicht - eine maximale Partikelgröße von höchstens 500 nm aufweist. Obwohl es möglich ist, die Metalloxidpartikel zur Verstärkung der Polymermatrix mit einer auf dem gegenständlichen technischen Gebiet herkömmlichen Partikelgröße einzusetzen, wurde gefunden, dass der Einsatz von Metalloxidpartikeln mit einer maximalen Partikelgröße von 500 nm den Vorteil hat, dass diese in ihrem Umfeld die Ausrichtung der Polymerketten und dadurch die Struktur des Polymers selbst beeinflussen. Die Metalloxidpartikel weisen also neben ihrer direkten Wirkung zur Verstärkung der Polymermatrix auch eine indirekte Wirkung auf die Struktur des Polymers auf. Dadurch kann die Festigkeit des Polymers gezielt verändert werden.
  • Es kann weiter vorgesehen werden, dass zumindest ein Teil der Metalloxidpartikel und/oder der Festschmierstoffpartikel eine Oberflächenmodifizierung aufweisen. Durch diese Oberflächenmodifizierung kann die Wechselwirkung der Partikel mit der Polymermatrix, und damit deren Wirkung innerhalb der Polymerschicht, beeinflusst und über weite Bereiche eingestellt werden.
  • Vorzugsweise ist dabei die Oberflächenmodifizierung ausgewählt aus einer Gruppe umfassend Silanisierungen, Siloxanisierungen, Epoxidierung, Aminierungen, Plasmaaktivierungen, Elektronenstrahl-Aktivierung. Insbesondere die durch diese Reaktionen auf der Oberfläche der Partikel erzeugten funktionellen Gruppen bzw. Liganden haben den Vorteil, dass damit die Partikel einfacher ohne Agglomeratbildung der Ausgangsstoffe zur Herstellung der Polymerschicht beigemischt werden können, wodurch die zumindest annähernd homogene Verteilung der Partikel in der Mischung und damit in der Folge in der Polymerschicht verbessert werden kann. Durch diese zumindest annähernd homogene Verteilung der Partikel kann deren Effekt in der Polymerschicht vergleichmäßigt werden. Zudem kann damit aber auch die Anbindung der Partikel an die Polymermatrix verbessert werden.
  • Bevorzugt besteht die Polymerschicht gemäß einer Ausführungsvariante des Gleitlagerelementes ausschließlich aus Polyamidimid, Festschmierstoffpartikel und den Metalloxidpartikel, wodurch die Herstellung der Polymerschicht vereinfacht werden kann. Darüber hinaus können gegebenenfalls auftretende Wechselwirkungen der, der Vorstufe des Polymers zugesetzten Inhaltsstoffe der Polymerschicht miteinander reduziert werden, wodurch die Effektivität der Inhaltsstoffe in Richtung auf den zu lagernden Gleitpartner verbessert werden kann.
  • In Hinblick auf die Stärkung der Polymermatrix hat es sich weiter als vorteilhaft herausgestellt, wenn der Anteil an Festschmierstoffpartikel zum Anteil an Metalloxidpartikel ausgewählt ist aus einem Bereich von 5:1 bis 12:1.
  • In der bevorzugten Ausführungsvariante der Polymerschicht ist diese als Gleitschicht ausgebildet, sodass also das Lagerelement keine weitere, metallische Gleitschicht benötigt und dieses daher einfacher aufgebaut werden kann.
  • Weiters ist eine Windkraftanlage mit einem Rotor; einer Gondel; einem in der Gondel angeordneten Generator; und einem Planetengetriebe zum Übertragen und Übersetzen eines Drehmomentes vom Rotor auf den Generator vorgesehen. Das Planetengetriebe ist entsprechend den obigen Ausführungen ausgebildet.
  • Die einzelnen Ölverteilungskanalabschnitte können in Form von einzelnen Bohrungen hergestellt werden und ein strömungsverbundenes System aus einzelnen Ölverteilungskanalabschnitten bilden.
  • Im vorliegenden Dokument wird von Schmieröl als Schmiermittel ausgegangen. Dem Fachmann ist es jedoch eine fachübliche Maßnahme, dass ein anderes Schmiermittel, beispielsweise Schmierfett, ebenfalls im vorliegenden Aufbau des Planetengetriebes transportiert werden kann und der Schutzbereich daher nicht auf die Verwendung eines bestimmten Schmiermittels eingeschränkt ist.
  • Ein Gleitlager kann auch als Gleitlagerelement bezeichnet werden. Das Gleitlager kann in Form einer Gleitlagerbuchse ausgebildet sein. Alternativ dazu ist es auch denkbar, dass das Gleitlager aus einzelnen Gleitlagersegmenten, beispielsweise Gleitlagerhalbschalen zusammengesetzt ist. Die einzelnen Gleitlagersegmente können hierbei im verbauten Zustand durch eine formschlüssige Aufnahme positioniert sein.
  • Zum besseren Verständnis der Erfindung wird diese anhand der nachfolgenden Figuren näher erläutert.
  • Es zeigen jeweils in stark vereinfachter, schematischer Darstellung:
    • 1 eine Schnittansicht einer Ausführungsvariante eines Planetengetriebes;
    • 2 ein Ausführungsbeispiel eines Gleitlagers.
  • Einführend sei festgehalten, dass in den unterschiedlich beschriebenen Ausführungsformen gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen versehen werden, wobei die in der gesamten Beschreibung enthaltenen Offenbarungen sinngemäß auf gleiche Teile mit gleichen Bezugszeichen bzw. gleichen Bauteilbezeichnungen übertragen werden können. Auch sind die in der Beschreibung gewählten Lageangaben, wie z.B. oben, unten, seitlich usw. auf die unmittelbar beschriebene sowie dargestellte Figur bezogen und sind diese Lageangaben bei einer Lageänderung sinngemäß auf die neue Lage zu übertragen.
  • 1 zeigt ein Ausführungsbeispiel eines Planetengetriebes 1 in einer Schnittansicht gemäß einem Querschnitt entlang einer Mittellinie 2 des Planetengetriebes 1. Die Ansicht nach 1 ist schematisch dargestellt und dient zur allgemeinen Erklärung des Aufbaues des Planetengetriebes und zur Darstellung der in einem Planetengetriebe verbauten Teile.
  • Bekanntlich umfassen Windkraftanlagen einen Turm an dessen oberen Ende eine Gondel angeordnet ist, in der der Rotor mit den Rotorblättern gelagert ist. Dieser Rotor ist über das Planetengetriebe 1 mit einem Generator, der sich ebenfalls in der Gondel befindet, wirkungsverbunden, wobei über das Planetengetriebe 1 die niedrige Drehzahl des Rotors in eine höhere Drehzahl des Generatorrotors übersetzt wird. Da derartige Ausführungen von Windkraftanlagen zum Stand der Technik gehören, sei an dieser Stelle an die einschlägige Literatur hierzu verwiesen.
  • Das Planetengetriebe 1 weist ein Sonnenrad 3 auf, das mit einer Welle 4, die zum Generatorrotor führt, bewegungsgekoppelt ist. Das Sonnenrad 3 ist von mehreren Planetenrädern 5, beispielsweise zwei, vorzugsweise drei, umgeben. Sowohl das Sonnenrad 3 als auch die Planetenräder 5 weisen außenliegende Stirnverzahnungen auf, die in kämmenden Eingriff miteinander stehen, wobei diese Stirnverzahnungen in 1 schematisch dargestellt sind.
  • Die Planetenräder 5 sind jeweils mittels eines Planetenradbolzens 6 in einem Planetenträger 7 gelagert. Weiters kann vorgesehen sein, dass der Planetenradbolzen 6 kraft- bzw. formschlüssig in einer ersten Planetenträgerwange 8 und einer zweiten Planetenträgerwange 9 fixiert bzw. aufgenommen ist. Insbesondere kann vorgesehen sein, dass der Planetenradbolzen 6 über ein nicht explizit dargestelltes beliebiges Sicherungselement gegen Verdrehen gesichert wird. Die beiden Planetenträgerwangen 8, 9 sind Teil des Planetenträgers 7.
  • Die Planetenräder 5 umgebend ist ein Hohlrad 10 angeordnet, welches eine Innenverzahnung aufweist, die in kämmendem Eingriff mit der Stirnverzahnung der Planetenräder 5 steht. Das Hohlrad 10 kann in einem ein- oder mehrteiligen Planetengetriebegehäuse 11 ausgebildet sein, bzw. mit diesem gekoppelt sein.
  • Weiters kann vorgesehen sein, dass zumindest die erste Planetenträgerwange 8 mit einem Rotoranschluss 12 gekoppelt ist, wobei der Rotoranschluss 12 zur Drehmomentenübertragung zwischen der Rotornabe der Windkraftanlage und dem Planetenträger 7 dient.
  • Weiters kann vorgesehen sein, dass im Planetengetriebegehäuse 11 zumindest ein erstes Planetenträgerradialgleitlager 13 angeordnet ist, welches zur Lagerung des Planetenträgers 7 im Planetengetriebegehäuse 11 dient.
  • Das erste Planetenträgerradialgleitlager 13 kann in einer ersten Ausführungsvariante, welche in 1 dargestellt ist, an dessen Außenmantelfläche 14 fest in einem ersten Lagerabschnitt 15 des Planetengetriebegehäuses 11 aufgenommen sein, wobei an einer Innenmantelfläche 16 des ersten Planetenträgerradialgleitlagers 13 eine Gleitfläche 17 ausgebildet sein kann.
  • Insbesondere kann vorgesehen sein, dass in der ersten Planetenträgerwange 8 ein Ölverteilungskanalabschnitt 18 ausgebildet ist, mittels welchem die einzelnen Gleitflächen (17, 22, 29, 30, 34) der einzelnen Gleitlager (13, 19, 27, 28, 33) mit Schmieröl versorgt werden kann.
  • Die Gleitfläche 17 des ersten Planetenträgerradialgleitlager 13 kann somit mit Schmieröl versorgt werden.
  • Weiters kann vorgesehen sein, dass zur Lagerung der Planetenräder 5 an den Planetenradbolzen 6 je Planetenrad 5 zumindest ein Planetenradradialgleitlager 19 vorgesehen ist. Entsprechend einer ersten Ausführungsvariante ist das Planetenradradialgleitlager 19 an einer Innenmantelfläche 20 auf dem Planetenradbolzen 6 befestigt. An einer Außenmantelfläche 21 des Planetenradradialgleitlagers 19 ist eine Gleitfläche 22 ausgebildet. Weiters kann vorgesehen sein, dass im Planetenradradialgleitlager 19 eine Schmierölbohrung 23 ausgebildet ist, welche von der Innenmantelfläche 20 des Planetenradradialgleitlagers 19 zur Außenmantelfläche 21 des Planetenradradialgleitlagers 19 geführt ist.
  • Weiters kann vorgesehen sein, dass an der Außenmantelfläche 21 des Planetenradradialgleitlagers 19 zumindest eine Schmierölsammeltasche 24 ausgebildet ist, welche mit der Schmierölbohrung 23 im Planetenradradialgleitlager 19 strömungsgekoppelt ist. Insbesondere kann vorgesehen sein, dass am Planetenradradialgleitlager 19 diametral gegenüberliegend zwei Schmierölbohrungen 23 und zwei Schmierölsammeltaschen 24 ausgebildet sind.
  • Wie ebenfalls aus 1 ersichtlich, kann vorgesehen sein, dass im Planetenradbolzen 6 Ölverteilungskanalabschnitte 25 ausgebildet sind, welche in die Schmierölbohrungen 23 der Planetenradradialgleitlager 19 münden.
  • Weiters ist vorgesehen, dass die Ölverteilungskanalabschnitte 18 der ersten Planetenträgerwange 8 mit den Ölverteilungskanalabschnitten 25 des Planetenradbolzens 6 strömungsverbunden sind. Dadurch kann erreicht werden, dass die Gleitfläche 22 des Planetenradradialgleitlagers 19 mit Schmieröl versorgt werden kann.
  • In einer alternativen, nicht dargestellten, Ausführungsvariante kann vorgesehen sein, dass die Planetenradradialgleitlager 19 im Planetenrad 5 mittels deren Außenmantelfläche 21 fest aufgenommen sind und die Gleitfläche 22 der Planetenradradialgleitlager 19 an deren Innenmantelfläche 20 ausgebildet ist, welche mit dem Planetenradbolzen 6 zusammenwirken. Hierbei kann vorgesehen sein, dass eine Schmierölsammeltasche zur Versorgung der Gleitfläche 22 mit Schmieröl direkt im Planetenradbolzen 6 ausgebildet ist.
  • Darüber hinaus kann jeweils stirnseitig eines Planetenrades 5 ein erstes Axialgleitlager 27 und ein zweites Axialgleitlager 28 angeordnet sein. Insbesondere kann vorgesehen sein, dass das erste Axialgleitlager 27 zwischen dem Planetenrad 5 und der ersten Planetenträgerwange 8 angeordnet ist. Analog dazu kann vorgesehen sein, dass das zweite Axialgleitlager 28 zwischen dem Planetenrad 5 und der zweiten Planetenträgerwange 9 angeordnet ist.
  • Insbesondere kann vorgesehen sein, dass die Axialgleitlager 27, 28 jeweils an den Planetenträgerwangen 8, 9 fixiert aufgenommen sind. Hierbei kann am ersten Axialgleitlager 27 eine Gleitfläche 29 ausgebildet sein, an welcher eine erste Stirnfläche des Planetenrades 5 anliegt. Weiters kann am zweiten Axialgleitlager 28 eine Gleitfläche 30 ausgebildet sein, an welchem eine zweite Stirnfläche des Planetenrades 5 anliegt. Das Planetenrad 5 kann somit relativ zu den Axialgleitlagern 27, 28 verdreht werden.
  • Weiters kann vorgesehen sein, dass im ersten Axialgleitlager 27 eine Schmierölbohrung 31 ausgebildet ist. Analog dazu kann ebenfalls vorgesehen sein, dass im zweiten Axialgleitlager 28 eine Schmierölbohrung 32 ausgebildet ist. Mittels der Schmierölbohrungen 31, 32 kann Schmieröl zu den Gleitflächen 29, 30 geleitet werden.
  • Insbesondere kann vorgesehen sein, dass die Schmierölbohrung 31 des ersten Axialgleitlagers 27 mit einem Ölverteilungskanalabschnitt 18 der ersten Planetenträgerwange 18 strömungsverbunden ist.
  • In einer weiteren, nicht dargestellten Ausführungsvariante, kann vorgesehen sein, dass die Axialgleitlager 27, 28 an dem Planetenrad 5 befestigt sind. Hierbei sind die Gleitflächen 29, 30 der Axialgleitlager 27, 28 den Planetenträgerwangen 8, 9 zugewandt und gleiten an diesen.
  • Wie weiters aus 1 ersichtlich, kann vorgesehen sein, dass ein erstes Sonnenradradialgleitlager 33 ausgebildet ist, welches zur Lagerung der Welle 4, auf welcher das Sonnenrad 3 befestigt ist, dient. Insbesondere kann vorgesehen sein, dass das erste Sonnenradradialgleitlager 33 zwischen einem Hohlraum der ersten Planetenträgerwange 8 und der Welle 4 angeordnet ist. Das erste Sonnenradradialgleitlager 33 kann ebenfalls eine Gleitfläche 34 aufweisen, welche im in 1 gezeigten Ausführungsbeispiel an einer Außenmantelfläche des ersten Sonnenradradialgleitlagers 33 ausgebildet ist. Beim gezeigten Ausführungsbeispiel ist das Sonnenradradialgleitlager 33 somit fest an der Welle 4 angeordnet.
  • Alternativ dazu kann natürlich auch vorgesehen sein, dass die Gleitfläche 34 an einer Innenmantelfläche des ersten Sonnenradradialgleitlagers 33 ausgebildet ist. Wenn die Gleitfläche 34 des ersten Sonnenradradialgleitlagers 33 an der Innenmantelfläche des ersten Sonnenradradialgleitlagers 33 ausgebildet ist, so kann im ersten Sonnenradradialgleitlager 33 analog zum Planetenradradialgleitlager 19 ebenfalls eine Schmierölbohrung ausgebildet sein, welche zur Versorgung der Gleitfläche 34 des ersten Sonnenradradialgleitlagers 33 mit Schmieröl dient.
  • Weiters kann vorgesehen sein, dass die Gleitfläche 34 des ersten Sonnenradradialgleitlagers 33 ebenfalls mit einem Ölverteilungskanalabschnitt 18 der ersten Planetenträgerwange 8 strömungsverbunden ist.
  • In 2 ist eine Ausführungsvariante des Gleitlagers 13, 19, 27, 28, 33 in Schrägansicht dargestellt, wobei Gleitlagerhalbschalen dargestellt sind. Die untenstehende Beschreibung ist natürlich auch für anders segmentierte Gleitlagerelemente, wie etwa drittelschalen, viertelschalen usw., sowie für Gleitlagerbuchsen gültig.
  • Das Gleitlager 13, 19, 27, 28, 33 kann einen Stützkörper 35, eine Lagermetallschicht 36 sowie eine Polymerschicht 37 umfassen. An der Polymerschicht 37 kann die Gleitfläche 17, 22, 29, 30, 34 ausgebildet sein.
  • Wie aus 2 ersichtlich, kann vorgesehen sein, dass die Polymerschicht 37 als äußerste Schicht ausgebildet ist und die Gleitfläche 17, 22, 29, 30, 34 somit an einer Außenfläche des Gleitlagers 13, 19, 27, 28, 33 liegt. In einer weiteren, nicht dargestellten Ausführungsvariante kann natürlich auch vorgesehen sein, dass die Polymerschicht 37 als innerste Schicht ausgebildet ist und die Gleitfläche 17, 22, 29, 30, 34 somit an einer Innenfläche des Gleitlagers 13, 19, 27, 28, 33 liegt.
  • Das Gleitlager 13, 19, 27, 28, 33 nach 2 kann einzelne Segmente in Form von Halbschalen aufweisen. Diese kann mit einer weiteren Halbschale zur Ausbildung der Gleitlagerung kombiniert werden. Die beiden Halbschalen können gleich oder unterschiedlich aufgebaut sein.
  • Der Stützkörper 35 besteht aus einem metallischen Werkstoff, üblicherweise aus Stahl, kann aber auch aus einem Werkstoff bestehen, mit dem die selbe bzw. eine ähnliche Funktion, nämlich die Bereitstellung der mechanischen Festigkeit des Gleitlagers 13, 19, 27, 28, 33, realisiert werden kann. Beispielsweise können auch verschiedenste Kupferlegierungen, wie z.B. Messing, Bronzen, Verwendung finden. Im Rahmen der Erfindung sind aber auch Direktbeschichtungen von Bauteilen, wie z.B. das Auge einer Pleuelstange, möglich. In diesem Fall wird der Stützkörper 35 durch das jeweilige Bauteil selbst gebildet.
  • Die Lagermetallschicht 36 ist durch eine Lagermetalllegierung gebildet. Derartige Lagermetalllegierungen sind aus dem Stand der Technik bekannt. Beispielsweise kann die Lagermetalllegierung durch eine Legierung auf Zinn-, Wismut-, Indium-, Blei- oder Aluminiumbasis sowie Legierungen auf, gegebenenfalls hochbleihältiger, CuPb- oder auf AlSn- bzw. auf AIBi-Basis gebildet sein.
  • Obwohl in 2 das Gleitlager 13, 19, 27, 28, 33 als Dreischichtlagerelement dargestellt ist, kann das Gleitlager 13, 19, 27, 28, 33 auch weniger oder mehr als drei Schichten aufweisen. Beispielsweise kann die Polymerschicht 37 direkt auf den Stützkörper 35 aufgebracht sein. Ebenso können übliche Zwischenschichten, wie z.B. zumindest eine Bindeschicht oder zumindest eine Diffusionssperrschicht, bei Bedarf angeordnet sein. Dies zumindest eine Bindeschicht kann zwischen dem Stützkörper 35 und der Lagermetallschicht 36 und/oder zwischen der Lagermetallschicht 36 und der Polymerschicht 37 angeordnet sein. Dies zumindest eine Diffusionssperrschicht kann zwischen dem Stützkörper 35 und der Lagermetallschicht 36 und/oder zwischen der Lagermetallschicht 36 und der Polymerschicht 37 angeordnet sein.
  • Die Polymerschicht 37 weist Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer auf bzw. besteht vorzugsweise aus diesen Bestandteilen.
  • Das Polyimidpolymer kann beispielsweise ausgewählt sein aus einer Gruppe umfassend oder bestehend aus Polyimid (PI), Polysuccinimid (PSI), Polybismaleinimid (PBMI), Polybenzimidazol (PBI), Polyoxadiazobenzimidazol (PBO) und Polyimidsulfon (PISO) sowie Mischungen daraus.
  • Bevorzugt ist das Polymer ein Polyamidimid. Das Polyamidimid kann zumindest teilweise aromatische Gruppen aufweisen, vorzugsweise ist es ein vollaromatischen Polyamidimid.
  • Der Anteil des Polymers an der Polymerschicht 37 ist bevorzugt ausgewählt aus einem Bereich mit einer unteren Grenze von 30 Gew.-% und einer oberen Grenze von 41 Gew.-%, insbesondere einer unteren Grenze von 33 Gew.-% und einer oberen Grenze von 38 Gew.-%. Besonders bevorzugt beträgt der Anteil des Polymers an der Polymerschicht 35,5 Gew.-%.
  • Die Festschmierstoffpartikel können ausgewählt sein aus einer Gruppe umfassend oder bestehend aus Graphit, MoS2, WS2, Sn, SnS und SnS2, ZnS, ZnS2, weiter hexagonales BN, Pb, Pb-Sn-Legierungen, CF2, PbF2, etc. Ebenso sind Mischungen aus zwei oder mehreren verschiedenen Festschmierstoffpartikeln einsetzbar. Prinzipiell sind diese Festschmierstoffe bereits aus dem Stand der Technik hinlänglich für diesen Verwendungszweck bekannt.
  • Der Gesamtanteil der Festschmierstoffpartikel an der Polymerschicht 37 kann ausgewählt sein aus einem Bereich mit einer unteren Grenze von 51,5 Gew.-% und einer oberen Grenze von 62,5 Gew.-%, insbesondere aus einem Bereich mit einer unteren Grenze von 54,5 Gew.-% und einer oberen Grenze von 59,5 Gew.-%. Besonders bevorzugt beträgt der Gesamtanteil der Festschmierstoffpartikel an der Polymerschicht 57 Gew.-%.
  • In der bevorzugten Ausführungsvariante enthält die Polymerschicht 37 Graphit und MoS2 als Festschmierstoffpartikel. Der Anteil an Graphit an der Polymerschicht 37 kann dabei ausgewählt sein aus einem Bereich mit einer unteren Grenze von 6 Gew.-% und einer oberen Grenze von 10 Gew.-%, insbesondere aus einem Bereich mit einer unteren Grenze von 7 Gew.-% und einer oberen Grenze von 9 Gew.-%. Besonders bevorzugt beträgt der Anteil von Graphit an der Polymerschicht 8 Gew.-%. Das MoS2 bildet den Rest des voranstehend genannten Gesamtanteils an Festschmierstoffen an der Polymerschicht 37.
  • Die Metalloxidpartikel sind ausgewählt aus einer Gruppe umfassend oder bestehend aus Bismutvanadate (BiVO4), Chrom-Antimon-Rutile und Mischungen daraus. Die Metalloxidpartikel werden also durch Mischoxidpartikel gebildet.
  • Der Gesamtanteil der Metalloxidpartikel an der Polymerschicht 37 kann ausgewählt sein aus einem Bereich mit einer unteren Grenze von 2 Gew.-% und einer oberen Grenze von 13 Gew.-%, insbesondere aus einem Bereich mit einer unteren Grenze von 5 Gew.-% und einer oberen Grenze von 10 Gew.-%. Besonders bevorzugt beträgt der Anteil der Metalloxidpartikel an der Polymerschicht 7,5 Gew.-%.
  • Es sein in diesem Zusammenhang darauf hingewiesen, dass selbstverständlich sämtliche Angaben zur Zusammensetzung der Polymerschicht 37 so zu verstehen sind, dass die Summe der Mengenanteile aller Bestandteile der Polymerschicht 100 Gew.-% ergeben muss. Die Polymerschicht 37 kann daher beispielsweise folgende, aus den voranstehend genannten Bereichen ausgewählte Zusammensetzungen aufweisen:
    Polymer [Gew.-%] Gesamtanteil der Festschmierstoffe [Gew.-%] Metalloxidpartikel [Gew.-%]
    30 57 13
    35,5 51,5 13
    41 51,5 7,5
    41 57 2
    35,5 62,5 2
    30 62,5 7,5
    30 57 13
    33 57 10
    35,5 54,5 10
    38 54,5 7,5
    38 57 5
    35,5 59,5 5
    33 59,5 7,5
    33 57 10
  • Gemäß einer bevorzugten Ausführungsvariante des Gleitlagers 13, 19, 27, 28, 33 kann das Bismutvanadat oxidische Beimengungen an Wolfram und/oder Molybdän enthalten (Bi(V,W)O4), Bi(V,Mo)O4), Bi(V,W,Mo)O4)). Dabei ist ein Teil des Vanadiums durch Wolfram und/oder durch Molybdän ersetzt, sodass es sich nach wie vor im Mischoxide handelt und nicht um eine Mischung von Oxiden.
  • Vorzugsweise ist der Gesamtanteil an Wolframoxid(en) und/oder Molybdänoxid(en) an dem Bismutvanadat ausgewählt aus einem Bereich mit einer unteren Grenze von 5 Gew.-% und einer oberen Grenze von 20 Gew.-%, insbesondere aus einem Bereich mit einer unteren Grenze von 7 Gew.-% und einer oberen Grenze von 15 Gew.-%.
  • Wie in der bevorzugten Ausführungsvariante des Bismutvanadats weist auch der Chrom-Antimon-Rutil Beimengungen auf. Es liegt also auch hier ein Mischphasenoxid und keine Mischung einzelner Oxide vor.
  • Der Anteil an Antimonoxid(en) an dem Chrom-Antimon-Rutil kann ausgewählt sein aus einem Bereich von 5 Gew.-% bis 14 Gew.-%, insbesondere aus einem Bereich von 8 Gew.-% bis 13 Gew.-%.
  • Vorzugsweise ist der Anteil an Chromoxid(en) an dem Chrom-Antimon-Rutil ausgewählt aus einem Bereich mit einer unteren Grenze von 1 Gew.-% und einer oberen Grenze von 8 Gew.-%, insbesondere aus einem Bereich mit einer unteren Grenze von 2 Gew.-% und einer oberen Grenze von 7 Gew.-%.
  • Der Gesamtanteil an Chromoxid(en) und Antimonoxid(en) an dem Chrom-Antimon-Rutil beträgt bevorzugt zwischen 5 Gew.-% und 25 Gew.-%.
  • Vorzugsweise liegt das Chrom als Cr(ll) und das Antimon als Sb(V) in dem Chrom-Antimon-Rutil vor.
  • Das Chrom und das Antimon ersetzen einen Teil von Titan. Dabei ist bevorzugt, wenn das Antimon und das Chrom zu mehr als 50 Atom-%, vorzugsweise zu mehr als Atom-70 % des Gesamtanteils an Chrom und Antimon in dem Chrom-Antimon-Rutil die Gitterplätze von Ti3+-lonen einnimmt und dieses somit teilweise ersetzt. Vorzugsweise steigt der Gesamtanteil an Chrom und/oder Antimon aber nicht über einen Anteil von Atom-90 %, insbesondere nicht über einen Anteil von Atom-80 %, des Ti3+ Anteils in dem Chrom-Antimon-Rutil.
  • Ein derartiger Chrom-Antimon-Rutil kann beispielsweise bei der Firma Tomatec bezogen werden.
  • Es kann weiter vorgesehen sein, dass das Antimon und das Chrom in dem Chrom-Antimon-Rutil in einem Verhältnis zueinander vorliegen, das ausgewählt ist aus einem Bereich von 1,5 : 1 bis 3 : 1, insbesondere aus einem Bereich von 2 : 1 bis 2,5 : 1.
  • Gemäß einer Ausführungsvariante des Gleitlagers 13, 19, 27, 28, 33 kann vorgesehen sein, dass der Anteil an Festschmierstoffpartikel zum Anteil an Metalloxidpartikel in der Polymerschicht 37 ausgewählt ist aus einem Bereich von 5 :1 bis 12 :1, insbesondere aus einem Bereich von 5,5 :1 bis 12 :1.
  • Obwohl nicht bevorzugt kann die Polymerschicht 37 weitere Hartpartikel aufweisen, um die Härte der Polymerschicht 37 weiter anpassen zu können. Diese Hartpartikel können ausgewählt sein aus einer Gruppe umfassend oder bestehend aus CrO3, Fe3O4, PbO, ZnO, CdO, Al2O3, SiC, Si3N4, SiO2, MnO, Si3N4, Ton, Talk, TiO2, Aluminiumsilikate, wie z.B. Mullit, Magnesiumsilikate, wie z.B. Amosit, Antophyllit, Chrysotil, Carbide, wie z.B. CaC2, Mo2C, WC, Metallpartikel, wie z.B. Zn, Ag, Ba, Bronze, Cd, Co, Cu, In, Legierungspartikel von diesen Metallen, AIN, Fe3P, Metallboride, wie z.B. Fe2B, Ni2B, FeB, BaSO4, chlorinierte Hydrogencarbonate, Fluoride, wie z.B. CaF2, Metalloxifluoride, Crocidolit, Tremolit, Silizide, Thiophosphate, wie z.B. Zinkthiophosphat.
  • Es sind auch Mischungen unterschiedlicher Zusatzstoffe bzw. Hartstoffe, beispielsweise von zwei, drei, vier oder mehreren unterschiedlichen Zusatzstoffen bzw. Hartstoffen verwendbar.
  • Der Anteil an diesen Hartstoffpartikeln kann ausgewählt sein aus einem Bereich mit einer unteren Grenze von 1 Gew.-% und einer oberen Grenze von 10 Gew.-%, insbesondere aus einem Bereich mit einer unteren Grenze von 1 Gew.-% und einer oberen Grenze von 5 Gew.-%, wobei sich durch den Zusatz der Hartstoffpartikel der Anteil an dem Polymer an der Polymerschicht 37 entsprechend verringert.
  • Die Polymerschicht kann weiter Metallpartikel enthalten, bevorzugt in Form von Plättchen aus weichen Metallen wie AI, Ag, Sn, Zn, Cu oder Mischungen daraus. Der Anteil der Metallpartikel kann ausgewählt sein aus einem Bereich mit einer unteren Grenze von 1 Gew.-% und einer oberen Grenze von 10 Gew.-%, insbesondere aus einem Bereich mit einer unteren Grenze von 1 Gew.-% und einer oberen Grenze von 5 Gew.-%, wobei sich durch den Zusatz der Metallpartikel der Anteil an dem Polymer an der Polymerschicht 37 entsprechend verringert.
  • Die Festschmierstoffpartikel können eine maximale Partikelgröße von 40 µm aufweisen.
  • Unter der maximalen Partikelgröße wird dabei jene Abmessung eines Partikels verstanden, die im Vergleich zu anderen Abmessungen desselben Partikels am größten ist. Die maximale Abmessung kann also auch als der Durchmesser jener Hüllkugel verstanden werden, die das jeweilige Partikel gerade vollständig umhüllt.
  • Insbesondere können die Festschmierstoffpartikel eine Partikelgrößenverteilung (Korngrößenverteilung) von D50 = 4 µm bis 6 µm, gemessen mittels Siebanalyse, aufweisen.
  • Für den Fall, dass eine Mischung aus MoS2 und Graphit als Festschmierstoffpartikel eingesetzt wird, weisen die MoS2-Partikel vorzugsweise eine Korngrößenverteilung mit einem D50-Wert von 4 µm bis 6 µm und die Graphitpartikel vorzugsweise eine Korngrößenverteilung mit einem D50-Wert von 4 µm bis 5,5 µm auf.
  • Die Metalloxidpartikel weisen bevorzugt zu zumindest 50 %, insbesondere zumindest 90 %, eine maximale Partikelgröße von 500 nm, auf. Vorzugsweise weisen die Metalloxidpartikel nach einer Ausführungsvariante des Gleitlagers 13, 19, 27, 28, 33 zumindest teilweise, insbesondere zur Gänze, eine maximale Partikelgröße von höchstens 200 nm, insbesondere höchstens 100 nm, auf. Insbesondere weisen zumindest 50 %, insbesondere zumindest 90 %, der Metalloxidpartikel eine maximale Partikelgröße auf, die ausgewählt ist aus einem Bereich mit einer unteren Grenze von 1 nm und einer oberen Grenze von 20 nm, vorzugsweise aus einem Bereich mit einer unteren Grenze von 1 nm und einer oberen Grenze von 10 nm.
  • Mit zumindest teilweise ist dabei gemeint, dass ein Anteil von zumindest 80 % der Metalloxidpartikel eine Partikelgröße von kleiner 200 nm, insbesondere kleiner 100nm, aufweisen.
  • Die fakultativ vorhandenen Hartpartikel können eine maximale Partikelgröße aufweisen, die ausgewählt ist aus einem Bereich mit einer unteren Grenze von 1 µm und einer oberen Grenze von 10 µm.
  • Es ist weiter möglich, dass die Metalloxidpartikel und/oder die Festschmierstoffpartikel zumindest teilweise, insbesondere zu Gänze, eine Oberflächenmodifizierung aufweisen. Mit zumindest teilweise ist dabei gemeint, dass ein Anteil von zumindest 20 %, vorzugsweise zumindest 50 %, der gesamt vorhandenen Metalloxidpartikel und/oder ein Anteil von zumindest 20 %, vorzugsweise zumindest 50 %, der gesamt vorhandenen Festschmierstoffpartikel diese Oberflächenmodifizierung aufweisen.
  • Die Oberflächenmodifizierung ist vorzugsweise ausgewählt ist aus einer Gruppe umfassend Silanisierungen, Siloxanisierungen, Epoxidierung, Aminierungen, Plasmaaktivierungen, Elektronenstrahl-Aktivierung oder ähnlichen Verfahren.
  • Durch die Oberflächenmodifizierung werden an der Oberfläche der Metalloxidpartikel und/oder der Festschmierstoffpartikel reaktive Liganden bzw. reaktive funktionelle Gruppe erzeugt, die einerseits an die Metalloxidpartikel bzw. die Festschmierstoffpartikel gebunden sind, vorzugsweise kovalent gebunden sind, und die andererseits eine Veränderung der Eigenschaften der Partikel bewirken, indem diese beispielsweise homogener in die Mischung zur Herstellung der Polymerschicht 37 eingemischt werden können oder diese Partikel besser an die Polymerketten des Polymers der Polymerschicht 37 angebunden werden können. Diese Anbindung kann dabei kovalent oder adhäsiv erfolgen.
  • Die Reaktion der Verbindungen, also insbesondere Silane, Siloxane, Amine, Epoxide bzw. Epoxid bildende Verbindungen, reagieren entweder nach einer Säure/Base-Reaktion mit der Oberfläche der Partikel oder es erfolgt die Anbindung über Dipol-Dipol Wechselwirkungen zwischen diesen Verbindungen und der zu modifizierenden Oberfläche.
  • Es sei an dieser Stelle darauf hingewiesen, dass unter dem Begriff „Oberflächenmodifizierung“ nicht zwangsweise zu verstehen ist, dass die Oberfläche der Partikel zu hundert Prozent modifiziert wird.
  • Beispiele für derartige Verbindungen sind primäre, sekundäre, tertiäre oder quaternäre organische Amine mit bis zu 15 Kohlenstoffatomen, beispielsweise Methyl-, Ethyl, n- und i-Propyl und Butylamine, Ethylendiamin, Diethylentriamin, Silane, insbesondere Organoalkoxysilane.
  • In der bevorzugten Ausführungsvariante des Gleitlagers 13, 19, 27, 28, 33 bildet die Polymerschicht 37 die Gleitschicht, also jene radial innerste Schicht, die mit dem Gleitpartner, z.B. einer Welle, auch nach dem Einlauf des Gleitlagers 13, 19, 27, 28, 33 in Verbindung steht. Die Gleitschicht kann eine Schichtdicke zwischen 5 µm und 25 µm, insbesondere eine Schichtdicke zwischen 10 µm und 20 µm, aufweisen.
  • Es ist aber auch möglich, dass die Polymerschicht 37 lediglich eine Einlaufschicht bildet, die, insbesondere direkt, auf einer darunter im Gleitlager 13, 19, 27, 28, 33 situierten metallischen Gleitschicht angeordnet ist, wenn die darunterliegende metallische Laufschicht eine Härte von mehr als 110 HV aufweist.
  • Zur Herstellung der Polymerschicht 37 wird aus den einzelnen Komponenten, also einer Vorstufe des Polymers, den Festschmierstoffpartikeln, den Metalloxidpartikeln und gegebenenfalls den Hartstoffpartikeln, mit einem Dispersionsmittel, insbesondere einem organischen Lösungsmittel, wie z.B. Xylol, N- Methylpyrrolidon, ein Alkohol, oder aber auch Wasser eine Dispersion nach üblichen Verfahren hergestellt. Diese Dispersion wird dann auf die zu beschichtende metallische Oberfläche mit in der Lacktechnik üblichen Verfahren aufgetragen, also beispielsweis aufgesprüht, aufgestrichen oder aufgetaucht. Der Anteil des Dispersionsmittels an der Dispersion richtet sich dabei, nach der angewandten Technik, insbesondere nach der Viskosität, die die Dispersion haben soll. Nach dem Aufbringen der Dispersion wird die Vorstufe des Polymers polymerisiert, wodurch die Dispersion aushärtet. Die Härtung kann an Luft bei Raumtemperatur oder bei erhöhter Temperatur bis 280 °C erfolgen. Bevorzugt wird durch Oberflächenverfahren, wie Infrarotstrahlen oder Induktionsheizen, lediglich die Beschichtung erwärmt, ohne das gesamte Gleitlager 13, 19, 27, 28, 33 einer hohen Temperatur auszusetzen.
  • Zur Evaluierung der Polymerschicht 37 wurden die in Tabelle 1 angegebenen Beispielzusammensetzungen angefertigt. Die Zahlenangaben sind in Gew.-% zu verstehen. Die Abkürzung PAI steht für Polyamidimid. Die Abkürzung CAR steht für Chrom-Antimon-Rutil. Die Abkürzung BV steht für Bismutvanadat: Es sei aber bereits jetzt darauf hingewiesen, dass Polymerschichten 37 mit einem der anderen voranstehend genannten Polymere vergleichbare Ergebnisse lieferten. Tabelle 1: Beispielzusammensetzungen
    Nr. Polymer Festschmierstoff(e) Metalloxid(e) Verschleiß [µm]
    1 30 57 CAR: 13 6
    2 35,5 51,5 CAR: 13 6
    3 41 51,5 CAR: 7,5 7
    4 41 57 CAR: 2 8
    5 35,5 62,5 CAR: 2 8
    6 30 62,5 CAR: 7,5 7
    7 30 57 CAR: 13 6
    8 33 57 CAR: 10 5
    9 35,5 54,5 CAR: 10 5
    10 38 54,5 CAR: 7,5 6
    11 38 57 CAR: 5 6
    12 35,5 59,5 CAR: 5 6
    13 33 59,5 CAR: 7,5 6
    14 33 57 CAR: 10 5
    15 PAI: 38 MoS2: 51 CAR: 5 7
    Graphit: 6
    16 PAI: 33 MoS2: 47 CAR: 10 6
    Graphit: 10
    17 PAI: 35,5 MoS2: 49 CAR: 7,5 5
    Graphit: 8
    18 PAI: 28 MoS2: 51 CAR: 15 12(1)
    Graphit: 6
    19 PAI: 42 MoS2: 51 CAR: 1 10
    Graphit: 6
    20 PAI: 38 MoS2: 44 CAR: 12 16(2)
    Graphit: 6
    21 PAI: 35,5 MoS2: 49 reines TiO2: 7,5 9
    Graphit: 8
    22 PTFE: 35,5 MoS2: 49 CAR: 7,5 16(3)
    Graphit: 8
    23 PAI: 35,5 WS2: 57 CAR: 7,5 8
    24 PAI: 37 SnS2: 54 CAR: 9 8
    25 PAI: 36 h-BN: 59 CAR: 5 8
    26 PAI: 34 ZnS2: 61 CAR: 5 7
    27 PAI: 38 MoS2: 51 BV: 5 8
    Graphit: 6
    28 PAI: 33 MoS2: 47 BV: 10 8
    Graphit: 10
    29 PAI: 35,5 MoS2: 49 BV: 7,5 8
    Graphit: 8
    30 PAI: 35,5 MoS2: 49 BV: 7,5 (Anteil an Wolframoxiden 5 Gew.-%) 7
    Graphit: 8
    31 PAI: 35,5 MoS2: 49 BV: 7,5 (Anteil an Wolframoxiden 20 Gew.-%) 6
    Graphit: 8
    32 PAI: 35,5 MoS2: 49 BV: 7,5 (Anteil an Wolframoxiden 2 Gew.-%) 9
    Graphit: 8
    33 PAI: 35,5 MoS2: 49 BV: 7,5 (Anteil an Wolframoxiden 25 Gew.-%) 12
    Graphit: 8
    34 PAI: 35,5 MoS2: 49 BV: 7,5 (Anteil an Molybdänoxiden 5 Gew.-%) 4
    Graphit: 8
    35 PAI: 35,5 MoS2: 49 BV: 7,5 (Anteil an Molybdänoxiden 20 Gew.-%) 4
    Graphit: 8
    36 PAI: 35,5 MoS2: 49 BV: 7,5 (Anteil an Molybdänoxiden 2 Gew.-%) 8
    Graphit: 8
    37 PAI: 35,5 MoS2: 49 BV: 7,5 (Anteil an Molybdänoxiden 25 Gew.-%) 8
    Graphit: 8
    38 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Chromoxiden 1 Gew.-%) 5
    Graphit: 8
    39 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Chromoxiden 8 Gew.-%) 5
    Graphit: 8
    40 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Chromoxiden 0,2 Gew.-%) 7
    Graphit: 8
    41 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Chromoxiden 10 Gew.-%) 7
    Graphit: 8
    42 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Antimonoxiden 5 Gew.-%) 5
    Graphit: 8
    43 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Antimonoxiden 14 Gew.-%) 6
    Graphit: 8
    44 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Antimonoxiden 2 Gew.-%) 7
    Graphit: 8
    45 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Antimonoxiden 16 Gew.-%) 7
    Graphit: 8
    46 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Chrom- und Antimonoxiden 15 Gew.-%; Cr und Sb ersetzen 55 Atom-% 5
    Graphit: 8
    47 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Chrom- und Antimonoxiden 15 Gew.-%; Cr und Sb ersetzen 45 Atom-% 7
    Graphit: 8
    48 PAI: 35,5 MoS2: 49 CAR: 7,5 (Anteil an Chromoxiden 6 Gew.-%, Anteil an Antimonoxiden 12 Gew.-%) 5
    Graphit: 8
    49 PAI: 35,5 MoS2: 49 CAR: 7,5 (50 % der Partikel weisen eine Partikelgröße von kleiner 500 nm auf) 6
    Graphit: 8
    50 PAI: 35,5 MoS2: 49 CAR: 7,5 (50 % der Partikel weisen eine Partikelgröße von kleiner 200 nm auf) 5
    Graphit: 8
    51 PAI: 35,5 MoS2: 49 CAR: 10 (Partikel weisen eine Partikelgröße zwischen 2 nm und 10 nm auf) 4
    Graphit: 8
    52 PAI: 35,5 MoS2: 49 CAR: 7,5 (40 % der Partikel weisen eine Partikelgröße von kleiner 500 nm auf) 8
    Graphit: 8
    53 PAI: 35,5 MoS2: 49 CAR: 7,5 (oberflächenmodifiziert mit Siloxan) 4
    Graphit: 8
    54 PAI: 35,5 MoS2: 49 CAR: 7,5 (oberflächenmodifiziert durch PlasmaAktivierung) 5
    Graphit: 8
    55 PAI: 35,5 MoS2: 49 CAR: 7,5 (oberflächenmodifiziert durch Elektronenstrahl-Aktivierung) 5
    Graphit: 8
    (1) Die Schicht zeigt stellenweise Dauerbrüche
    (2) Die Schicht zeigt großflächige Dauerbrüche
    (3) Die Schicht ist teilweise bis zum Untergrund verschlissen
  • Die Beispiele 4 bis 8, 18, 19, 22, 23, 27, 31, 33 und 38 in Tabelle 1 sind Vergleichsbeispiele.
  • Es wurden damit Gleitlager 13, 19, 27, 28, 33 mit einem Stahlrücken als Stützkörper, einer CuSn5Zn-Legierung als Lagermetallschicht 36 und der aus den Beispielzusammensetzungen gemäß Tabelle 1 jeweils direkt darauf hergestellten Polymerschicht 37 in Form von Flachproben hergestellt. Die Polymerschicht 37 wurde entsprechend voranstehenden Ausführungen hergestellt. An diesen Mustern wurden folgende Tests durchgeführt.
  • Die Ausführungsbeispiele zeigen mögliche Ausführungsvarianten, wobei an dieser Stelle bemerkt sei, dass die Erfindung nicht auf die speziell dargestellten Ausführungsvarianten derselben eingeschränkt ist, sondern vielmehr auch diverse Kombinationen der einzelnen Ausführungsvarianten untereinander möglich sind und diese Variationsmöglichkeit aufgrund der Lehre zum technischen Handeln durch gegenständliche Erfindung im Können des auf diesem technischen Gebiet tätigen Fachmannes liegt.
  • Der Schutzbereich ist durch die Ansprüche bestimmt. Die Beschreibung und die Zeichnungen sind jedoch zur Auslegung der Ansprüche heranzuziehen. Einzelmerkmale oder Merkmalskombinationen aus den gezeigten und beschriebenen unterschiedlichen Ausführungsbeispielen können für sich eigenständige erfinderische Lösungen darstellen. Die den eigenständigen erfinderischen Lösungen zugrundeliegende Aufgabe kann der Beschreibung entnommen werden.
  • Sämtliche Angaben zu Wertebereichen in gegenständlicher Beschreibung sind so zu verstehen, dass diese beliebige und alle Teilbereiche daraus mitumfassen, z.B. ist die Angabe 1 bis 10 so zu verstehen, dass sämtliche Teilbereiche, ausgehend von der unteren Grenze 1 und der oberen Grenze 10 mit umfasst sind, d.h. sämtliche Teilbereiche beginnen mit einer unteren Grenze von 1 oder größer und enden bei einer oberen Grenze von 10 oder weniger, z.B. 1 bis 1,7, oder 3,2 bis 8,1, oder 5,5 bis 10.
  • Der Ordnung halber sei abschließend darauf hingewiesen, dass zum besseren Verständnis des Aufbaus Elemente teilweise unmaßstäblich und/oder vergrößert und/oder verkleinert dargestellt wurden.
  • Bezugszeichenliste
  • 1
    Planetengetriebe
    2
    Mittellinie Planetengetriebe
    3
    Sonnenrad
    4
    Welle
    5
    Planetenrad
    6
    Planetenradbolzen
    7
    Planetenträger
    8
    erste Planetenträgerwange
    9
    zweite Planetenträgerwange
    10
    Hohlrad
    11
    Planetengetriebegehäuse
    12
    Rotoranschluss
    13
    erstes Planetenträgerradialgleitlager
    14
    Außenmantelfläche erstes Planetenträgerradialgleitlager
    15
    erster Lagerabschnitt Planetengetriebegehäuse
    16
    Innenmantelfläche erstes Planetenträgerradialgleitlager
    17
    Gleitfläche erstes Planetenträgerradialgleitlager
    18
    Ölverteilungskanalabschnitt erste Planetenträgerwange
    19
    Planetenradradialgleitlager
    20
    Innenmantelfläche Planetenradradialgleitlager
    21
    Außenmantelfläche Planetenradradialgleitlager
    22
    Gleitfläche Planetenradradialgleitlager
    23
    Schmierölbohrung Planetenradradialgleitlager
    24
    Schmierölsammeltasche
    25
    Ölverteilungskanalabschnitt Planetenradbolzen
    26
    Mittellinie Planetenradbolzen
    27
    erstes Axialgleitlager Planetenrad
    28
    zweites Axialgleitlager Planetenrad
    29
    Gleitfläche erstes Axialgleitlager
    30
    Gleitfläche zweites Axialgleitlager
    31
    Schmierölbohrung erstes Axialgleitlager
    32
    Schmierölbohrung zweites Axialgleitlager
    33
    erstes Sonnenradradialgleitlager
    34
    Gleitfläche erstes Sonnenradradialgleitlager
    35
    Stützkörper
    36
    Lagermetallschicht
    37
    Polymerschicht
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • WO 2011127509 A1 [0002]
    • EP 2383480 B1 [0003]

Claims (15)

  1. Windkraftanlagengetriebe, insbesondere Planetengetriebe (1), mit zumindest einem Gleitlager (13, 19, 27, 28, 33), an welchem eine Gleitfläche (17, 22, 29, 30, 34) ausgebildet ist, dadurch gekennzeichnet, dass die Gleitfläche (17, 22, 29, 30, 34) an einer Polymerschicht (37) ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus.
  2. Windkraftanlagengetriebe nach Anspruch 1, dadurch gekennzeichnet, dass das Gleitlager (13, 19, 27, 28, 33) als hydrostatisches Gleitlager oder als hydrodynamisches Gleitlager ausgebildet ist.
  3. Windkraftanlagengetriebe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Planetenradradialgleitlager (19) ausgebildet ist, welches zur Lagerung eines Planetenrades (5) an einem Planetenradbolzen (6) dient, wobei das Planetenradradialgleitlager (19) die Gleitfläche (22) aufweist, die an einer Polymerschicht (37) ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus.
  4. Windkraftanlagengetriebe nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass ein Planetenträgerradialgleitlager (13) ausgebildet ist, welches zur Lagerung eines Planetenträgers (7) im Planetengetriebegehäuse (11) dient, wobei das Planetenträgerradialgleitlager (13) die Gleitfläche (17) aufweist, die an einer Polymerschicht (37) ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus.
  5. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Axialgleitlager (27) ausgebildet ist, welches zur Axiallagerung des Planetenrades (5) im Planetenträger (7) dient, wobei das Axialgleitlager (27) die Gleitfläche (29) aufweist, die an einer Polymerschicht (37) ausgebildet ist, welche Festschmierstoffpartikel und Metalloxidpartikel und als Polymer ausschließlich ein Polyimidpolymer oder ein Polyamidimidpolymer oder eine Mischung daraus aufweist, wobei die Metalloxidpartikel ausgewählt sind aus einer Gruppe umfassend Bismutvanadate, Chrom-Antimon-Rutile und Mischungen daraus.
  6. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Metalloxidpartikel in einem Anteil in der Polymerschicht (37) enthalten sind, der ausgewählt ist aus einem Bereich von 2 Gew.-% bis 13 Gew.-%.
  7. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Bismutvanadat oxidische Beimengungen von Wolfram und/oder Molybdän enthält.
  8. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Gesamtanteil an Wolframoxid(en) und/oder Molybdänoxid(en) an dem Bismutvanadat ausgewählt ist aus einem Bereich von 5 Gew.-% bis 20 Gew.-%.
  9. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil an Antimonoxid(en) an dem Chrom-Antimon-Rutil ausgewählt ist aus einem Bereich von 5 Gew.-% bis 14 Gew.-%.
  10. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil an Chromoxid(en) an dem Chrom-Antimon-Rutil ausgewählt ist aus einem Bereich von 1 Gew.-% bis 8 Gew.-%.
  11. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kristallgitter des Chrom-Antimon-Rutils Ti3+- und Ti5+-Ionen aufweist, wobei das Antimon und das Chrom zu mehr als 50 Atom-% des Gesamtanteils an Chrom und Antimon in dem Chrom-Antimon-Rutil die Gitterplätze von Ti3+-Ionen einnimmt und dieses somit teilweise ersetzt.
  12. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Antimon und das Chrom in dem Chrom-Antimon-Rutil in einem Verhältnis zueinander vorliegen, das ausgewählt ist aus einem Bereich von 1,5 : 1 bis 3 : 1.
  13. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Anteil von zumindest 50 % der Metalloxidpartikel eine maximale Partikelgröße von höchstens 500 nm aufweist.
  14. Windkraftanlagengetriebe nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Anteil an Festschmierstoffpartikel zum Anteil an Metalloxidpartikel ausgewählt ist aus einem Bereich von 5:1 bis 12 :1.
  15. Windkraftanlage mit einem Rotor; einer Gondel; einem in der Gondel angeordneten Generator; einem Planetengetriebe (1) zum Übertragen und Übersetzen eines Drehmomentes vom Rotor auf den Generator, dadurch gekennzeichnet, dass das Planetengetriebe (1) nach einem der vorhergehenden Ansprüche ausgebildet ist.
DE102018009737.5A 2018-12-13 2018-12-13 Windkraftanlagengetriebe mit zumindest einem Gleitlager Pending DE102018009737A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102018009737.5A DE102018009737A1 (de) 2018-12-13 2018-12-13 Windkraftanlagengetriebe mit zumindest einem Gleitlager
PCT/AT2019/060428 WO2020118336A1 (de) 2018-12-13 2019-12-09 Windkraftanlagengetriebe mit zumindest einem gleitlager

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102018009737.5A DE102018009737A1 (de) 2018-12-13 2018-12-13 Windkraftanlagengetriebe mit zumindest einem Gleitlager

Publications (1)

Publication Number Publication Date
DE102018009737A1 true DE102018009737A1 (de) 2020-06-18

Family

ID=69159472

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102018009737.5A Pending DE102018009737A1 (de) 2018-12-13 2018-12-13 Windkraftanlagengetriebe mit zumindest einem Gleitlager

Country Status (2)

Country Link
DE (1) DE102018009737A1 (de)
WO (1) WO2020118336A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113934A1 (fr) * 2020-09-04 2022-03-11 Safran Transmission Systems Reducteur mecanique de turbomachine d’aeronef
FR3116096A1 (fr) * 2020-11-12 2022-05-13 Safran Transmission Systems Reducteur mecanique de turbomachine d’aeronef

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT524318B1 (de) * 2020-11-30 2022-05-15 Miba Gleitlager Austria Gmbh Gleitlagerung, sowie eine mit der Gleitlagerung ausgestattete Gondel für eine Windkraftanlage

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127509A1 (de) 2010-04-14 2011-10-20 Miba Gleitlager Gmbh Getriebe für eine windkraftanlage
EP2383480B1 (de) 2010-04-30 2012-10-03 Winergy AG Planetengetriebe für eine Windkraftanlage

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT512436B1 (de) * 2012-01-16 2013-10-15 Miba Gleitlager Gmbh Windkraftanlage
EP3023456B1 (de) * 2014-11-18 2019-06-19 Miba Gleitlager Austria GmbH Gleitlagerelement
AT15975U1 (de) * 2017-05-23 2018-10-15 Miba Gleitlager Austria Gmbh Windkraftanlagengetriebe

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011127509A1 (de) 2010-04-14 2011-10-20 Miba Gleitlager Gmbh Getriebe für eine windkraftanlage
EP2383480B1 (de) 2010-04-30 2012-10-03 Winergy AG Planetengetriebe für eine Windkraftanlage

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3113934A1 (fr) * 2020-09-04 2022-03-11 Safran Transmission Systems Reducteur mecanique de turbomachine d’aeronef
EP3992494A1 (de) * 2020-09-04 2022-05-04 Safran Transmission Systems Mechanisches reduktionsgetriebe für turbotriebwerk eines luftfahrzeugs
US11549582B2 (en) 2020-09-04 2023-01-10 Safran Transmission Systems Mechanical gearbox for an aircraft turbomachine
FR3116096A1 (fr) * 2020-11-12 2022-05-13 Safran Transmission Systems Reducteur mecanique de turbomachine d’aeronef
EP4001619A1 (de) 2020-11-12 2022-05-25 Safran Transmission Systems Mechanisches reduktionsgetriebe für turbotriebwerk eines luftfahrzeugs
US11739829B2 (en) 2020-11-12 2023-08-29 Safran Transmission Systems Mechanical reduction gear for an aircraft turbomachine

Also Published As

Publication number Publication date
WO2020118336A1 (de) 2020-06-18

Similar Documents

Publication Publication Date Title
EP3631203B1 (de) Windkraftanlagengetriebe und verfahren zur herstellung einer achse für ein windkraftanlagengetriebe
AT519938B1 (de) Verfahren zur Herstellung einer Gleitlagerbüchse
AT509624B1 (de) Windkraftanlage
EP1764522B1 (de) Lagerelement
EP3023456B1 (de) Gleitlagerelement
EP1717469B1 (de) Lagerelement
EP1892429B1 (de) Laufschicht für ein Lagerelement
AT502630B1 (de) Bauelement, insbesondere formteil, mit einer beschichtung
DE102018009737A1 (de) Windkraftanlagengetriebe mit zumindest einem Gleitlager
EP0832155B1 (de) Gleitschichtmaterial
EP1723263B1 (de) Gesinterter gleitlagerwerkstoff, gleitlagerverbundwerkstoff sowie dessen verwendungen
DE4106001C2 (de) Gleit- bzw. Schiebematerial und Verfahren zu seiner Herstellung
AT501811B1 (de) Lagerelement
DD141555A1 (de) Waelzlager und verfahren sowie antifriktionswerkstoff zu seiner herstellung
EP3001071A1 (de) Öldurchbohrung Planetensteg
AT510190B1 (de) Verfahren zum herstellen eines mehrschichtigen gleitlagers
DE102009019593B4 (de) Fanglager zum Auffangen einer Rotorwelle einer Maschine
EP3894715B1 (de) Gondel für eine windkraftanlage
AT523588B1 (de) Gleitlack
WO2017009223A1 (de) Gleitlager eines windkraftanlage-getriebes
EP3087214B1 (de) Mehrschichtgleitlager
DE102008050401A1 (de) Lageranordnung
EP3910206A1 (de) Gleitlager, gleitlageranordnung, getriebe und antriebsstrang für windkraftanlage
DE102022213022A1 (de) Gleitlagerring und Verfahren zur Herstellung eines Gleitlagerrings
EP4050227A1 (de) Gleitlager, getriebe, windkraftanlage und herstellungsverfahren