DE102015204124A1 - Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor - Google Patents

Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor Download PDF

Info

Publication number
DE102015204124A1
DE102015204124A1 DE102015204124.7A DE102015204124A DE102015204124A1 DE 102015204124 A1 DE102015204124 A1 DE 102015204124A1 DE 102015204124 A DE102015204124 A DE 102015204124A DE 102015204124 A1 DE102015204124 A1 DE 102015204124A1
Authority
DE
Germany
Prior art keywords
light
transit time
decoupling element
coupling
decoupling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
DE102015204124.7A
Other languages
English (en)
Inventor
Jan Kubisch
Björn Biehler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PMDtechnologies AG
Original Assignee
IFM Electronic GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IFM Electronic GmbH filed Critical IFM Electronic GmbH
Priority to DE102015204124.7A priority Critical patent/DE102015204124A1/de
Publication of DE102015204124A1 publication Critical patent/DE102015204124A1/de
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4818Constructional features, e.g. arrangements of optical elements using optical fibres
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4202Packages, e.g. shape, construction, internal or external details for coupling an active element with fibres without intermediate optical elements, e.g. fibres with plane ends, fibres with shaped ends, bundles

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

Auskoppelelement (200) für einen Lichtleiter (260) zur Lichtführung an einem Lichtlaufzeitsensor (22), mit einem Einkopplungsbereich (210), der zur Aufnahme des Lichtleiters (260) ausgebildet ist und mit einem Auskopplungsbereich (220), der zur Beleuchtung mehrerer Lichtlaufzeitpixel (25, 26) des Lichtlaufzeitsensors (22) ausgebildet ist, wobei der Einkopplungsbereich (210) an einem seitlichen Ende des Auskopplungsbereichs (220) mündet, und der Auskopplungsbereich (220) derart ausgebildet ist, dass ein eingekoppeltes Licht über die Längserstreckung des Auskopplungsbereichs mit unterschiedlichen Lichtintensitäten ausgekoppelt wird.

Description

  • Die Erfindung betrifft ein Auskopplungselement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor nach Gattung des unabhängigen Anspruchs.
  • Der Lichtlaufzeitsensor betrifft insbesondere Lichtlaufzeit- bzw. 3D-TOF-Kamerasysteme, die eine Laufzeitinformation aus der Phasenverschiebung einer emittierten und empfangenen Strahlung gewinnen. Als Lichtlaufzeit- bzw. 3D-TOF-Kameras sind insbesondere PMD-Kameras mit Photomischdetektoren (PMD) geeignet, wie sie u.a. in den Anmeldungen EP 1 777 747 B1 , US 6 587 186 B2 und auch DE 197 04 496 C2 beschrieben und beispielsweise von der Firma ‚ifm electronic GmbH’ oder 'PMD-Technologies GmbH' als Frame-Grabber O3D bzw. als CamCube zu beziehen sind. Die PMD-Kamera erlaubt insbesondere eine flexible Anordnung der Lichtquelle und des Detektors, die sowohl in einem Gehäuse als auch separat angeordnet werden können. Selbstverständlich sollen mit dem Begriff Kamera bzw. Kamerasystem auch Kameras bzw. Geräte mit mindestens einem Empfangspixel mit umfasst sein, wie beispielsweise das Entfernungsmessgerät O1D der 'ifm electronic'.
  • Aufgabe der Erfindung ist es, die Zuverlässigkeit der Distanzmessungen einer Lichtlaufzeitkamera bzw. eines Lichtlaufzeitsensors zu verbessern.
  • Die Aufgabe wird in vorteilhafter Weise durch die erfindungsgemäße Auskoppelstruktur nach Gattung des unabhängigen Anspruchs gelöst.
  • Vorteilhaft ist ein Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor vorgesehen, bei dem ein Einkopplungsbereich zur Aufnahme des Lichtleiters und ein Auskopplungsbereich zur Beleuchtung mehrerer Lichtlaufzeitpixel des Lichtlaufzeitsensors ausgebildet ist, wobei der Einkopplungsbereich an einem seitlichen Ende des Auskopplungsbereichs mündet, und der Auskopplungsbereich derart ausgebildet ist, dass ein eingekoppeltes Licht über die Längserstreckung des Auskopplungsbereichs mit unterschiedlichen Lichtintensitäten ausgekoppelt wird.
  • Dieses Vorgehen hat den Vorteil, das die von dem Auskoppelelement beleuchteten Lichtlaufzeitpixel als Referenzlichtlaufzeitpixel herangezogen werden können, mit dem besonderen Vorteil, dass die Referenzlichtlaufzeitpixel mit unterschiedlichen Lichtintensitäten beleuchtet werden, so dass immer ein Referenzlichtlaufzeitpixel unabhängig von der Beleuchtungsintensität oder vorliegenden Integrationszeit aufgefunden werden kann, das ein verwertbares Referenzsignal zur Verfügung stellen kann.
  • Bevorzugt ist der Auskopplungsbereich zur Erzeugung eines Intensitätsgradienten über die Längserstreckung als Vollmaterial oder als Hohlraum ausgebildet ist, wobei das Vollmaterial oder eine Innenseite des Hohlraums Partikel und/oder Strukturen aufweist, die Licht streuen und/oder absorbieren.
  • Zudem ist das Auskoppelelement derart ausgebildet ist, dass kein Fremdlicht in das Auskoppelelement eindringen und kein eingekoppeltes Licht außerhalb der vorgesehen Austrittsbereiche austreten kann.
  • Bevorzugt ist das Auskoppelelement in den Bereichen in denen kein eingekoppeltes Licht geführt wird lichtundurchlässig ausgebildet.
  • Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen näher erläutert.
  • Es zeigen schematisch:
  • 1 das Grundprinzip einer Lichtlaufzeitkamera nach dem PMD-Prinzip,
  • 2 eine modulierte Integration der laufzeitverschobenen erzeugten Ladungsträger,
  • 3 einen Querschnitt eines PMD-Pixel,
  • 4 eine Abhängigkeit der Amplitude und des Distanzfehlers von der einfallenden Lichtmenge,
  • 5 Lichtlaufzeitsensor mit einem Referenzpixel,
  • 6 eine Aufsicht eines Lichtlaufzeitsensors mit einem Referenzpixelarray,
  • 7 eine Übersicht des erfindungsgemäßen Anordnung,
  • 8 eine erfindungsgemäße Anordnung mit einem Auskoppelbereich in Vollmaterial,
  • 9 eine erfindungsgemäße Anordnung mit einem als Hohlraum ausgeführten Auskoppelbereich.
  • Bei der nachfolgenden Beschreibung der bevorzugten Ausführungsformen bezeichnen gleiche Bezugszeichen gleiche oder vergleichbare Komponenten.
  • 1 zeigt eine Messsituation für eine optische Entfernungsmessung mit einer Lichtlaufzeit-Kamera, wie sie beispielsweise aus der DE 197 04 496 C2 bekannt ist.
  • Das Lichtlaufzeit-Kamerasystem 1 umfasst eine Sendeeinheit bzw. ein Beleuchtungsmodul 10 mit einer Beleuchtungslichtquelle 12 und einer dazugehörigen Strahlformungsoptik 15 sowie eine Empfangseinheit bzw. TOF-Kamera 20 mit einer Empfangsoptik 25 und einem Lichtlaufzeitsensor 22. Der Lichtlaufzeitsensor 22 weist mindestens ein Pixel, vorzugsweise jedoch ein Pixel-Array, auf und ist insbesondere als PMD-Sensor ausgebildet. Die Empfangsoptik 25 besteht typischerweise zur Verbesserung der Abbildungseigenschaften aus mehreren optischen Elementen. Die Strahlformungsoptik 15 der Sendeeinheit 10 ist vorzugsweise als Reflektor ausgebildet. Es können jedoch auch diffraktive Elemente oder Kombinationen aus reflektierenden und diffraktiven Elementen eingesetzt werden.
  • Das Messprinzip dieser Anordnung basiert im Wesentlichen darauf, dass ausgehend von der Phasenverschiebung des emittierten und empfangenen Lichts die Laufzeit des emittierten und reflektierten Lichts ermittelt werden kann. Zu diesem Zwecke werden die Lichtquelle 12 und der Lichtlaufzeitsensor 22 über einen Modulator 30 gemeinsam mit einer bestimmten Modulationsfrequenz bzw. Modulationssignal mit einer ersten Phasenlage a beaufschlagt. Entsprechend der Modulationsfrequenz sendet die Lichtquelle 12 ein amplitudenmoduliertes Signal mit der Phase a aus. Dieses Signal bzw. die elektromagnetische Strahlung wird im dargestellten Fall von einem Objekt 40 reflektiert und trifft aufgrund der zurückgelegten Wegstrecke entsprechend phasenverschoben mit einer zweiten Phasenlage b auf den Lichtlaufzeitsensor 22. Im Lichtlaufzeitsensor 22 wird das Signal der ersten Phasenlage a des Modulators 30 mit dem empfangenen Signal, das die laufzeitbedingte zweiten Phasenlage b aufweist, gemischt, wobei aus dem resultierenden Signal die Phasenverschiebung bzw. die Objektentfernung d ermittelt wird.
  • Zur genaueren Bestimmung der zweiten Phasenlage b und somit der Objektentfernung d kann es vorgesehen sein, die Phasenlage a mit der der Lichtlaufzeitsensor 22 betrieben wird, um vorgestimmte Phasenverschiebungen Δφ zu verändern. Gleichwirkend kann es auch vorgesehen sein, die Phase, mit der die Beleuchtung angetrieben wird, gezielt zu verschieben.
  • Das Prinzip der Phasenmessung ist schematisch in 2 dargestellt. Die obere Kurve zeigt den zeitlichen Verlauf des Modulationssignals mit der die Beleuchtung 12 und der Lichtlaufzeitsensor 22, hier ohne Phasenverschiebung, angesteuert werden. Das vom Objekt 40 reflektierte Licht b trifft entsprechend seiner Lichtlaufzeit tL phasenverschoben auf den Lichtlaufzeitsensor 22. Der Lichtlaufzeitsensor 22 sammelt die photonisch erzeugten Ladungen q während der ersten Hälfte der Modulationsperiode in einem ersten Integrationsknoten Ga und in der zweiten Periodenhälfte in einem zweiten Integrationsknoten Gb. Die Ladungen werden typischerweise über mehrere Modulationsperioden gesammelt bzw. integriert. Aus dem Verhältnis der im ersten und zweiten Gate Ga, Gb gesammelten Ladungen qa, qb lässt sich die Phasenverschiebung und somit eine Entfernung des Objekts bestimmen.
  • Wie aus der DE 197 04 496 C2 bereits bekannt, kann die Phasenverschiebung des vom Objekt reflektierten Lichts und somit die Distanz, beispielsweise durch ein so genanntes IQ-(Inphase-Quadratur)-Verfahren ermittelt werden. Zur Bestimmung der Distanz werden vorzugsweise zwei Messungen mit um 90° verschobenen Phasenlagen des Modulationssignals durchgeführt, also beispielsweise φmod + φ0 und φmod + φ90, wobei aus der in diesen Phasenlagen ermittelte Ladungsdifferenz Δq(0°), Δq(90°) die Phasenverschiebung des reflektierten Lichts über die bekannte arctan-Beziehung ermittelt werden kann. φ = arctan Δq(90°) / Δq(0°)
  • Zur Verbesserung der Genauigkeit können ferner weitere Messungen mit um beispielsweise 180° verschobenen Phasenlagen durchgeführt werden. φ = arctan Δ(90°) – Δq(270°) / Δq(0°)Δq(180°)
  • Selbstverständlich sind auch Messungen mit mehr als vier Phasen und deren Vielfachen und einer entsprechend angepassten Auswertung denkbar.
  • 3 zeigt einen Querschnitt durch einen Pixel eines Photomischdetektors wie er beispielsweise aus der DE 197 04 496 C2 bekannt ist. Die Modulationsphotogates Gam, G0, Gbm bilden den lichtsensitiven Bereich eines PMD-Pixels. Entsprechend der an den Modulationsgates Gam, G0, Gbm angelegten Spannung werden die photonisch erzeugten Ladungen q entweder zum einen oder zum anderen Akkumulationsgate bzw. Integrationsknoten Ga, Gb gelenkt.
  • 3b zeigt einen Potenzialverlauf, bei dem die Ladungen q in Richtung des ersten Integrationskonten Ga abfliesen, während das Potenzial gemäß 3c die Ladung q in Richtung des zweiten Integrationsknoten Gb fließen lässt. Die Potenziale werden entsprechend der anliegenden Modulationssignale vorgegeben. Je nach Anwendungsfall liegen die Modulationsfrequenzen vorzugsweise in einem Bereich von 1 bis 100 MHz. Bei einer Modulationsfrequenz von beispielsweise 1 MHz ergibt sich eine Periodendauer von einer Mikrosekunde, so dass das Modulationspotenzial dementsprechend alle 500 Nanosekunden wechselt.
  • In 3a ist ferner eine Ausleseeinheit 400 dargestellt, die gegebenenfalls bereits Bestandteil eines als CMOS ausgebildeten PMD-Lichtlaufzeitsensors sein kann. Die als Kapazitäten bzw. Dioden ausgebildeten Integrationsknoten Ga, Gb integrieren die photonisch erzeugten Ladungen über eine Vielzahl von Modulationsperioden. In bekannter Weise kann die dann an den Gates Ga, Gb anliegende Spannung beispielsweise über die Ausleseeinheit 400 hochohmig abgegriffen werden. Die Integrationszeiten sind vorzugsweise so zu wählen, dass für die zu erwartende Lichtmenge der Lichtlaufzeitsensor bzw. die Integrationsknoten und/oder die lichtsensitiven Bereiche nicht in Sättigung geraten.
  • 4 zeigt schematisch die Abhängigkeit einer elektrischen Größe des Lichtlaufzeitsensors bzw. eines Integrationsknoten von der Lichtmenge. Die Lichtmenge bestimmt sich in bekannter Weise aus dem Lichtstrom und der Bestrahlungsdauer. Proportional zur Lichtmenge werden Ladungsträger im photosensitiven Bereich der Modulationsgates Gam, G0, Gbm erzeugt und entsprechend des Modulationssignals phasenkorreliert auf die Integrationsknoten Ga, Gb verteilt. Diese Ladungen können entweder als Spannungssignal bzw. -Amplitude hochohmig an den Integrationsknoten Ga, Gb abgegriffen oder ggf. bei einer Entladung der Integrationsknoten als Strom gemessen werden. Diese elektrischen Größen entsprechen somit dem phasenkorrelierten Lichtstrom bzw. der entsprechenden Lichtmenge.
  • Der mögliche Dynamikbereich eines Laufzeitpixels erstreckt sich typischerweise über mehrere Größenordnungen. Die Größe des Dynamikbereichs hängt im Wesentlichen von der Fläche der photosensitiven Schicht eines Pixels sowie der Kapazität der Integrationsknoten ab. Die Integrationszeit für den Lichtlaufzeitsensor bzw. einem einzelnen Pixel wird vorzugsweise so festgelegt, dass für den Anwendungsfall der Sensor nicht in die Sättigung gerät.
  • Mit abnehmender Lichtmenge bzw. analog mit abnehmender Integrationszeit nimmt jedoch der Spannungshub an den Integrationsknoten Ga, Gb immer mehr ab und bewirkt unter anderem aufgrund des abnehmenden Signal/Rausch-Verhältnisses eine zunehmende Unsicherheit bei der Entfernungsbestimmung, so wie es mit der gestrichelten Kurve der Standardabweichung in 4 dargestellt ist. Die untere Grenze des Arbeitsbereichs der Integrationszeit ist daher so zu wählen, dass ein zu erwartender Distanzfehler noch innerhalb einer zulässigen Toleranz bzw. Standardabweichung liegt, wobei die obere Grenze vorzugsweise unterhalb der Sättigung liegen sollte.
  • 5 zeigt einen Lichtlaufzeitsensor 22 mit mehreren Lichtlaufzeitpixeln 24 und Referenz-Lichtlaufzeitpixeln 26. Die Referenzlichtlaufzeitpixel 26 werden über einen Lichtkanal 260 mit einem Referenzlicht beleuchtet. Das Referenzlicht kann beispielsweise von einer Referenzlichtquelle stammen oder direkt von der Beleuchtungslichtquelle 12 vorzugsweise über einen Lichtleiter bzw. dem Lichtkanal 260 auf die Referenzlichtlaufzeitpixel 26 gelenkt werden. Vorzugsweise sind die Referenzlichtlaufzeitpixel 26 im Aufbau und Funktion identisch mit den Lichtlaufzeitpixeln 24 des übrigen Sensors 22 und werden vorzugsweise identisch angesteuert. Im dargestellten Fall werden die Referenzlichtlaufzeitpixel 26 räumlich von den übrigen Lichtlaufzeitpixeln 24 abgesetzt, indem zwei Lichtlaufzeitpixelreihen mit einer lichtundurchlässigen Maskierung 28 abgedeckt werden.
  • Eine solche Maskierung 28 hat mehrere Vorteile. Zum einen wird durch die räumlich Absetzung ein Übersprechen des über den Lichtleiter 260 herangeführten Referenzlichts auf die aktiven Lichtlaufzeitpixel 24 verhindert, zum anderen können über die maskierten Pixel 25 auch Dunkelmessung als weitere Referenz durchgeführt werden.
  • Selbstverständlich sind auch Anordnungen denkbar, in denen auf maskierte Pixel 25 verzichtet wird und die Referenzlichtlaufzeitpixel 26 räumlich versetzt von dem Pixelarray der Lichtlaufzeitpixel 24 angeordnet sind.
  • Auch ist es denkbar, zusätzlich oder alternativ zu den oben genannten Überlegungen, die Messergebnisse der Lichtlaufzeitpixel 24, die durch den Lichteintrag an den Referenzlichtlaufzeitpixel 26 beeinträchtigt werden, zu verwerfen.
  • In 6 ist eine Aufsicht auf einen Lichtlaufzeitsensor 22 gemäß 5 gezeigt. Neben dem Array der Lichtlaufzeitpixel 24 ist eine Zeile mit mehreren Referenzlichtlaufzeitpixel 26 räumlich abgesetzt angeordnet. Über einen Lichtleiter bzw. Lichtkanal 260 wird ein Teil des von der Beleuchtungslichtquelle 12 emittierten Lichts auf die Referenzpixel 260 gelenkt. Je nach Anwendung und Bedarf können ggf. auch mehrere Zeilen mit Referenzlichtlaufzeitpixel 26 vorgesehen sein.
  • Das Auskoppeln der optischen Signale der Beleuchtungslichtquelle 12 erlaubt es, über die Referenzlaufzeitpixeln 26 eine Referenz für die Distanzmessung bereitzustellen. Ausgehend von Signalen der Referenzlichtlaufzeitpixel 26 können Referenzwerte ermittelt werden, anhand derer beispielsweise systembedingte, die Distanzmessung beeinflussende Effekte, kompensiert werden können. Insbesondere können Effekte bei der Umwandlung elektrischer in optische Signale berücksichtigt und kompensiert werden, wie beispielsweise ein sich änderndes Ansprechverhalten der elektrooptischen Wandler durch Temperatur- und Alterungseffekte. Besonders vorteilhaft werden die Referenzlichtlaufzeitpixel 26 vorzugsweise mit denselben Modulationssignalen und Integrationszeiten betrieben, wie die übrigen Lichtlaufzeitpixel 24.
  • Ferner kann es zur Vermeidung einer Sättigung der Referenzlichtlaufzeitpixel 26 vorgesehen sein, die Lichteinkopplung bzw. -auskopplung in den Lichtleiter bzw. Lichtkanal 260 derart zu beeinflussen, dass die Referenzlichtlaufzeitpixel 26 in einem optimalen Bereich arbeiten.
  • Mit dem erfindungsgemäße Auskoppelelement ist es nun vorgesehen, die Referenzlichtlaufzeitpixel 26 mit unterschiedlichen Lichtintensitäten zu beaufschlagen, so dass beispielsweise unabhängig von den am Sensor 22 verwendeten Integrationszeiten, mindestens ein Referenzlichtlaufzeitpixel 26 in einem bevorzugten Arbeitsbereich arbeitet.
  • In 7 ist exemplarisch eine mögliche Anordnung mit einem erfindungsgemäßen Auskoppelelement 200 gezeigt. Auf einem Bauelementeträger 500 sind mehrere Bauelemente 510 und ein Lichtlaufzeitsensor 22 mit einem Lichtlaufzeitpixelbereich 24 und einem Referenzlichtlaufzeitpixelbereich 26 angeordnet. Zum mechanischen Schutz des Lichtlaufzeitsensors 22 ist zudem ein Abdeckglas 310 vorgesehen, das im eingebauten Zustand auf einen Rahmen 300 oberhalb des Sensors 22 angebracht ist. Der Rahmen weist an einer Seite eine Vertiefung zur Aufnahme des Auskoppelements 200 auf.
  • In 8 ist die Anordnung gemäß 7 im montierten Zustand im Querschnitt entlang der Linie X-X‘ gezeigt. Der Sensor 22 befindet sich innerhalb es Rahmens 300 und wird von dem oberhalb angebrachten Abdeckglas 310 geschützt. Das Auskoppelelement 200 ist zwischen Rahmen 200 und dem Abdeckglas 310 innerhalb der Vertiefung des Rahmens 300 angeordnet. Das Auskoppelelement 300 weist eine zur Vertiefung des Rahmens 300 korrespondierende Nut auf, wobei Vertiefung und Nut so aufeinander abgestimmt sind, dass das Auskoppelelement 200 lateral fixiert ist. Eine vertikale Fixierung wird über den Anpressdruck des aufliegenden Abdeckglases 310 erreicht.
  • Rahmen 300 und Abdeckglas 310 sind vorzugsweise miteinander verklebt, jedoch sind auch Klemmverbindungen denkbar. Der Rahmen wiederum ist mit dem hier nicht gezeigten Bauelementeträger 500 verbunden, beispielsweise durch Kleben, Schrauben, Klemmen, Löten etc.
  • Das Auskoppelelement 200 weist einen Einkopplungsbereich 210 auf, der im dargestellten Beispiel den Lichtkanal 260 bis an einen seitlichen Rand eines Auskopplungsbereiches 220 heranführt. Das Auskoppelelement 200 ist zumindest im Auskopplungsbereich 220 lichtdurchlässig und so ausgebildet, dass das über den Lichtkanal 260 herangeführte Licht in den Auskopplungsbereich 220 eindringen und über eine Austrittsfläche den Referenzlichtlaufzeitpixeln 26 zugeführt werden kann. Die Anordnung ist so dimensioniert, dass die Austrittsfläche des Auskopplungsbereichs 220 flächig auf den Referenzlichtlaufzeitpixeln 26 aufliegt.
  • Grundsätzlich ist es auch denkbar, dass der Lichtkanal bereit in den Einkopplungsbereich 210 mündet und das Licht über den Einkopplungsbereich 210 an den Auskopplungsbereich 220 herangeführt wird.
  • Vorzugsweise ist das Auskoppelelement 200 bzw. zumindest der Auskopplungsbereich 220 in der Höhe so dimensioniert, dass über das Abdeckglas ein Druck auf das Auskoppelelement 200 und im Ergebnis ein bevorzugter Anpressdruck der Austrittsfläche auf die Referenzlichtlaufzeitpixel 26 ausgeübt werden kann.
  • Bevorzugt ist das Auskoppelelement 200 zumindest im Auskopplungsbereich aus einem elastischen Material, beispielsweise Silikon oder einem anderen elastischen und transparenten Material gefertigt. Aufgrund der Elastizität schmiegt sich die Austrittsfläche besonderes eng an die Oberfläche der Sensors 22 bzw. der Referenzlichtlaufzeitpixel 26 an. Die Anordnung ist bevorzugt so ausgestaltet, dass sich zwischen Austrittsfläche und den Referenzlichtlaufzeitpixel 26 keine Lufteinschlüsse befinden und/oder herausgedrängt werden.
  • Die Bereiche des Auskoppelelements, die kein Licht führen sollen sind vorzugsweise lichtundurchlässig und/oder lichtabsorbierend ausgearbeitet. Auch kann es vorgesehen sein, dass zusätzlich oder auch alternativ die Oberflächen des Auskoppelelements 200 an denen kein Licht austreten soll mit einem lichtundurchlässigen Material beschichtet sind.
  • Zur Beleuchtung der Referenzlichtlaufzeitpixel 26 mit unterschiedlichen Lichtintensitäten ist es erfindungsgemäß vorgesehen, den Auskopplungsbereich 220 so auszugestalten, dass die Lichtintensität über die Längserstreckung des Auskopplungsbereichs 220 abnimmt. Beispielsweise kann der Auskopplungsbereich mit lichtstreuenden und/oder lichtabsorbierenden Partikeln gefüllt werden. Zur Erreichung oder Verstärkung eines Intensitätsgradienten kann ggf. der Partikelfüllgrad, bzw. Partikelmenge und/oder -größe verändert werden. Auch ein Einfärben mit anderen Materialen ist denkbar.
  • Im Ausführungsbeispiel gemäß 9 ist der Auskopplungsbereich nicht als Vollmaterial, sondern als Hohlraum ausgebildet. Die Innenflächen des Hohlraums sind vorzugsweise mit einem lichtabsorbieren Material beschichtet. Alternativ oder zusätzlich können die Innenflächen auch eine lichtabsorbierende Struktur aufweisen. Auch durch dieses Vorgehen wird Gradient in der Lichtintensität über die Längserstreckung des Auskopplungsbereich 220 realisiert.
  • Bezugszeichenliste
  • 10
    Sendeeinheit
    12
    Beleuchtungslichtquelle
    15
    Strahlformungsoptik
    20
    Empfangseinheit, TOF-Kamera
    22
    Lichtlaufzeitsensor
    24
    Lichtlaufzeitpixel
    25
    maskierte Pixel
    26
    Referenzlichtlaufzeitpixel
    25
    Empfangsoptik
    28
    Maskierung
    30
    Modulator
    40
    Objekt
    80
    Phasenregelung
    85
    Multiplexer
    200
    Auskoppelelement
    210
    Einkopplungsbereich
    220
    Auskoppelungsbereich
    260
    Lichtkanal
    300
    Rahmen
    310
    Abdeckglas
    400
    Ausleseeinheit
    500
    Bauelementeträger
    510
    Bauelement
    Gam, G0, Gbm
    Modulationsphotogate
    Ga, Gb
    Integrationsknoten
    q
    Ladungen
    qa, qb
    Ladungen am Integrationsknoten Ga, Gb
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • EP 1777747 B1 [0002]
    • US 6587186 B2 [0002]
    • DE 19704496 C2 [0002, 0022, 0027, 0030]

Claims (5)

  1. Auskoppelelement (200) für einen Lichtleiter (260) zur Lichtführung an einem Lichtlaufzeitsensor (22), mit einem Einkopplungsbereich (210), der zur Aufnahme des Lichtleiters (260) ausgebildet ist und mit einem Auskopplungsbereich (220), der zur Beleuchtung mehrerer Lichtlaufzeitpixel (25, 26) des Lichtlaufzeitsensors (22) ausgebildet ist, wobei der Einkopplungsbereich (210) an einem seitlichen Ende des Auskopplungsbereichs (220) mündet, und der Auskopplungsbereich (220) derart ausgebildet ist, dass ein eingekoppeltes Licht über die Längserstreckung des Auskopplungsbereichs mit unterschiedlichen Lichtintensitäten ausgekoppelt wird.
  2. Auskoppelelement (200) nach Anspruch 1, bei dem der Auskopplungsbereich (220) zur Erzeugung eines Intensitätsgradienten über die Längserstreckung als Vollmaterial oder als Hohlraum ausgebildet ist, wobei das Vollmaterial oder eine Innenseite des Hohlraums Partikeln und/oder Strukturen aufweist, die Licht streuen und/oder absorbieren.
  3. Auskoppelelement (200) nach einem der vorhergehenden Ansprüche, bei dem das Auskoppelelement (200) derart ausgebildet ist, dass kein Fremdlicht in das Auskoppelelement (200) eindringen und kein eingekoppeltes Licht außerhalb der vorgesehen Austrittsbereiche austreten kann.
  4. Auskoppelelement (200) nach einem der vorhergehenden Ansprüche, bei dem das Auskoppelelement (200) in den Bereichen in denen kein eingekoppeltes Licht geführt wird lichtundurchlässig ausgebildet ist.
  5. Anordnung mit einem Lichtlaufzeitsensor (22) und einem Auskoppelelement (200) nach einem der vorhergehenden Ansprüche.
DE102015204124.7A 2014-05-02 2015-03-06 Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor Pending DE102015204124A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102015204124.7A DE102015204124A1 (de) 2014-05-02 2015-03-06 Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102014208308 2014-05-02
DE102014208308.7 2014-05-02
DE102015204124.7A DE102015204124A1 (de) 2014-05-02 2015-03-06 Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor

Publications (1)

Publication Number Publication Date
DE102015204124A1 true DE102015204124A1 (de) 2015-11-05

Family

ID=54326173

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102015204124.7A Pending DE102015204124A1 (de) 2014-05-02 2015-03-06 Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor

Country Status (1)

Country Link
DE (1) DE102015204124A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219172B3 (de) * 2016-10-04 2018-01-25 Ifm Electronic Gmbh Referenzpixelanordnung für einen Bildsensor
DE102016015759A1 (de) 2016-10-04 2018-04-05 Ifm Electronic Gmbh Referenzpixelanordnung für einen Bildsensor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704496C2 (de) 1996-09-05 2001-02-15 Rudolf Schwarte Verfahren und Vorrichtung zur Bestimmung der Phasen- und/oder Amplitudeninformation einer elektromagnetischen Welle
US6587186B2 (en) 2000-06-06 2003-07-01 Canesta, Inc. CMOS-compatible three-dimensional image sensing using reduced peak energy
EP1777747B1 (de) 2005-10-19 2008-03-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Einrichtung und Verfahren zur Demodulation von modulierten elektromagnetischen Wellenfeldern

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19704496C2 (de) 1996-09-05 2001-02-15 Rudolf Schwarte Verfahren und Vorrichtung zur Bestimmung der Phasen- und/oder Amplitudeninformation einer elektromagnetischen Welle
US6587186B2 (en) 2000-06-06 2003-07-01 Canesta, Inc. CMOS-compatible three-dimensional image sensing using reduced peak energy
EP1777747B1 (de) 2005-10-19 2008-03-26 CSEM Centre Suisse d'Electronique et de Microtechnique SA Einrichtung und Verfahren zur Demodulation von modulierten elektromagnetischen Wellenfeldern

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016219172B3 (de) * 2016-10-04 2018-01-25 Ifm Electronic Gmbh Referenzpixelanordnung für einen Bildsensor
DE102016015759A1 (de) 2016-10-04 2018-04-05 Ifm Electronic Gmbh Referenzpixelanordnung für einen Bildsensor

Similar Documents

Publication Publication Date Title
DE102013225676B4 (de) Lichtlaufzeitkamera mit einer Bewegungserkennung
DE102010043768B3 (de) Lichtlaufzeitkamera
DE102015205826A1 (de) Entfernungsmesssystem mit Lichtlaufzeitpixelzeile
DE102016211053A1 (de) Pixelzelle für einen Lichtlaufzeitsensor sowie entsprechender Lichtlaufzeitsensor
DE102015223674A1 (de) Lichtlaufzeitsensor für einen optischen Entfernungsmesser
CH695633A5 (de) Laserentfernungsmessgerät für den Nah- und Fernbereich mit speziellem Empfänger.
DE102012223298A1 (de) Lichtlaufzeitsensor mit nichtlinearen Referenzpixeln
DE102015204124A1 (de) Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor
DE102013207648B4 (de) Lichtlaufzeitkamerasystem
DE102015223675B4 (de) Lichtlaufzeitsensor für einen optischer Entfernungsmesser
DE102019123265A1 (de) Lichtlaufzeitpixel und Lichtlaufzeitsensor mit entsprechenden Pixel
DE102018131584A1 (de) Verfahren zur Entfernungsmessung mittels eines Lichtlaufzeit-Entfernungsmesssystems und entsprechendes Lichtlaufzeit-Entfernungsmesssystem
DE102015225192A1 (de) Lichtlaufzeitmesssystem mit Überreichweitenerkennung
DE102015207567A1 (de) Lichtformungsoptik und Lichtleiterstruktur für einen Lichtlaufzeitsensor
DE102012203596B4 (de) Lichtlaufzeitsensor
DE102015218484A1 (de) Referenzpixelarray für einen Bildsensor
DE102013225438B4 (de) Lichtlaufzeitsensor mit Referenzpixel
DE102011089642A1 (de) Lichtlaufzeitsensor
DE102016219170A1 (de) Lichtlaufzeitkamerasystem
DE102015204125B4 (de) Auskoppelelement für einen Lichtleiter zur Lichtführung an einem Lichtlaufzeitsensor
DE102012223295A1 (de) PMD-Kamera mit einer Phasenregelung der Beleuchtung
DE102020133187A1 (de) Entfernungsmesssystem
DE102016219172B3 (de) Referenzpixelanordnung für einen Bildsensor
DE102012223301A1 (de) Lichtlaufzeitsensor mit Referenzpixel
DE102010063579A1 (de) Optischer Entfernungsmesser

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R081 Change of applicant/patentee

Owner name: PMDTECHNOLOGIES AG, DE

Free format text: FORMER OWNER: IFM ELECTRONIC GMBH, 45128 ESSEN, DE

R082 Change of representative

Representative=s name: SCHUHMANN, JOERG, DIPL.-PHYS. DR. RER. NAT., DE

R081 Change of applicant/patentee

Owner name: PMDTECHNOLOGIES AG, DE

Free format text: FORMER OWNER: PMDTECHNOLOGIES AG, 57076 SIEGEN, DE

R082 Change of representative

Representative=s name: SCHUHMANN, JOERG, DIPL.-PHYS. DR. RER. NAT., DE

R016 Response to examination communication