DE102016224032A1 - Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-from-Polymerisation - Google Patents

Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-from-Polymerisation Download PDF

Info

Publication number
DE102016224032A1
DE102016224032A1 DE102016224032.3A DE102016224032A DE102016224032A1 DE 102016224032 A1 DE102016224032 A1 DE 102016224032A1 DE 102016224032 A DE102016224032 A DE 102016224032A DE 102016224032 A1 DE102016224032 A1 DE 102016224032A1
Authority
DE
Germany
Prior art keywords
group
polymerization
polymerisable
silane compound
functional group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102016224032.3A
Other languages
English (en)
Inventor
Andreas Gonser
Wilfried Aichele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to DE102016224032.3A priority Critical patent/DE102016224032A1/de
Priority to CN201711248916.9A priority patent/CN108155354B/zh
Publication of DE102016224032A1 publication Critical patent/DE102016224032A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F292/00Macromolecular compounds obtained by polymerising monomers on to inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/387Tin or alloys based on tin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Anodenaktivmaterials und/oder einer Anode für eine Lithium-Zelle und/oder Lithium-Batterie, insbesondere für eine Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, und/oder zur Herstellung einer derartigen Lithium-Zelle und/oder Lithium-Batterie. Um die Zyklenstabilität der Lithium-Zelle und/oder Lithium-Batterie zu verbessern, wird in dem Verfahren mindestens eine Silanverbindung (2*) mit mindestens einer polymerisierbaren und/oder polymerisationsinitiierenden und/oder polymerisationskontrollierenden funktionellen Gruppe auf der Oberfläche von Anodenaktivmaterialpartikeln (1), insbesondere Siliciumpartikeln, immobilisiert und mindestens ein polymerisierbares Monomer (2) zugegeben. Darüber hinaus betrifft die Erfindung ein Anodenaktivmaterial, eine Anode und eine Lithium-Zelle und/oder Lithium-Batterie.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung eines Anodenaktivmaterials und/oder einer Anode für eine Lithium-Zelle und/oder Lithium-Batterie, insbesondere für eine Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, und/oder zur Herstellung einer derartigen Lithium-Zelle und/oder Lithium-Batterie sowie ein Anodenaktivmaterial und eine Anode sowie eine derartige Lithium-Zelle und/oder Lithium-Batterie.
  • Stand der Technik
  • Als Anodenaktivmaterial für Lithium-Ionen-Zellen und -Batterien kommt heutzutage hauptsächlich Graphit zum Einsatz. Graphit weist jedoch nur eine geringe Speicherkapazität auf.
  • Silicium kann als Anodenaktivmaterial für Lithium-Ionen-Zellen und -Batterien eine deutlich höhere Speicherkapazität bieten. Silicium durchläuft beim Zyklisieren jedoch starke Volumenänderungen, was dazu führen kann, dass eine sich auf der Siliciumoberfläche aus Elektrolytzersetzungsprodukten ausbildende SEI-Schicht (SEI, Englisch: Solid Electrolyte Interphase; Festelektrolyt-Inter-/Zwischenphase) bei einer Volumenvergrößerung des Siliciums reißen und bei einer Volumenverkleinerung des Siliciums abplatzen kann, so dass mit jedem Zyklus erneut Elektrolyt mit der Siliciumoberfläche in Kontakt kommt und die SEI-Bildung und Elektrolytzersetzung kontinuierlich fortschreitet, was zu einem irreversiblen Verlust an Lithium (und Elektrolyt) und somit einer deutlich geringeren Zyklenstabilität und Kapazität führen kann.
  • Die Druckschrift US 2014/0248543 A1 betrifft nanostrukturierte Silicium-Aktivmaterialien für Lithium-Ionen-Batterien.
  • Die Druckschrift US 2014/0248543 A1 betrifft eine Lithium-Ionen-Batterie mit einer Anode mit mindestens einem Aktivmaterial und mit einem Elektrolyten, welcher mindestens ein flüssiges Polymerlösungsmittel und mindestens ein Polymeradditiv umfasst.
  • Die Druckschrift US 2015/0072246 A1 betrifft einen nicht-wässrigen Flüssigelektrolyten für eine Batterie, welcher ein polymerisierbares Monomer als Additiv umfassen kann.
  • Die Druckschrift US 2010/0273066 A1 beschreibt eine Lithium-Luft-Batterie mit einem nicht-wässrigen Elektrolyten auf der Basis eines organischen Lösungsmittels, welcher ein Lithiumsalz und ein Additiv mit einer Alkylengruppe umfasst.
  • Die Druckschrift US 2012/0007028 A1 betrifft eine Verfahren zur Herstellung von Polymer-Silicium-Komposit-Partikeln, in dem ein Monomer zur Ausbildung einer Polymermatrix und Siliciumpartikel gemischt und die Mischung polymerisiert wird.
  • Die Druckschrift CN 104 362 300 betrifft ein Verfahren zur Herstellung eines Silicium-Kohlenstoff-Komposit-Anodenmaterials für eine Lithium-Ionen-Batterie.
  • Die Druckschrift US 2014/0342222 A1 betrifft Partikel mit einem Silicium-Kern und einer Block-Co-Polymer-Schale mit einem Block mit einer relativ hohen Affinität zu Silicium und mit einem Block mit einer relativ geringen Affinität zu Silicium.
  • H. Zhao et al beschreibt in J. Power Sources, 263, 2014, S. 288-295 die Verwendung von polymerisiertem Vinylencarbonat als Anodenbinder für Lithium-Ionen-Batterien.
  • J.-H. Min et al beschreibt in Bull. Korean. Chem. Soc., 2013, Vol. 34, No. 4., S. 1296-1299 die Bildung einer künstlichen SEI auf Siliciumpartikeln.
  • Die Druckschrift WO 2015/107581 betrifft ein Anodenmaterial für Batterien mit nicht-wässrigen Elektrolyten.
  • Offenbarung der Erfindung
  • Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung eines Anodenaktivmaterials und/oder einer Anode für eine Lithium-Zelle und/oder Lithium-Batterie, insbesondere für eine Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, und/oder zur Herstellung einer Zelle und/oder Lithium-Batterie, insbesondere einer Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie.
  • In dem Verfahren wird insbesondere mindestens eine Silanverbindung mit mindestens einer polymerisierbaren und/oder polymerisationsinitiierenden und/oder polymerisationskontrollierenden funktionellen Gruppe auf der Oberfläche von Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, immobilisiert und, insbesondere dann, mindestens ein polymerisierbares Monomer zugegeben - und insbesondere polymerisiert (graft-from-Polymerisation).
  • Unter Anodenaktivmaterialpartikeln können insbesondere Partikel verstanden werden, welche mindestens ein Anodenaktivmaterial umfassen.
  • Die Anodenaktivmaterialpartikel können beispielsweise Siliciumpartikel und/oder Graphitpartikel und/oder Zinnpartikel umfassen oder sein.
  • Unter Siliciumpartikeln können insbesondere Partikel verstanden werden, welche Silicium umfassen. Beispielsweise können unter Siliciumpartikeln Partikel verstanden werden, welche Silicium enthalten. Unter Siliciumpartikeln können daher insbesondere auch siliciumbasierte Partikel verstanden werden. Beispielsweise können Siliciumpartikel, insbesondere reines beziehungsweise elementares, Silicium, beispielsweise poröses Silicium, zum Beispiel nanoporöses Silicium, beispielsweise mit einer Porengröße im Nanometerbereich, und/oder Nanosilicium, beispielsweise mit einer Partikelgröße im Nanometerbereich, und/oder eine Silicium-Legierungsmatrix beziehungsweise eine Silicium-Legierung, zum Beispiel bei der Silicium in einer aktiven und/oder inaktiven Matrix eingebettet ist, und/oder einen Silicium-Kohlenstoff-Komposit und/oder Siliciumoxid (SiOx) umfassen beziehungsweise daraus ausgebildet sein. Zum Beispiel können die Siliciumpartikel aus, insbesondere reinem beziehungsweise elementarem, Silicium ausgebildet sein.
  • Unter Graphitpartikeln können insbesondere Partikel verstanden werden, welche Graphit umfassen.
  • Unter Zinnpartikeln können insbesondere Partikel verstanden werden, welche Zinn umfassen.
  • Insbesondere können die Anodenaktivmaterialpartikel Siliciumpartikel umfassen oder sein.
  • Die Silanfunktion der mindestens einen Silanverbindung kann vorteilhafterweise auf der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, beispielsweise kovalent, anbinden.
  • Dadurch, dass die mindestens eine Silanverbindung mit mindestens einer polymerisierbaren und/oder polymerisationsinitiierenden und/oder polymerisationskontrollierenden funktionellen Gruppe auf der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, immobilisiert wird, kann vorteilhafterweise ermöglicht werden, eine Polymerisation von der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, aus zu starten. So kann vorteilhafterweise eine oberflächeninitiierte Polymerisation (graft-from Polymerisation), beispielsweise eine oberflächeninitiierte lebende radikalische Polymerisation, wie eine oberflächeninitiierte, lebende radikalische Polymerisation unter Atomtransfer (oberflächeninitiierte ATRP; heterogene ATRP-Polymerisation) (ATRP, Englisch: Atom Transfer Radical Polymerization beziehungsweise Atomic Transfer Radical Polymerization) oder eine oberflächeninitiierte, stabile freie Radikale Polymerisation (oberflächeninitiierte SFRP, heterogene SFRP) (SFRP, Englisch: Stable Free Radical Polymerization), wie eine oberflächeninitiierte, Nitroxid-vermittelte Polymerisation (oberflächeninitiierte NMP; heterogene NMP-Polymerisation) (NMP, Englisch: Nitroxide-mediated Polymerization), oder eine oberflächeninitiierte, reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (oberflächeninitiierte RAFT; heterogene RAFT-Polymerisation) (RAFT, Englisch: Reversible Addition Fragmentation Chain Transfer Polymerization) oder eine oberflächeninitiierte Iod-Transfer-Polymerisation (oberflächeninitiierte ITP) (ITP, Englisch: Iodine-Transfer Polymerization), realisiert werden. Durch eine von der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, ausgehende Polymerisation kann vorteilhafterweise eine stabile, beispielsweise kovalente und/oder physikalische/mechanische, Verbindung und/oder Verhaftung zwischen den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, und dem durch die Polymerisation ausgebildeten Polymer erzielt und so eine Polymerschicht mit einer verbesserten Haftung auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildet werden.
  • Beispielsweise kann die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung - insbesondere mit dem mindestens einen polymerisierbaren Monomer und/oder dem mindestens einen, aus dem mindestens einen polymerisierbaren Monomer ausgebildeten Polymer - polymerisieren, zum Beispiel copolymerisieren. Durch Copolymerisation der mindestens einen Silanverbindung mit mindestens einer polymerisierbaren funktionellen Gruppe und des mindestens einen polymerisierbaren Monomers kann dabei vorteilhafterweise ein Co-Polymer mit einer Silanfunktion ausgebildet werden, welches über die Silanfunktion, beispielsweise kovalent, auf der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, anbinden kann. Eine Silanverbindung mit mindestens einer polymerisierbaren funktionellen Gruppe kann daher vorteilhafterweise als Haftvermittler, insbesondere für die durch die Polymerisation auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildete Polymerschicht, dienen und eine Polymerschicht mit einer verbesserten Haftung auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausbilden.
  • Auf diese Weise kann vorteilhafterweise auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, eine künstliche SEI-Schicht in Form einer flexiblen, polymeren Schutzschicht mit einer verbesserten Haftung, ausgebildet werden Durch diese künstliche SEI-Schicht in Form einer flexiblen, polymeren Schutzschicht kann dann vorteilhafterweise eine Elektrolytzersetzung und eine kontinuierliche SEI-Bildung unterdrückt werden, da die flexible, polymere Schutzschicht bei den Volumenänderungen der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, während des Zyklisierens mitgehen, beispielsweise plastisch gedehnt und/oder gestaucht werden, kann ohne dabei zerstört zu werden und so die Partikel, insbesondere Siliciumpartikel, passivieren und vor einer Reaktion der Anodenaktivmaterialoberfläche, insbesondere Siliciumoberfläche, mit Elektrolyt schützen kann. So kann wiederum vorteilhafterweise die Zyklenstabilität (Englisch: Coulombic Efficiency) der mit dem Anodenaktivmaterial ausgestatten Lithium-Zelle und/oder -Batterie, beispielsweise in Form einer Lithium-Ionen-Zelle und/oder -Batterie, erhöht werden.
  • Insgesamt kann so vorteilhafterweise ein Anodenaktivmaterial mit einer erhöhten Zyklenstabilität und Speicherkapazität bereitgestellt werden, zum Beispiel mit welchem unter anderem auch die Reichweite von Elektrofahrzeugen erhöht werden könnte.
  • Im Rahmen einer Ausführungsform werden in dem Verfahren mindestens zwei polymerisierbare Monomere eingesetzt. Beispielsweise können in dem Verfahren mindestens drei polymerisierbare Monomere eingesetzt werden. Durch eine derartige Copolymerisation, insbesondere durch eine gezielte Copolymerisation, von zwei, drei oder mehr Monomeren können vorteilhafterweise die gewünschten Eigenschaften, insbesondere der künstlichen SEI-Schicht, gezielt eingestellt und beispielsweise eine Anpassung beziehungsweise ein Design der SEI-Schicht an deren Anforderung erzielt werden. Zum Beispiel können so Polymer-Segmente zur Binderverstärkung und/oder zur Anpassung der mechanischen, beispielsweise rheologischen, Eigenschaften, zum Beispiel der Festigkeit und/oder Dehnfähigkeit, eingebracht werden.
  • Zum Beispiel kann die Polymerisation eine radikalische Polymerisation und/oder Polymerisation mittels Kondensationsreaktion und/oder eine ionische, beispielsweise eine anionische oder kationische, Polymerisation sein.
  • Beispielsweise kann die Polymerisation eine radikalische Polymerisation und/oder die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung durch eine radikalische Polymerisation polymerisierbar und/oder das mindestens eine polymerisierbare Monomer, insbesondere die mindestens zwei polymerisierbaren Monomere, durch eine radikalische Polymerisation polymerisierbar und/oder die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung zum Starten einer radikalischen Polymerisation ausgelegt sein.
  • Insbesondere kann die Polymerisation eine lebende radikalische Polymerisation und/oder die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung durch eine lebende radikalische Polymerisation polymerisierbar und/oder das mindestens eine polymerisierbare Monomer, insbesondere die mindestens zwei polymerisierbaren Monomere, durch eine lebende radikalische Polymerisation polymerisierbar und/oder die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung zum Starten einer lebenden radikalischen Polymerisation ausgelegt und/oder die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung zur Kontrolle einer lebenden radikalischen Polymerisation ausgelegt sein.
  • Die lebende radikalische Polymerisation beruht auf dem Prinzip, dass ein dynamisches Gleichgewicht zwischen einer relativ kleinen Anzahl an aktiver Spezies, nämlich wachstumsfördernden freien Radikalen, und einer großen Anzahl an deaktivierter Spezies erzeugt wird. Dies kann insbesondere durch einen Radikal-Puffer, welcher in der Lage ist die aktive Spezies, nämlich freie Radikale, in Form einer deaktivierten Spezies aufzufangen und wieder frei zu setzen, erzielt werden. Insbesondere kann daher bei der Polymerisation mindestens ein Radikal-Puffer eingesetzt werden. So können irreversible Kettenübertragungs- und Kettenabbruchreaktionen, welche insbesondere zu einer Verringerung der Anzahl der aktiven Spezies und zu einer Verbreiterung der Molmassenverteilung führen können, stark zurückgedrängt werden. Die lebende radikalische Polymerisation kann insbesondere auch als lebende freie radikalische Polymerisation (LFRP; Englisch: Living Free Radical Polymerization) beziehungsweise kontrollierte (freie) radikalische Polymerisation (CFRP; Englisch: Controlled Free Radical Polymerization) beziehungsweise lebende kontrollierte radikalische Polymerisation bezeichnet werden.
  • Beispiele für eine lebende radikalische Polymerisation sind die lebende radikalische Polymerisation unter Atomtransfer (ATRP, Englisch: Atom Transfer Radical Polymerization beziehungsweise Atomic Transfer Radical Polymerization), zum Beispiel mit durch Elektronen-Transfer regenerierten Aktivatoren (ARGET-ATRP) (ARGET, Englisch: Activators regenerated by electron transfer), die reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT, Englisch: Reversible Addition Fragmentation Chain Transfer Polymerization), die stabile freie Radikale Polymerisation (SFRP, Englisch: Stable Free Radical Polymerization), insbesondere die Nitroxid-vermittelte Polymerisation (NMP, Englisch: Nitroxide-mediated Polymerization) und/oder die Verdazyl-vermittelte Polymerisation (VMP, Englisch: Verdazylmediated Polymerization), und die Iod-Transfer-Polymerisation (ITP, Englisch: Iodine-Transfer Polymerization).
  • Durch eine lebende radikalische Polymerisation, insbesondere durch eine lebende radikalische Polymerisation unter Atomtransfer und/oder eine stabile freie Radikale Polymerisation, beispielsweise eine Nitroxid-vermittelte Polymerisation und/oder Verdazyl-vermittelte Polymerisation, insbesondere eine Nitroxid-vermittelte Polymerisation, und/oder eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation, kann vorteilhafterweise eine enge Molekulargewichtsverteilung beziehungsweise eine geringe Polydispersität (Breite der Molekulargewichtsverteilung) und/oder eine verbesserte Kontrolle über die Kettenlänge des Polymers und beispielsweise dadurch eine homogene Polymerbeschichtung erzielt werden. Dabei kann die Molekulargewichtsverteilung und/oder Polymerschichtdicke beispielsweise in Abhängigkeit von den Chemikalienkonzentrationen, zum Beispiel Monomerkonzentration, und/oder Reaktionszeit und/oder Temperatur eingestellt werden.
  • Die Polymerisation des mindestens einen polymerisierbaren Monomers, insbesondere der mindestens zwei polymerisierbaren Monomere, kann beispielsweise mittels der mindestens einen polymerisationsinitiierenden funktionellen Gruppe der mindestens einen Silanverbindung und/oder mittels, beispielsweise durch Zugabe, mindestens eines Polymerisationsinitiators, insbesondere zum Starten einer radikalischen Polymerisation, beispielsweise zum Starten einer lebenden radikalischen Polymerisation, zum Beispiel zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer und/oder einer stabile freie Radikale Polymerisation, beispielsweise einer Nitroxid-vermittelte Polymerisation und/oder Verdazyl-vermittelte Polymerisation, und/oder einer reversiblen Additions-Fragmentierungs-Kettenübertragungs-Polymerisation, zum Beispiel mindestens eines Radikalstarters, gestartet werden. So kann vorteilhafterweise die Polymerisation gezielt gestartet und die Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, vorteilhafterweise gezielt mit dem, durch die Polymerisation ausgebildeten Polymer versehen, insbesondere beschichtet, werden. So kann vorteilhafterweise auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, eine künstliche SEI-Schicht in Form einer flexiblen, polymeren Schutzschicht aus dem durch die Polymerisation ausgebildeten Polymer ausgebildet werden.
  • Die Polymerisation des mindestens einen polymerisierbaren Monomers, insbesondere der mindestens zwei polymerisierbaren Monomere, kann beispielsweise mittels der mindestens einen polymerisationskontrollierenden funktionellen Gruppe der mindestens einen Silanverbindung und/oder mittels, beispielsweise durch Zugabe, mindestens eines polymerisationskontrollierenden Mittels, insbesondere zur Kontrolle einer lebenden radikalischen Polymerisation, beispielsweise zur Kontrolle einer stabile freie Radikale Polymerisation, beispielsweise zur Kontrolle einer Nitroxid-vermittelten Polymerisation und/oder zur Kontrolle einer Verdazyl-vermittelten Polymerisation, und/oder zur Kontrolle einer reversiblen Additions-Fragmentierungs-Kettenübertragungs-Polymerisation, kontrolliert werden.
  • Im Rahmen einer weiteren Ausführungsform ist die Polymerisation eine lebende radikalische Polymerisation unter Atomtransfer (ATRP) und/oder die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung durch eine lebende radikalische Polymerisation unter Atomtransfer (ATRP) polymerisierbar und/oder das mindestens eine polymerisierbare Monomer, insbesondere die mindestens zwei polymerisierbaren Monomere, durch eine lebende radikalische Polymerisation unter Atomtransfer (ATRP) polymerisierbar und/oder die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer (ATRP-Initiator) ausgelegt. Durch eine lebende radikalische Polymerisation unter Atomtransfer kann vorteilhafterweise eine enge Molekulargewichtsverteilung beziehungsweise eine geringe Polydispersität (Breite der Molekulargewichtsverteilung) und/oder eine verbesserte Kontrolle über die Kettenlänge des Polymers und beispielsweise dadurch eine homogene Polymerbeschichtung erzielt werden.
  • Die mindestens eine polymerisationsinitiierende funktionelle Gruppe, insbesondere zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer, der mindestens einen Silanverbindung kann insbesondere in Kombination mit mindestens einem Katalysator eingesetzt werden.
  • Die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung kann beispielsweise, insbesondere für eine lebende radikalische Polymerisation unter Atomtransfer (ATRP-Initiator), mindestens ein Halogenatom, beispielsweise Chlor (-Cl), Brom (-Br) oder lod (-I), vorzugsweise Chlor (-Cl) oder Brom (-Br), zum Beispiel eine mit mindestens einem Halogenatom, beispielsweise Chlor (-Cl), Brom (-Br) oder lod (-I), vorzugsweise Chlor (-Cl) oder Brom (-Br), substituierte Alkylgruppe, umfassen oder sein.
  • Alternativ oder zusätzlich kann dazu kann die lebende radikalische Polymerisation unter Atomtransfer auch mittels, beispielsweise durch Zugabe, mindestens eines Polymerisationsinitiators zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer (ATRP-Initiator), insbesondere in Kombination mit mindestens einem Katalysator, gestartet werden. Dabei kann der mindestens eine Polymerisationsinitiator insbesondere ein Alkylhalogenid umfassen oder daraus ausgebildet sein. Zum Beispiel kann der mindestens eine Polymerisationsinitiator Methylbromoisobutyrat und/oder Benzylbromid und/oder Ethyl-ɑ-bromophenylacetat umfassen oder sein.
  • Der mindestens eine Katalysator kann insbesondere ein Übergangsmetallhalogenid, insbesondere ein Kupferhalogenid, beispielsweise Kupferchlorid und/oder Kupferbromid, zum Beispiel Kupfer(I)bromid, und gegebenenfalls mindestens einen Liganden, beispielsweise mindestens einen, insbesondere mehrzähnigen, Stickstoffliganden (N-Typ Ligand, Englisch: N-type ligand), zum Beispiel mindestens ein Amin, wie Tris[2-(dimethylamino)ethyl]amin (Me6TREN) und/oder Tris(2-pyridylmethyl)amin (TPMA) und/oder 2,2' -Bipyridin und/oder N,N,N',N",N"-Pentamethyldiethylentriamin (PMDETA) und/oder 1,1,4,7,10,10-Hexamethyltriethylentetramin (HMTETA), umfassen beziehungsweise daraus ausgebildet werden. Zum Beispiel kann der mindestens eine Katalysator ein Übergangsmetall-Komplex, insbesondere ein Übergangsmetall-Stickstoff-Komplex, sein.
  • Aus der mindestens einen polymerisationsinitiierenden funktionellen Gruppe der mindestens einen Silanverbindung und/oder dem Alkylhalogenid, dem Katalysator beziehungsweise Komplex und dem Monomer kann dabei der Radikal-Puffer beziehungsweise die deaktivierte Spezies ausgebildet werden.
  • Im Rahmen einer weiteren, alternativen oder zusätzlichen Ausführungsform ist die Polymerisation eine stabile freie Radikale Polymerisation (SFRP), beispielsweise eine Nitroxid-vermittelte Polymerisation (NMP) und/oder eine Verdazyl-vermittelte Polymerisation (VMP), insbesondere eine Nitroxid-vermittelte Polymerisation (NMP), und/oder die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung durch eine stabile freie Radikale Polymerisation, beispielsweise durch eine Nitroxid-vermittelte Polymerisation oder durch eine Verdazyl-vermittelte Polymerisation, insbesondere durch eine Nitroxid-vermittelte Polymerisation, polymerisierbar und/oder das mindestens eine polymerisierbare Monomer, insbesondere die mindestens zwei polymerisierbaren Monomere, durch eine stabile freie Radikale Polymerisation (SFRP), beispielsweise durch eine Nitroxid-vermittelte Polymerisation (NMP) und/oder eine Verdazyl-vermittelte Polymerisation (VMP), insbesondere durch eine Nitroxid-vermittelte Polymerisation (NMP), polymerisierbar und/oder wobei die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung zur Kontrolle einer stabile freie Radikale Polymerisation (SFRP-Mediator), beispielsweise zur Kontrolle einer Nitroxid-vermittelten Polymerisation (NMP-Mediator) und/oder zur Kontrolle einer Verdazyl-vermittelten Polymerisation (VMP-Mediator), insbesondere zur Kontrolle einer Nitroxid-vermittelten Polymerisation (NMP-Mediator), ausgelegt.
  • Die mindestens eine polymerisationskontrollierende funktionelle Gruppe, insbesondere zur Kontrolle einer stabile freie Radikale Polymerisation (SFRP-Mediator), beispielsweise zur Kontrolle einer Nitroxid-vermittelten Polymerisation (NMP-Mediator) und/oder zur Kontrolle einer Verdazyl-vermittelten Polymerisation (VMP-Mediator), zum Beispiel zur Kontrolle einer Nitroxid-vermittelten Polymerisation (NMP-Mediator), der mindestens einen Silanverbindung kann insbesondere in Kombination mit mindestens einer polymerisationsinitiierenden funktionellen Gruppe mindestens einer Silanverbindung und/oder mit einem/dem mindestens einen Polymerisationsinitiator eingesetzt werden.
  • Die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung kann, insbesondere für eine Nitroxid-vermittelte Polymerisation (NMP-Mediator), zum Beispiel eine, insbesondere lineare oder cyclische, Nitroxidgruppe und/oder Alkoxyamingruppe, beispielsweise auf Basis von 2,2,6,6-Tetramethylpiperidinyloxyl (TEMPO):
    Figure DE102016224032A1_0001
    beziehungsweise eines Opferinitiators hiervon, wie:
    Figure DE102016224032A1_0002
    und/oder auf 2,2,5-Trimethyl-4-phenyl-3-azahexan-3-oxyl (TIPNO):
    Figure DE102016224032A1_0003
    beziehungsweise eines Opferinitiators hiervon, wie:
    Figure DE102016224032A1_0004
    und/oder auf N-tertButyl-N-[1-diethylphosphono-(2-2-dimethylpropyl)nitroxid] (SG1*):
    Figure DE102016224032A1_0005
    beziehungsweise eines Opferinitiators hiervon, umfassen oder sein.
  • Alternativ oder zusätzlich kann dazu kann die stabile freie Radikale Polymerisation, beispielsweise die Nitroxid-vermittelte Polymerisation und/oder die Verdazyl-vermittelte Polymerisation, auch mittels, beispielsweise durch Zugabe, mindestens eines polymerisationskontrollierenden Mittels zur Kontrolle einer stabile freie Radikale Polymerisation, beispielsweise zur Kontrolle einer Nitroxid-vermittelten Polymerisation und/oder zur Kontrolle einer Verdazyl-vermittelten Polymerisation, zum Beispiel von mindestens einem nitroxidbasierten Mediator und/oder mindestens einem verdazylbasierten Mediator, insbesondere in Kombination mit mindestens einer polymerisationsinitiierenden funktionellen Gruppe mindestens einer Silanverbindung und/oder mit einem/dem mindestens einen Polymerisationsinitiator, kontrolliert werden. Das mindestens eine polymerisationskontrollierende Mittel beziehungsweise der mindestens eine nitroxidbasierte Mediator kann beispielsweise ein, insbesondere lineares oder cyclisches, Nitroxid, umfassen oder sein. Der mindestens eine nitroxidbasierte Mediator beziehungsweise das Nitroxid kann zum Beispiel auf 2,2,6,6-Tetramethylpiperidinyloxyl (TEMPO):
    Figure DE102016224032A1_0006
    beziehungsweise eines Opferinitiators hiervon, wie:
    Figure DE102016224032A1_0007
    und/oder auf 2,2,5-Trimethyl-4-phenyl-3-azahexan-3-oxyl (TIPNO):
    Figure DE102016224032A1_0008
    beziehungsweise eines Opferinitiators hiervon, wie:
    Figure DE102016224032A1_0009
    und/oder auf N-tertButyl-N-[1-diethylphosphono-(2-2-dimethylpropyl)nitroxid] (SG1*):
    Figure DE102016224032A1_0010
    beziehungsweise eines Opferinitiators hiervon basieren.
  • Der mindestens eine Polymerisationsinitiator und/oder die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung kann dabei insbesondere zum Starten einer stabile freie Radikale Polymerisation (SFRP-Initiator), beispielsweise zum Starten einer Nitroxid-vermittelte Polymerisation (NMP-Initiator) und/oder zum Starten einer Verdazyl-vermittelte Polymerisation (VMP-Initiator), insbesondere zum Starten einer Nitroxid-vermittelten Polymerisation (NMP-Initiator), ausgelegt sein. Dabei kann der mindestens eine Polymerisationsinitiator und/oder die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung insbesondere ein Radikalstarter, zum Beispiel ein Azoisobutyronitril, beispielsweise Azobis(isobutyronitril) (AIBN), und/oder ein Benzoylperoxid, beispielsweise Dibenzolyperoxid (BPO), oder ein Derivat davon umfassen oder sein.
  • Der Radikal-Puffer beziehungsweise die deaktivierte Spezies kann dabei insbesondere durch Reaktion der aktiven Spezies, nämlich freier Radikale, mit stabilen Radikalen auf Basis der Nitroxidgruppe und/oder Alkoxyamingruppe beziehungsweise des nitroxidbasierten Mediators ausgebildet werden.
  • Im Rahmen einer weiteren, alternativen oder zusätzlichen Ausführungsform ist die Polymerisation eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT) und/oder die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung durch eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT) polymerisierbar und/oder das mindestens eine polymerisierbare Monomer, insbesondere die mindestens zwei polymerisierbaren Monomere, durch eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT) polymerisierbar und/oder die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung zur Kontrolle einer reversiblen Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens) ausgelegt.
  • Die mindestens eine polymerisationskontrollierende funktionelle Gruppe, insbesondere zur Kontrolle einer reversiblen Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens), der mindestens einen Silanverbindung kann insbesondere in Kombination mit mindestens einer polymerisationsinitiierenden funktionellen Gruppe mindestens einer Silanverbindung und/oder mit einem/dem mindestens einen Polymerisationsinitiator eingesetzt werden.
  • Die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung kann, insbesondere für eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens), zum Beispiel eine Thiogruppe, beispielsweise eine Trithiocarbonatgruppe (-S-C=S-S-) oder eine Dithioestergruppe (-C=S-S-) oder eine Dithiocarbamatgruppe (-N-C=S-S-) oder eine Xanthatgruppe (-C=S-S), umfassen oder sein.
  • Alternativ oder zusätzlich kann dazu kann die reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation auch mittels, beispielsweise durch Zugabe, mindestens eines polymerisationskontrollierenden Mittels zur Kontrolle einer reversiblen Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens), zum Beispiel von mindestens einer Thioverbindung, insbesondere in Kombination mit mindestens einer polymerisationsinitiierenden funktionellen Gruppe mindestens einer Silanverbindung und/oder mit einem/dem mindestens einen Polymerisationsinitiator, kontrolliert werden. Das mindestens eine polymerisationskontrollierende Mittel beziehungsweise die mindestens eine Thioverbindung kann dabei beispielsweise ein Trithiocarbonat oder ein Dithioester oder ein Dithiocarbamat oder ein Xanthat sein.
  • Der mindestens eine Polymerisationsinitiator und/oder die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung kann dabei insbesondere zum Starten einer reversiblen Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Initiator) ausgelegt sein. Dabei kann der mindestens eine Polymerisationsinitiator und/oder die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung insbesondere ein Radikalstarter, zum Beispiel ein Azoisobutyronitril, beispielsweise Azobis(isobutyronitril) (AIBN), und/oder ein Benzoylperoxid, beispielsweise Dibenzolyperoxid (BPO), oder ein Derivat davon umfassen oder sein.
  • Der Radikal-Puffer beziehungsweise die deaktivierte Spezies kann dabei insbesondere durch Reaktion der aktiven Spezies, nämlich freier Radikale, mit stabilen Radikalen auf Basis der Thiogruppe beziehungsweise der Thioverbindung ausgebildet werden.
  • Im Rahmen einer weiteren Ausführungsform umfasst die mindestens eine Silanverbindung mindestens eine Silanverbindung der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0011
  • R1, R2, R3 können insbesondere jeweils unabhängig voneinander für ein Halogenatom, insbesondere Chlor (-Cl), oder eine Alkoxygruppe, insbesondere eine Methoxygruppe (-OCH3) oder eine Ethoxygruppe (-OC2H5), oder eine Alkylgruppe, beispielsweise eine lineare Alkylgruppe (-(CH2)x-CH3) mit x ≥ 0, insbesondere eine Methylgruppe (-CH3), oder eine Aminogruppe (-NH2, -NH-) oder eine Silazangruppe (-NH-Si-) oder eine Hydroxygruppe (-OH) oder Wasserstoff (-H) stehen. Zum Beispiel können R1, R2 und R3 für Chlor stehen.
  • Y kann insbesondere für einen Linker, also eine verbrückende Einheit, stehen. Insbesondere kann Y mindestens eine Alkylengruppe (-CnH2n-) mit n ≥ 1 und/oder mindestens eine Alkylenoxidgruppe (-CnH2n-O-) mit n ≥ 1 und/oder mindestens eine Carbonsäureestergruppe (-C=O-O-) und/oder mindestens eine Phenylengruppe (-C6H4-) umfassen.
  • A kann insbesondere für eine polymerisierbare und/oder polymerisationsinitiierende und/oder polymerisationskontrollierende funktionelle Gruppe stehen.
  • Eine Silanverbindung mit mindestens einer polymerisierbaren funktionellen Gruppe kann vorteilhafterweise als Haftvermittler dienen.
  • Im Rahmen einer Ausgestaltung dieser Ausführungsform steht A für eine polymerisierbare funktionelle Gruppe. Insbesondere kann A für eine polymerisierbare funktionelle Gruppe mit mindestens einer polymerisierbaren Doppelbindung stehen. Beispielsweise kann A für eine polymerisierbare funktionelle Gruppe mit mindestens einer Kohlenstoff-Kohlenstoff-Doppelbindung stehen. Zum Beispiel kann A für eine Vinylgruppe oder eine Vinylidengruppe oder eine Vinylengruppe oder eine Acrylatgruppe oder eine Methacrylatgruppe stehen.
  • Eine, insbesondere haftvermittelnde, Silanverbindung mit einer polymerisierbaren funktionellen Gruppe kann beispielsweise die allgemeine chemische Formel:
    Figure DE102016224032A1_0012
    aufweisen. Dabei können R1, R2, R3 insbesondere jeweils unabhängig voneinander für ein Halogenatom, insbesondere Chlor (-Cl), oder eine Alkoxygruppe, insbesondere eine Methoxygruppe (-OCH3) oder eine Ethoxygruppe (-OC2H5), oder eine Alkylgruppe, beispielsweise eine lineare Alkylgruppe (-(CH2)x-CH3) mit x ≥ 0, insbesondere eine Methylgruppe (-CH3), oder eine Aminogruppe (-NH2, -NH-) oder Wasserstoff (-H) stehen. Beispielsweise kann SiR1R2R3 dabei für ein Mono-, Di- oder Trichlorsilan stehen. A kann dabei insbesondere für eine funktionelle Gruppe mit mindestens einer Kohlenstoff-Kohlenstoff-Doppelbindung, insbesondere für eine Vinylgruppe oder eine Acrylatgruppe oder eine Methacrylatgruppe, stehen. Dabei kann 1 ≤ n ≤ 20, vorzugsweise 1 ≤ n ≤ 5, insbesondere n = 2 oder 3, sein.
  • Ein Beispiel für eine, insbesondere haftvermittelnde, Silanverbindung mit einer polymerisierbaren funktionellen Gruppe ist 3-(Trichlorosilyl)propylmethacrylat:
    Figure DE102016224032A1_0013
    insbesondere wobei R1, R2 und R3 für Chlor, A für Methacrylat stehen und n = 3 ist.
  • Im Rahmen einer anderen Ausgestaltung dieser Ausführungsform steht A für eine polymerisationsinitiierende funktionelle Gruppe. Insbesondere kann dabei A für eine polymerisationsinitiierende funktionelle Gruppe zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer (ATRP-Initiator) stehen. A kann dabei insbesondere für ein Halogenatom, beispielsweise Chlor (-Cl) oder Brom (-Br) oder lod (-I), insbesondere Chlor (-Cl) oder Brom (-Br), stehen.
  • Eine Silanverbindung mit einer polymerisationsinitiierenden funktionellen Gruppe, insbesondere zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer (ATRP-Initiator), kann beispielsweise die allgemeine chemische Formel:
    Figure DE102016224032A1_0014
    aufweisen. Dabei können R1, R2, R3 insbesondere jeweils unabhängig voneinander für ein Halogenatom, insbesondere Chlor (-Cl), oder eine Alkoxygruppe, insbesondere eine Methoxygruppe (-OCH3) oder eine Ethoxygruppe (-OC2H5), oder Wasserstoff (-H) stehen. Beispielsweise kann SiR1R2R3 dabei für ein Mono-, Di- oder Trichlorsilan stehen. A kann dabei insbesondere für ein Halogenatom, beispielsweise Chlor (-Cl), Brom (-Br) oder Iod (-I), vorzugsweise Chlor (-Cl) oder Brom (-Br), stehen. Dabei kann 1 ≤ n ≤ 20, vorzugsweise 1 ≤ n ≤ 5, insbesondere n = 1 oder 2, und/oder 0 ≤ m ≤ 20, vorzugsweise 0 ≤ m ≤ 5, insbesondere m = 0 oder 1 oder 2, sein.
  • Ein Beispiel für eine Silanverbindung mit einer polymerisationsinitiierenden funktionellen Gruppe, insbesondere zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer (ATRP-Initiator), ist Trichlor[4-(chlormethyl)phenyl]silan beziehungsweise 4-(Chloromethyl)phenyltrichlorosilan (CMPS):
    Figure DE102016224032A1_0015
    insbesondere wobei R1, R2 und R3 sowie A für Chlor stehen und n = 1 und m = 0 ist.
  • Im Rahmen einer anderen Ausgestaltung dieser Ausführungsform steht A für eine polymerisationskontrollierende funktionelle Gruppe.
  • Im Rahmen einer Ausgestaltung steht dabei A für eine polymerisationskontrollierende funktionelle Gruppe für eine Nitroxid-vermittelte Polymerisation (NMP-Mediator). Die polymerisationskontrollierende funktionelle Gruppe A kann dabei insbesondere ein nitroxidbasierter Mediator sein. Zum Beispiel kann dabei A für ein Nitroxidgruppe und/oder Alkoxyamingruppe, beispielsweise auf der Basis von 2,2,6,6-Tetramethylpiperidinyloxyl (TEMPO) und/oder 2,2,5-Trimethyl-4-phenyl-3-azahexane-3-oxyl (TIPNO) und/oder N-tertButyl-N-[1-diethylphosphono-(2-2-dimethylpropyl)nitroxide] (SG1*), stehen.
  • Beispiele für Silanverbindungen mit einer polymerisationskontrollierenden funktionellen Gruppe, insbesondere für eine Nitroxid-vermittelte Polymerisation (NMP-Mediator), sind die 2,2,6,6-Tetramethylpiperidinyloxyl-(TEMPO)-basierte Alkoxyamin-Silanverbindung:
    Figure DE102016224032A1_0016
    und/oder
    Figure DE102016224032A1_0017
    die 2,2,5-Trimethyl-4-phenyl-3-azahexane-3-oxyl-(TIPNO)-basierte Alkoxyamin-Silanverbindung der Formel:
    Figure DE102016224032A1_0018
    und/oder die N-tertButyl-N-[1-diethylphosphono-(2-2-dimethylpropyl)nitroxid]-(SGl)-basierte Alkoxyamin-Silanverbindung der Formel:
    Figure DE102016224032A1_0019
  • Anstelle durch eine direkte Immobilisierung mindestens einer Silanverbindung mit mindestens einer polymerisationskontrollierenden funktionellen Gruppe für eine Nitroxid-vermittelte Polymerisation (NMP-Mediator) können Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, dadurch für eine Nitroxid-vermittelte Polymerisation funktionalisiert werden, dass (zunächst) mindestens eine Silanverbindung mit mindestens einer polymerisierbaren funktionellen Gruppe, beispielsweise 3-(Trimethoxysilyl)propylmethacrylat, auf der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, immobilisiert wird und die mindestens eine Silanverbindung (dann) mit mindestens einem nitroxidbasierten Mediator, beispielsweise mit mindestens einer Nitroxid- beziehungsweise Alkoxyaminverbindung, wie TEMPO, und beispielsweise mit mindestens einem Polymerisationsinitiator, insbesondere Radikalstarter, wie AIBN, umgesetzt wird.
  • Im Rahmen einer anderen Ausgestaltung steht A für eine polymerisationskontrollierende funktionelle Gruppe für eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens). Die polymerisationskontrollierende funktionelle Gruppe kann dabei insbesondere eine Thiogruppe sein. Zum Beispiel kann A dabei für eine Trithiocarbonatgruppe (-S-C=S-S-) oder eine Dithioestergruppe (-C=S-S-) oder eine Dithiocarbamatgruppe (-N-C=S-S-) oder eine Xanthatgruppe (-C=S-S) stehen.
  • Bei Silanverbindung mit einer polymerisationskontrollierenden funktionellen Gruppe, insbesondere für eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens), kann beispielsweise SiR1R2R3 für ein Chlorsilan, ein Methoxysilan, ein Ethoxysilan oder ein Silazan und A für einen Dithioester oder ein Dithiocarbamat oder ein Trithiocarbonat oder ein Xanthat stehen.
  • Beispiele für Silanverbindungen mit einer polymerisationskontrollierenden funktionellen Gruppe, insbesondere für eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens), sind die Trithiocarbonat- beziehungsweise Dithioesterverbindung:
    Figure DE102016224032A1_0020
    und/oder
    Figure DE102016224032A1_0021
    und/oder
    Figure DE102016224032A1_0022
  • Im Rahmen einer weiteren Ausführungsform umfasst die mindestens eine Silanverbindung mindestens eine, insbesondere kronetherbasierte, Silanverbindung der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0023
  • Dabei können Q1, Q2, Q3 und Qk insbesondere jeweils unabhängig voneinander für Sauerstoff (O) oder Stickstoff (N) oder ein Amin, beispielsweise ein sekundäres Amin (NH) und/oder ein tertiäres Amin, zum Beispiel ein Alkyl- oder Arylamin, (NR), stehen.
  • G kann insbesondere für mindestens eine polymerisierbare funktionelle Gruppe stehen, beispielsweise mit welcher eines der Kohlenstoffatome und/oder Q1 und/oder Q2 und/oder Q3 und/oder Qk substituiert ist.
  • Insbesondere kann G mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, zum Beispiel mindestens eine Vinylgruppe und/oder Vinylidengruppe und/oder Vinylengruppe und/oder Allylgruppe, beispielsweise Allyloxyalkylgruppe, zum Beispiel Allyloxymethylgruppe, und/oder mindestens eine Hydroxygruppe, beispielsweise Alkylenhydroxygruppe, zum Beispiel Methylenhydroxygruppe, umfassen.
  • Weiterhin kann G beispielsweise eine oder mehr weitere Gruppen, beispielsweise welche als Linker - also eine verbrückende Einheit beziehungsweise als Brückensegment - dienen, umfassen. Zum Beispiel kann G weiterhin mindestens eine Benzogruppe und/oder Cyclohexanogruppe umfassen.
  • g kann insbesondere für die Anzahl an polymerisierbaren funktionellen Gruppen G stehen und insbesondere 1 ≤ g, beispielsweise 1 ≤ g ≤ 5, zum Beispiel 1 ≤ g ≤ 2, sein.
  • k kann insbesondere für die Anzahl der in Klammern stehenden Einheit stehen und insbesondere 1 ≤ k, beispielsweise 1 ≤ k ≤ 3, zum Beispiel 1 ≤ k ≤ 2, sein.
  • Y' kann insbesondere für einen Linker, also eine verbrückende Einheit, stehen. Beispielsweise kann Y' mindestens eine Alkylengruppe (-CnH2n-) mit n ≥ 0, insbesondere n ≥ 1, und/oder mindestens eine Alkylenoxidgruppe (-CnH2n-O-) mit n ≥ 1 und/oder mindestens eine Carbonsäureestergruppe (-C=O-O-) und/oder mindestens eine Phenylengruppe (-C6H4-) umfassen. Zum Beispiel kann Y' hierbei für eine Alkylengruppe -CnH2n- mit 0 ≤ n ≤ 5, beispielsweise n = 1 oder 2 oder 3, stehen.
  • s kann insbesondere für die Anzahl an, insbesondere über Linker Y' angebundene, Silangruppen (-SiR1R2R3) stehen und insbesondere 1 ≤ s, beispielsweise 1 ≤ s ≤ 5, zum Beispiel 1 ≤ s ≤ 2, sein.
  • R1, R2, R3 können insbesondere jeweils unabhängig voneinander für ein Halogenatom, insbesondere Chlor (-Cl), oder eine Alkoxygruppe, insbesondere eine Methoxygruppe (-OCH3) oder eine Ethoxygruppe (-OC2H5), oder eine Alkylgruppe, beispielsweise eine lineare Alkylgruppe (-(CH2)x-CH3) mit x ≥ 0, insbesondere eine Methylgruppe (-CH3), oder eine Aminogruppe (-NH2, -NH-) oder eine Silazangruppe (-NH-Si-) oder eine Hydroxygruppe (-OH) oder Wasserstoff (-H) stehen. Zum Beispiel können R1, R2 und R3 für Chlor stehen.
  • Insbesondere können Q1, Q2, Q3 und Qk für Sauerstoff stehen. Beispielsweise kann dabei die mindestens eine Silanverbindung mindestens eine, insbesondere kronetherbasierte, Silanverbindung der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0024
    umfassen.
  • Beispiele für derartige, insbesondere kronetherbasierte, Silanverbindungen sind:
    Figure DE102016224032A1_0025
    und/oder
    Figure DE102016224032A1_0026
  • Derartige, insbesondere kronetherbasierte, Silanverbindungen können vorteilhafterweise über die Silangruppe, insbesondere kovalent, und beispielsweise zusätzlich über van-der-Waals- und/oder Wasserstoffbrücken-Bindungen, an der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, anbinden und zum Beispiel als silanbasierter Haftvermittler dienen.
  • Die mindestens eine Silanverbindung mit der mindestens einen polymerisierbaren funktionellen Gruppe und/oder das mindestens eine polymerisierbare Monomer kann insbesondere mindestens ein ionenleitfähiges oder ionenleitendes, insbesondere lithiumionenleitfähiges oder lithiumionenleitendes, polymerisierbares Monomer und/oder mindestens ein fluoriertes, polymerisierbares Monomer, beispielsweise mit mindestens einer fluorierten Alkylgruppe und/oder mindestens einer fluorierten Alkoxygruppe und/oder mindestens einer fluorierten Alkylenoxidgruppe und/oder mindestens einer fluorierten Phenylgruppe, und/oder mindestens ein polymerisierbares Monomer zur Ausbildung eines Gel-Polymers umfassen beziehungsweise ionenleitfähig oder ionenleitend, insbesondere lithiumionenleitfähig oder lithiumionenleitend, sein und/oder fluoriert sein und/oder zur Ausbildung eines Gel-Polymers ausgelegt sein.
  • Unter einem ionenleitfähigen, beispielsweise lithiumionenleitfähigen, Material, beispielsweise Monomer oder Polymer, kann insbesondere ein Material, beispielsweise Monomer oder Polymer, verstanden werden, welches selbst frei von den zu leitenden Ionen, beispielsweise Lithiumionen, sein kann, jedoch geeignet ist, die zu leitenden Ionen, beispielsweise Lithiumionen, und/oder Gegenionen der zu leitenden Ionen, zum Beispiel Lithium-Leitsalz-Anionen, zu koordinieren und/oder solvatisieren und beispielsweise unter Zugabe der zu leitenden Ionen, zum Beispiel Lithiumionen, lithiumionenleitend wird.
  • Durch Polymerisation von ionenleitfähigen oder ionenleitenden und/oder fluorierten und/oder Gel-Polymer bildenden Monomeren kann vorteilhafterweise eine künstliche Polymer-SEI-Schutzschicht auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildet werden, welche ionenleitfähig oder ionenleitend und/oder fluoriert und/oder zur Ausbildung eines Gel-Polymers ausgelegt ist. Durch ionenleitfähige oder ionenleitende Polymer und/oder Gel-Polymere, kann vorteilhafterweise eine hohe Effizienz der mit dem Anodenaktivmaterial ausgestatteten Zelle beziehungsweise Batterie erzielt und beispielsweise eine Elektrolytbeschichtung beziehungsweise eine Gelelektrolytbeschichtung direkt auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildet werden. Fluorbasierte Polymere können eine hohe thermodynamische und insbesondere auch elektrochemische Stabilität aufweisen und vorteilhafterweise in einem bei Lithium-Ionen-Zellen und/oder -Batterien verwendeten Potentialfenster besonders stabil sein.
  • Im Rahmen einer weiteren Ausführungsform umfasst oder ist die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung und/oder das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, beispielsweise drei, polymerisierbaren Monomere (jeweils) mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, insbesondere mindestens eine Vinylgruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Allylgruppe, beispielsweise eine Allyloxyalkylgruppe, zum Beispiel eine Allyloxymethylgruppe, und/oder mindestens eine Acrylatgruppe und/oder mindestens eine Methacrylatgruppe und/oder mindestens eine Phenylethengruppe (Styrolgruppe), und/oder mindestens eine Hydroxygruppe. Mittels dieser funktioneller Gruppen kann vorteilhafterweise eine Polymerisation erzielt werden. Insbesondere kann die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung und/oder das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, beispielsweise drei, polymerisierbaren Monomere (jeweils) mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, insbesondere mindestens eine Vinylgruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Allylgruppe, beispielsweise Allyloxyalkylgruppe, zum Beispiel Allyloxymethylgruppe, und/oder mindestens eine Acrylatgruppe und/oder mindestens eine Methacrylatgruppe und/oder mindestens eine Phenylethengruppe (Styrolgruppe), umfassen oder sein. Dies hat sich zur Polymerisation, insbesondere mittels einer lebenden radikalischen Polymerisation, wie ATRP, NMP beziehungsweise RAFT, als besonders vorteilhaft erwiesen. Durch mindestens eine Hydroxygruppe kann die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung und/oder das mindestens eine polymerisierbare Monomer beziehungsweise die mindestens zwei polymerisierbaren Monomere mittels Kondensationsreaktion beziehungsweise mittels anionischer Polymerisation polymerisiert beziehungsweise copolymerisiert werden.
  • Zum Beispiel kann die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, zum Beispiel eine Vinylgruppe und/oder eine Vinylidengruppe und/oder eine Vinylengruppe und/oder eine Acrylatgruppe und/oder eine Methacrylatgruppe, umfassen oder sein.
  • Im Rahmen einer weiteren Ausführungsform umfasst das mindestens eine polymerisierbare Monomer (weiterhin) mindestens eine, insbesondere unfluorierte, Alkylenoxidgruppe, beispielsweise Ethylenoxidgruppe, beispielsweise Polyalkylenoxidgruppe, zum Beispiel Polyethylenoxidgruppe beziehungsweise Polyethylenglykolgruppe, und/oder mindestens eine fluorierte Alkylenoxidgruppe und/oder mindestens eine fluorierte Alkoxygruppe und/oder mindestens eine fluorierte Alkylgruppe und/oder mindestens eine fluorierte Phenylgruppe.
  • Polymere, welche Alkylenoxidgruppen umfassen beziehungsweise aus Alkylenoxid-Monomeren ausgebildet werden beziehungsweise auf einem Polyalkylenoxids, wie Polyethylenoxid (PEO) beziehungsweise Polyethylenglykol (PEG), basieren, können vorteilhafterweise ionenleitfähig, beispielsweise lithiumionenleitfähig, sein. So kann vorteilhafterweise eine ionenleitfähige, beispielsweise lithiumionenleitfähige, künstliche SEI-Schutzschicht, beispielsweise aus einem auf Polyethylenoxid (PEO) beziehungsweise Polyethylenglykol (PEG) basierenden Polymer, auf den Partikeln ausgebildet werden. In Gegenwart mindestens eines Leitsalzes, beispielsweise Lithium-Leitsalzes, können Polymere mit Alkylenoxidgruppen beziehungsweise auf der Basis eines Polyalkylenoxids, wie Polyethylenoxid (PEO) beziehungsweise Polyethylenglykol (PEG), ionenleitend, beispielsweise lithiumionenleitend, werden. Mit derartigen Polymeren versehene, insbesondere beschichtete, Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, können bei einer Zellbeziehungsweise Batterieassemblierung mit mindestens einem Leitsalz, beispielsweise Lithium-Leitsalz, in Kontakt kommen und auf diese Weise ionenleitend, beispielsweise lithiumionenleitend, werden. Um eine hohe Effizienz der mit dem Anodenaktivmaterial ausgestatteten Zelle beziehungsweise Batterie und insbesondere eine hohe ionische Leitfähigkeit zu erzielen, können derartig versehene, insbesondere beschichtete, Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, jedoch insbesondere, beispielsweise vor der Zell- und/oder Batterieassemblierung, mit mindestens einem Leitsalz, beispielsweise Lithium-Leitsalz, zum Beispiel Lithiumhexafluorophosphat (LiPF6), Bis(trifluormethan)sulfonimid (LiTFSI) und/oder Lithiumperchlorat (LiClO4), behandelt werden. Zudem können derartige Polymere in Gegenwart mindestens eines Elektrolytlösungsmittels beziehungsweise mindestens eines Flüssigelektrolyten, beispielsweise auf der Basis einer Lösung mindestens eines Leitsalzes in mindestens einem Elektrolytlösungsmittel, zum Beispiel vor oder bei der Zell- und/oder Batterieassemblierung, ein Gel bilden und beispielsweise als Gelelektrolyt genutzt werden. Zum Beispiel können daher derartig versehene, insbesondere beschichtete, Partikel, beispielsweise vor der Zell- und/oder Batterieassemblierung, mit mindestens einem Elektrolytlösungsmittel und/oder mit mindestens einem Flüssigelektrolyten, insbesondere aus mindestens einem Leitsalz, beispielsweise Lithium-Leitsalz, zum Beispiel Lithiumhexafluorophosphat (LiPF6), Bis(trifluormethan)sulfonimid (LiTFSI) und/oder Lithiumperchlorat (LiClO4), und mindestens einem Elektrolytlösungsmittel, behandelt werden. So kann vorteilhafterweise zusätzlich zu einer künstlichen SEI-Schutzschicht zur Passivierung der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, eine Elektrolytbeschichtung beziehungsweise eine Gelelektrolytbeschichtung direkt auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildet werden. Insbesondere insofern jedoch lediglich die Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, mit einer Elektrolytbeschichtung beziehungsweise Gelelektrolytbeschichtung beschichtet sind, kann die Anode weiterhin mindestens einen Elektrolyten, beispielsweise Flüssigelektrolyten, zum Beispiel auf Carbonat-Basis, umfassen.
  • Im Rahmen einer alternativen oder zusätzlichen Ausgestaltung umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise sind die mindestens zwei, insbesondere drei, polymerisierbaren Monomere ausgewählt aus der Gruppe umfassend:
    • - mindestens eine polymerisierbare Carbonsäure, beispielsweise Acrylsäure und/oder Methacrylsäure, und/oder
    • - mindestens ein polymerisierbares Carbonsäure-Derivat, insbesondere
      • - mindestens polymerisierbares organische Carbonat, beispielsweise Vinylencarbonat und/oder Vinylethylencarbonat, und/oder Anhydrid, insbesondere mindestens ein Carbonsäureanhydrid, beispielsweise Maleinsäureanhydrid, und/oder
      • - mindestens einen Carbonsäureester, beispielsweise mindestens ein Acrylat, zum Beispiel mindestens ein Etheracrylat, beispielsweise Poly(ethylenglykol)methyletheracrylat, und/oder mindestens ein Methacrylat, beispielsweise Methylmethacrylat, und/oder mindestens ein Acetat, zum Beispiel Vinylacetat, und/oder
      • - mindestens ein Carbonsäurenitril, beispielsweise Acrylnitril, und/oder
    • - mindestens einen, beispielsweise unfluorierten oder fluorierten, Ether, insbesondere mindestens einen Kronether und/oder mindestens ein Kronether-Derivat und/oder mindestens einen Vinylether, zum Beispiel Trifluorvinylether, und/oder
    • - mindestens ein, beispielsweise unfluoriertes oder fluoriertes, Alkylenoxid, beispielsweise Ethylenoxid, und/oder
    • - mindestens einen, beispielsweise aliphatischen oder aromatischen, zum Beispiel unfluorierten oder fluorierten, ungesättigten Kohlenwasserstoff, beispielsweise mindestens ein Alken, zum Beispiel Ethen, wie 1,1-Difluorethen (1,1-Difluoroethylen, Vinylidenfluorid) und/oder Tetrafluorethylen (TFE), und/oder Propen, wie Hexafluorpropen, und/oder Hexen, wie 3,3,4,4,5,5,6,6,6-Nonafluorhexen, und/oder Phenylethen, wie 2,3,4,5,6-Pentafluorphenylethen (2,3,4,5,6-Pentafluorstyrol) und/oder 4-(Trifluormethyl)phenylethen (4-(Trifluoromethyl)styrol) und/oder Styrol, umfassen oder sein.
  • Im Rahmen einer Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens eine polymerisierbare Carbonsäure.
  • Im Rahmen einer Ausgestaltung dieser Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere Acrylsäure:
    Figure DE102016224032A1_0027
    und/oder ein Derivat davon.
  • Im Rahmen einer anderen, alternativen oder zusätzlichen Ausgestaltung dieser Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere Methacrylsäure und/oder ein Derivat davon.
  • Durch Polymerisation von Acrylsäure beziehungsweise Methacrylsäure kann eine künstliche SEI-Schutzschicht aus einem auf Polyacrylsäure beziehungsweise Polymethacrylsäure basierenden Polymer auf den Partikeln ausgebildet werden. Dabei kann das Polyacrylsäure beziehungsweise Polymethacrylsäure basierte Polymer über Carbonsäuregruppen (-COOH) an Hydroxygruppen, beispielsweise Siliciumhydroxidgruppen beziehungsweise Silanolgruppen (Si-OH), an der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, beispielsweise kovalent über eine Kondensationsreaktion und/oder über Wasserstoffbrückenbindungen, anbinden. Zusätzlich zu einer Passivierung der Partikel durch eine Schutzschicht aus dem Polyacrylsäure beziehungsweise Polymethacrylsäure basierten Polymer, kann das Polyacrylsäure beziehungsweise Polymethacrylsäure basierte Polymer vorteilhafterweise als Binderverstärkung und/oder Binder dienen und auf diese Weise die Bindeeigenschaft des Anodenaktivmaterials verbessert werden. Dadurch, dass das Polyacrylsäure beziehungsweise Polymethacrylsäure basierte Polymer in Gegenwart der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, hergestellt wird, kann zudem vorteilhafterweise eine homogenere Mischung ausgebildet werden als dies durch ein Zumischen von ex-situ hergestellter Polyacrylsäure beziehungsweise Polymethacrylsäure zu Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, möglich ist.
  • Im Rahmen einer weiteren Ausgestaltung wird das aus dem mindestens einen polymerisierbaren Monomers ausgebildete Polymers, insbesondere dessen Carbonsäuregruppen, zumindest teilweise mit mindestens einem Alkalimetallhydroxid, beispielsweise Lithiumhydroxid (LiOH) und/oder Natriumhydroxid (NaOH) und/oder Kaliumhydroxid (KOH), insbesondere unter Ausbildung eines Alkalimetall-Carboxylats, beispielsweise Lithium-Carboxylats beziehungsweise Natrium-Carboxylats beziehungsweise Kalium-Carboxylats, neutralisiert. So können die rheologischen Eigenschaften verbessert und/oder ein irreversibler Kapazitätsverlust, insbesondere im ersten Zyklus einer mit dem Anodenaktivmaterial ausgestatteten Zelle beziehungsweise Batterie, minimiert werden.
  • Im Rahmen einer alternativen oder zusätzlichen, weiteren Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens ein polymerisierbares Carbonsäure-Derivat.
  • Im Rahmen einer weiteren Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens ein polymerisierbares, organisches Carbonat und/oder Anhydrid, insbesondere mindestens ein Carbonsäureanhydrid. Insbesondere kann das mindestens eine polymerisierbare Monomer mindestens ein polymerisierbares, organisches Carbonat umfassen oder sein. Organische Carbonate haben sich zur Ausbildung einer künstlichen SEI-Schicht als besonders vorteilhaft erwiesen. Organische Carbonate können zudem vorteilhafterweise ionenleitfähig, insbesondere lithiumionenleitfähig, sein.
  • Im Rahmen einer weiteren Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer Vinylencarbonat und/oder Vinylethylencarbonat und/oder Maleinsäureanhydrid und/oder ein Derivat davon. Dies hat sich zum Ausbilden einer, insbesondere ionenleitfähigen, beispielsweise lithiumionenleitfähigen, künstlichen SEI-Schicht als vorteilhaft erwiesen.
  • Im Rahmen einer speziellen Ausgestaltung dieser Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer Vinylencarbonat. Durch Polymerisation von Vinylencarbonat kann insbesondere Polyvinylencarbonat ausgebildet werden, welches sich als Polymer für eine künstliche SEI-Schicht als besonders vorteilhaft erwiesen hat.
  • Im Rahmen einer alternativen oder zusätzlichen, weiteren Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens einen Carbonsäureester.
  • Beispielsweise kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens ein Acrylat, zum Beispiel mindestens ein Etheracrylat, wie Poly(ethylenglykol)methyletheracrylat, beispielsweise:
    Figure DE102016224032A1_0028
    und/oder mindestens ein Methacrylat, beispielsweise Methylmethacrylat, und/oder mindestens ein Acetat, zum Beispiel Vinylacetat, und/oder ein Derivat davon umfassen oder sein.
  • Durch Polymerisation von Acrylaten, zum Beispiel Etheracrylaten, wie Poly(ethylenglykol)methyletheracrylat, und/oder Methacrylaten, wie Methylmethacrylat (MMA), kann eine künstliche SEI-Schutzschicht aus einem auf Polyacrylat beziehungsweise Polymethylmethacrylat (PMMA) basierenden Polymer auf den Partikeln ausgebildet werden. Polymere auf der Basis von Polyacrylat, zum Beispiel Etheracrylat basierte Polymere beziehungsweise Polymethylmethacrylate, können vorteilhafterweise in Gegenwart mindestens eines Elektrolytlösungsmittels, beispielsweise mindestens eines flüssigen, organischen Carbonats, wie Ethylencarbonat (EC) und/oder Ethylmethylcarbonat (EMC) und/oder Dimethylcarbonat (DMC) und/oder Diethylcarbonat (DEC), beziehungsweise mindestens eines Flüssigelektrolyten, beispielsweise auf der Basis einer, zum Beispiel 1 M, Lösung mindestens eines Leitsalzes, zum Beispiel von Lithiumhexafluorophosphat (LiPF6) und/oder Bis(trifluormethan)sulfonimid (LiTFSI) und/oder Lithiumperchlorat (LiClO4), in mindestens einem Elektrolytlösungsmittel, beispielsweise mindestens einem flüssigen, organischen Carbonat, wie Ethylencarbonat (EC) und/oder Ethylmethylcarbonat (EMC) und/oder Dimethylcarbonat (DMC) und/oder Diethylcarbonat (DEC), zum Beispiel bei der Zell- und/oder Batterieassemblierung, ein Gel bilden und beispielsweise als Gelelektrolyt genutzt werden. So kann vorteilhafterweise zusätzlich zu einer künstlichen SEI-Schutzschicht zur Passivierung der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, eine Gelelektrolytbeschichtung direkt auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildet werden. Bei einem ersten Zyklus einer damit ausgestatteten Zelle beziehungsweise Batterie, kann sich der Elektrolyt in der Polymergelmatrix der Gelelektrolytbeschichtung zersetzen und die, insbesondere künstliche beziehungsweise natürlich entstehende, SEI-Schutzschicht mechanisch stabilisieren. Dies ermöglicht vorteilhafterweise bei der Zell- und/oder Batterieassemblierung auf einen Zusatz von SEI-stabilisierende Additiven, wie Vinylencarbonat (VC) oder Fluorethylencarbonat (FEC), insbesondere zum Flüssigelektrolyten, zu verzichten. Polymere auf Basis von Etheracrylaten, wie Poly(ethylenglykol)methyletheracrylat, können zudem ionenleitfähig, beispielsweise lithiumionenleitfähig, sein und in Gegenwart mindestens eines Leitsalzes, beispielsweise Lithium-Leitsalzes, beispielsweise durch in Kontakt bringen mit mindestens einem Leitsalz, beispielsweise Lithium-Leitsalz, bei einer Zell- beziehungsweise Batterieassemblierung, ionenleitend, beispielsweise lithiumionenleitend, werden. Um eine hohe Effizienz der mit dem Anodenaktivmaterial ausgestatteten Zelle beziehungsweise Batterie und insbesondere eine hohe ionische Leitfähigkeit zu erzielen, können hiermit versehene, insbesondere beschichtete, Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, jedoch insbesondere, beispielsweise vor der Zell- und/oder Batterieassemblierung, mit mindestens einem Leitsalz, beispielsweise Lithium-Leitsalz, zum Beispiel Lithiumhexafluorophosphat (LiPF6), Bis(trifluoromethane)sulfonimide (LiTFSI) und/oder Lithiumperchlorat (LiClO4) behandelt werden.
  • Durch Polymerisation von Vinylacetat kann eine künstliche SEI-Schutzschicht aus einem auf Polyvinylacetat (PVAC) basierenden Polymer auf den Partikeln ausgebildet werden. Das auf Polyvinylacetat basierende Polymer kann dann beispielsweise zu Polyvinylalkohol (PVAL) verseift werden. Um Nebenreaktionen mit anderen Elektrodenkomponenten zu vermeiden, können hierbei beispielsweise die Polymerisation des mindestens einen polymerisierbaren Monomers und insbesondere die Verseifung des dabei ausgebildeten Polymers getrennt von weiteren Elektrodenkomponenten durchgeführt werden. Das Polyvinylalkohol basierte Polymer kann vorteilhafterweise über Hydroxygruppen (-OH), beispielsweise an Siliciumhydroxidgruppen beziehungsweise Silanolgruppen (Si-OH), an der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, beispielsweise kovalent über eine Kondensationsreaktion und/oder über Wasserstoffbrückenbindungen, anbinden. Zusätzlich zu einer Passivierung der Partikel durch eine Schutzschicht aus dem Polyvinylalkohol basierten Polymer, kann das Polyvinylalkohol basierte Polymer vorteilhafterweise als Binderverstärkung beziehungsweise Binder dienen und auf diese Weise die Bindeeigenschaft des Anodenaktivmaterials verbessert werden. Dadurch, dass das Polyvinylalkohol basierte Polymer in Gegenwart der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, hergestellt wird, kann zudem vorteilhafterweise eine homogenere Mischung ausgebildet werden als dies durch ein Zumischen von ex-situ hergestelltem Polyvinylalkohol zu Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, möglich ist.
  • Im Rahmen einer alternativen oder zusätzlichen, weiteren Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens ein Carbonsäurenitril. Beispielsweise kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere Acrylnitril und/oder ein Derivat davon umfassen oder sein. Durch Polymerisation von Acrylnitril kann eine künstliche SEI-Schutzschicht aus einem auf Polyacrylnitril (PAN) basierenden Polymer auf den Partikeln ausgebildet werden. Polymere auf der Basis von Polyacrylnitril (PAN) können vorteilhafterweise in Gegenwart mindestens eines Elektrolytlösungsmittels, beispielsweise mindestens eines flüssigen, organischen Carbonats, wie Ethylencarbonat (EC) und/oder Ethylmethylcarbonat (EMC) und/oder Dimethylcarbonat (DMC) und/oder Diethylcarbonat (DEC), beziehungsweise mindestens eines Flüssigelektrolyten, beispielsweise auf der Basis einer, zum Beispiel 1 M, Lösung mindestens eines Leitsalzes, zum Beispiel von Lithiumhexafluorophosphat (LiPF6) und/oder Bis(trifluormethan)sulfonimid (LiTFSI) und/oder Lithiumperchlorat (LiClO4), in mindestens einem Elektrolytlösungsmittel, beispielsweise mindestens einem flüssigen, organischen Carbonat, wie Ethylencarbonat (EC) und/oder Ethylmethylcarbonat (EMC) und/oder Dimethylcarbonat (DMC) und/oder Diethylcarbonat (DEC), zum Beispiel bei der Zell- und/oder Batterieassemblierung, ein Gel bilden und beispielsweise als Gelelektrolyt genutzt werden. So kann vorteilhafterweise zusätzlich zu einer künstlichen SEI-Schutzschicht zur Passivierung der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, eine Gelelektrolytbeschichtung direkt auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildet werden. Bei einem ersten Zyklus einer damit ausgestatteten Zelle beziehungsweise Batterie, kann sich der Elektrolyt in der Polymergelmatrix der Gelelektrolytbeschichtung zersetzen und die SEI-Schutzschicht mechanisch stabilisieren. Dies ermöglicht vorteilhafterweise bei der Zell- und/oder Batterieassemblierung auf einen Zusatz von SEI-stabilisierende Additiven, wie Vinylencarbonat (VC) oder Fluorethylencarbonat (FEC), insbesondere zum Flüssigelektrolyten, zu verzichten.
  • Im Rahmen einer alternativen oder zusätzlichen, weiteren Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens einen, beispielsweise unfluorierten oder fluorierten, Ether. Insbesondere kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens einen, beispielsweise unfluorierten oder fluorierten, Ether mit mindestens einer polymerisierbaren funktionellen Gruppe, insbesondere mit mindestens einer polymerisierbaren Doppelbindung, beispielsweise mit mindestens einer Kohlenstoff-Kohlenstoff-Doppelbindung, zum Beispiel mit mindestens einer Vinylgruppe und/oder Allylgruppe und/oder Allyloxyalkylgruppe, beispielsweise Allyloxymethylgruppe, und/oder mit mindestens einer Hydroxygruppe, beispielsweise Alkylenhydroxygruppe, zum Beispiel Methylenhydroxygruppe, umfassen oder sein
  • Beispielsweise kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens einen Kronether und/oder mindestens ein Kronether-Derivat und/oder mindestens einen Vinylether, zum Beispiel Trifluorvinylether, umfassen oder sein.
  • Insbesondere kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens einen Kronether und/oder mindestens ein Kronether-Derivat umfassen oder sein.
  • Beispielsweise kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens einen Kronether und/oder mindestens ein Kronether-Derivat mit mindestens einer polymerisierbaren funktionellen Gruppe, insbesondere mit mindestens einer polymerisierbaren Doppelbindung, beispielsweise mit mindestens einer Kohlenstoff-Kohlenstoff-Doppelbindung, zum Beispiel mit mindestens einer Vinylgruppe und/oder mindestens einer Vinylidengruppe und/oder mindestens einer Vinylengruppe und/oder mindestens einer Allylgruppe. beispielsweise Allyloxyalkylgruppe, und/oder mindestens eine Acrylatgruppe und/oder mindestens eine Methacrylatgruppe, beispielsweise mit mindestens einer Kohlenstoff-Kohlenstoff-Doppelbindung, zum Beispiel mit mindestens einer Vinylgruppe und/oder mindestens einer Vinylidengruppe und/oder mindestens einer Vinylengruppe und/oder mindestens einer Allylgruppe, beispielsweise Allyloxyalkylgruppe, zum Beispiel Allyloxymethylgruppe, und/oder mit mindestens einer Hydroxygruppe, beispielsweise Alkylenhydroxygruppe, zum Beispiel Methylenhydroxygruppe, umfassen oder sein.
  • Die mindestens eine polymerisierbare funktionelle Gruppe des mindestens einen Kronethers und/oder Kronether-Derivats kann beispielsweise direkt am Kronether beziehungsweise Kronether-Derivat angebunden sein. Insbesondere aus sterischen Gründen kann es jedoch auch eventuell vorteilhaft sein, zwischen dem Kronether beziehungsweise Kronether-Derivat und der mindestens einen polymerisierbaren funktionellen Gruppe, beispielsweise zusätzlich, einen Linker beziehungsweise ein Brückensegment, wie einen Benzolring beziehungsweise Cyclohexanring, vorzusehen. Durch Polymerisation der mindestens einen polymerisierbaren Doppelbindung, insbesondere Kohlenstoff-Kohlenstoff-Doppelbindung, kann insbesondere ein Polymerrücken, beispielsweise ein C-C-Polymerrücken (C-C Backbone), ausgebildet werden, zum Beispiel welcher an jedem zweiten Kohlenstoffatom eine Kronenether-basierte Funktionalität aufweist.
  • Durch Polymerisation von Kronethern und/oder Kronether-Derivaten mit polymerisierbaren funktionellen Gruppen kann eine künstliche SEI-Schutzschicht aus einem Polymer auf den Partikeln ausgebildet werden, welche/s auf Grundbausteinen von Kronenethern basiert. Polymere auf der Basis von Kronethern können, insbesondere selektiv, ionenleitfähig, insbesondere lithiumionenleitfähig, sein und vorteilhafterweise optimale Diffusionspfade für die Alkalimetallionen, insbesondere Lithiumionen, bieten.
  • Kronether und/oder Kronether-Derivate können vorteilhafterweise zudem zumindest über van-der-Waals- und/oder Wasserstoffbrücken-Bindungen an der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, anbinden und so die Haftung der daraus ausgebildeten Polymerschicht auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, verbessern.
  • Der mindestens eine Kronether und/oder das mindestens eine Kronether-Derivat kann beispielsweise durch radikalische Polymerisation, zum Beispiel lebende radikalische Polymerisation, wie lebende radikalische Polymerisation unter Atomtransfer (ATRP) und/oder stabile freie Radikale Polymerisation (SFRP), beispielsweise eine Nitroxid-vermittelte Polymerisation (NMP) und/oder Verdazyl-vermittelte Polymerisation (VMP), und/oder reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT), und/oder Polymerisation mittels Kondensationsreaktion und/oder mittels ionischer, beispielsweise anionischer oder kationischer, Polymerisation, polymerisierbar sein und/oder polymerisiert beziehungsweise copolymerisiert werden.
  • Zum Beispiel kann die mindestens eine polymerisierbare funktionelle Gruppe des mindestens einen Kronethers und/oder Kronether-Derivats mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, insbesondere mindestens eine Vinylgruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Allylgruppe, beispielsweise eine Allyloxyalkylgruppe, zum Beispiel eine Allyloxymethylgruppe, und/oder mindestens eine Acrylatgruppe und/oder mindestens eine Methacrylatgruppe und/oder mindestens eine Phenylethengruppe (Styrolgruppe), und/oder mindestens eine Hydroxygruppe umfassen oder sein. Mittels dieser funktioneller Gruppen kann vorteilhafterweise eine Polymerisation erzielt werden. Beispielsweise kann die mindestens eine polymerisierbare funktionelle Gruppe des mindestens einen Kronethers und/oder Kronether-Derivats mindestens eine Vinylgruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Allylgruppe, beispielsweise Allyloxyalkylgruppe, zum Beispiel Allyloxymethylgruppe, und/oder mindestens eine Acrylatgruppe und/oder mindestens eine Methacrylatgruppe und/oder mindestens eine Hydroxygruppe, insbesondere Alkylenhydroxygruppe, umfassen oder sein. Durch mindestens eine Hydroxygruppe kann die mindestens eine polymerisierbare funktionelle Gruppe des mindestens einen Kronethers und/oder Kronether-Derivats mittels Kondensationsreaktion beziehungsweise mittels anionischer Polymerisation polymerisiert beziehungsweise copolymerisiert werden. Zum Beispiel kann die mindestens eine polymerisierbare funktionelle Gruppe des mindestens einen Kronethers und/oder Kronether-Derivats mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, insbesondere mindestens eine Vinylgruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Allylgruppe, beispielsweise Allyloxyalkylgruppe, zum Beispiel Allyloxymethylgruppe, und/oder mindestens eine Acrylatgruppe und/oder mindestens eine Methacrylatgruppe und/oder mindestens eine Phenylethengruppe (Styrolgruppe), umfassen oder sein. Dies hat sich zur Polymerisation, insbesondere mittels einer lebenden radikalischen Polymerisation, wie ATRP, NMP beziehungsweise RAFT, als besonders vorteilhaft erwiesen.
  • Der mindestens eine Kronether und/oder das mindestens eine Kronether-Derivat und/oder das mindestens eine Kronether und/oder Kronether-Derivat umfassende Polymer kann weiterhin, insbesondere zusätzlich zu der mindestens einen polymerisierbaren funktionellen Gruppe, mindestens eine Silangruppe aufweisen. Durch die mindestens eine Silangruppe kann der mindestens eine Kronether und/oder das mindestens eine Kronether-Derivat und/oder das mindestens eine Kronether und/oder Kronether-Derivat umfassende Polymer vorteilhafterweise auf der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, beispielsweise kovalent, anbinden. So kann vorteilhafterweise eine Polymerschicht mit einer verbesserten Haftung ausgebildeten werden.
  • Insbesondere kann der mindestens ein Kronether und/oder das mindestens eine Kronether-Derivat
    einen Kronether, insbesondere einen
    12-4-Kronether:
    Figure DE102016224032A1_0029
    und/oder einen 15-5-Kroneether:
    Figure DE102016224032A1_0030
    und/oder einen Aza-Kronether, beispielsweise einen (Di-)Aza-Kronether, beispielsweise einen Aza-12-4-Kronether, zum Beispiel einen 1-Aza-12-4-Kronether, zum Beispiel:
    Figure DE102016224032A1_0031
    und/oder einen Aza-15-5-Kroneether, beispielsweise einen Di-Aza-Kronenether, zum Beispiel einen Di-Aza-12-4-Kronether und/oder einen Di-Aza-15-5-Kroneether, zum Beispiel:
    Figure DE102016224032A1_0032
    und/oder einen, insbesondere N-substituierten, (Di-)Aza-Kronether, beispielsweise einen N-Alkyl-(Di-)Aza-12-4-Kronether und/oder N-Alkyl-(Di-)Aza-15-5-Kronether, und/oder einen Benzo-Kronether, insbesondere einen Benzo-12-4-Kronether und/oder Benzo-15-5-Kroneether, zum Beispiel:
    Figure DE102016224032A1_0033
    beispielsweise einen Di-Benzo-Kronether, zum Beispiel einen Di-Benzo-12-4-Kronether, zum Beispiel:
    Figure DE102016224032A1_0034
    und/oder einen Di-Benzo-15-5-Kroneether, und/oder einen Cyclohexano-Kronether, insbesondere einen Cyclohexano-12-4-Kronether und/oder Cyclohexano-15-5-Kroneether, beispielsweise einen Di-Cyclohexano-Kronenether, zum Beispiel einen Di-Cyclohexano-12-4-Kronether, zum Beispiel:
    Figure DE102016224032A1_0035
    und/oder einen Di-Cyclohexano-15-5-Kroneether, umfassen oder darauf basieren.
  • Im Rahmen einer Ausgestaltung dieser Ausführungsform umfasst der mindestens ein Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0036
  • Dabei können Q1, Q2, Q3 und Qk insbesondere jeweils unabhängig voneinander für Sauerstoff (O) oder Stickstoff (N) oder ein Amin, beispielsweise ein sekundäres Amin (NH) und/oder ein tertiäres Amin, zum Beispiel ein Alkyl- oder Arylamin, (NR), stehen.
  • G kann insbesondere für mindestens eine polymerisierbare funktionelle Gruppe stehen, beispielsweise mit welcher eines der Kohlenstoffatome und/oder Q1 und/oder Q2 und/oder Q3 und/oder Qk substituiert ist.
  • g kann insbesondere für die Anzahl an polymerisierbaren funktionellen Gruppen G stehen und insbesondere 1 ≤ g, beispielsweise 1 ≤ g ≤ 5, zum Beispiel 1 ≤ g ≤ 2, sein.
  • k kann insbesondere für die Anzahl der in Klammern stehenden Einheit stehen und insbesondere 1 ≤ k, beispielsweise 1 ≤ k ≤ 3, zum Beispiel 1 ≤ k ≤ 2, sein.
  • Insbesondere kann G mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, zum Beispiel mindestens eine Vinylgruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Allylgruppe, beispielsweise Allyloxyalkylgruppe, zum Beispiel Allyloxymethylgruppe, und/oder mindestens eine Hydroxygruppe, beispielsweise Alkylenhydroxygruppe, zum Beispiel Methylenhydroxygruppe, umfassen.
  • Weiterhin kann G beispielsweise eine oder mehr weitere Gruppen, beispielsweise welche als Linker - also eine verbrückende Einheit beziehungsweise als Brückensegment - dienen, umfassen. Zum Beispiel kann G weiterhin mindestens eine Benzogruppe und/oder Cyclohexanogruppe umfassen.
  • Insbesondere können Q1, Q2, Q3 und Qk für Sauerstoff stehen. Beispielsweise kann der mindestens ein Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0037
    umfassen.
  • Zum Beispiel kann der mindestens ein Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0038
    Figure DE102016224032A1_0039
    und/oder
    Figure DE102016224032A1_0040
    und/oder
    Figure DE102016224032A1_0041
    und/oder
    Figure DE102016224032A1_0042
    umfassen, insbesondere wobei 0 ≤ k', beispielsweise 0 ≤ k' ≤ 2, zum Beispiel 0 ≤ k' ≤ 1, ist.
  • Durch Polymerisation, beispielsweise lebende radikalische Polymerisation, der Doppelbindungen können Polymere mit einem Kohlenstoff-Kohlenstoff-Polymerrücken (C-C Backbone) und Kronether- beziehungsweise Kronether-Derivat-Seitengruppen ausgebildet werden, zum Beispiel:
    Figure DE102016224032A1_0043
  • Alternativ oder zusätzlich dazu ist es beispielsweise auch möglich, Polymere mit Kronether- beziehungsweise Kronether-Derivat-Gruppen, insbesondere direkt, im Polymerrücken beziehungsweise in der Polymerkette auszubilden. Dies kann beispielsweise durch Polymerisation, beispielsweise mittels Kondensationsreaktion, zum Beispiel Veretherung, von (Di-)Benzo- und/ (Di-)Cyclohexano-Kronethern und/oder -Kronetherderivaten, beispielsweise mit mindestens zwei, gegebenenfalls vier, Hydroxygruppen, zum Beispiel an den Benzo- und/oder Cyclohexano-Ringen, möglich.
  • Beispielsweise kann der mindestens ein Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0044
    umfassen.
  • G' kann insbesondere für mindestens eine polymerisierbare funktionelle Gruppe stehen. Insbesondere kann G' mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, zum Beispiel mindestens eine Vinylgruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Allylgruppe, beispielsweise Allyloxyalkylgruppe, zum Beispiel Allyloxymethylgruppe, und/oder mindestens eine Hydroxygruppe, beispielsweise Alkylenhydroxygruppe, zum Beispiel Methylenhydroxygruppe, umfassen.
  • Weiterhin kann G' beispielsweise eine oder mehr weitere Gruppen, beispielsweise welche als Linker - also eine verbrückende Einheit beziehungsweise als Brückensegment - dienen, umfassen. Zum Beispiel kann G' weiterhin mindestens eine Benzogruppe und/oder Cyclohexanogruppe umfassen.
  • g' kann insbesondere für die Anzahl an polymerisierbaren funktionellen Gruppen G' stehen und insbesondere 1 ≤ g', beispielsweise 1 ≤ g' ≤ 4, zum Beispiel 1 ≤ g' ≤ 2, sein.
  • Zum Beispiel kann der mindestens ein Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0045
    und/oder
    Figure DE102016224032A1_0046
    umfassen.
  • Durch Polymerisation, beispielsweise mittels Kondensationsreaktion, insbesondere Veretherung, der Hydroxygruppem können Polymere, insbesondere auf der Basis von veretherten Benzo-Kronenethern, mit Kronetherbeziehungsweise Kronether-Derivat-Gruppen im Polymerrücken ausgebildet werden, zum Beispiel:
    Figure DE102016224032A1_0047
    beziehungsweise
    Figure DE102016224032A1_0048
  • Derartige Kronether und/oder Kronether-Derivate können vorteilhafterweise durch Umsetzen mit mindestens einer Silanverbindung mit mindestens einer polymerisierbaren funktionellen Gruppe, beispielsweise mittels Kondensationsreaktion, beispielsweise kovalent, mit den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, verbunden werden.
  • Zum Beispiel können ein Kronether und eine Silanverbindung der allgemeinen chemischen Formeln:
    Figure DE102016224032A1_0049
    wobei R1, R2, R3 insbesondere jeweils unabhängig voneinander für ein Halogenatom, insbesondere Chlor (-Cl), oder eine Alkoxygruppe, insbesondere eine Methoxygruppe (-OCH3) oder eine Ethoxygruppe (-OC2H5), oder eine Alkylgruppe, beispielsweise eine lineare Alkylgruppe (-(CH2)x-CH3) mit x ≥ 0, insbesondere eine Methylgruppe (-CH3), oder eine Aminogruppe (-NH2, -NH-) oder eine Silazangruppe (-NH-Si-) oder eine Hydroxygruppe (-OH) oder Wasserstoff (-H) stehen, mittels Kondensationsreaktion, insbesondere durch Reaktion der Hydroxygruppe des Kronethers mit dem Chloratom der Silanverbindung, miteinander und, insbesondere durch Reaktion von R1, R2 und/oder R3 der Silanverbindung mit Hydroxygruppen, beispielsweise Siliciumhydroxidgruppen beziehungsweise Silanolgruppen (Si-OH), auf der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, mit den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, beispielsweise kovalent, verbunden werden.
  • Im Rahmen einer weiteren Ausgestaltung weist der mindestens eine Kronether und/oder das mindestens eine Kronether-Derivat weiterhin, insbesondere zusätzlich zu der mindestens einen polymerisierbaren funktionellen Gruppe, mindestens eine Silangruppe auf. Zum Beispiel kann der mindestens eine Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0050
    umfassen.
  • Dabei können Q1, Q2, Q3 und Qk insbesondere jeweils unabhängig voneinander für Sauerstoff (O) oder Stickstoff (N) oder ein Amin, beispielsweise ein sekundäres Amin (NH) und/oder ein tertiäres Amin, zum Beispiel ein Alkyl- oder Arylamin, (NR), stehen.
  • G kann insbesondere für mindestens eine polymerisierbare funktionelle Gruppe stehen, beispielsweise mit welcher eines der Kohlenstoffatome und/oder Q1 und/oder Q2 und/oder Q3 und/oder Qk substituiert ist. Insbesondere kann G mindestens eine polymerisierbare Doppelbindung, beispielsweise mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, zum Beispiel mindestens eine Vinylgruppe und/oder Vinylidengruppe und/oder Vinylengruppe und/oder Allylgruppe, beispielsweise Allyloxyalkylgruppe, zum Beispiel Allyloxymethylgruppe, und/oder mindestens eine Hydroxygruppe, beispielsweise Alkylenhydroxygruppe, zum Beispiel Methylenhydroxygruppe, umfassen.
  • Weiterhin kann G beispielsweise eine oder mehr weitere Gruppen, beispielsweise welche als Linker - also eine verbrückende Einheit beziehungsweise als Brückensegment - dienen, umfassen. Zum Beispiel kann G weiterhin mindestens eine Benzogruppe und/oder Cyclohexanogruppe umfassen.
  • g kann insbesondere für die Anzahl an polymerisierbaren funktionellen Gruppen G stehen und insbesondere 1 ≤ g, beispielsweise 1 ≤ g ≤ 5, zum Beispiel 1 ≤ g ≤ 2, sein.
  • k kann insbesondere für die Anzahl der in Klammern stehenden Einheit stehen und insbesondere 1 ≤ k, beispielsweise 1 ≤ k ≤ 3, zum Beispiel 1 ≤ k ≤ 2, sein.
  • Y' kann insbesondere für einen Linker, also eine verbrückende Einheit, stehen. Beispielsweise kann Y' mindestens eine Alkylengruppe (-CnH2n-) mit n ≥ 0, insbesondere n ≥ 1, und/oder mindestens eine Alkylenoxidgruppe (-CnH2n-O-) mit n ≥ 1 und/oder mindestens eine Carbonsäureestergruppe (-C=O-O-) und/oder mindestens eine Phenylengruppe (-C6H4-) umfassen. Zum Beispiel kann Y' hierbei für eine Alkylengruppe -CnH2n- mit 0 ≤ n ≤ 5, beispielsweise n = 1 oder 2 oder 3, stehen.
  • s kann insbesondere für die Anzahl an, insbesondere über Linker Y' angebundene, Silangruppen (-SiR1R2R3) stehen und insbesondere 1 ≤ s, beispielsweise 1 ≤ s ≤ 5, zum Beispiel 1 ≤ s ≤ 2, sein.
  • R1, R2, R3 können insbesondere jeweils unabhängig voneinander für ein Halogenatom, insbesondere Chlor (-Cl), oder eine Alkoxygruppe, insbesondere eine Methoxygruppe (-OCH3) oder eine Ethoxygruppe (-OC2H5), oder eine Alkylgruppe, beispielsweise eine lineare Alkylgruppe (-(CH2)x-CH3) mit x ≥ 0, insbesondere eine Methylgruppe (-CH3), oder eine Aminogruppe (-NH2, -NH-) oder eine Silazangruppe (-NH-Si-) oder eine Hydroxygruppe (-OH) oder Wasserstoff (-H) stehen. Zum Beispiel können R1, R2 und R3 für Chlor stehen.
  • Insbesondere können Q1, Q2, Q3 und Qk für Sauerstoff stehen. Beispielsweise kann dabei der mindestens eine Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0051
    umfassen.
  • Beispiele für Kronether beziehungsweise ein Kronether-Derivat sind:
    Figure DE102016224032A1_0052
    und/oder
    Figure DE102016224032A1_0053
  • Derartige Kronether beziehungsweise ein Kronether-Derivat können vorteilhafterweise über die Silangruppe auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, anbinden und zusätzlich als silanbasierter Haftvermittler dienen.
  • Insofern das mindestens eine polymerisierbare Monomer ein (Di-)Aza-Kronether-Derivat, zum Beispiel mit Vinylfunktionalität, umfasst können NH-Gruppe/n vor der Polymerisation substituiert beziehungsweise mit einer Schutzgruppe versehen, beispielsweise alkyliert, vorzugsweise methyliert, werden. So kann verhindert werden, dass die NH-Gruppe/n die Polymerisation, beispielsweise eine radikalische (Co-)Polymerisation und/oder eine anionische (Co-)Polymerisation, stören. Zudem können substituierte beziehungsweise tertiäre Amin-Gruppen beziehungsweise N-R-Bindungen beständiger gegen Alkalimetalle sein.
  • Alternativ oder zusätzlich dazu, ist es jedoch beispielsweise auch möglich, eine Reaktion der NH-Gruppe/n von (Di-)Aza-Kronether-Derivaten gezielt bei der Polymerisation zu nutzen, zum Beispiel um Stickstoff-substituierte (Di-)Aza-Kronether-Derivat-Polymere und/oder Block-Co-Polymere, beispielsweise durch Reaktion mindestens einer, insbesondere endständigen, polymerisierbaren Doppelbindung, beispielsweise Vinyl- und/oder Allylgruppe, des mindestens einen (Di-)Aza-Kronether-Derivats mit mindestens einer polymerisierbaren Doppelbindung mindestens eines weiteren polymerisierbaren Monomers beziehungsweise daraus ausgebildeten Polymeres, zum Beispiel mit Styrol, auszubilden. Zum Beispiel können hierzu die NH-Gruppe/n von (Di-)Aza-Kronether-Derivaten über (CH2)n- Brücken insbesondere durch Umsetzung mit mindestens einer alpha-omega-Alkylenverbindung gekoppelt und/oder alpha-omega-Diamine, zum Beispiel Hexamethylendiamin, zur Synthese eines (Di-)Aza-Kronether-Derivat-Polymers, beispielsweise eines Poly-n-Alkylen-Di-Aza-Kronenethers, zum Beispiel der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0054
    zum Beispiel
    Figure DE102016224032A1_0055
    , beispielsweise wobei 0 ≤ i ≤ 4 ist, verwendet werden.
  • Im Rahmen einer alternativen oder zusätzlichen, weiteren Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens ein, beispielsweise unfluoriertes oder fluoriertes, Alkylenoxid, beispielsweise Ethylenoxid.
  • Im Rahmen einer alternativen oder zusätzlichen, weiteren Ausführungsform umfasst oder ist das mindestens eine polymerisierbare Monomer beziehungsweise umfassen die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens einen, beispielsweise aliphatischen oder aromatischen, zum Beispiel unfluorierten oder fluorierten, ungesättigten Kohlenwasserstoff.
  • Beispielsweise kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens ein Alken, zum Beispiel Ethen, wie 1,1-Difluorethen (1,1-Difluoroethylen, Vinylidenfluorid) und/oder Tetrafluorethylen (TFE), und/oder Propen, wie Hexafluorpropen, und/oder Hexen, wie 3,3,4,4,5,5,6,6,6-Nonafluorhexen, und/oder Phenylethen, wie 2,3,4,5,6-Pentafluorphenylethen (2,3,4,5,6-Pentafluorstyrol) und/oder 4-(Trifluormethyl)phenylethen (4-(Trifluoromethyl)styrol) und/oder Styrol, umfassen oder sein.
  • Zum Beispiel kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere mindestens ein fluoriertes Alken, beispielsweise mindestens ein fluoriertes Ethen, wie 1,1-Difluorethen (1,1-Difluoroethylen, Vinylidenfluorid) und/oder Tetrafluorethylen (TFE), und/oder mindestens ein fluoriertes Propen, wie Hexafluorpropen:
    Figure DE102016224032A1_0056
    und/oder mindestens ein fluoriertes Hexen, wie 3,3,4,4,5,5,6,6,6-Nonafluorhexen:
    Figure DE102016224032A1_0057
    beispielsweise erhältlich unter dem Handelsnamen Zonyl PFBE Fluorotelomer Intermediate, und/oder mindestens ein fluoriertes Phenylethen, wie 2,3,4,5,6-Pentafluorstyrol:
    Figure DE102016224032A1_0058
    und/oder 4-(Trifluormethyl)styrol:
    Figure DE102016224032A1_0059
    und/oder mindestens einen fluorierten Vinylether, wie 2-(Perfluorpropoxy)perfluorpropyltrifluorvinylether:
    Figure DE102016224032A1_0060
    umfassen oder sein.
  • Durch Polymerisation von fluorierten Alkenen, wie 1,1-Difluoroethylen, kann vorteilhafterweise eine künstliche SEI-Schutzschicht aus einem fluorierten, beispielsweise auf Polyvinylidenfluorid (PVdF) basierenden, Polymer auf den Partikeln ausgebildet werden. Derartige Polymere können vorteilhafterweise in Gegenwart mindestens eines Elektrolytlösungsmittels, beispielsweise mindestens eines flüssigen, organischen Carbonats, wie Ethylencarbonat (EC) und/oder Ethylmethylcarbonat (EMC) und/oder Dimethylcarbonat (DMC) und/oder Diethylcarbonat (DEC), beziehungsweise mindestens eines Flüssigelektrolyten, beispielsweise auf der Basis einer, zum Beispiel 1 M, Lösung mindestens eines Leitsalzes, zum Beispiel von Lithiumhexafluorophosphat (LiPF6) und/oder Bis(trifluormethan)sulfonimid (LiTFSI) und/oder Lithiumperchlorat (LiClO4), in mindestens einem Elektrolytlösungsmittel, beispielsweise mindestens einem flüssigen, organischen Carbonat, wie Ethylencarbonat (EC) und/oder Ethylmethylcarbonat (EMC) und/oder Dimethylcarbonat (DMC) und/oder Diethylcarbonat (DEC), zum Beispiel bei der Zell- und/oder Batterieassemblierung, ein Gel bilden und beispielsweise als Gelelektrolyt genutzt werden. So kann vorteilhafterweise zusätzlich zu einer künstlichen SEI-Schutzschicht zur Passivierung der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, eine Gelelektrolytbeschichtung direkt auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildet werden. Bei einem ersten Zyklus einer damit ausgestatteten Zelle beziehungsweise Batterie, kann sich der Elektrolyt in der Polymergelmatrix der Gelelektrolytbeschichtung zersetzen und die SEI-Schutzschicht mechanisch stabilisieren. Dies ermöglicht vorteilhafterweise bei der Zell- und/oder Batterieassemblierung auf einen Zusatz von SEI-stabilisierende Additiven, wie Vinylencarbonat (VC) oder Fluorethylencarbonat (FEC), insbesondere zum Flüssigelektrolyten, zu verzichten.
  • Alternativ oder zusätzlich kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei, insbesondere drei, polymerisierbaren Monomere, beispielsweise zusätzlich, mindestens ein unfluoriertes Alken, zum Beispiel mindestens ein unfluoriertes Phenylethen, wie Styrol, umfassen oder sein.
  • Durch den Einsatz mindestens eines, beispielsweise unfluorierten oder fluorierten, Phenylethens, beispielsweise von Styrol, insbesondere durch eine Copolymerisation hiermit, können vorteilhafterweise, insbesondere zusätzlich, Hartsegmentblöcke, beispielsweise auf der Basis von Polystyrol, eingebracht werden, zum Beispiel um die Beständigkeit gegen Alkali und/oder Lösungsmittel zu erhöhen und/oder die mechanischen Eigenschaften, wie die Festigkeit, zu verbessern. Dabei kann das Copolymer als statistisches Copolymer oder als Block-Co-Polymer, zum Beispiel aus Polystyrol-Hartsegmenten und andersartig basierten Weichsegmenten, beispielsweise Polykronenether-Weichsegmenten, aufgebaut werden. Polykronether-Polystyrol-Block-Co-Polymere können vorteilhafterweise thermoplastische Elastomere darstellen und eine hohe Dehnfähigkeit aufweisen.
  • Im Rahmen einer weiteren Ausführungsform erfolgt die Polymerisation beziehungsweise Umsetzung des mindestens einen polymerisierbaren Monomers in mindestens einem Lösungsmittel. Durch eine Lösungsmittelpolymerisation beziehungsweise Lösungspolymerisation kann vorteilhafterweise das Molekulargewicht des auszubildenden Polymers besser kontrolliert werden. Nach der Polymerisation beziehungsweise Umsetzung des mindestens einen polymerisierbaren Monomers kann das mindestens eine Lösungsmittel insbesondere wieder entfernt werden.
  • Im Rahmen einer weiteren Ausführungsform ist das Verfahren zur Herstellung einer Anode für eine Lithium-Zelle und/oder Lithium-Batterie, insbesondere für eine Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, ausgelegt.
  • Im Rahmen einer, insbesondere so genannten graft-from, Ausgestaltung kann die mindestens eine Silanverbindung mit mindestens einer polymerisierbaren und/oder polymerisationsinitiierenden und/oder polymerisationskontrollierenden funktionellen Gruppe, insbesondere vor der Zugabe des mindestens einen Monomers beziehungsweise der mindestens zwei Monomere, auf der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, immobilisiert werden. Zum Beispiel kann die mindestens eine Silanverbindung durch Ausbildung einer, insbesondere kovalenten, chemischen Bindung mit Oberflächenmaterial der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, immobilisiert werden. Dann kann das mindestens eine polymerisierbare Monomer beziehungsweise können die mindestens zwei polymerisierbaren Monomere, zugegeben werden. Das Immobilisieren kann in Abhängigkeit von der mindestens einen Silanverbindung in Gegenwart oder in Abwesenheit mindestens eines Lösungsmittels erfolgen.
  • Das mindestens eine polymerisierbare Monomer beziehungsweise die mindestens zwei polymerisierbaren Monomere können dabei insbesondere mittels einer radikalischen Polymerisation mit der mindestens einen immobilisierten Silanverbindung reagieren. Die radikalische Polymerisation kann dabei eine, insbesondere einfache, radikalischen Polymerisation, zum Beispiel in Gegenwart lediglich mindestens eines Radikalstarters, wie AIBN und/oder BPO, oder insbesondere eine lebende radikalische Polymerisation, beispielsweise eine ATRP, SFRP, beispielsweise NMP, oder RAFT, sein. Insofern mindestens zwei polymerisierbare Monomere eingesetzt werden und/oder das mindestens eine polymerisierbare Monomer in Kombination mit mindestens einer Silanverbindung mit mindestens einer polymerisierbaren funktionellen Gruppe eingesetzt wird, kann es sich um eine Copolymerisation, insbesondere der mindestens zwei polymerisierbaren Monomere und/oder des mindestens einen Monomers und der mindestens einen polymerisierbaren funktionellen Gruppe der mindestens einen Silanverbindung handeln.
  • Insofern die mindestens eine, insbesondere haftvermittelnde, Silanverbindung eine polymerisierbare funktionelle Gruppe aufweist, kann insbesondere weiterhin, gegebenenfalls zusammen mit dem mindestens einen polymerisierbaren Monomer beziehungsweise mit den mindestens zwei polymerisierbaren Monomeren, beispielsweise einer Carbonsäure und/oder einem Carbonsäure-Derivat, wie Vinylencarbonat, und/oder einem Ether, wie einem Kronether und/oder Kronether-Derivat, mindestens ein Polymerisationsinitiator, beispielsweise Radikalstarter, zum Beispiel AIBN oder BPO, - und/oder eventuell mindestens ein Lösungsmittel - zugegeben werden. So kann vorteilhafterweise die Polymerisation gestartet werden.
  • Insofern die mindestens eine Silanverbindung eine polymerisationsinitiierende funktionelle Gruppe, insbesondere zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer (ATRP-Initiator), aufweist, kann insbesondere weiterhin, gegebenenfalls zusammen mit dem mindestens einen polymerisierbaren Monomer beziehungsweise mit den mindestens zwei polymerisierbaren Monomeren, beispielsweise einer Carbonsäure und/oder einem Carbonsäure-Derivat, wie Vinylencarbonat, und/oder einem Ether, wie einem Kronether und/oder Kronether-Derivat, mindestens ein Katalysator, beispielsweise mindestens ein Übergangsmetallhalogenid, zum Beispiel ein Kupferhalogenid, und gegebenenfalls mindestens ein Ligand, zum Beispiel ein Stickstoffligand (N-Typ-Ligand), wie Tris[2-(dimethylamino)ethyl]amin), zugegeben werden. So kann vorteilhafterweise die Polymerisation gestartet werden.
  • Insofern die mindestens eine Silanverbindung eine polymerisationskontrollierende funktionelle Gruppe, insbesondere für eine stabile freie Radikale Polymerisation (SFRP), beispielsweise für eine Nitroxid-vermittelte Polymerisation (NMP-Mediator) und/oder für eine Verdazyl-vermittelte Polymerisation (VMP-Mediator), oder für eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens), aufweist, kann insbesondere weiterhin, gegebenenfalls zusammen mit dem mindestens einen polymerisierbaren Monomer beziehungsweise mit den mindestens zwei polymerisierbaren Monomeren, beispielsweise einer Carbonsäure und/oder einem Carbonsäure-Derivat, wie Vinylencarbonat, und/oder einem Ether, wie einem Kronether und/oder Kronether-Derivat, mindestens ein Polymerisationsinitiator, beispielsweise Radikalstarter, zum Beispiel AIBN oder BPO, zugegeben werden. So kann vorteilhafterweise die Polymerisation gestartet werden. Um die Polymerisationskontrolle weiter zu verbessern, kann gegebenenfalls weiterhin mindestens ein polymerisationskontrollierendes Mittel, insbesondere für eine stabile freie Radikale Polymerisation (SFRP), beispielsweise für eine Nitroxid-vermittelte Polymerisation (NMP-Mediator) und/oder für eine Verdazyl-vermittelte Polymerisation (VMP-Mediator), und/oder für eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation (RAFT-Agens), beispielsweise mindestens ein nitroxidbasierter Mediator, zum Beispiel ein Opferinitiator in Form eines Alkoxyamins, beziehungsweise mindestens eine Thioverbindung, zugegeben werden.
  • Im Rahmen einer weiteren Ausführungsform - insbesondere im Rahmen derer die Polymerisation des mindestens einen polymerisierbaren Monomers homogen mit den Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, jedoch getrennt von weiteren Elektrodenkomponenten erfolgt (Methode 1) - werden die, mit dem durch die Polymerisation beziehungsweise Umsetzung ausgebildeten Polymer versehenen, insbesondere beschichteten, Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, mit mindestens einer weiteren Elektrodenkomponente gemischt und, beispielsweise durch Rakeln, zu einer Anode verarbeitet. So kann vorteilhafterweise die künstliche SEI-Schicht gezielt auf den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, ausgebildet und beispielsweise die zur Beschichtung der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, erforderliche Menge an dem mindestens einen polymerisierbaren Monomer minimiert werden.
  • Im Rahmen einer Ausgestaltung dieser Ausführungsform umfasst das Verfahren die Verfahrensschritte:
    1. a) Mischen von Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, und mindestens einem polymerisierbaren Monomer, insbesondere Mischen der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, und des mindestens einen polymerisierbaren Monomers,
    2. b) Starten der Polymerisation des mindestens einen polymerisierbaren Monomers mittels, beispielsweise durch Zugabe, mindestens eines Polymerisationsinitiators, insbesondere des mindestens einen Polymerisationsinitiators,
    3. c) Mischen der, mit dem durch die Polymerisation ausgebildeten Polymer versehenen, insbesondere beschichteten, Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, mit mindestens einer weiteren Elektrodenkomponente, und
    4. d) Verarbeiten, beispielsweise durch Rakeln, der Mischung zu einer Anode.
  • Das Mischen in Verfahrensschritt a) und die Polymerisation in Verfahrensschritt b) können gegebenenfalls in mindestens einem Lösungsmittel durchgeführt werden. Nach der Polymerisation beziehungsweise nach Verfahrensschritt b), beispielsweise vor Verfahrensschritt c) oder während beziehungsweise nach Verfahrensschritt d), kann dann das mindestens eine Lösungsmittel wieder entfernt werden.
  • Im Rahmen einer anderen Ausführungsform - insbesondere im Rahmen derer die Polymerisation des mindestens einen polymerisierbaren Monomers homogen mit den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, und auch weiteren Elektrodenkomponenten erfolgt (Methode 2) - werden die Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, mit mindestens einer weiteren Elektrodenkomponente und mit dem mindestens einen polymerisierbaren Monomer gemischt. Auf diese Weise kann die Polymerisation in-situ, insbesondere direkt während des Mischens, beispielsweise eines Schlickers, zur Ausbildung einer Anode durchgeführt werden. Dabei können die Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, die mindestens eine weitere Elektrodenkomponente und das mindestens eine polymerisierbare Monomer gleichzeitig miteinander gemischt werden. Gegebenenfalls können jedoch auch zunächst die Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, und die mindestens eine Elektrodenkomponente miteinander gemischt werden und dann das mindestens eine polymerisierbare Monomer zu der Mischung zugegeben werden.
  • Im Rahmen einer Ausgestaltung dieser Ausführungsform wird nach dem Mischen die Polymerisation mittels, beispielsweise durch Zugabe, des mindestens einen Polymerisationsinitiators gestartet. Insbesondere kann die Polymerisation dabei mittels, beispielsweise durch Zugabe, des mindestens einen Polymerisationsinitiators und des mindestens einen Katalysators und/oder des mindestens einen polymerisationskontrollierenden Mittels, beispielsweise des mindestens einen nitroxidbasierten Mediators und/oder der mindestens einen Thioverbindung, gestartet werden. Nach der Polymerisation des mindestens einen polymerisierbaren Monomers kann dann die Mischung, beispielsweise durch Rakeln, zu einer Anode verarbeitet werden. So kann vorteilhafterweise die Zahl der Prozessschritte verringert und auf diese Weise das Verfahren vereinfacht werden. Zudem kann hierbei das aus dem mindestens einen polymerisierbaren Monomer ausgebildete Polymer auch als Binder für die herzustellende Anode dienen. Gegebenenfalls kann hierbei auf die Zugabe eines zusätzlichen Binders als weitere Elektrodenkomponente verzichtet werden.
  • Zum Beispiel kann das Verfahren dabei die Verfahrensschritte:
    • a') Mischen von Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, und mindestens einer weiteren Elektrodenkomponente und mindestens einem polymerisierbaren Monomer, insbesondere Mischen der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, und mindestens einer weiteren Elektrodenkomponente und des mindestens einen polymerisierbaren Monomers,
    • b') Starten der Polymerisation des mindestens einen polymerisierbaren Monomers mittels, beispielsweise durch Zugabe, mindestens eines Polymerisationsinitiators, insbesondere des mindestens einen Polymerisationsinitiators, zum Beispiel mittels, beispielsweise durch Zugabe, des mindestens einen Polymerisationsinitiators und des mindestens einen Katalysators und/oder des mindestens einen polymerisationskontrollierenden Mittels, beispielsweise des mindestens einen nitroxidbasierten Mediators und/oder der mindestens einen Thioverbindung, und
    • c') Verarbeiten, beispielsweise durch Rakeln, der Mischung zu einer Anode, umfassen. Gegebenenfalls kann in Verfahrensschritt a') das mindestens eine polymerisierbare Monomer zu der Mischung aus Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, und der mindestens einen weiteren Elektrodenkomponente zugegeben werden.
  • Das Mischen in Verfahrensschritt a') und die Polymerisation in Verfahrensschritt b') können insbesondere in mindestens einem Lösungsmittel durchgeführt werden. Nach der Polymerisation beziehungsweise nach Verfahrensschritt b'), beispielsweise vor oder während oder nach Verfahrensschritt c'), kann dann das mindestens eine Lösungsmittel wieder entfernt werden.
  • Im Rahmen einer anderen Ausgestaltung werden die Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, mit mindestens einer weiteren Elektrodenkomponente und mit dem mindestens einen polymerisierbaren Monomer und dem mindestens einen Polymerisationsinitiator gemischt und die Mischung, beispielsweise durch Rakeln, zu einer Anode verarbeitet. Das Mischen und Verarbeiten erfolgt dabei vorzugsweise unter Bedingungen, beispielsweise bei einer, insbesondere geringen, Temperatur und/oder unter Lichtausschluss, bei welchen der mindestens eine Polymerisationsinitiator die Polymerisationsreaktion, insbesondere zumindest im Wesentlichen, nicht startet. Nach dem Verarbeiten der Mischung zu einer Anode wird dann die Polymerisation, insbesondere durch Bestrahlen, beispielsweise mit Ultravioletterstrahlung, zum Beispiel einer UV-Lampe, und/oder durch Erwärmen beziehungsweise Erhitzen der Mischung, gestartet.
  • So kann vorteilhafterweise die Zahl der Prozessschritte weiter verringert und das Verfahren weiter vereinfacht werden. Zudem kann hierbei das aus dem mindestens einen polymerisierbaren Monomer ausgebildet Polymere ebenfalls als Binder für die herzustellende Anode dienen. Gegebenenfalls kann daher auch hierbei auf die Zugabe eines zusätzlichen Binders als weitere Elektrodenkomponente verzichtet werden. Zudem kann so das Polymer in der bereits verarbeiteten Form gebildet werden und vorteilhafterweise eine Aushärtung in der bereits verarbeiteten Form erzielt werden.
  • Zum Beispiel kann dabei das Verfahren die Verfahrensschritte:
    • a") Mischen von Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, mindestens einer weiteren Elektrodenkomponente, mindestens einem polymerisierbaren Monomer und mindestens einem Polymerisationsinitiator, insbesondere Mischen der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, mindestens einer weiteren Elektrodenkomponente, des mindestens einen polymerisierbaren Monomers und des mindestens einen Polymerisationsinitiators und beispielsweise des mindestens einen Katalysators und/oder des mindestens einen polymerisationskontrollierenden Mittels, beispielsweise des mindestens einen nitroxidbasierten Mediators und/oder der mindestens einen Thioverbindung;
    • b") Verarbeiten, beispielsweise Rakeln, der Mischung zu einer Anode; und
    • c") Starten der Polymerisation des mindestens einen polymerisierbaren Monomers durch Bestrahlen, insbesondere mit Ultravioletterstrahlung und/oder durch Erwärmen beziehungsweise Erhitzen der Mischung.
    umfassen. Beispielsweise kann in Verfahrensschritt a"), zum Beispiel zunächst, das mindestens eine polymerisierbare Monomer und, zum Beispiel dann, der mindestens eine Polymerisationsinitiator zu einer Mischung aus Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, und der mindestens einen weiteren Elektrodenkomponente zugegeben werden.
  • Das Mischen in Verfahrensschritt a"), die Verarbeitung in Verfahrensschritt b") und die Polymerisation in Verfahrensschritt c") können insbesondere in mindestens einem Lösungsmittel durchgeführt werden. Nach der Polymerisation beziehungsweise nach Verfahrensschritt c") kann dann das mindestens eine Lösungsmittel wieder entfernt werden.
  • Im Rahmen der vorstehenden Ausführungsformen kann die mindestens eine weitere Elektrodenkomponente mindestens eine Kohlenstoffkomponente, beispielsweise Graphit und/oder Leitruß, und/oder mindestens einen, gegebenenfalls zusätzlichen, beispielsweise kompatiblen, Binder, zum Beispiel Carboxymethylcellulose (CMC) und/oder Carboxymethylcellulose-Salze, wie Lithium-Carboxymethylcellulose (LiCMC) und/oder NatriumCarboxymethylcellulose (NaCMC) und/oder Kalium-Carboxymethylcellulose (KCMC), und/oder Polyacrylsäure (PAA) und/oder Polyacrylsäure-Salze, wie Lithium-Polyacrylsäure (LiPAA) und/oder Natrium-Polyacrylsäure (NaPAA) und/oder Kalium-Polyacrylsäure (KPAA), und/oder Polyvinylalkohol (PVAL) und/oder Styrol-Butadien-Kautschuk (SBR), und/oder mindestens ein Lösungsmittel umfassen.
  • Insbesondere kann der mindestens eine, gegebenenfalls zusätzliche, Binder Carbonsäuregruppen (-COOH) und/oder Hydroxygruppen (-OH) aufweisen. Zum Beispiel kann der mindestens eine, gegebenenfalls zusätzliche, Binder Polyacrylsäure (PAA) und/oder Carboxymethylcellulose (CMC) und/oder Polyvinylalkohol (PVAL) umfassen oder sein.
  • Insbesondere kann dabei das mindestens eine polymerisierbare Monomer und/oder das aus dem mindestens einen polymerisierbaren Monomer ausgebildete Polymer Carbonsäuregruppen (-COOH) und/oder Hydroxygruppen (-OH) aufweisen. Zum Beispiel kann das mindestens eine polymerisierbare Monomer Acrylsäure und/oder Vinylacetat umfassen oder sein und/oder das aus dem mindestens einen polymerisierbaren Monomer ausgebildete Polymer ein durch Polymerisation von Acrylsäure erhältliches Polyacrylsäure (PAA) basiertes Polymer und/oder ein durch Polymerisation von Vinylacetat mit anschließender Verseifung erhältlicher Polyvinylalkohol (PVAL) umfassen oder sein.
  • Insofern sowohl der mindestens eine, gegebenenfalls zusätzliche, Binder und das mindestens eine polymerisierbare Monomer und/oder das aus dem mindestens einen Monomer ausgebildete Polymer Carbonsäuregruppen (-COOH) und/oder Hydroxygruppen (-OH) umfasst, können vorteilhafterweise mit dem Polymer versehene, beispielsweise beschichtete, Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, über eine Kondensationsreaktion kovalent mit dem mindestens einen Binder verbunden werden. Durch eine Kondensationsreaktion zwischen zwei Carbonsäuregruppen kann dabei eine Anhydrid-Verbindung erzielt werden. Durch eine Kondensationsreaktion zwischen einer Carbonsäuregruppe und einer Hydroxygruppe kann dabei eine Ester-Verbindung erzielt werden. Durch eine Kondensationsreaktion zwischen zwei Hydroxygruppen kann dabei eine Ether-Verbindung erzielt werden.
  • Zum Beispiel können mit einem auf Polyacrylsäure basierendem Polymer versehene Siliciumpartikel (Si-PAA) gemäß der folgenden Schemata mit Polyacrylsäure (PAA) und/oder Carboxymethylcellulose (CMC) und/oder Polyvinylalkohol (PVAL) als Binder über eine Kondensationsreaktion kovalent verbunden werden: Si-PAA + PAA: -COOH + -COOH → Anhydrid-Verbindung Si-PAA + CMC: -COOH + -COOH → Anhydrid-Verbindung Si-PAA + PVAL: -COOH + -OH → Ester-Verbindung
  • Gegebenenfalls - insbesondere im Rahmen der vorstehend beschriebenen Ausführungsformen, im Rahmen derer das aus dem polymerisierbaren Monomer ausgebildete Polymer auch als Binder dienen kann - kann auf den Zusatz mindestens eines, insbesondere zusätzlichen, Binders als weitere Elektrodenkomponente verzichtet beziehungsweise die mindestens eine weitere Elektrodenkomponente gegebenenfalls auch binderfrei ausgestaltet werden.
  • Dennoch ist es möglich - beispielsweise um die mechanische Stabilität und/oder Leitfähigkeit der auszubildenden Anode zu verbessern - mindestens einen, beispielsweise zusätzlichen, insbesondere von dem aus dem polymerisierbaren Monomer ausgebildeten Polymer unterschiedlichen, Binder als weitere Elektrodenkomponente einzusetzen.
  • Gegebenenfalls kann das bei der Polymerisation eingesetzte mindestens eine Lösungsmittel auch als Elektrodenkomponente, beispielsweise zur Ausbildung eines Elektroden-Schlickers, dienen. So kann gegebenenfalls auf den Zusatz eines zusätzlichen Lösungsmittels als weitere Elektrodenkomponente verzichtet werden.
  • Insbesondere - beispielsweise insofern das mindestens eine Lösungsmittel nach der Polymerisation wieder entfernt wird - kann jedoch mindestens ein, insbesondere von dem Lösungsmittel der Polymerisation unterschiedliches, Lösungsmittel als weitere Elektrodenkomponente eingesetzt werden.
  • Hinsichtlich weiterer technischer Merkmale und Vorteile des erfindungsgemäßen Verfahrens wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Anodenaktivmaterial, der erfindungsgemäßen Anode und der erfindungsgemäßen Zelle und/oder Batterie sowie auf die Figuren und die Figurenbeschreibung verwiesen.
  • Weitere Gegenstände der vorliegenden Erfindung sind ein Anodenaktivmaterial und/oder eine Anode für eine Lithium-Zelle und/oder Lithium-Batterie, insbesondere für eine Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, welches/welche durch ein erfindungsgemäßes Verfahren hergestellt ist.
  • Ein erfindungsgemäßes beziehungsweise erfindungsgemäß hergestelltes Anodenaktivmaterial, beispielsweise das aus dem mindestens einen polymerisierbaren Monomer ausgebildete Polymer, zum Beispiel Polyvinylencarbonat, und/oder eine erfindungsgemäße beziehungsweise erfindungsgemäß hergestellte Anode kann beispielsweise mittels Kernresonanzspektroskopie (NMR) und/oder Infrarotspektroskopie (IR) und/oder Ramanspektroskopie (Raman) nachgewiesen werden. Zudem kann ein erfindungsgemäßes beziehungsweise erfindungsgemäß hergestelltes Anodenaktivmaterial und/oder eine erfindungsgemäße beziehungsweise erfindungsgemäß hergestellte Anode beispielsweise mittels Oberflächenanalyseverfahren, wie Augerelektronenspektroskopie (AES) und/oder Röntgenphotoelektronenspektroskopie (XPS, Englisch: X-ray Photoelectron Spectroscopy) und/oder Flugzeit-Sekundärionen-Massenspektrometrie (TOF-SIMS, Englisch: Time-of-Flight Secondary Ion Mass Spectrometry) und/oder Energiedispersive Röntgenspektroskopie (EDX, Englisch: Energy Dispersive X-ray Spectroscopy) und/oder wellenlängendispersive Röntgenspektroskopie (WDX), zum Beispiel EDX/WDX, und/oder mittels strukturellen Untersuchungsmethoden, wie Transmissionselektronenmikroskopie (TEM), und/oder mittels Querschnittsuntersuchungen, wie Rasterelektronenmikroskopie (REM) (SEM; Englisch: Scanning Electron Microscope) und/oder Energiedispersive Röntgenspektroskopie (EDX, Englisch: Energy Dispersive X-ray Spectroscopy), zum Beispiel REM-EDX, und/oder Transmissionselektronenmikroskopie (TEM) und/oder Elektronenenergieverlustspektroskopie (EELS; Englisch: Electron Energy Loss Spectroscopy), zum Beispiel TEM-EELS, nachgewiesen werden. So können unter anderem zum Beispiel in einem ATRP-Katalysator enthaltene Übergangsmetalle und/oder nitroxidbasierte Mediatoren, wie TEMPO, und/oder RAFT-Chemikalien nachweisbar sein.
  • Hinsichtlich weiterer technischer Merkmale und Vorteile des erfindungsgemäßen Anodenaktivmaterial und der erfindungsgemäßen Anode wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Verfahren und der erfindungsgemäßen Zelle und/oder Batterie sowie auf die Figuren und die Figurenbeschreibung verwiesen.
  • Ferner betrifft die Erfindung eine Lithium-Zelle und/oder Lithium-Batterie, insbesondere eine Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, welche durch ein erfindungsgemäßes Verfahren hergestellt ist und/oder ein erfindungsgemäßes Anodenaktivmaterial und/oder eine erfindungsgemäße Anode umfasst.
  • Hinsichtlich weiterer technischer Merkmale und Vorteile der erfindungsgemäßen Zelle und/oder Batterie wird hiermit explizit auf die Erläuterungen im Zusammenhang mit dem erfindungsgemäßen Verfahren, dem erfindungsgemäßen Anodenaktivmaterial und der erfindungsgemäßen Anode sowie auf die Figuren und die Figurenbeschreibung verwiesen.
  • Figurenliste
  • Weitere Vorteile und vorteilhafte Ausgestaltungen der erfindungsgemäßen Gegenstände werden durch die Zeichnungen veranschaulicht und in der nachfolgenden Beschreibung erläutert. Dabei ist zu beachten, dass die Zeichnungen nur beschreibenden Charakter haben und nicht dazu gedacht sind, die Erfindung in irgendeiner Form einzuschränken. Es zeigen
    • 1a ein Flussdiagramm zur Veranschaulichung einer Ausführungsform des erfindungsgemäßen Herstellungsverfahrens;
    • 1b ein Reaktionsschema zur Veranschaulichung der in 1a gezeigten Ausführungsform des erfindungsgemäßen Herstellungsverfahrens; und
    • 1c einen schematischen Querschnitt durch eine Anode, welche gemäß der in 1a gezeigten Ausführungsform des erfindungsgemäßen Verfahrens hergestellt ist.
  • 1a veranschaulicht, dass im Rahmen einer Ausführungsform des erfindungsgemäßen Verfahrens, beispielsweise in einem Verfahrensschritt A), mindestens eine Silanverbindung 2* mit mindestens einer polymerisierbaren und/oder polymerisationsinitiierenden und/oder polymerisationskontrollierenden funktionellen Gruppe auf der Oberfläche von Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, 1 immobilisiert wird. Bei der mindestens einen Silanverbindung 2* kann es sich beispielsweise um ein Vinylsilan oder einen silanbasierten ATRP-Initiator oder einen silanbasierten NMP-Mediator oder eine silanbasierte RAFT-Agens handeln.
  • Zu dem Reaktionsprodukt 12* wird dann, beispielsweise in einem Verfahrensschritt B), mindestens ein polymerisierbares Monomer 2, zum Beispiel Vinylencarbonat, zugegeben. Dabei wird ausgehend von der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, insbesondere der mindestens einen funktionellen Gruppe der mindestens einen Silanverbindung 2*, durch Polymerisation des mindestens einen polymerisierbaren Monomers 2, ein (Co-)Polymer 12*2 gebildet und die Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, 1 auf diese Weise beschichtet.
  • Die Polymerisation kann dabei insbesondere eine radikalische Polymerisation sein. Zum Beispiel kann ein Vinylsilan und/oder Vinylencarbonat (VC) mittels eines silanbasierten ATRP-Initiators und/oder durch Zugabe eines Polymerisationsinitiators, beispielsweise eines Radikalstarters, zum Beispiel von Azoisobutyronitril (AIBN) und/oder Benzoylperoxid (BPO), mittels radikalischer Polymerisation, beispielsweise zu Polyvinylencarbonat, polymerisiert werden, wobei im Spezialfall einer lebenden radikalischen Polymerisation, zum Beispiel einer ATRP, ein silanbasierter ATRP-Initiator und/oder ein Alkylhalogenid (RX) in Kombination mit einem aus einem Übergangsmetallhalogenid (MX) und Liganden (L) ausgebildeten Katalysator, oder, zum Beispiel einer NMP, ein silanbasierter NMP-Mediator und/oder nitroxidbasierter Mediator (TEMPO) in Kombination mit einem Radikalstarter, wie AIBN, oder, zum Beispiel einer RAFT, eine silanbasierte RAFT-Agens und/oder Thioverbindung (Thio) in Kombination mit einem Radikalstarter, wie AIBN, eingesetzt werden kann:
    Figure DE102016224032A1_0061
  • Die beschichteten Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, 12*2 können dann, beispielsweise in einem Verfahrensschritt C), mit einer oder mehreren, weiteren Elektrodenkomponenten, wie Graphit und/oder Leitruß 4 und Binder 5 und/oder Lösungsmittel, gemischt und die Mischung 12*2,4,5, beispielsweise in einem Verfahrensschritt D), zu einer Anode 100" verarbeitet, beispielsweise gerakelt, werden. Dabei kann der als weitere Elektrodenkomponente dienende Binder 5 gegebenenfalls unterschiedlich zu dem aus dem polymerisierbaren Monomer 2 ausgebildeten Polymer 2*2 sein.
  • 1b veranschaulicht, dass dabei die mindestens eine Silanverbindung 2*, zum Beispiel 4-(Chloromethyl)phenyltrichlorosilan, beispielsweise mittels Kondensationsreaktion mit Hydroxygruppen, beispielsweise Siliciumhydroxidgruppen beziehungsweise Silanolgruppen (Si-OH), auf der Oberfläche der Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, 1 eine, insbesondere kovalente, Bindung mit den Anodenaktivmaterialpartikeln, insbesondere Siliciumpartikeln, 1 eingehen und eine von der Oberfläche der Siliciumpartikel 1 ausgehende Polymerisation des mindestens einen polymerisierbaren Monomers 2 starten kann.
  • 1c veranschaulicht, dass eine entsprechend hergestellte Anode 100" mit Polymer 2*2 beschichtete Anodenaktivmaterialpartikel, insbesondere Siliciumpartikel, 1 sowie Graphit- und/oder Leitruß-Partikel 4 umfassen kann, welche in einen zusätzlichen Binder 5 eingebettet sind.
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • US 2014/0248543 A1 [0004, 0005]
    • US 2015/0072246 A1 [0006]
    • US 2010/0273066 A1 [0007]
    • US 2012/0007028 A1 [0008]
    • CN 104362300 [0009]
    • US 2014/0342222 A1 [0010]
    • WO 2015/107581 [0013]
  • Zitierte Nicht-Patentliteratur
    • H. Zhao et al beschreibt in J. Power Sources, 263, 2014, S. 288-295 [0011]
    • J.-H. Min et al beschreibt in Bull. Korean. Chem. Soc., 2013, Vol. 34, No. 4., S. 1296-1299 [0012]

Claims (23)

  1. Verfahren zur Herstellung eines Anodenaktivmaterials und/oder einer Anode (100") für eine Lithium-Zelle und/oder Lithium-Batterie, insbesondere für eine Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, und/oder zur Herstellung einer Lithium-Zelle und/oder Lithium-Batterie, insbesondere einer Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, in dem - mindestens eine Silanverbindung (2*) mit mindestens einer polymerisierbaren und/oder polymerisationsinitiierenden und/oder polymerisationskontrollierenden funktionellen Gruppe auf der Oberfläche von Anodenaktivmaterialpartikeln (1), insbesondere Siliciumpartikeln, immobilisiert wird, und - mindestens ein polymerisierbares Monomer (2) zugegeben und polymerisiert wird.
  2. Verfahren nach Anspruch 1, wobei mindestens zwei polymerisierbare Monomere (2) eingesetzt werden.
  3. Verfahren nach Anspruch 1 oder 2, wobei die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung (2*) und/oder das mindestens eine polymerisierbare Monomer (2), insbesondere die mindestens zwei polymerisierbaren Monomere (2), mindestens eine polymerisierbare Doppelbindung und/oder mindestens eine Hydroxygruppe umfassen.
  4. Verfahren nach einem der Ansprüche 1 bis 3, wobei die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung (2*) und/oder das mindestens eine polymerisierbare Monomer (2), insbesondere die mindestens zwei polymerisierbaren Monomere (2), durch eine radikalische Polymerisation, insbesondere durch eine lebende radikalische Polymerisation, polymerisierbar ist, und/oder wobei die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung (2*) zum Starten einer radikalischen Polymerisation, insbesondere zum Starten einer lebenden radikalischen Polymerisation, ausgelegt ist, und/oder wobei die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung (2*) zur Kontrolle einer lebenden radikalischen Polymerisation, ausgelegt ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, wobei die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung (2*) und/oder das mindestens eine polymerisierbare Monomer (2), insbesondere die mindestens zwei polymerisierbaren Monomere (2), durch eine lebende radikalische Polymerisation unter Atomtransfer oder durch eine stabile freie Radikale Polymerisation, insbesondere durch eine Nitroxid-vermittelte Polymerisation, oder durch eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation polymerisierbar ist, und/oder wobei die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung (2*) zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer ausgelegt ist, und/oder wobei die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung (2*) zur Kontrolle einer stabile freie Radikale Polymerisation, insbesondere zur Kontrolle einer Nitroxid-vermittelten Polymerisation, und/oder zur Kontrolle einer reversiblen Additions-Fragmentierungs-Kettenübertragungs-Polymerisation ausgelegt ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, wobei die mindestens eine polymerisierbare funktionelle Gruppe der mindestens einen Silanverbindung (2*) und/oder das mindestens eine polymerisierbare Monomer (2), insbesondere die mindestens zwei polymerisierbaren Monomere (2), mindestens eine polymerisierbare Doppelbindung, insbesondere mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, umfassen.
  7. Verfahren nach einem der Ansprüche 1 bis 6, wobei die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung (2*) eine mit mindestens einem Halogenatom, insbesondere Brom oder Chlor, substituierte Alkylgruppe umfasst.
  8. Verfahren nach einem der Ansprüche 1 bis 7, wobei die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung (2*) in Kombination mit mindestens einem Katalysator eingesetzt wird, insbesondere wobei der mindestens eine Katalysator ein Übergangsmetallhalogenid und mindestens einen Liganden, insbesondere Stickstoffliganden, umfasst beziehungsweise daraus ausgebildet wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, wobei die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung (2*), insbesondere für eine Nitroxid-vermittelte Polymerisation, eine Nitroxidgruppe und/oder Alkoxyamingruppe, und/oder, insbesondere für eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation, eine Thiogruppe umfasst.
  10. Verfahren nach einem der Ansprüche 1 bis 9, wobei die mindestens eine polymerisationskontrollierende funktionelle Gruppe der mindestens einen Silanverbindung (2*) in Kombination mit mindestens einem Polymerisationsinitiator und/oder mit mindestens einer polymerisationsinitiierenden funktionellen Gruppe mindestens einer Silanverbindung (2*) eingesetzt wird.
  11. Verfahren nach einem der Ansprüche 1 bis 10, wobei die Polymerisation des mindestens einen polymerisierbaren Monomers (2), insbesondere der mindestens zwei polymerisierbaren Monomere (2), mittels der mindestens einen polymerisationsinitiierenden funktionellen Gruppe der mindestens einen Silanverbindung (2*) und/oder mittels, insbesondere durch Zugabe, mindestens eines Polymerisationsinitiators gestartet wird.
  12. Verfahren nach einem der Ansprüche 1 bis 11, wobei die mindestens eine polymerisationsinitiierende funktionelle Gruppe der mindestens einen Silanverbindung (2*) und/oder der mindestens eine Polymerisationsinitiator ein Radikalstarter ist.
  13. Verfahren nach einem der Ansprüche 1 bis 12, wobei die mindestens eine Silanverbindung mindestens eine Silanverbindung der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0062
    umfasst, wobei R1, R2, R3 jeweils unabhängig voneinander für ein Halogenatom oder eine Alkoxygruppe oder eine Alkylgruppe oder eine Aminogruppe oder eine Silazangruppe oder eine Hydroxygruppe oder Wasserstoff stehen, Y für einen Linker steht, insbesondere wobei Y mindestens eine Alkylengruppe und/oder mindestens eine Alkylenoxidgruppe und/oder mindestens eine Carbonsäureestergruppe und/oder mindestens eine Phenylengruppe umfasst, und A für eine polymerisierbare und/oder polymerisationsinitiierende und/oder polymerisationskontrollierende funktionelle Gruppe steht.
  14. Verfahren nach Anspruch 13, wobei A für eine polymerisierbare funktionelle Gruppe mit mindestens einer polymerisierbaren Doppelbindung, insbesondere für eine Vinylgruppe oder eine Vinylidengruppe oder eine Vinylengruppe oder eine Acrylatgruppe oder eine Methacrylatgruppe, steht, oder wobei A für eine polymerisationsinitiierende funktionelle Gruppe zum Starten einer lebenden radikalischen Polymerisation unter Atomtransfer, insbesondere für Brom oder Chlor, steht, oder wobei A für eine polymerisationskontrollierende funktionelle Gruppe für eine Nitroxid-vermittelte Polymerisation, insbesondere für eine Nitroxidgruppe und/oder Alkoxyamingruppe, oder für eine polymerisationskontrollierende funktionelle Gruppe für eine reversible Additions-Fragmentierungs-Kettenübertragungs-Polymerisation, insbesondere für eine Thiogruppe, steht.
  15. Verfahren nach einem der Ansprüche 1 bis 14, wobei die Anodenaktivmaterialpartikel (1) Siliciumpartikel und/oder Graphitpartikel und/oder Zinnpartikel, insbesondere Siliciumpartikel, umfassen oder sind.
  16. Verfahren nach einem der Ansprüche 1 bis 15, wobei das mindestens eine polymerisierbare Monomer (2), insbesondere die mindestens zwei polymerisierbaren Monomere (2): - mindestens eine polymerisierbare Carbonsäure und/oder - mindestens ein polymerisierbares Carbonsäure-Derivat, insbesondere - mindestens polymerisierbares organische Carbonat und/oder Anhydrid, und/oder - mindestens einen Carbonsäureester, und/oder - mindestens ein Carbonsäurenitril, und/oder - mindestens einen Ether, insbesondere mindestens einen Kronether und/oder mindestens ein Kronether-Derivat und/oder mindestens einen Vinylether, und/oder - mindestens einen, insbesondere aliphatischen oder aromatischen, ungesättigten Kohlenwasserstoff, umfasst.
  17. Verfahren nach einem der Ansprüche 1 bis 16, wobei das mindestens eine polymerisierbare Monomer (2), insbesondere die mindestens zwei polymerisierbaren Monomere (2), weiterhin mindestens eine unfluorierte Alkylenoxidgruppe und/oder mindestens eine fluorierte Alkylenoxidgruppe und/oder mindestens eine fluorierte Alkoxygruppe und/oder mindestens eine fluorierte Alkylgruppe und/oder mindestens eine fluorierte Phenylgruppe umfasst.
  18. Verfahren nach einem der Ansprüche 1 bis 17, wobei das mindestens eine polymerisierbare Monomer (2), insbesondere die mindestens zwei polymerisierbaren Monomere (2), Acrylsäure und/oder Methacrylsäure und/oder Vinylencarbonat und/oder Vinylethylencarbonat und/oder Maleinsäureanhydrid und/oder Poly(ethylenglykol)methyletheracrylat und/oder Methylmethacrylat und/oder Vinylacetat und/oder Acrylnitril und/oder mindestens einen Kronether und/oder mindestens ein Kronether-Derivat mit mindestens einer polymerisierbaren funktionellen Gruppe, insbesondere mit mindestens einer polymerisierbaren Doppelbindung, und/oder mit mindestens einer Hydroxygruppe, und/oder einen Trifluorvinylether und/oder 1,1-Difluorethen und/oder Hexafluorpropen und/oder 3,3,4,4,5,5,6,6,6-Nonafluorhexen und/oder 2,3,4,5,6-Pentafluorphenylethen und/oder 4-(Trifluormethyl)phenylethen und/oder Styrol und/oder ein Derivat davon umfasst oder ist.
  19. Verfahren nach einem der Ansprüche 16 bis 18, wobei der mindestens ein Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0063
    umfasst, wobei Q1, Q2, Q3 und Qk jeweils unabhängig voneinander für Sauerstoff oder Stickstoff oder ein Amin, insbesondere Sauerstoff, stehen, wobei G für mindestens eine polymerisierbare funktionelle Gruppe steht, insbesondere wobei G mindestens eine Vinylgruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Allylgruppe und/oder mindestens eine Hydroxygruppe umfasst, insbesondere wobei G weiterhin mindestens eine Benzogruppe und/oder Cyclohexanogruppe umfasst, wobei g für die Anzahl an polymerisierbaren funktionellen Gruppen G steht, und wobei k für die Anzahl der in Klammern stehenden Einheit steht
  20. Verfahren nach einem der Ansprüche 16 bis 19, wobei der mindestens eine Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0064
    umfasst, wobei G' für mindestens eine polymerisierbare funktionelle Gruppe, insbesondere für mindestens eine Vinylgruppe und/oder mindestens eine Vinylidengruppe und/oder mindestens eine Vinylengruppe und/oder mindestens eine Allylgruppe und/oder mindestens eine Hydroxygruppe, steht und wobei 1 ≤ g' ist.
  21. Verfahren nach einem der Ansprüche 1 bis 20, wobei die mindestens eine Silanverbindung mindestens eine kronetherbasierte Silanverbindung der allgemeinen chemischen Formel und/oder der mindestens ein Kronether und/oder das mindestens eine Kronether-Derivat einen Kronether beziehungsweise ein Kronether-Derivat der allgemeinen chemischen Formel:
    Figure DE102016224032A1_0065
    umfasst, wobei R1, R2, R3 jeweils unabhängig voneinander für ein Halogenatom oder eine Alkoxygruppe oder eine Alkylgruppe oder eine Aminogruppe oder eine Silazangruppe oder eine Hydroxygruppe oder Wasserstoff stehen, Q1, Q2, Q3 und Qk jeweils unabhängig voneinander für Sauerstoff oder Stickstoff oder ein Amin stehen, k für die Anzahl der in Klammern stehenden Einheit steht, G für mindestens eine polymerisierbare funktionelle Gruppe steht, insbesondere wobei G mindestens eine Kohlenstoff-Kohlenstoff-Doppelbindung, insbesondere mindestens eine Vinylgruppe und/oder Vinylidengruppe und/oder Vinylengruppe und/oder Allylgruppe und/oder mindestens eine Hydroxygruppe, umfasst, g für die Anzahl an polymerisierbaren funktionellen Gruppen G steht, Y' für einen Linker, insbesondere für -CnH2n- mit n = 1 oder 2 oder 3, steht, und s für die Anzahl an, insbesondere über den Linker Y' angebundenen, Silangruppen steht.
  22. Anodenaktivmaterial und/oder Anode (100") für eine Lithium-Zelle und/oder Lithium-Batterie, insbesondere für eine Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, hergestellt durch ein Verfahren nach einem der Ansprüche 1 bis 21.
  23. Lithium-Zelle und/oder Lithium-Batterie, insbesondere Lithium-Ionen-Zelle und/oder Lithium-Ionen-Batterie, hergestellt durch ein Verfahren nach einem der Ansprüche 1 bis 20 und/oder umfassend ein Anodenaktivmaterial und/oder eine Anode (100") nach Anspruch 22.
DE102016224032.3A 2016-12-02 2016-12-02 Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-from-Polymerisation Pending DE102016224032A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102016224032.3A DE102016224032A1 (de) 2016-12-02 2016-12-02 Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-from-Polymerisation
CN201711248916.9A CN108155354B (zh) 2016-12-02 2017-12-01 借助从主链接枝法聚合具有合成sei层的阳极活性材料颗粒

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102016224032.3A DE102016224032A1 (de) 2016-12-02 2016-12-02 Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-from-Polymerisation

Publications (1)

Publication Number Publication Date
DE102016224032A1 true DE102016224032A1 (de) 2018-06-07

Family

ID=62163971

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102016224032.3A Pending DE102016224032A1 (de) 2016-12-02 2016-12-02 Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-from-Polymerisation

Country Status (2)

Country Link
CN (1) CN108155354B (de)
DE (1) DE102016224032A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220344712A1 (en) * 2019-06-06 2022-10-27 Evonik Operations Gmbh In-situ polymerized polymer electrolyte for lithium ion batteries
WO2021075554A1 (ja) * 2019-10-18 2021-04-22 株式会社村田製作所 負極活物質、負極および二次電池

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273066A1 (en) 2007-08-23 2010-10-28 Excellatron Solid State Llc Rechargeable Lithium Air Battery Cell Having Electrolyte with Alkylene Additive
DE102010054778A1 (de) * 2009-12-18 2011-07-14 GM Global Technology Operations LLC, Mich. Lithium-Ionen-Batterie
US20120007028A1 (en) 2010-03-11 2012-01-12 Lg Chem, Ltd. Polymer-silicon composite particles, method of making the same, and anode and lithium secondary battery including the same
US20140248543A1 (en) 2011-10-05 2014-09-04 Oned Material Llc Silicon Nanostructure Active Materials for Lithium Ion Batteries and Processes, Compositions, Components and Devices Related Thereto
US20140342222A1 (en) 2013-05-14 2014-11-20 Oci Company Ltd. Si-BLOCK COPOLYMER CORE-SHELL NANOPARTICLES TO BUFFER VOLUMETRIC CHANGE AND ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY USING THE SAME
CN104362300A (zh) 2014-12-02 2015-02-18 南京工业大学 一种锂离子电池硅碳复合负极材料的制备方法及其应用
US20150072246A1 (en) 2012-05-18 2015-03-12 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and non-aqueous secondary battery
WO2015107581A1 (ja) 2014-01-16 2015-07-23 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
US20160164081A1 (en) * 2013-07-23 2016-06-09 Jiangsu Huadong Institute Of Li-Ion Battery Co. Ltd. Method for making lithium ion battery anode active material

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100273066A1 (en) 2007-08-23 2010-10-28 Excellatron Solid State Llc Rechargeable Lithium Air Battery Cell Having Electrolyte with Alkylene Additive
DE102010054778A1 (de) * 2009-12-18 2011-07-14 GM Global Technology Operations LLC, Mich. Lithium-Ionen-Batterie
US20120007028A1 (en) 2010-03-11 2012-01-12 Lg Chem, Ltd. Polymer-silicon composite particles, method of making the same, and anode and lithium secondary battery including the same
US20140248543A1 (en) 2011-10-05 2014-09-04 Oned Material Llc Silicon Nanostructure Active Materials for Lithium Ion Batteries and Processes, Compositions, Components and Devices Related Thereto
US20150072246A1 (en) 2012-05-18 2015-03-12 Fujifilm Corporation Non-aqueous liquid electrolyte for secondary battery and non-aqueous secondary battery
US20140342222A1 (en) 2013-05-14 2014-11-20 Oci Company Ltd. Si-BLOCK COPOLYMER CORE-SHELL NANOPARTICLES TO BUFFER VOLUMETRIC CHANGE AND ANODE ACTIVE MATERIAL FOR LITHIUM SECONDARY BATTERY USING THE SAME
US20160164081A1 (en) * 2013-07-23 2016-06-09 Jiangsu Huadong Institute Of Li-Ion Battery Co. Ltd. Method for making lithium ion battery anode active material
WO2015107581A1 (ja) 2014-01-16 2015-07-23 信越化学工業株式会社 非水電解質二次電池用負極材及び負極活物質粒子の製造方法
CN104362300A (zh) 2014-12-02 2015-02-18 南京工业大学 一种锂离子电池硅碳复合负极材料的制备方法及其应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
H. Zhao et al beschreibt in J. Power Sources, 263, 2014, S. 288-295
J.-H. Min et al beschreibt in Bull. Korean. Chem. Soc., 2013, Vol. 34, No. 4., S. 1296-1299
PYUN, Jeffrey; MATYJASZEWSKI, Krzysztof: Synthesis of nanocomposite organic/inorganic hybrid materials using controlled/"living" radical polymerization. In: Chemistry of Materials, 13. Jg., 2001, Nr. 10, 3436-3448. *

Also Published As

Publication number Publication date
CN108155354A (zh) 2018-06-12
CN108155354B (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
WO2017093460A1 (de) Anodenaktivmaterialpartikel mit künstlicher sei-schicht
DE102016224039A1 (de) Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-to-Polymerisation
KR101148564B1 (ko) 정극용 결합제 조성물
KR102374874B1 (ko) 비수전해질 이차전지 전극용 바인더 및 그 제조 방법, 및 그 용도
KR101888854B1 (ko) 이차 전지 전극용 바인더 조성물, 이차 전지 전극용 도전재 페이스트 조성물, 이차 전지 전극용 슬러리 조성물, 이차 전지용 전극 및 이차 전지
JP6628399B2 (ja) 電解質及びその製造方法、並びにそれを含むリチウム二次電池
KR20170055923A (ko) 리튬 이온 전지 양극용 도전 페이스트 및 리튬 이온 전지 양극용 합재 페이스트
CN107652390B (zh) 聚合乳液、制备方法及制备的水性粘合剂、方法及应用
KR20150032943A (ko) 리튬 이온 이차 전지 부극용 슬러리, 리튬 이온 이차 전지용 전극 및 그 제조 방법, 그리고 리튬 이온 이차 전지
CN111566858B (zh) 电极用粘合剂、电极以及蓄电器件
KR102260940B1 (ko) 리튬이온전지용 도전성 탄소재료 분산제, 리튬이온전지 전극용 슬러리, 리튬이온전지용 전극 및 리튬이온전지
KR20150040250A (ko) 리튬 이온 2 차 전지 전극용의 슬러리 조성물, 리튬 이온 2 차 전지용 전극 및 리튬 이온 2 차 전지
KR20180075436A (ko) 리튬 이온 2차 전지의 음극용 바인더, 음극용 슬러리 조성물 및 음극 및 리튬 이온 2차 전지
US9786917B2 (en) Method for producing binder composition for storage battery device
Zheng et al. Employing gradient copolymer to achieve gel polymer electrolytes with high ionic conductivity
CN114341304A (zh) 用于二次电池的粘结剂组合物
KR20180118638A (ko) 비수계 이차 전지 전극용 바인더 조성물, 비수계 이차 전지 전극용 도전재 페이스트 조성물, 비수계 이차 전지 전극용 슬러리 조성물, 비수계 이차 전지용 전극 및 비수계 이차 전지
KR102616369B1 (ko) 이미다졸 유도체를 포함하는 중합체 및 전기화학 전지에서의 이의 용도
CN107641170B (zh) 聚合物乳液、制备方法及制备的水性粘合剂、方法及应用
DE102016224032A1 (de) Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels graft-from-Polymerisation
DE102016224044A1 (de) Anodenaktivmaterialpartikel mit künstlicher Kronether-SEI-Schicht
JP7062476B2 (ja) バインダー組成物、電極合剤原料、電極合剤、電極、非水電解質二次電池および電極合剤の製造方法
JP7060405B2 (ja) バインダー組成物、電極合剤および非水電解質二次電池
US20200411871A1 (en) Binder composition for non-aqueous secondary battery electrode, conductive material paste composition for non-aqueous secondary battery electrode, slurry composition for non-aqueous secondary battery electrode, electrode for non-aqueous secondary battery, and non-aqueous secondary battery
DE102016224021A1 (de) Anodenaktivmaterialpartikel mit künstlicher SEI-Schicht mittels lebender radikalischer Polymerisation

Legal Events

Date Code Title Description
R163 Identified publications notified
R012 Request for examination validly filed