DE102017103856A1 - Optoelektronischer Halbleiterchip - Google Patents

Optoelektronischer Halbleiterchip Download PDF

Info

Publication number
DE102017103856A1
DE102017103856A1 DE102017103856.6A DE102017103856A DE102017103856A1 DE 102017103856 A1 DE102017103856 A1 DE 102017103856A1 DE 102017103856 A DE102017103856 A DE 102017103856A DE 102017103856 A1 DE102017103856 A1 DE 102017103856A1
Authority
DE
Germany
Prior art keywords
quantum well
radiation
semiconductor chip
optoelectronic semiconductor
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102017103856.6A
Other languages
English (en)
Inventor
Andreas Rudolph
Markus Bröll
Wolfgang Schmid
Johannes Baur
Martin Behringer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Priority to DE102017103856.6A priority Critical patent/DE102017103856A1/de
Priority to PCT/EP2018/054400 priority patent/WO2018153994A1/de
Priority to KR1020197024064A priority patent/KR102295678B1/ko
Priority to CN201880013936.4A priority patent/CN110337730A/zh
Priority to US16/482,487 priority patent/US11094844B2/en
Publication of DE102017103856A1 publication Critical patent/DE102017103856A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/08Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a plurality of light emitting regions, e.g. laterally discontinuous light emitting layer or photoluminescent region integrated within the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0008Devices characterised by their operation having p-n or hi-lo junctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/002Devices characterised by their operation having heterojunctions or graded gap
    • H01L33/0025Devices characterised by their operation having heterojunctions or graded gap comprising only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/14Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a carrier transport control structure, e.g. highly-doped semiconductor layer or current-blocking structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

Es wird ein optoelektronischer Halbleiterchip (10) beschrieben, umfassend:- einen p-Typ-Halbleiterbereich (4),- einen n-Typ-Halbleiterbereich (9),- eine zwischen dem p-Typ-Halbleiterbereich (4) und dem n-Typ-Halbleiterbereich (9) angeordnete aktive Schicht (6), die als Mehrfach-Quantentopfstruktur (6A, 6B) ausgebildet ist und abwechselnde Quantentopfschichten (6A) und Barriereschichten (6B) aufweist, wobei die Quantentopfschichten (6A) zur Emission einer ersten Strahlung (21) in einem ersten Wellenlängenbereich geeignet sind, und- mindestens eine weitere Quantentopfschicht (7A), die außerhalb der Mehrfach-Quantentopfstruktur (6A, 6B) angeordnet ist und zur Emission einer zweiten Strahlung (22) in einem zweiten Wellenlängenbereich geeignet ist,wobei- der erste Wellenlängenbereich im für das menschliche Auge unsichtbaren infraroten Spektralbereich liegt, und- der zweite Wellenlängenbereich Wellenlängen umfasst, die zumindest zum Teil für das menschliche Auge sichtbar sind.

Description

  • Die Erfindung betrifft einen optoelektronischen Halbleiterchip, insbesondere einen zur Emission infraroter Strahlung geeigneten optoelektronischen Halbleiterchip.
  • Bei optoelektronischen Halbleiterchips, die infrarote Strahlung mit hoher Leistungsdichte emittieren, besteht die Gefahr, dass Körperteile wie insbesondere die Augen einer hohen Strahlungsleistung ausgesetzt und dabei geschädigt werden. Diese Gefahr besteht bei Anwendungen von Infrarotstrahlung emittierenden optoelektronischen Halbleiterchips insbesondere deshalb, da die Infrarotstrahlung für das menschliche Auge nicht sichtbar ist.
  • Der Erfindung liegt die Aufgabe zugrunde, einen infrarote Strahlung emittierenden optoelektronischen Halbleiterchip anzugeben, bei dessen Betrieb die Gefahr verringert ist, dass Körperteile wie insbesondere die Augen von der infraroten Strahlung geschädigt werden.
  • Diese Aufgabe wird durch einen optoelektronischen Halbleiterchip gemäß dem unabhängigen Patentanspruch 1 gelöst. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche.
  • Der optoelektronische Halbleiterchip umfasst gemäß zumindest einer Ausgestaltung einen p-Typ-Halbleiterbereich, einen n-Typ-Halbleiterbereich und eine zwischen dem p-Typ-Halbleiterbereich und dem n-Typ-Halbleiterbereich angeordnete aktive Schicht, die als Mehrfach-Quantentopfstruktur ausgebildet ist.
  • Gemäß zumindest einer Ausgestaltung weist die Mehrfach-Quantentopfstruktur abwechselnde Quantentopfschichten und Barriereschichten auf. Die Barriereschichten weisen jeweils eine größere Bandlücke als die Quantentopfschichten auf. Die Quantentopfschichten der Mehrfach-Quantentopfstruktur sind zur Emission einer ersten Strahlung in einem ersten Wellenlängenbereich geeignet. Der erste Wellenlängenbereich liegt im infraroten Spektralbereich, der insbesondere für das menschliche Auge unsichtbar ist. Bei dem optoelektronischen Halbleiterchip kann es sich insbesondere um eine Infrarot-Strahlung emittierende Diode (IRED) handeln.
  • Die Quantentopfschichten der Mehrfach-Quantentopfstruktur weisen eine elektronische Bandlücke EQW1 auf, die einer Emissionswellenlänge im Infrarot-Spektralbereich entsprechen. Insbesondere weisen alle Quantentopfschichten der Mehrfach-Quantentopfstruktur die gleiche elektronische Bandlücke EQW1 auf.
  • Gemäß zumindest einer Ausgestaltung umfasst der optoelektronische Halbleiterchip mindestens eine weitere Quantentopfschicht, die außerhalb der Mehrfach-Quantentopfstruktur angeordnet ist und zur Emission einer zweiten Strahlung in einem zweiten Wellenlängenbereich eingerichtet ist. Der zweite Wellenlängenbereich umfasst Wellenlängen, die zumindest zum Teil für das menschliche Auge sichtbar sind. Der zweite Wellenlängenbereich liegt insbesondere zumindest teilweise im sichtbaren Bereich des elektromagnetischen Spektrums und umfasst zumindest teilweise kürzere Wellenlängen als der erste Wellenlängenbereich.
  • Beispielsweise kann der zweite Wellenlängenbereich rotes Licht umfassen.
  • Beim Betrieb des optoelektronischen Halbleiterchips werden vorteilhaft die erste Strahlung der Mehrfach-Quantentopfstruktur und die zweite Strahlung der mindestens einen weiteren Quantentopfschicht gleichzeitig emittiert. Somit emittiert der optoelektronische Halbleiterchip zum einen die für das menschliche Auge nicht wahrnehmbare erste Strahlung und gleichzeitig die für das menschliche Auge zumindest teilweise wahrnehmbare zweite Strahlung. Bei der ersten Strahlung, die von den Quantentopfschichten der Mehrfach-Quantentopfstruktur emittiert wird, handelt es sich insbesondere um die für die Anwendung des optoelektronischen Halbleiterchips vorgesehene Nutzstrahlung.
  • Die von der zusätzlich vorhandenen mindestens einen weiteren Quantentopfschicht emittierte zweite Strahlung ist dazu vorgesehen, beim Betrieb des optoelektronischen Halbleiterchips zu signalisieren, dass der optoelektronische Halbleiterchip Strahlung emittiert. Insbesondere macht es die in dem zweiten Wellenlängenbereich enthaltene sichtbare Strahlung für einen Anwender des optoelektronischen Halbleiterchips erkennbar, wo die emittierte Strahlung auftrifft. Auf diese Weise wird die Gefahr verringert, dass Körperteile wie insbesondere die Augen des Anwenders unbemerkt von der infraroten Nutzstrahlung des optoelektronischen Halbleiterchips getroffen und auf diese Weise möglicherweise geschädigt werden. Insbesondere kann durch die sichtbare zweite Strahlung der Lidschlussreflex des menschlichen Auges ausgelöst werden und so das Auge vor einer zu hohen Leistungsaufnahme durch die nicht sichtbare infrarote erste Strahlung geschützt werden.
  • Bei einer vorteilhaften Ausgestaltung weist die zweite Strahlung ein Intensitätsmaximum bei einer Wellenlänge zwischen 750 nm und 850 nm auf, beispielsweise bei etwa 800 nm. Bei dieser Ausgestaltung liegt das Intensitätsmaximum der zweiten Strahlung insbesondere im nahen Infrarot-Spektralbereich und ist für das menschliche Auge unsichtbar. Für die Sichtbarkeit der zweiten Strahlung ist es ausreichend und vorteilhaft, wenn nur die kurzwelligen Ausläufer des Spektrums der zweiten Strahlung in den sichtbaren, insbesondere roten Spektralbereich, fallen. Die Lage des Intensitätsmaximums der zweiten Strahlung im nicht sichtbaren infraroten Spektralbereich, insbesondere zwischen 750 nm und 850 nm, hat den Vorteil, dass der sichtbare Anteil der emittierten zweiten Strahlung nicht zu groß wird, wodurch die Funktionalität der Anwendung des optoelektronischen Halbleiterchips möglicherweise beeinträchtigt werden könnte. Insbesondere wird auf diese Weise vermieden, dass eine Blendung des Anwenders durch die sichtbare Strahlung erfolgt.
  • Die von der Mehrfach-Quantentopfstruktur emittierte erste Strahlung weist vorzugsweise ein Intensitätsmaximum bei einer Wellenlänge zwischen 850 nm und 1000 nm auf. Die für die Anwendung des optoelektronischen Halbleiterchips vorgesehene erste Strahlung weist insbesondere ein Emissionsspektrum auf, dessen Wellenlängenbereich vollständig im für das menschliche Auge nicht wahrnehmbaren infraroten Spektralbereich liegt.
  • Gemäß zumindest einer Ausgestaltung weist die mindestens eine weitere Quantentopfschicht eine Bandlücke EQW2 auf, die größer als die Bandlücke EQW1 der Quantentopfschichten der Mehrfach-Quantentopfstruktur ist. Aufgrund der größeren Bandlücke ist die Emissionswellenlängenbereich der zweiten Strahlung im Vergleich zum Emissionswellenlängenbereich der ersten Strahlung zu kürzeren Wellenlängen hin verschoben. Um den Wellenlängenbereich der zweiten Strahlung zumindest teilweise bis in den sichtbaren Bereich zu verschieben, ist es vorteilhaft, wenn die Bandlücke EQW2 der mindestens einen weiteren Quantentopfschicht um mindestens 0,1 eV größer ist als die Bandlücke EQW1 der Quantentopfschichten der Mehrfach-Quantentopfstruktur. Insbesondere ist EQW2 - EQW1 ≥ 0,1 eV und bevorzugt EQW2 - EQW1 ≥ 0,15 eV.
  • Gemäß einer bevorzugten Ausführungsform basieren die Halbleiterschichten des optoelektronisches Halbleiterchips auf einem Arsenidverbindungshalbleiter, Phosphidverbindungshalbleiter oder Arsenid-Phosphidverbindungshalbleiter. Insbesondere können die Halbleiterschichten jeweils InxAlyGa1-x-yAsnP1-n umfassen, wobei 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1 und 0 ≤ n ≤ 1. Dabei muss dieses Material nicht zwingend eine mathematisch exakte Zusammensetzung nach obiger Formel aufweisen. Vielmehr kann es einen oder mehrere Dotierstoffe sowie zusätzliche Bestandteile aufweisen, die die charakteristischen physikalischen Eigenschaften des InxAlyGa1-x-yAsnP1-n Materials im Wesentlichen nicht ändern. Der Einfachheit halber beinhaltet obige Formel jedoch nur die wesentlichen Bestandteile des Kristallgitters (In, Al, Ga, As, P), auch wenn diese teilweise durch geringe Mengen weiterer Stoffe ersetzt sein können.
  • Insbesondere können die Quantentopfschichten der Mehrfach-Quantentopfstruktur und die mindestens eine weitere Quantentopfschicht jeweils InxAlyGa1-x-yAs mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1 aufweisen.
  • Die Bandlücke der Quantentopfschichten und der zwischen den Quantentopfschichten angeordneten Barriereschichten kann insbesondere durch die Materialzusammensetzung eingestellt werden. Eine Vergrößerung der Bandlücke kann insbesondere dadurch erzielt werden, dass der Aluminiumgehalt y erhöht und/oder der Indiumgehalt x vermindert wird. Vorzugsweise ist daher der Aluminiumgehalt y der weiteren Quantentopfschicht größer als der Aluminiumgehalt y der Quantentopfschichten der Mehrfach-Quantentopfstruktur und/oder der Indiumgehalt x der der weiteren Quantentopfschicht kleiner als der Indiumgehalt x der Quantentopfschichten der Mehrfach-Quantentopfstruktur.
  • Gemäß zumindest einer weiteren vorteilhaften Ausgestaltung weist die mindestens eine weitere Quantentopfschicht eine geringere Dicke als die Quantentopfschichten der Mehrfach-Quantentopfstruktur auf. Auf diese Weise kann zusätzlich oder alternativ zur Veränderung der Materialzusammensetzung eine Vergrößerung der elektronischen Bandlücke bewirkt werden. Vorzugsweise beträgt die Dicke der mindestens einen weiteren Quantentopfschicht nicht mehr als 5 nm. Die mindestens eine weitere Quantentopfschicht weist beispielsweise eine Dicke zwischen einschließlich 3 nm und einschließlich 5 nm auf.
  • Gemäß zumindest eine Ausgestaltung ist die mindestens eine weitere Quantentopfschicht an einer dem n-Typ Halbleiterbereich zugewandten Seite der Mehrfach-Quantentopfstruktur angeordnet. Bei dieser Ausgestaltung kann die mindestens eine weitere Quantentopfschicht insbesondere unmittelbar an die dem n-Typ Halbleiterbereich zugewandte Seite der Mehrfach-Quantentopfstruktur angrenzen. Die Anordnung der mindestens einen weiteren Quantentopfschicht an der dem n-Typ Halbleiterbereich zugewandten Seite der Mehrfach-Quantentopfstruktur hat den Vorteil, dass nur wenige Löcher bis in diesen Bereich gelangen und somit nur wenige Ladungsträger in diesem Bereich rekombinieren. Die von der mindestens einen weiteren Quantentopfschicht emittierte zweite Strahlung weist somit nur eine vorteilhaft geringe Intensität auf. Diese soll ausreichend sein, dass der Betriebszustand des optoelektronischen Halbleiterchips erkennbar ist, wobei aber nur ein geringer Anteil der emittierten Strahlungsleistung zur zweiten Strahlung beiträgt.
  • Gemäß einer alternativen Ausgestaltung ist die mindestens eine weitere Quantentopfschicht an einer dem p-Typ Halbleiterbereich zugewandten Seite der Mehrfach-Quantentopfstruktur angeordnet. Bei dieser Ausgestaltung kann die Mehrfach-Quantentopfstruktur insbesondere zwischen einer n-seitigen Einschlussschicht (n-confinement layer) und einer p-seitigen Einschlussschicht (p-confinement layer) angeordnet sein, wobei die p-seitige Einschlussschicht zwischen der Mehrfach-Quantentopfstruktur und der mindestens einen weiteren Quantentopfschicht angeordnet ist. Diese Anordnung der mindestens einen weiteren Quantentopfschicht hat den Vorteil, dass nur wenige Elektronen bis in diesen Bereich gelangen und somit nur wenige Ladungsträger in der weiteren Quantentopfschicht rekombinieren. Die von der mindestens einen weiteren Quantentopfschicht emittierte zweite Strahlung weist somit nur eine vorteilhaft geringe Intensität auf.
  • Zur Emission der zumindest teilweise sichtbaren zweiten Strahlung kann bei dem optoelektronischen Halbleiterchip genau eine weitere Quantentopfschicht vorgesehen sein. Dies kann vorteilhaft sein, um nur eine geringe Strahlungsleistung im zweiten Wellenlängenlängenbereich zu erzielen. Der Hauptanteil der vom optoelektronischen Halbleiterchip emittierten Strahlung liegt im für die Anwendung vorgesehenen ersten Wellenlängenbereich. Alternativ ist es aber auch möglich, dass der optoelektronische Halbleiterchip mehr als eine weitere Quantentopfschicht zur Emission der zweiten Strahlung enthält. Gemäß zumindest einer Ausführungsform beträgt die Anzahl der zur Emission der zweiten Strahlung vorgesehenen weiteren Quantentopfschichten zwischen 1 und 3. Bei mehr als 3 weiteren Quantentopfschichten würde der Anteil der zweiten Strahlung, die zur Sichtbarmachung der Strahlungsemission und nicht als für die Anwendung vorgesehene Nutzstrahlung vorgesehen ist, an der gesamten emittierten Strahlung unerwünscht groß.
  • Gemäß zumindest einer Ausgestaltung ist eine Anzahl der zur Emission der ersten Strahlung vorgesehenen Quantentopfschichten mindestens fünfmal, bevorzugt mindestens zehnmal größer ist als die Anzahl der zur Emission der zweiten Strahlung vorgesehenen weitere(n) Quantentopfschicht(en). Bei einer vorteilhaften Ausgestaltung weist die Mehrfach-Quantentopfstruktur mindestens 3, bevorzugt mindestens 6 Quantentopfschichten auf. Die Mehrfach-Quantentopfstruktur enthält vorteilhaft nicht mehr als 30, bevorzugt nicht mehr als 18 Quantentopfschichten. Dadurch, dass die Anzahl der Quantentopfschichten der die erste Strahlung emittierenden Mehrfach-Quantentopfstruktur wesentlich größer als die Anzahl der weiteren Quantentopfschichten ist, die die zweite Strahlung emittieren, wird die Strahlung des optoelektronischen Halbleiterchips im Wesentlichen im als Nutzstrahlung vorgesehen ersten Wellenlängenbereich emittiert.
  • Bei dem optoelektronischen Halbleiterchip kann es sich insbesondere um eine Hochleistungs-Infrarotdiode handeln. Die erste Strahlung weist vorzugsweise eine Strahlungsleistung von mindestens 4,5 W auf. Der optoelektronische Halbleiterchip kann beispielsweise eine Strahlungsaustrittsfläche von 1 mm2 oder mehr aufweisen. Eine Betriebsstromstärke des optoelektronischen Halbleiterchips beträgt vorteilhaft 5 A oder mehr.
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen im Zusammenhang mit den Figuren 1 bis 4 näher erläutert.
  • Es zeigen:
    • 1 eine schematische Darstellung eines Querschnitts durch einen optoelektronischen Halbleiterchip gemäß einem ersten Ausführungsbeispiel,
    • 2 eine schematische graphische Darstellung der Energie EL des Leitungsbands bei einem optoelektronischen Halbleiterchip gemäß dem ersten Ausführungsbeispiel,
    • 3 eine schematische graphische Darstellung der Energie EL des Leitungsbands bei einem optoelektronischen Halbleiterchip gemäß einem zweiten Ausführungsbeispiel, und
    • 4 eine schematische Darstellung eines Querschnitts durch einen optoelektronischen Halbleiterchip gemäß dem zweiten Ausführungsbeispiel.
  • Gleiche oder gleichwirkende Elemente sind in den Figuren mit den gleichen Bezugszeichen dargestellten. Die dargestellten Bestandteile sowie die Größenverhältnisse der Bestandteile untereinander sind nicht als maßstabsgerecht anzusehen.
  • Der in 1 dargestellte optoelektronische Halbleiterchip 20 gemäß einem Ausführungsbeispiel ist ein Lumineszenzdiodenchip, der zur Emission von infraroter Strahlung vorgesehen ist. Insbesondere ist der optoelektronische Halbleiterchip 20 eine IR-Strahlung emittierende Diode (IRED). Der optoelektronische Halbleiterchip 20 weist einen p-Typ-Halbleiterbereich 4, einen n-Typ-Halbleiterbereich 9 und eine zwischen dem p-Typ-Halbleiterbereich 4 und dem n-Typ-Halbleiterbereich 9 angeordnete zur Emission von IR-Strahlung geeignete aktive Schicht 6 auf. Bei dem Ausführungsbeispiel des optoelektronischen Halbleiterchips 20 handelt es sich um einen sogenannten Dünnfilm-Halbleiterchip, von dem ein ursprünglich zum epitaktischen Aufwachsen der Halbleiterschichten verwendetes Aufwachssubstrat abgelöst wurde und stattdessen die Halbleiterschichtenfolge mittels einer Verbindungsschicht 2, insbesondere einer Lotschicht, mit einem vom Aufwachssubstrat verschiedenen Trägersubstrat 1 verbunden wurde.
  • Bei einem solchen Dünnfilm-Leuchtdiodenchip ist der p-Typ-Halbleiterbereich 4 in der Regel dem Trägersubstrat 1 zugewandt. Zwischen dem p-Typ-Halbleiterbereich 4 und dem Trägersubstrat 1 ist vorteilhaft eine Spiegelschicht 3 angeordnet, welche vorteilhaft in Richtung des Trägersubstrats 1 emittierte Strahlung in Richtung zu einer Strahlungsaustrittsfläche 12 des optoelektronischen Halbleiterchips 20 hin umlenkt. Die Spiegelschicht 3 ist beispielsweise eine Metallschicht, die Ag, Al oder Au enthält.
  • Zur elektrischen Kontaktierung des optoelektronischen Halbleiterchips 20 können beispielsweise eine n-Anschlussschicht 10 auf einem Teilbereich der Strahlungsaustrittsfläche 12 und eine p-Anschlussschicht 11 an einer Rückseite des Trägersubstrats 1 vorgesehen sein.
  • Der p-Typ-Halbleiterbereich 4 und der n-Typ-Halbleiterbereich 9 können jeweils aus mehreren Teilschichten aufgebaut sein und müssen nicht notwendigerweise ausschließlich aus p-dotierten Schichten oder n-dotierten Schichten bestehen, sondern können beispielsweise auch eine oder mehrere undotierte Schichten aufweisen.
  • Alternativ zu dem dargestellten Ausführungsbeispiel könnte der optoelektronische Halbleiterchip 20 auch eine entgegengesetzte Polarität aufweisen, das heißt, es könnte der n-Typ-Halbleiterbereich 9 einem Substrat und der p-Typ-Halbleiterbereich 4 einer Strahlungsaustrittsfläche 12 des optoelektronischen Halbleiterchips zugewandt sein (nicht dargestellt). Dies ist in der Regel bei optoelektronischen Halbleiterchips der Fall, bei denen das zum epitaktischen Aufwachsen der Halbleiterschichten verwendete Aufwachssubstrat nicht abgelöst wird, da in der Regel der n-Typ-Halbleiterbereich zuerst auf das Aufwachssubstrat aufgewachsen wird.
  • Die zur Emission von infraroter Strahlung vorgesehene aktive Schicht 6 des optoelektronischen Halbleiterchips 20 ist als Mehrfach-Quantentopfstruktur 6A, 6B ausgebildet. Die Mehrfach-Quantentopfstruktur 6A, 6B weist eine Mehrzahl von abwechselnd angeordneten Quantentopfschichten 6A und Barriereschichten 6B auf. Bei dem dargestellten Ausführungsbeispiel weist die Mehrfach-Quantentopfstruktur zwölf Schichtpaare aus jeweils einer Quantentopfschicht 6A und einer Barriereschicht 6B auf. Im Allgemeinen beträgt die Anzahl der Schichtpaare der Mehrfach-Quantentopfstruktur vorteilhaft zwischen 3 und 30, bevorzugt zwischen 6 und 18. Die Quantentopfschichten 6A weisen vorzugsweise eine Dicke zwischen 3 nm und 10 nm auf. Die an die Quantentopfschichten 6A angrenzenden Barriereschichten 6B weisen vorteilhaft eine Dicke zwischen 3 nm und 30 nm, bevorzugt zwischen 3 nm und 10 nm und besonders bevorzugt zwischen 5 nm und 7 nm auf.
  • Die aktive Schicht 6 ist zwischen einer p-seitigen Einschlussschicht 5 und einer n-seitigen Einschlussschicht 8 angeordnet. Die Einschlussschichten 5, 8 weisen vorzugsweise eine größere elektronische Bandlücke als die in der aktiven Schicht 6 enthaltenen Halbleiterschichten auf und dienen zum Einschluss (confinement) von Ladungsträgern (Elektronen und Löcher) in der aktiven Schicht 6, um die strahlende Rekombination der Ladungsträger in der aktiven Schicht 6 zu begünstigen.
  • In der Mehrfachquantentopfstruktur 6A, 6B weisen die Quantentopfschichten 6A eine Bandlücke EQW1 und die Barriereschichten 6B eine Bandlücke EB1 > EQW1 auf. Die Bandlücke EQW1 der Quantentopfschichten 6A ist derart gewählt, dass die Quantentopfschichten 6A zur Emission von Strahlung im infraroten Spektralbereich geeignet sind. Insbesondere sind die Quantentopfschichten 6A zur Emission einer ersten Strahlung 21 in einem ersten Wellenlängenbereich geeignet, der im für das menschliche Auge unsichtbaren infraroten Spektralbereich liegt. Die erste Strahlung 21 kann insbesondere ein Intensitätsmaximum bei einer Wellenlänge zwischen 850 nm und 1000 nm aufweisen.
  • Der optoelektronische Halbleiterchip 20 weist mindestens eine weitere Quantentopfschicht 7A auf, die außerhalb der Mehrfach-Quantentopfstruktur 6A, 6B angeordnet ist. Dies bedeutet insbesondere, dass die Quantentopfschichten 6A der Mehrfach-Quantentopfstruktur 6A nur auf einer Seite der mindestens einen weiteren Quantentopfschicht 7A angeordnet sind. Bei dem in 1 gezeigten Ausführungsbeispiel enthält der optoelektronische Halbleiterchip 20 vorteilhaft genau eine weitere Quantentopfschicht 7A, die zwischen der Mehrfach-Quantentopfstruktur 6A, 6B und der n-seitigen Einschlussschicht 8 angeordnet ist. Die mindestens eine weitere Quantentopfschicht 7A kann an mindestens eine weitere Barriereschicht 7B angrenzen. Die mindestens eine weitere Quantentopfschicht 7A und die mindestens eine weitere Barriereschicht 7B bilden so eine weitere Quantentopfstruktur 7 aus, die vorzugsweise eine Einfach-Quantentopfstruktur ist.
  • Die mindestens eine weitere Quantentopfschicht 7A weist eine elektronische Bandlücke EQW2 > EQW1 auf und ist zur Emission einer zweiten Strahlung 22 in einem zweiten Wellenlängenbereich geeignet. Der zweite Wellenlängenbereich umfasst kürzere Wellenlängen als der erste Wellenlängenbereich, sodass die zweite Strahlung 22 zumindest teilweise für das menschliche Auge sichtbar ist. Vorzugsweise ist EQW2 - EQW1 > 0,1 eV, besonders bevorzugt EQW2 - EQW1 > 0,15 eV.
  • Die von der mindestens einen weiteren Quantentopfschicht 7A emittierte zweite Strahlung 22 kann insbesondere sichtbares rotes Licht umfassen. Es ist aber nicht erforderlich, dass die gesamte zweite Strahlung 22 im sichtbaren Spektralbereich liegt. Vielmehr ist es ausreichend und sogar vorteilhaft, wenn das Intensitätsmaximum der zweiten Strahlung 22 im IR-Bereich liegt und nur ein Anteil der zweiten Strahlung 22 bei Wellenlängen unterhalb des Intensitätsmaximums in den sichtbaren Spektralbereich fällt. Auf diese Weise wird erreicht, dass in der mindestens einen weiteren Quantentopfschicht 7A nur wenig Verlustleistung entsteht. Das Intensitätsmaximum der zweiten Strahlung 22 liegt vorzugsweise im Wellenlängenbereich zwischen 750 nm und 850 nm.
  • Durch die mittels der weiteren Quantentopfschicht 7A bewirkte Beimischung sichtbarer Strahlung zur IR-Strahlung der aktiven Schicht 6 wird vorteilhaft erreicht, dass für den Anwender erkennbar ist, dass sich der optoelektronische Halbleiterchip 20 im Betriebszustand befindet und Strahlung emittiert. Dies ist insbesondere für IR-Lumineszenzdiodenchips vorteilhaft, die vergleichsweise hohe Strahlungsleistungen emittieren, um die Gefahr zu vermindern, dass Körperteile wie insbesondere die Augen unerkannt der IR-Strahlung ausgesetzt werden. Der sichtbare Anteil der zweiten Strahlung 22 der mindestens einen weiteren Quantentopfschicht 7A kann vorteilhaft zum Beispiel den Lidschlussreflex des Auges auslösen.
  • Die Energie EL der Leitungsbandkante EL des Ausführungsbeispiels der 1 ist in 2 schematisch dargestellt. Die weitere Quantentopfschicht 7A weist vorteilhaft eine größere elektronische Bandlücke und entsprechend eine höhere Leitungsbandkante als die Quantentopfschichten 6A der Mehrfach-Quantentopfstruktur 6A, 6B auf. Die Bandlücke der Halbleitermaterialien kann insbesondere dadurch eingestellt werden, dass der Aluminiumgehalt und/oder der Indiumgehalt in dem Halbleitermaterial variiert wird. Beispielsweise können die Quantentopfschichten 6A und die mindestens eine weitere Quantentopfschicht 7A jeweils Halbleitermaterialien mit der Zusammensetzung InxAlyGa1-x-yAs oder InxAlyGa1-x-yP mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1 aufweisen, wobei die mindestens eine weitere Quantentopfschicht 7A einen größeren Aluminiumgehalt x und/oder einen geringeren Indiumgehalt aufweist als die Quantentopfschichten 6A aufweist.
  • Alternativ oder zusätzlich kann die mindestens eine weitere Quantentopfschicht 7A eine geringere Dicke als die Quantentopfschichten 6A der Mehrfach-Quantentopfstruktur 6A, 6B aufweisen. Auf diese Weise kann zusätzlich oder alternativ zur Veränderung der Materialzusammensetzung eine Vergrößerung der elektronischen Bandlücke bewirkt werden. Vorzugsweise beträgt die Dicke der mindestens einen weiteren Quantentopfschicht 7A nicht mehr als 5 nm. Die mindestens eine weitere Quantentopfschicht 7A weist beispielsweise eine Dicke zwischen einschließlich 3 nm und einschließlich 5 nm auf.
  • Die Barriereschichten 6B und die weiteren Barriereschichten 7B weisen jeweils eine größere elektronische Bandlücke als die angrenzenden Quantentopfschichten 6A, 7A aus. Die Barriereschichten 6B der Mehrfach-Quantentopfstruktur und/oder die weiteren Barriereschichten 7B können beispielsweise jeweils AlGaAsP aufweisen. Die weiteren Barriereschichten 7B weisen vorzugsweise eine größere Bandlücke als die Barriereschichten 6B der Mehrfachquantentopfstruktur auf. Dies kann insbesondere durch einen höheren Aluminiumanteil in den weiteren Barriereschichten 7B realisiert sein.
  • Die p-seitige Einschlussschicht 5 und die n-seitige Einschlussschicht 8 weisen vorteilhaft eine noch größere elektronische Bandlücke als die Quantentopfschichten 6A, 7A und Barriereschichten 6B, 7B aufweisen. Die Einschlussschichten 5, 8 dienen insbesondere zum Einschluss von Ladungsträgern in der aktiven Schicht 6. Bevorzugt enthalten die Einschlussschichten 5, 8 jeweils AlGaAs.
  • Bei dem Ausführungsbeispiel gemäß den 1 und 2 ist die weitere Quantentopfschicht 7A zwischen der Mehrfach-Quantentopfstruktur 6A, 6B und der n-seitigen Einschlussschicht 8 angeordnet. Diese Anordnung ist vorteilhaft, weil nur wenige Löcher von der p-Seite durch die gesamte Mehrfach-Quantentopfstruktur 6A, 6B hindurch bis zur weiteren Quantentopfschicht 7A gelangen. In der weiteren Quantentopfschicht 7A wird deshalb vorteilhaft nur wenig zweite Strahlung 22 erzeugt. Die nur zur Sichtbarmachung der Strahlungsemission des optoelektronischen Halbleiterchips 20 dienende zweite Strahlung 22 trägt daher nur vorteilhaft wenig zur Verlustleistung des optoelektronischen Halbleiterchips 20 bei.
  • In 3 ist die Energie der Leitungsbandkante eines zweiten Ausführungsbeispiel des optoelektronischen Halbleiterchips 20 und in 4 eine schematische Darstellung eines Querschnitt durch den optoelektronischen Halbleiterchip 20 gemäß dem zweiten Ausführungsbeispiel dargestellt. Das zweite Ausführungsbeispiel entspricht im Wesentlichen dem ersten Ausführungsbeispiel, wobei ein Unterschied aber in der Anordnung der weiteren Quantentopfschicht 7A besteht.
  • Bei dem zweiten Ausgangsbeispiel ist die weitere Quantentopfschicht 7A an einer dem p-Typ Halbleiterbereich 4 zugewandten Seite der Mehrfach-Quantentopfstruktur 6A, 6B angeordnet. Anders als bei dem ersten Ausführungsbeispiel grenzt die weitere Quantentopfschicht 7A auch nicht unmittelbar an die Mehrfach-Quantentopfstruktur 6A, 6B an. Vielmehr ist die p-Einschlussschicht 5 zwischen der Mehrfach-Quantentopfstruktur 6A, 6B und der weiteren Quantentopfschicht 7A angeordnet.
  • Die p-Einschlussschicht 5 wirkt in diesem Fall als zusätzliche Barriere für Elektronen, die sich aus der Mehrfach-Quantentopfstruktur 6A, 6B zur weiteren Quantentopfschicht 7A hin bewegen. Diese zusätzliche Barrierewirkung für Elektronen ist vorteilhaft, da Elektronen innerhalb der Halbleiterschichtenfolge eine größere Beweglichkeit als Löcher aufweisen. Würde man die weitere Quantentopfschicht 7A unmittelbar an der p-Seite der Mehrfach-Quantentopfstruktur 6A, 6B anordnen, würden vergleichsweise viele Elektronen und Löcher die weitere Quantentopfschicht 7A erreichen und dort strahlend rekombinieren. Durch die Anordnung der weiteren Quantentopfschicht 7A an einer von Mehrfach-Quantentopfstruktur 6A, 6B abgewandten Seite der p-Einschlussschicht 5 wird insbesondere die Anzahl der dort zur Rekombination vorhandenen Elektronen vermindert und so vorteilhaft erreicht, dass nur ein geringe Zahl von Ladungsträgern in der weiteren Quantentopfschicht 7A rekombiniert. Die lediglich zur Sichtbarmachung der Strahlungsemission dienende weitere Quantentopfschicht 7A trägt daher nur wenig zur Verlustleistung optoelektronischen Halbleiterchips 20 bei.
  • Die Erfindung ist nicht durch die Beschreibung anhand der Ausführungsbeispiele beschränkt. Vielmehr umfasst die Erfindung jedes neue Merkmal sowie jede Kombination von Merkmalen, was insbesondere jede Kombination von Merkmalen in den Patentansprüchen beinhaltet, auch wenn dieses Merkmal oder diese Kombination selbst nicht explizit in den Patentansprüchen oder Ausführungsbeispielen angegeben ist.
  • Bezugszeichenliste
  • 1
    Trägersubstrat
    2
    Verbindungsschicht
    3
    Spiegelschicht
    4
    p-Typ Halbleiterbereich
    5
    p-Einschlussschicht
    6
    Mehrfach-Quantentopfstruktur
    6A
    Quantentopfschicht
    6B
    Barriereschicht
    7
    weitere Quantentopfstruktur
    7A
    weitere Quantentopfschicht
    7B
    weitere Barriereschicht
    8
    n-Einschlussschicht
    9
    n-Typ Halbleiterbereich
    10
    n-Anschlussschicht
    11
    p-Anschlussschicht
    12
    Strahlungsaustrittsfläche
    20
    Halbleiterchip
    21
    erste Strahlung
    22
    zweite Strahlung

Claims (16)

  1. Optoelektronischer Halbleiterchip (10), umfassend: - einen p-Typ-Halbleiterbereich (4), - einen n-Typ-Halbleiterbereich (9), - eine zwischen dem p-Typ-Halbleiterbereich (4) und dem n-Typ-Halbleiterbereich (9) angeordnete aktive Schicht (6), die als Mehrfach-Quantentopfstruktur (6A, 6B) ausgebildet ist und abwechselnde Quantentopfschichten (6A) und Barriereschichten (6B) aufweist, wobei die Quantentopfschichten (6A) zur Emission einer ersten Strahlung (21) in einem ersten Wellenlängenbereich geeignet sind, und - mindestens eine weitere Quantentopfschicht (7A), die außerhalb der Mehrfach-Quantentopfstruktur (6A, 6B) angeordnet ist und zur Emission einer zweiten Strahlung (22) in einem zweiten Wellenlängenbereich geeignet ist, wobei - der erste Wellenlängenbereich im für das menschliche Auge unsichtbaren infraroten Spektralbereich liegt, und - der zweite Wellenlängenbereich Wellenlängen umfasst, die zumindest zum Teil für das menschliche Auge sichtbar sind.
  2. Optoelektronischer Halbleiterchip nach Anspruch 1, wobei die zweite Strahlung (22) ein Intensitätsmaximum bei einer Wellenlänge zwischen 750 nm und 850 nm aufweist.
  3. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei die erste Strahlung (21) ein Intensitätsmaximum bei einer Wellenlänge zwischen 850 nm und 1000 nm aufweist.
  4. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, bei dem die mindestens eine weitere Quantentopfschicht (7A) eine elektronische Bandlücke EQW2 aufweist, die größer als eine elektronische Bandlücke EQW1 der Quantentopfschichten (6A) der Mehrfach-Quantentopfstruktur ist, und wobei EQW2 - EQW1 ≥ 0,1 eV gilt.
  5. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei die Quantentopfschichten (6A) der Mehrfach-Quantentopfstruktur und die mindestens eine weitere Quantentopschicht (7A) jeweils InxAlyGa1-x-yAs oder InxAlyGa1-x-yP oder mit 0 ≤ x ≤ 1, 0 ≤ y ≤ 1 und x + y ≤ 1 aufweisen.
  6. Optoelektronischer Halbleiterchip nach Anspruch 5, wobei der Aluminiumgehalt y der mindestens einen weiteren Quantentopfschicht (7A) größer ist als der Aluminiumgehalt y der Quantentopfschicht (6A) der Mehrfach-Quantentopfstruktur (6A, 6B) ist.
  7. Optoelektronischer Halbleiterchip nach Anspruch 5 oder 6, wobei der Indiumgehalt x der mindestens einen weiteren Quantentopfschicht (7A) kleiner ist als der Indiumgehalt x der Quantentopfschichten der Mehrfach-Quantentopfstruktur (6A).
  8. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei die mindestens eine weitere Quantentopfschicht (7A) eine geringere Dicke als die Quantentopfschichten (6A) der Mehrfach-Quantentopfstruktur (6A, 6B) aufweist.
  9. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei die mindestens eine weitere Quantentopfschicht (7A) an einer dem n-Typ-Halbleiterbereich (9) zugewandten Seite der Mehrfach-Quantentopfstruktur (6A, 6B) angeordnet ist.
  10. Optoelektronischer Halbleiterchip nach Anspruch 9, wobei die mindestens eine weitere Quantentopfschicht (7A) unmittelbar an die Mehrfach-Quantentopfstruktur (6A, 6B) angrenzt.
  11. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei die mindestens eine weitere Quantentopfschicht (7A) an einer dem p-Typ-Halbleiterbereich (4) zugewandten Seite der Mehrfach-Quantentopfstruktur angeordnet ist.
  12. Optoelektronischer Halbleiterchip nach Anspruch 11, wobei die Mehrfach-Quantentopfstruktur (6A, 6B) zwischen einer p-seitigen Einschlussschicht (5) und einer n-seitigen Einschlussschicht (9) angeordnet ist, und wobei die p-seitige Einschlussschicht (5) zwischen der Mehrfach-Quantentopfstruktur (6A, 6B) und der mindestens einen weiteren Quantentopfschicht (7A) angeordnet ist.
  13. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei eine Anzahl der zur Emission der zweiten Strahlung (22) vorgesehenen weitere(n) Quantentopfschicht(en) (7A) zwischen 1 und 3 beträgt.
  14. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei eine Anzahl der zur Emission der ersten Strahlung (21) vorgesehenen Quantentopfschichten (6A) zwischen 3 und 30 beträgt.
  15. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei eine Anzahl der zur Emission der ersten Strahlung (21) vorgesehenen Quantentopfschichten (6A) mindestens fünfmal größer ist als die Anzahl der zur Emission der zweiten Strahlung (22) vorgesehenen weitere(n) Quantentopfschicht(en) (7A).
  16. Optoelektronischer Halbleiterchip nach einem der vorhergehenden Ansprüche, wobei die erste Strahlung (21) eine Leistung von mindestens 4,5 W aufweist.
DE102017103856.6A 2017-02-24 2017-02-24 Optoelektronischer Halbleiterchip Pending DE102017103856A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE102017103856.6A DE102017103856A1 (de) 2017-02-24 2017-02-24 Optoelektronischer Halbleiterchip
PCT/EP2018/054400 WO2018153994A1 (de) 2017-02-24 2018-02-22 Optoelektronischer halbleiterchip
KR1020197024064A KR102295678B1 (ko) 2017-02-24 2018-02-22 광전자 반도체 칩
CN201880013936.4A CN110337730A (zh) 2017-02-24 2018-02-22 光电子半导体芯片
US16/482,487 US11094844B2 (en) 2017-02-24 2018-02-22 Optoelectronic semiconductor chip with two separate light emitting layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102017103856.6A DE102017103856A1 (de) 2017-02-24 2017-02-24 Optoelektronischer Halbleiterchip

Publications (1)

Publication Number Publication Date
DE102017103856A1 true DE102017103856A1 (de) 2018-08-30

Family

ID=61258250

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102017103856.6A Pending DE102017103856A1 (de) 2017-02-24 2017-02-24 Optoelektronischer Halbleiterchip

Country Status (5)

Country Link
US (1) US11094844B2 (de)
KR (1) KR102295678B1 (de)
CN (1) CN110337730A (de)
DE (1) DE102017103856A1 (de)
WO (1) WO2018153994A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113140657B (zh) * 2021-05-13 2022-04-19 西安瑞芯光通信息科技有限公司 一种紫外led外延结构及其制备方法
CN115425521B (zh) * 2022-09-07 2023-07-21 武汉敏芯半导体股份有限公司 激光器

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69709581T2 (de) 1996-07-08 2002-08-22 Xerox Corp Oberflächenemittierender Laser mit mehreren Emissionswellenlängen und breitbandigem Bragg-Spiegel
DE102004004781A1 (de) 2004-01-30 2005-08-18 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement
US20110133156A1 (en) 2009-12-07 2011-06-09 Jong Hak Won Light emitting device and light emitting device package including the same

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08335718A (ja) 1995-06-08 1996-12-17 Daido Steel Co Ltd 発光ダイオード
JP3412007B2 (ja) 1999-09-03 2003-06-03 東北大学長 サブバンド間発光素子
US7031365B2 (en) * 2003-05-02 2006-04-18 Xerox Corporation Locally-outcoupled cavity resonator having unidirectional emission
JP2005101853A (ja) * 2003-09-24 2005-04-14 Fuji Xerox Co Ltd 光送信装置および光無線装置
US7745814B2 (en) * 2004-12-09 2010-06-29 3M Innovative Properties Company Polychromatic LED's and related semiconductor devices
US7402831B2 (en) * 2004-12-09 2008-07-22 3M Innovative Properties Company Adapting short-wavelength LED's for polychromatic, broadband, or “white” emission
DE102006025964A1 (de) * 2006-06-02 2007-12-06 Osram Opto Semiconductors Gmbh Mehrfachquantentopfstruktur, strahlungsemittierender Halbleiterkörper und strahlungsemittierendes Bauelement
DE102007015233A1 (de) 2007-03-29 2008-10-02 Osram Gesellschaft mit beschränkter Haftung Leuchtdiodenlampe, Leuchte mit einer Leuchtdiodenlampe, Verfahren zum Betrieb einer Leuchte und Verfahren zur Erzeugung einer elektrischen Verlustleistung bei einer Leuchtdiodenlampe
CN103117342B (zh) * 2011-11-17 2016-04-27 广东量晶光电科技有限公司 一种led发光结构
DE102013108782B4 (de) 2012-11-21 2024-05-08 Epistar Corp. Lichtemittierende Vorrichtung mit mehreren lichtemittierenden Stapelschichten
DE102013104351B4 (de) 2013-04-29 2022-01-20 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Halbleiterschichtenfolge und Verfahren zum Betreiben eines optoelektronischen Halbleiterchips
EP3009735A1 (de) * 2014-10-16 2016-04-20 Valeo Vision Leuchtmodul, das eine diode umfasst
DE102014117611A1 (de) * 2014-12-01 2016-06-02 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip
CN105470356A (zh) * 2015-12-08 2016-04-06 聚灿光电科技股份有限公司 一种双波长led芯片及其制备方法
CN105957929A (zh) * 2016-06-01 2016-09-21 聚灿光电科技股份有限公司 宽频谱GaN基LED外延结构及其制造方法
CN106410006B (zh) * 2016-06-22 2018-08-17 厦门乾照光电股份有限公司 一种集成可见光指示装置的紫外发光二极管及其生产方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69709581T2 (de) 1996-07-08 2002-08-22 Xerox Corp Oberflächenemittierender Laser mit mehreren Emissionswellenlängen und breitbandigem Bragg-Spiegel
DE102004004781A1 (de) 2004-01-30 2005-08-18 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement
US20110133156A1 (en) 2009-12-07 2011-06-09 Jong Hak Won Light emitting device and light emitting device package including the same

Also Published As

Publication number Publication date
KR20190102293A (ko) 2019-09-03
KR102295678B1 (ko) 2021-08-27
US11094844B2 (en) 2021-08-17
WO2018153994A1 (de) 2018-08-30
US20190371966A1 (en) 2019-12-05
CN110337730A (zh) 2019-10-15

Similar Documents

Publication Publication Date Title
EP2208240B1 (de) Optoelektronischer halbleiterchip mit einer mehrfachquantentopfstruktur
EP2519980B1 (de) Lichtemittierender halbleiterchip
EP2193550B1 (de) Strahlungsemittierender halbleiterkörper
DE102007044439B4 (de) Optoelektronischer Halbleiterchip mit Quantentopfstruktur
DE102017101731A1 (de) Lichtemittierende Vorrichtung
DE112018000553B4 (de) Optoelektronischer Halbleiterchip
WO2009039820A1 (de) Dünnfilm-led mit einer spiegelschicht und verfahren zu deren herstellung
DE102011112706A1 (de) Optoelektronisches Bauelement
DE102013107969B4 (de) Optoelektronischer Halbleiterchip
DE102016109022B4 (de) Laserdiodenchip
DE10246891A1 (de) Selektive Anordnung von Quantentöpfen in Licht emittierenden Flip-Chip-Dioden zur verbesserten Lichtextraktion
DE102017103856A1 (de) Optoelektronischer Halbleiterchip
DE112015005400B4 (de) Optoelektronischer Halbleiterchip mit Temperaturkompensation der Wellenlänge
DE102005037022A1 (de) Strahlungsemittierender optoelektronischer Halbleiterchip mit einer Diffusionsbarriere
EP3345224B1 (de) Optoelektronischer halbleiterchip und verfahren zu dessen herstellung
DE102015105693A1 (de) Strahlungsemittierendes Halbleiterbauelement
DE102011112713A1 (de) Optoelektronisches Bauelement
DE102019119991A1 (de) Optoelektronischer halbleiterchip
WO2001089046A1 (de) Licht emittierendes halbleiterbauelement
WO2019048370A1 (de) Licht emittierendes halbleiterbauelement
DE102017122032A1 (de) Laserdiode
WO2018234153A1 (de) Optoelektronischer halbleiterchip und verfahren zum betrieb des optoelektronischen halbleiterchips
DE102017107918A1 (de) Halbleiterchip
WO2017001296A1 (de) Optoelektronischer halbleiterchip

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed
R016 Response to examination communication