DE102015207111B3 - Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen - Google Patents

Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen Download PDF

Info

Publication number
DE102015207111B3
DE102015207111B3 DE102015207111.1A DE102015207111A DE102015207111B3 DE 102015207111 B3 DE102015207111 B3 DE 102015207111B3 DE 102015207111 A DE102015207111 A DE 102015207111A DE 102015207111 B3 DE102015207111 B3 DE 102015207111B3
Authority
DE
Germany
Prior art keywords
temperature
workpiece
austenitizing
weight percent
bainite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102015207111.1A
Other languages
English (en)
Inventor
Markus Dinkel
Werner Trojahn
Georg Schlegelmilch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Technologies AG and Co KG
Original Assignee
Schaeffler Technologies AG and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG and Co KG filed Critical Schaeffler Technologies AG and Co KG
Priority to DE102015207111.1A priority Critical patent/DE102015207111B3/de
Priority to EP16720336.3A priority patent/EP3286344B1/de
Priority to PCT/DE2016/200174 priority patent/WO2016169560A1/de
Application granted granted Critical
Publication of DE102015207111B3 publication Critical patent/DE102015207111B3/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/78Combined heat-treatments not provided for above
    • C21D1/785Thermocycling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/19Hardening; Quenching with or without subsequent tempering by interrupted quenching
    • C21D1/20Isothermal quenching, e.g. bainitic hardening
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/28Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases more than one element being applied in one step
    • C23C8/30Carbo-nitriding
    • C23C8/32Carbo-nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2221/00Treating localised areas of an article
    • C21D2221/10Differential treatment of inner with respect to outer regions, e.g. core and periphery, respectively
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2241/00Treatments in a special environment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen mit einem Kohlenstoffgehalt von 0,1 bis 0,4 Gewichtsprozent, bei denen eine Randzone eines Werkstücks, insbesondere eines Wälzlagerteiles gegenüber einem Kern einsatzgehärtet ist, umfassend folgende Verfahrensschritte: a) Carbonitrieren der Randzone des Werkstücks in einer festgelegten Einsatzhärtetiefe mit einem Kohlenstoffanteil zwischen 0,6 und 0,9 Gewichtsprozent und einem Stickstoffgehalt von zumindest 0,1 Gewichtsprozent und maximal 0,5 Gewichtsprozent Stickstoff bei einer Temperatur zwischen 850°C und 1000°C, b) Abkühlen und Durchführung eines Austenitisierungsschritts bei einer werkstoffabhängigen Austenitisierungstemperatur zwischen 800°C und 1000°C, c) Behandlung des Werkstücks auf der unteren Bainitstufe bei einer Bainitisierungstemperatur von 150°C bis 250°C bis zum Erreichen eines Volumengehalts an Bainit von zumindest 50 Gewichtsprozent, d) Abkühlen des Werkstücks auf Raumtemperatur nach Erreichen eines Volumengehalts an Bainit von zumindest 50 Gewichtsprozent, wobei nach dem Verfahrensschritt b) das Werkstück auf Temperaturen unterhalb der unteren Bainitstufe abgekühlt wird und vor Durchführung des Verfahrensschritts c) ein Zwischenglühschritt bei einer Temperatur zwischen 550°C und 650°C mit einem sich anschließenden Austenitisierungsschritt bei Austenitisierungstemperatur durchgeführt wird.

Description

  • Die Erfindung betrifft ein Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen, bei denen eine Randzone eines Werkstücks, insbesondere eines Wälzlagerteiles gegenüber einem Kern einsatzgehärtet ist. Kohlenstoffreduzierte Stähle wie Einsatzstähle, Vergütungsstähle und dergleichen kommen beispielsweise in Anwendungen, beispielsweise Wälzlagern zum Einsatz, bei denen eine hohe Oberflächenhärte mit einer Restelastizität des Werkstücks gefordert ist. Verfahren zur Einsatzhärtung der Oberfläche mittels einer Carbonitrierung sind beispielsweise aus der DE 43 27 440 A1 bekannt. Hierbei wird die Randhärte des Werkstücks angehoben, so dass eine gute Tragfähigkeit bei hoher Zähigkeit und Verschleißfestigkeit erfolgt.
  • Weiter beschreibt die DE 22 29 028 A ein Bauteil aus Stahl elastischer Natur, wobei dessen Kohlenstoffgehalt im inneren Bereich gering und außen höher ist und eine sorbitische oder bainitische Struktur aufweist, wobei die Dicke dieser Richtung wenigstens 10% des Stahls mit niedrigem Kohlenstoffgehalt ausmacht.
  • Die DE 10 2007 044 950 B3 beschreibt ein Werkstück mit einer Kernzone mit einem Bainitgefüge und einer Randzone mit einem Mischgefüge aus Martensit und Bainit, wobei der Martensit einen Volumenanteil von wenigstens 20% aufweist.
  • Die DE 43 27 440 A1 beschreibt ein Verfahren zur thermochemisch-thermischen Behandlung von Stählen, bei denen eine Randzone eines Werkstücks mit Kohlenstoff und Stickstoff oder mit Kohlenstoff angereichert und anschließend einer martensitischen Härtung unterzogen wird.
  • Aufgabe der Erfindung ist die vorteilhafte Weiterbildung eines Verfahrens zur thermochemischen-thermischen Behandlung von kohlenstoffreduzierten Stählen.
  • Die Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Die von diesem abhängigen Ansprüche geben vorteilhafte Ausführungsformen des Gegenstands des Anspruchs 1 wieder. Das vorgeschlagene Verfahren betrifft die thermochemisch-thermische Behandlung von kohlenstoffreduzierten Stählen, beispielsweise Einsatzstählen, Vergütungsstählen und dergleichen mit einem Kohlenstoffgehalt von 0,1 bis 0,4 Gewichtsprozent. Das vorgeschlagene Verfahren enthält zumindest folgende Verfahrensschritte:
    • a) Carbonitrieren der Randzone des Werkstücks in einer festgelegten Einsatzhärtetiefe mit einem Kohlenstoffanteil zwischen 0,6 und 1,2 Gewichtsprozent und einem Stickstoffgehalt von zumindest 0,1 Gewichtsprozent und maximal 0,5 Gewichtsprozent Stickstoff bei einer Temperatur zwischen 850°C und 1000°C,
    • b) Abkühlen und Durchführung eines Austenitisierungsschritts bei einer werkstoffabhängigen Austenitisierungstemperatur zwischen 800°C und 1000°C, beispielsweise im Ofen, mittels Laser, Induktion oder dergleichen
    • c) Behandlung des Werkstücks auf der unteren Bainitstufe bei einer Bainitisierungstemperatur von 150°C bis 250°C bis zum Erreichen eines Volumengehalts an Bainit von zumindest 50 Gewichtsprozent im Randbereich wie Randzone,
    • d) Abkühlen des Werkstücks auf Raumtemperatur nach Erreichen eines Volumengehalts an Bainit von zumindest 50 Gewichtsprozent. Optional erfolgt danach ein Anlassen zwischen 120°C und 300°C oder Tiefkühlen bei –40°C bis –80°C mit anschließendem Anlassen zwischen 120°C und 300°C
    Die Gehalte an Stickstoff und Kohlenstoff werden bevorzugt im fertigen Zustand des Werkstücks nach Abschliff ermittelt. Durch das vorgeschlagene Verfahren weist die Randzone über die festgelegte Eindringtiefe des Werkstücks eine deutlich erhöhte Zähigkeit des Materialgefüges bei ausreichender Härte von beispielsweise größer 59 HRC auf. Die Abkühlung des Werkstücks auf Raumtemperatur vor und/oder nach der Behandlung in der unteren Bainitstufe kann in einem Salzwärmebad oder in einer Ofenumgebung erfolgen. Die Fortführung des Verfahrens kann in derselben Ofenumgebung erfolgen wie die Carbonitrierung. Während der Carbonitrierung können abgestufte Temperaturschritte, C-Pegel und/oder Stickstoffgehalte in der Gasphase durchgeführt werden. Beispielsweise kann der C-Pegel, beispielsweise ein CO-Gehalt, ein Methangehalt oder dergleichen, die Temperatur oder ein Ammoniakgehalt im Sinne eines Boost/Diffuse-Prozesses geändert werden. Typische C-Pegel für die Aufkohlung liegen zwischen 0,65 bis 1,2% abhängig von der Verwendung der Legierung des verwendeten Stahls. Die Stickstoffgehalte in der Gasphase zur Nitrierung der Randschicht wie Randzone des Werkstoffs werden beispielsweise abhängig von Fertigungschargen von Werkstücken, von der Bauteiloberfläche des Werkstücks, der Ofenbeladung und dergleichen eingestellt. In einer ersten Ausführungsform des vorgeschlagenen Verfahrens kann das Werkstück nach Beendigung des Verfahrensschritts des Austenitisierens auf die untere Bainitstufe abgehärtet werden, indem das Werkstück in einem Salzwarmbad oder dergleichen abgeschreckt wird. Hierbei kann zwischen der Austenitisierung und der Bainitisierung über ein vorgegebenes Zeitintervall eine Temperatur der unteren Bainitstufe eingestellt werden. In einem alternativen Verfahren kann nach dem Verfahrensschritt der Austenitisierung das Werkstück auf Temperaturen unterhalb der unteren Bainitstufe, beispielsweise auf Raumtemperatur abgekühlt und vor Durchführung des Bainitisierens auf der unteren Bainitstufe ein Zwischenglühschritt bei einer Temperatur zwischen 550°C und 650°C mit einem sich anschließenden Austenitisierungsschritt bei Austenitisierungstemperatur durchgeführt werden. Hierbei kann sich der Austenitisierungsschritt unmittelbar an den Zwischenglühschritt anschließen, indem die Temperatur sofort erhöht wird. Alternativ kann zwischen dem Zwischenglühschritt und dem Austenitisierungsschritt über ein vorgegebenes Zeitintervall auf eine Temperatur unterhalb der unteren Bainitstufe, beispielsweise Raumtemperatur abgekühlt werden. Der Zwischenglühschritt kann zumindest 2 Stunden gehalten werden. Die Austenitisierungstemperatur kann zumindest bis zur kompletten Durchwärmung des Werkstücks und einem zeitlichen Sicherheitszuschlag aufrechterhalten werden. Je nach Größe des Werkstücks kann ein entsprechender Sicherheitszuschlag zwischen 5 und 60, bevorzugt 30 Minuten betragen. Der Verfahrensschritt zur Bainitisierung des Werkstücks kann bei Bainitisierungstemperaturen innerhalb eines vorgegebenen Temperaturintervalls erfolgen, wobei die Bainitisierungstemperatur isotherm oder mit ansteigender Temperatur geführt wird. Es versteht sich, dass die einzelnen Zeitintervalle von der Größe des Werkstücks, von den Ofeneigenschaften und dergleichen abhängig sind und je nach Größe des Werkstücks, dessen Lage im Ofen und dergleichen empirisch bestimmt oder mittels entsprechender Modellrechnungen ermittelt werden können.
  • Das vorgeschlagene Verfahren wird anhand der in den 1 bis 3 dargestellten Ausführungsbeispiele näher erläutert. Dabei zeigen:
  • 1 ein Diagramm der Verfahrenstemperatur über die Zeit eines ersten Verfahrens mit einem abschreckenden Abhärtprozess,
  • 2 ein Diagramm der Verfahrenstemperatur über die Zeit eines zweiten Verfahrens mit einem Zwischenglühschritt und
  • 3 ein Diagramm der Verfahrenstemperatur über die Zeit eines dritten, gegenüber dem Verfahren der 2 mit geändertem Zwischenglühschritt versehenen Verfahrens.
  • Die 1 bis 3 zeigen jeweils ein Diagramm 100, 200, 300 mit der Verfahrenstemperatur T gegen die Verfahrensdauer t zur Durchführung eines thermochemischen/thermischen Verfahrens zur Behandlung von Werkstücken aus kohlenstoffreduzierten Stählen. Hierbei bewegt sich die reale Verfahrenstemperatur T zwischen der mit durchgezogenen Linien dargestellten oberen Temperatur und der durch gestrichelte Linien dargestellten unteren Temperatur. Die 1 zeigt das Diagramm 100 mit einer Carbonitrierung des Werkstücks zwischen dem Zeitpunkt 0 und dem Zeitpunkt t1. Die Carbonitrierung erfolgt mittels eines C-Pegels zwischen 0,65 und 1,2% mit dem Ziel einer festgelegten Einsatzhärtetiefe. Zielgröße des Randkohlenstoffgehaltes am Fertigbauteil nach Abschliff ist hierbei ein Kohlenstoffgehalt von 0,5 bis 0,9 Gewichtsprozent, während im Kern des Werkstoffs 0,1 bis 0,4 Gewichtsprozent je nach verwendetem Materialtyp vorgesehen sind. Gleichzeitig wird mittels eines vorgegebenen Ammoniakgehalts in der Gasphase Stickstoff in die Oberfläche eindiffundiert. Zielwert hier ist nach Abschliff ein Stickstoffgehalt von mindestens 0,1 Gewichtsprozent und an der Oberfläche von maximal 0,50 Gewichtsprozent. Die Ausführung dieser Aufkohlungs-/Aufstickungsphase erfolgt mit abgestuften Temperaturen/C-Pegeln und Ammoniakgehalten in der Gasphase. Beispielsweise wird mit einer Aufkohlung/Aufstickung bei Temperaturen größer 900°C und einem C-Pegel größer 0,9 sowie erhöhten Ammoniakgehalten begonnen. Diese Ofenatmosphäre wird konstant gehalten und nach Erreichen von ca. 90% der Einhärtetiefe erfolgt zwischen den Zeitpunkten t1, t2 ein Absenken der Ofentemperatur auf die typische Austenitisierungstemperatur zwischen 800°C und 860°C abhängig von der Zusammensetzung der verwendeten Werkstoffe. Gleichzeitig erfolgt das Absenken des C-Pegels auf 0,6 bis 0,9 und des Ammoniakgehaltes auf ca. 50% des Gehaltes des ersten Prozessschrittes. Diese Ofenatmosphäre wird bis zum Erreichen von 100% CHD (Case Hardened Depth) gehalten. Anschließend erfolgt zum Zeitpunkt t2 die Abschreckung des Werkstücks und zwischen den Zeitpunkten t2, t3 die Abhärtung in Form einer Bainitisierung im Salzwarmbad isotherm bei Temperaturen von 170°C bis 250°C. Alternativ kann auch mit ansteigender Temperatur im Umwandlungsprozess und einer Umsetzung in einen Niedertemperaturofen gearbeitet werden. Nach der Umwandlung des größten Volumenanteils des Gefüges beispielsweise bainitischen Gehalten größer 75 Gewichtsprozent kann das Werkstück an Luft bis auf Raumtemperatur abgekühlt werden. Ein anschließendes Anlassen bei 150°C bis 250°C ist optional. Die 2 zeigt das gegenüber dem Verfahren der 1 abgeänderte Verfahren mit dem Diagramm 200. Die Ausführung der Aufkohlungs-/Aufstickungsphase kann entsprechend 1 zwischen den Zeitpunkten 0, t1 kontinuierlich mit gleichbleibender Temperatur/C-Pegel und Ammoniakgehalt in der Gasphase durchgeführt werden. Eine Abstufung/Absenkung des C-Pegels bzw. Temperatur und Ammoniakgehaltes im Sinne eines Boost/Diffuse-Prozesses ist ebenfalls möglich. Das Temperaturfeld der Verfahrenstemperatur T liegt zwischen 850°C und 960°C, typische C-Pegel sind 0,65 bis 1,2, abhängig von der verwendeten Legierung des Werkstücks. Die Stickstoffgehalte der Gasphase werden anhand der spezifischen Bauteiloberfläche der Ofenbeladung mit Werkstücken festgelegt. Anschließend an das Zeitintervall zwischen den Zeitpunkten 0, t1 erfolgende Carbonitrierung schließt sich zwischen den Zeitpunkten t1, t2 die langsame Abkühlung im Salzwarmbad oder in der Ofenatmosphäre bis auf Raumtemperatur. Im nächsten Teilschritt erfolgt ein langsames, gegebenenfalls gestuftes Aufheizen auf eine Zwischenglühtemperatur, im Bereich von 550°C bis 650°C, abhängig vom verwendeten Material des Werkstücks. Die Zwischenglühtemperatur wird für mindestens 2 Stunden gehalten. Danach erfolgt zwischen den Zeitpunkten t3, t4 die weitere Erwärmung bis auf die für den verwendeten Werkstoff typische Austenitisierungstemperatur. Diese wird gehalten, bis querschnittsabhängig eine vollständige Durchwärmung des Werkstücks erzielt ist, plus weitere 5 bis 60 Minuten, vorzugsweise 30 Minuten. Die Abhärtung in Form der Bainitisierung erfolgt im Salzwarmbad isotherm bei Temperaturen von 170°C bis 250°C zwischen den Zeitpunkten t4, t5. Alternativ kann auch mit ansteigender Temperatur im Umwandlungsprozess und einer Umsetzung in einem Niedertemperaturofen gearbeitet werden. Nach der Umwandlung des größten Volumenanteils des Gefüges, beispielsweise größer 50 Gewichtsprozent kann das Bauteil an Luft bis auf Raumtemperatur abgekühlt werden. Die 3 zeigt im Unterschied zu dem Verfahren der 2 mit dem Diagramm 200 ein leicht abgeändertes Verfahren mit dem Diagramm 300. Zunächst erfolgt nach dem Carbonitieren und Abkühlen entsprechend dem Verfahren der 2 zunächst nach dem langsamen, gegebenenfalls gestuften Aufheizen auf eine Zwischenglühtemperatur im Bereich von 550°C und 650°C, abhängig von der Zusammensetzung des Werkstoffs des Werkstücks ein Halten dieser Temperatur zwischen den Zeitpunkten t2, t3 für mindestens 2 Stunden. Danach erfolgt im Unterschied zu dem Verfahren der 2 eine erneute Abkühlung des Werkstücks an Luft und Halten der Raumtemperatur zwischen den Zeitpunkten t3a, t3b. Anschließend erfolgt eine Erwärmung bis auf die für den verwendeten Werkstoff typische Austenitisierungstemperatur. Diese wird zwischen den Zeitpunkten t3b, t4 gehalten bis querschnittsabhängig eine vollständige Durchwärmung des Werkstücks erzielt ist, plus weitere 5 bis 60 Minuten. Die Abhärtung entsprechend dem Verfahren der 2 in Form der Bainitisierung erfolgt im Salzwarmbad isotherm bei Temperaturen von 170°C bis 250°C. Alternativ kann auch mit ansteigender Temperatur im Umwandlungsprozess und einer Umsetzung in einen Niedertemperaturofen gearbeitet werden. Nach der Umwandlung des größten Volumenanteils des Gefüges in Bainit mit einem Gehalt größer 50 Volumenprozent kann das Werkstück an Luft bis auf Raumtemperatur abkühlen. Bei den vorgeschlagenen Verfahren kann optional ein Anlassen bei 150°C bis 250°C erfolgen.

Claims (9)

  1. Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen mit einem Kohlenstoffgehalt von 0,1 bis 0,4 Gewichtsprozent, bei denen eine Randzone eines Werkstücks, gegenüber einem Kern einsatzgehärtet ist, umfassend folgende Verfahrensschritte: a) Carbonitrieren der Randzone des Werkstücks in einer festgelegten Einsatzhärtetiefe mit einem Kohlenstoffanteil zwischen 0,6 und 1,2 Gewichtsprozent und einem Stickstoffgehalt von zumindest 0,1 Gewichtsprozent und maximal 0,5 Gewichtsprozent Stickstoff bei einer Temperatur zwischen 850°C und 1000°C, b) Abkühlen und Durchführung eines Austenitisierungsschritts bei einer werkstoffabhängigen Austenitisierungstemperatur zwischen 800°C und 1000°C, c) Behandlung des Werkstücks auf der unteren Bainitstufe bei einer Bainitisierungstemperatur von 150°C bis 250°C bis zum Erreichen eines Volumengehalts an Bainit von zumindest 50 Gewichtsprozent, d) Abkühlen des Werkstücks auf Raumtemperatur nach Erreichen eines Volumengehalts an Bainit von zumindest 50 Gewichtsprozent im aufgekohlten Bereich, dadurch gekennzeichnet, dass nach dem Verfahrensschritt b) das Werkstück auf Temperaturen unterhalb der unteren Bainitstufe abgekühlt wird und vor Durchführung des Verfahrensschritts c) ein Zwischenglühschritt bei einer Temperatur zwischen 550°C und 650°C mit einem sich anschließenden Austenitisierungsschritt bei Austenitisierungstemperatur durchgeführt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass nach Verfahrensschritt d) ein Anlassen des Werkstücks bei 150°C bis 250°C gegebenenfalls nach einer Tiefkühlung zwischen –40°C und –80°C erfolgt.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Abkühlung des Werkstücks gemäß Verfahrensschritt b) und/oder d) in einem Salzwärmebad oder in einer Ofenumgebung erfolgt.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass während des Verfahrensschritts a) abgestufte Temperaturschritte, C-Pegel und/oder Stickstoffgehalte in der Gasphase durchgeführt werden.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass nach Beendigung des Verfahrensschritts b) auf die untere Bainitstufe abgehärtet wird.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass zwischen dem Zwischenglühschritt und dem Austenitisierungsschritt auf eine Temperatur unterhalb der unteren Bainitstufe abgekühlt wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Zwischenglühschritt zumindest 2 Stunden gehalten wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Austenitisierungstemperatur zumindest bis zur kompletten Durchwärmung des Werkstücks und einem zeitlichen Sicherheitszuschlag aufrechterhalten wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Bainitisierungstemperatur isotherm oder mit ansteigender Temperatur durchgeführt wird.
DE102015207111.1A 2015-04-20 2015-04-20 Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen Expired - Fee Related DE102015207111B3 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE102015207111.1A DE102015207111B3 (de) 2015-04-20 2015-04-20 Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen
EP16720336.3A EP3286344B1 (de) 2015-04-20 2016-04-07 Verfahren zur thermochemisch-thermischen behandlung von kohlenstoffreduzierten stählen
PCT/DE2016/200174 WO2016169560A1 (de) 2015-04-20 2016-04-07 Verfahren zur thermochemisch-thermischen behandlung von kohlenstoffreduzierten stählen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015207111.1A DE102015207111B3 (de) 2015-04-20 2015-04-20 Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen

Publications (1)

Publication Number Publication Date
DE102015207111B3 true DE102015207111B3 (de) 2016-08-18

Family

ID=55910689

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015207111.1A Expired - Fee Related DE102015207111B3 (de) 2015-04-20 2015-04-20 Verfahren zur thermochemisch-thermischen Behandlung von kohlenstoffreduzierten Stählen

Country Status (3)

Country Link
EP (1) EP3286344B1 (de)
DE (1) DE102015207111B3 (de)
WO (1) WO2016169560A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017117290A1 (de) * 2017-07-31 2019-01-31 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung eines Wälzlagerbauteils
WO2019091222A1 (zh) * 2017-11-13 2019-05-16 常州天山重工机械有限公司 一种控制31CrMoV9齿轮材料氮化物的热处理方法
CN117802446A (zh) * 2024-03-01 2024-04-02 山东天瑞重工有限公司 低碳高合金结构钢的热处理工艺方法和液压破碎锤活塞

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112877639A (zh) * 2021-01-12 2021-06-01 浙江辛子精工机械有限公司 一种高碳铬轴承钢碳氮共渗工艺及设备
CN114962460A (zh) * 2021-02-25 2022-08-30 斯凯孚公司 经热处理的滚子轴承圈

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2229028A1 (de) * 1971-06-15 1973-01-04 Ferodo Sa Bauteil aus stahl elastischer natur, insbesondere kupplungsmembran, und verfahren zu dessen herstellung
DE4327440A1 (de) * 1993-08-14 1995-02-16 Schaeffler Waelzlager Kg Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen, Vergütungsstählen und Wälzlagerstählen
DE102007044950B3 (de) * 2007-09-20 2009-01-29 Ab Skf Für eine Wälzbeanspruchung ausgebildetes Werkstück aus durchhärtendem Stahl und Verfahren zur Wärmebehandlung

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4204982A1 (de) * 1992-02-19 1993-08-26 Hoechstadter Maschinenfabrik S Verfahren zur thermochemisch-thermischen behandlung von einsatzstaehlen
DE102004037067B3 (de) * 2004-07-30 2006-01-05 Ab Skf Verfahren zur Wärmebehandlung von Werkstücken aus Stahl

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2229028A1 (de) * 1971-06-15 1973-01-04 Ferodo Sa Bauteil aus stahl elastischer natur, insbesondere kupplungsmembran, und verfahren zu dessen herstellung
DE4327440A1 (de) * 1993-08-14 1995-02-16 Schaeffler Waelzlager Kg Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen, Vergütungsstählen und Wälzlagerstählen
DE102007044950B3 (de) * 2007-09-20 2009-01-29 Ab Skf Für eine Wälzbeanspruchung ausgebildetes Werkstück aus durchhärtendem Stahl und Verfahren zur Wärmebehandlung

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017117290A1 (de) * 2017-07-31 2019-01-31 Schaeffler Technologies AG & Co. KG Verfahren zur Herstellung eines Wälzlagerbauteils
WO2019091222A1 (zh) * 2017-11-13 2019-05-16 常州天山重工机械有限公司 一种控制31CrMoV9齿轮材料氮化物的热处理方法
CN117802446A (zh) * 2024-03-01 2024-04-02 山东天瑞重工有限公司 低碳高合金结构钢的热处理工艺方法和液压破碎锤活塞

Also Published As

Publication number Publication date
EP3286344B1 (de) 2019-06-26
EP3286344A1 (de) 2018-02-28
WO2016169560A1 (de) 2016-10-27

Similar Documents

Publication Publication Date Title
EP3286344B1 (de) Verfahren zur thermochemisch-thermischen behandlung von kohlenstoffreduzierten stählen
EP2045339B1 (de) Für eine Wälzbeanspruchung ausgebildetes Werkstück aus durchhärtendem Stahl und Verfahren zur Wärmebehandlung
EP0627019B1 (de) Verfahren zur thermochemisch-thermischen behandlung von einsatzstählen
DE4204982A1 (de) Verfahren zur thermochemisch-thermischen behandlung von einsatzstaehlen
DE102011088234A1 (de) Bauteil
DE102004053935B4 (de) Verfahren zur Wärmebehandlung eines Bauteils aus einem durchhärtenden warmfesten Stahl und Bauteil aus einem durchhärtenden warmfesten Stahl
EP1786935B1 (de) Verfahren zur waermebehandlung von waelzlagerbauteilen aus stahl
WO2006013055A1 (de) Verfahren zur wärmebehandlung von werkstücken aus stahl
DE10319297A1 (de) Verfahren zum Einsatzhärten
DE4327440C2 (de) Verfahren zur thermochemisch-thermischen Behandlung von Einsatzstählen, Vergütungsstählen und Wälzlagerstählen
EP4160032A1 (de) Verfahren zur herstellung eines wälzlagerelements
DE102013107100A1 (de) Verschleißfestes, zumindest teilweise unbeschichtetes Stahlteil
DE102004037074B3 (de) Verfahren zur Wärmebehandlung von Werkstücken aus Stahl
DE19849679C1 (de) Verfahren zur Wärmebehandlung von Werkstücken aus Stahl
WO2013170995A1 (de) Wälzlagerteil sowie verfahren zur wärmebehandlung eines wälzlagerteils
DE10208186A1 (de) Stahl, Vollrad und Radreifen für Schienenfahrzeuge und Verfahren zur Herstellung derartiger Bauelemente
WO2023134810A1 (de) STAHLLEGIERUNG FÜR EIN GROßWÄLZLAGERBAUTEIL SOWIE GROßWÄLZLAGER UND VERFAHREN ZUR WÄRMEBEHANDLUNG DES GROßWÄLZLAGERBAUTEILS AUS DIESER STAHLLEGIERUNG
US20240124950A1 (en) Method for heat treating a steel component
DE102005029404B4 (de) Vorgespanntes Wälzlager
DE102010017967A1 (de) Verfahren zur Wärmebehandlung eines Werkstücks aus einem Wälzlagerstahl
EP4341452A1 (de) Verfahren zur herstellung eines wälzlagerbauteils, wälzlagerbauteil und wälzlager
DE3029339A1 (de) Verfahren und vorrichtung zur behandlung elektrisch leitenden materials durch glimmentladung
DE102021132703A1 (de) Verfahren zur Herstellung eines Wälzlagerbauteils
DE102022111455A1 (de) Verfahren zur Herstellung eines Wälzlagerbauteils, Wälzlagerbauteil und Wälzlager
WO2022148510A1 (de) Verfahren zur herstellung eines wälzlagerbauteils

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee