DE102015117508A1 - Elektrisches Kabel mit einer Fluidleitung zum Kühlen - Google Patents

Elektrisches Kabel mit einer Fluidleitung zum Kühlen Download PDF

Info

Publication number
DE102015117508A1
DE102015117508A1 DE102015117508.8A DE102015117508A DE102015117508A1 DE 102015117508 A1 DE102015117508 A1 DE 102015117508A1 DE 102015117508 A DE102015117508 A DE 102015117508A DE 102015117508 A1 DE102015117508 A1 DE 102015117508A1
Authority
DE
Germany
Prior art keywords
cable
fluid
tube
interior
electric wire
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
DE102015117508.8A
Other languages
English (en)
Inventor
Thomas Führer
Robert Babezki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Phoenix Contact eMobility GmbH
Original Assignee
Phoenix Contact eMobility GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phoenix Contact eMobility GmbH filed Critical Phoenix Contact eMobility GmbH
Priority to DE102015117508.8A priority Critical patent/DE102015117508A1/de
Priority to DE202016008941.3U priority patent/DE202016008941U1/de
Priority to EP16791533.9A priority patent/EP3362312A1/de
Priority to PCT/EP2016/074532 priority patent/WO2017064157A1/de
Priority to US15/763,122 priority patent/US20180264957A1/en
Priority to CN201680060167.4A priority patent/CN108136929A/zh
Publication of DE102015117508A1 publication Critical patent/DE102015117508A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/16Connectors, e.g. plugs or sockets, specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/302Cooling of charging equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/28Protection against damage caused by moisture, corrosion, chemical attack or weather
    • H01B7/282Preventing penetration of fluid, e.g. water or humidity, into conductor or cable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/42Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction
    • H01B7/421Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation
    • H01B7/423Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using a cooling fluid
    • H01B7/425Insulated conductors or cables characterised by their form with arrangements for heat dissipation or conduction for heat dissipation using a cooling fluid the construction being bendable
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/46Bases; Cases
    • H01R13/52Dustproof, splashproof, drip-proof, waterproof, or flameproof cases
    • H01R13/5205Sealing means between cable and housing, e.g. grommet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R2201/00Connectors or connections adapted for particular applications
    • H01R2201/26Connectors or connections adapted for particular applications for vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Laying Of Electric Cables Or Lines Outside (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Abstract

Ein Kabel (2) zum Übertragen eines elektrischen Stroms umfasst einen Kabelschlauch (20), der einen Schlauchinnenraum (202) einfasst, zumindest eine in dem Schlauchinnenraum (202) erstreckte Leitungsader (22, 23, 28) zum Leiten eines elektrischen Stroms und eine in dem Schlauchinnenraum (202) erstreckte Fluidleitung (21) zum Führen eines Fluids zum Kühlen des Kabels (2). Dabei ist vorgesehen, dass die Fluidleitung (21) zumindest eine Austrittsöffnung (210) aufweist, die in den Schlauchinnenraum (202) zum Leiten des Fluids in den Schlauchinnenraum (202) mündet. Auf diese Weise ein Kabel zum Übertragen eines Stroms bereitgestellt, das ein effizientes Abführen von Verlustwärme ermöglicht, dabei aber für einen Nutzer gut handhabbar ist.

Description

  • Die Erfindung betrifft ein Kabel zum Übertragen eines elektrischen Stroms nach dem Oberbegriff des Anspruchs 1.
  • Ein derartiges Kabel umfasst einen Kabelschlauch, der einen Schlauchinnenraum einfasst, zumindest eine in dem Schlauchinnenraum erstreckte Leitungsader zum Leiten eines elektrischen Stroms und eine in dem Schlauchinnenraum erstreckte Fluidleitung zum Führen eines Fluids zum Kühlen des Kabels.
  • Ein solches Kabel kann insbesondere als Ladekabel zum Aufladen eines elektrisch angetriebenen Fahrzeugs (auch bezeichnet als Elektrofahrzeug) Verwendung finden. In diesem Fall kann das Kabel beispielsweise einerseits an eine Ladestation angeschlossen sein und andererseits ein Steckverbinderteil in Form eines Ladesteckers tragen, der in ein zugeordnetes Gegensteckverbinderteil in Form einer Ladebuchse an einem Fahrzeug eingesteckt werden kann, um auf diese Weise eine elektrische Verbindung zwischen der Ladestation und dem Fahrzeug herzustellen.
  • Ladeströme können grundsätzlich als Gleichströme oder als Wechselströme übertragen werden, wobei insbesondere Ladeströme in Form von Gleichstrom eine große Stromstärke, beispielsweise größer als 100 A oder sogar größer als 200 A, aufweisen und zu einer Erwärmung des Kabels genauso wie eines mit dem Kabel verbundenen Steckverbinderteils führen können. Dies kann erforderlich machen, das Kabel zu kühlen.
  • Ein aus der DE 10 2010 007 975 B4 bekanntes Ladekabel weist eine Kühlleitung auf, die eine Zuleitung und eine Rückleitung für ein Kühlmittel umfasst und somit einen Kühlmittelfluss hin und zurück in dem Ladekabel ermöglicht. Die Kühlleitung der DE 10 2010 007 975 B4 dient hierbei zum einen zum Abführen von an einem Energiespeicher eines Fahrzeugs entstehender Verlustwärme, zudem aber auch zum Kühlen des Kabels an sich.
  • Bestehende Lösungen von Ladekabeln mit einer integrierten Kühlleitung haben ggf. den Nachteil, dass ein Abführen von Wärme an einer Lastleitung – insbesondere bei großen Ladeströmen – nur bedingt möglich ist. Im Ergebnis kann es trotz einer Kühlleitung zu einer (nennenswerten) Erwärmung an dem Kabel kommen.
  • Eine Lösung, um einer solchen Erwärmung an dem Kabel entgegenzuwirken, könnte darin liegen, den Querschnitt der Lastleitung in dem Kabel weiter zu vergrößern. Dies hat jedoch den Nachteil, dass das Kabel insgesamt schwerer und weniger flexibel wird, so dass die Handhabbarkeit des Kabels für einen Nutzer beeinträchtigt sein kann.
  • Aufgabe der vorliegenden Erfindung ist es, ein Kabel zum Übertragen eines Stroms bereitzustellen, das ein effizientes Abführen von Verlustwärme ermöglicht, dabei aber für einen Nutzer gut handhabbar ist.
  • Diese Aufgabe wird durch einen Gegenstand mit den Merkmalen des Anspruchs 1 gelöst.
  • Demnach weist die Fluidleitung zumindest eine Austrittsöffnung auf, die in den Schlauchinnenraum zum Leiten des Fluids in den Schlauchinnenraum mündet.
  • Die Fluidleitung ist somit ausgestaltet, ein Fluid zum Kühlen in den Schlauchinnenraum des Kabelschlauchs zu leiten. Das Fluid wird über die Fluidleitung zugeführt und tritt über die Austrittsöffnung aus der Fluidleitung aus und in den Schlauchinnenraum ein, sodass das Fluid die in dem Kabelschlauch geführten Leitungsadern umströmen und Wärme von den Leitungsadern aufnehmen kann.
  • Die Leitungsadern und die Fluidleitung sind gemeinsam in dem Schlauchinnenraum des Kabelschlauchs eingefasst. Der Kabelschlauch umgibt die Leitungsadern und die Fluidleitung mit einer lichten Weite, sodass das Fluid aus der Fluidleitung austreten und in den Schlauchinnenraum eintreten kann, um im Schlauchinnenraum die dort geführten Leitungsadern zu umströmen. An den Leitungsadern wird Wärme somit überwiegend durch Umströmen der Leitungsadern mit dem Fluid in dem Schlauchinnenraum aufgenommen, nur zu einem geringeren Teil hingegen bei Zuführen des Fluids über die Fluidleitung. Die Fluidleitung dient somit vorwiegend zum Zuführen des Fluids, nicht aber zum Wärmeabtransport. Der Wärmeabtransport findet vorwiegend dadurch statt, dass das Fluid innerhalb des Schlauchinnenraums des Kabelschlauchs (aber außerhalb der Fluidleitung) strömt.
  • Ein derartiges Kühlungskonzept kann grundsätzlich flüssige oder gasförmige Kühlmittel ermöglichen. Beispielsweise kann als Kühlmittel Luft verwendet werden, die über die Fluidleitung zugeführt und über die Austrittsöffnung in den Schlauchinnenraum des Kabelschlauchs eintritt, um die Leitungsadern in dem Schlauchinnenraum zu umströmen.
  • Denkbar und möglich ist aber auch, ein flüssiges Kühlmittel zu verwenden, beispielsweise Wasser, das die Leitungsadern im Kabelschlauch umströmt.
  • Die Fluidleitung ist schlauchförmig ausgestaltet und erstreckt sich innerhalb des Schlauchinnenraums des Kabelschlauchs. Die Austrittsöffnung ist hierbei beispielsweise an einem Ende der Fluidleitung innerhalb des Kabelschlauchs angeordnet, sodass das in der Fluidleitung geführte Fluid am Ende der Fluidleitung austritt und in den Schlauchinnenraum des Kabelschlauchs gelangt.
  • Denkbar und möglich ist in diesem Zusammenhang aber auch, mehrere zueinander verteilte Austrittsöffnungen an der Fluidleitung vorzusehen. Beispielsweise können entlang der Länge der Fluidleitung innerhalb des Schlauchinnenraums mehrere Austrittsöffnungen vorgesehen sein, sodass das Fluid an mehreren Stellen aus der Fluidleitung austritt und in den Schlauchinnenraum des Kabelschlauchs eintritt.
  • Die Fluidleitung erstreckt sich, in einer Ausgestaltung, von einem ersten Ende des Kabelschlauchs hin zu einem zweiten Ende des Kabelschlauchs innerhalb des Schlauchinnenraums. Die Fluidleitung kann sich hierbei zumindest näherungsweise über die gesamte Länge des Kabelschlauchs erstrecken, wobei die Fluidleitung an dem ersten Ende in den Schlauchinnenraum des Kabelschlauchs eintritt und die Austrittsöffnung beispielsweise im Bereich des zweiten Endes des Kabelschlauchs angeordnet ist. Über die Fluidleitung kann somit ein kühlendes Fluid hin zum zweiten Ende des Kabelschlauchs geführt werden, um im Bereich dieses zweiten Endes aus der Fluidleitung auszutreten und in den Schlauchinnenraum des Kabelschlauchs einzutreten und entlang des Kabelschlauchs zurück in Richtung des ersten Endes zu strömen. Auf diese Weise werden die in dem Kabelschlauch verlegten Leitungsadern von dem Fluid umströmt und können Wärme von den Leitungsadern aufnehmen, um einer (übermäßigen) Erwärmung des Kabels entgegenzuwirken.
  • An dem zweiten Ende kann der Kabelschlauch beispielsweise mit einem Steckverbinderteil verbunden sein, das mit einem zugeordneten Gegensteckverbinderteil steckend in Eingriff gebracht werden kann und hierzu einen Steckabschnitt aufweist, der steckend mit dem Gegensteckverbinderteil verbunden werden kann. Ein solches Steckverbinderteil kann – bei Verwendung des Kabels als Ladekabel – beispielsweise als Ladestecker ausgebildet sein, der steckend mit einer zugeordneten Ladebuchse beispielsweise an einem Elektrofahrzeug in Eingriff gebracht werden kann.
  • An dem ersten Ende kann der Kabelschlauch hingegen an eine Ladestation angeschlossen sein, wobei grundsätzlich denkbar und möglich ist, den Kabelschlauch fest mit der Ladestation zu verbinden oder lösbar über eine geeignete Steckverbindungseinrichtung an die Ladestation anzuschließen.
  • Während die eine oder die mehreren Leitungsadern sich innerhalb des Kabelschlauchs bis hin zu dem Steckverbinderteil erstrecken und elektrisch beispielsweise mit einer Kontaktbaugruppe des Steckverbinderteils verbunden sind, um eine elektrische Kontaktierung über das Steckverbinderteil zu ermöglichen, soll das Fluid innerhalb des Kabelschlauchs geleitet werden, nicht aber in das Steckverbinderteil gelangen. Hierzu kann, in einer Ausgestaltung, an dem zweiten Ende des Kabelschlauchs eine Verschlusseinrichtung beispielsweise in Form eines Dichtungselements, beispielsweise einer dichtenden Platte oder dergleichen, vorgesehen sein, das den Schlauchinnenraum gegen einen Fluidaustritt an dem zweiten Ende verschließt. Der Kabelschlauch ist somit hin zum Steckverbinderteil fluiddicht abgeschlossen, wobei in der Verschlusseinrichtung ein oder mehrere Öffnungen vorgesehen sein können, durch die hindurch sich die eine oder die mehreren Leitungsadern erstrecken. Das aus der Austrittsöffnung der Fluidleitung austretende Fluid wird somit an dem zweiten Ende des Kabelschlauchs umgeleitet und strömt von dem zweiten Ende in Richtung des ersten Endes des Kabelschlauchs entlang der in dem Kabelschlauch verlegten Leitungsadern, sodass Wärme in effizienter Weise an den Leitungsadern aufgenommen werden kann.
  • Wird als Fluid zum Kühlen ein flüssiges Fluid, beispielsweise Wasser, verwendet, so wird vorzugsweise ein geschlossener Fluidkreislauf bereitgestellt. In diesem Fall strömt das flüssige Fluid beispielsweise hin zum ersten Ende des Kabelschlauchs und tritt am ersten Ende des Kabelschlauchs in eine geeignete Leitung ein, um das Fluid beispielsweise hin zu einer Pumpe zu leiten und zurück in die Fluidleitung einzuspeisen.
  • Wird als Fluid zum Kühlen hingegen ein gasförmiges Fluid, beispielsweise Luft, verwendet, so kann ein offener Kreislauf zum Führen des Fluids vorgesehen sein. So kann das Fluid aus der Fluidleitung in den Schlauchinnenraum eintreten und innerhalb des Schlauchinnenraums entlang des Kabelschlauchs hin zum ersten Ende des Kabelschlauchs strömen, um an dem ersten Ende aus dem Kabelschlauch auszutreten. Hierzu kann im Bereich des ersten Endes des Kabelschlauchs eine Auslassöffnung vorgesehen sein, die ausgebildet ist, das Fluid aus dem Schlauchinnenraum austreten zu lassen, sodass das Fluid aus dem Kabelschlauch ausströmen kann. Die Auslassöffnung kann den Kabelschlauch hierbei nach außen hin, also hin zu einem Außenbereich außerhalb des Kabelschlauchs, öffnen, sodass das gasförmige Fluid, z.B. Luft, aus dem Kabelschlauch ausströmen kann und insbesondere nicht nach Art eines geschlossenen Kreislaufs wiederum in die Fluidleitung zurück gespeist wird.
  • Um hierbei zu verhindern, dass Feuchtigkeit an der Auslassöffnung in den Schlauchinnenraum des Kabelschlauchs eintreten kann, ist die Auslassöffnung vorzugsweise durch ein Dichtungselement verschlossen. Dieses Dichtungselement ist hierbei derart ausgestaltet, dass Fluid aus dem Kabelschlauch austreten, nicht aber Feuchtigkeit von außen in den Schlauchinnenraum des Kabelschlauchs gelangen kann. Beispielsweise kann das Dichtungselement aus einem elastischen Material, beispielsweise einem Gummi- oder Kunststoffmaterial, hergestellt sein und eine Membran verwirklichen, die z.B. eine Schlitzöffnung als Auslass für das Fluid aufweist.
  • Der Kabelschlauch kann insbesondere fest an einer Ladestation, insbesondere einer Gehäusewandung der Ladestation, anzuordnen sein. Hierzu kann an dem der Ladestation zugeordneten, ersten Ende des Kabelschlauchs eine Befestigungseinrichtung vorgesehen sein, über die der Kabelschlauch fest mit der Ladestation verbunden werden kann.
  • Um einen Übertritt des Fluids in die Ladestation zu vermeiden, kann hierbei, in einer Ausführungsform, an der Befestigungseinrichtung ein Dichtungsstopfen vorgesehen sein, der den Kabelschlauch an seinem ersten Ende fluiddicht verschließt.
  • Um hierbei die eine oder die mehreren Leitungsadern und die Fluidleitung von der Ladestation in den Schlauchinnenraum des Kabelschlauchs einzuführen, weist der Dichtungsstopfen vorzugsweise für jede Leitungsader bzw. Leitung eine Öffnung auf, durch die hindurch die Leitungsadern und die Fluidleitung geführt sind. Die Leitungsadern und die Fluidleitung erstrecken sich somit von der Ladestation in den Kabelschlauch hinein, wobei der Übergang zwischen der Ladestation und dem Kabelschlauch durch den Dichtungsstopfen abgedichtet ist und somit Fluid nicht an den Leitungsadern und an der Fluidleitung vorbei aus dem Kabelschlauch in die Ladestation einströmen kann.
  • Die Leitungsadern sind vorzugsweise als gesonderte Einzelleitungen in dem Kabelschlauch verlegt. Die Leitungsadern sind insbesondere nicht gemeinsam in einem Kabelmantel eingehüllt, sondern sind einzeln und separat voneinander in dem Kabelschlauch verlegt. Dies ermöglicht, dass das Fluid die Leitungsadern unmittelbar umströmen kann und somit Wärme unmittelbar an den Leitungsadern aufgenommen werden kann.
  • In einer Ausführungsform ist der Innendurchmesser des Kabelschlauchs mehr als doppelt so groß wie der Innendurchmesser der Fluidleitung. Die lichte Weite der Fluidleitung, innerhalb derer das Fluid zugeführt wird, ist somit deutlich kleiner als die lichte Weite des Kabelschlauchs, was dazu führt, dass der Strömungsquerschnitt für das Fluid in der Fluidleitung deutlich kleiner ist als der Strömungsquerschnitt für das Fluid im Schlauchinnenraum außerhalb der Fluidleitung. Dies bedingt, dass das Fluid über die Fluidleitung mit einer vergleichsweise großen Strömungsgeschwindigkeit zugeführt wird, dann aber mit einer reduzierten Strömungsgeschwindigkeit außerhalb der Fluidleitung in dem Schlauchinnenraum strömt. Die Leitungsadern werden somit durch das Fluid mit vergleichsweise geringer Strömungsgeschwindigkeit umströmt, sodass das Fluid, beispielsweise Luft, in günstiger Weise Wärme an den Leitungsadern aufnehmen kann.
  • Die Fluidleitung und der Kabelschlauch können beispielsweise, in einer nicht gekrümmten oder geknickten Grundform, einen kreisförmigen Querschnitt aufweisen. Der Strömungsquerschnitt der Fluidleitung einerseits und der Strömungsquerschnitt des Kabelschlauchs andererseits ist somit proportional zum Quadrat des Durchmessers.
  • Der Kabelschlauch ist vorzugsweise mit den darin verlegten Leitungsadern und der Fluidleitung derart flexibel, dass das Kabel in flexibler Weise hin zu einem Elektrofahrzeug verlegt werden kann und somit durch einen Nutzer in einfacher Weise gehandhabt werden kann. Um bei einem Verlegen des Kabels zu gewährleisten, dass die in dem Schlauchinnenraum des Kabelschlauchs erstreckten Leitungsadern und die Fluidleitung in geordneter Weise zueinander verlegt sind, sind in dem Schlauchinnenraum des Kabelschlauchs ein oder mehrere Distanzstücke angeordnet, an denen die Leitungsadern und die Fluidleitung festgelegt sind. Mehrere Distanzstücke sind vorzugsweise entlang der Länge des Kabelschlauchs zueinander versetzt, vorzugsweise gleich beabstandet zueinander angeordnet und halten die Leitungsadern und die Fluidleitung in definierter Position zueinander. Über die Distanzstücke kann eine geordnete Verlegung der Leitungsadern und der Fluidleitung innerhalb des Kabelschlauchs erreicht werden, sodass eine Bildung von Wärmenestern aufgrund eines Aufeinanderliegens von Leitungsadern vermieden werden kann.
  • Nach einem weiteren Aspekt weist eine Ladestation ein Kabel nach der vorangehend beschriebenen Art auf.
  • Der der Erfindung zugrunde liegende Gedanke soll nachfolgend anhand der in den Figuren dargestellten Ausführungsbeispiele näher erläutert werden. Es zeigen:
  • 1 eine Ansicht einer Ladestation mit einem daran angeordneten Kabel;
  • 2 eine Ansicht eines Steckverbinderteils des Kabels;
  • 3 eine teilweise freigeschnittene Ansicht eines Kabelschlauchs, mit in dem Kabelschlauch verlegten Leitungsadern und einer Fluidleitung;
  • 4 die Ansicht gemäß 3, ohne den Kabelschlauch;
  • 5 eine schematische Ansicht des Kabelschlauchs mit einem darin angeordneten Distanzstück;
  • 6 eine gesonderte Ansicht eines Distanzstücks;
  • 7 eine andere Ansicht des Distanzstücks;
  • 8A eine Vorderansicht des Distanzstücks;
  • 8B die Ansicht gemäß 8A, mit an dem Distanzstück angeordneten Leitungsadern und einer Fluidleitung, eingefasst in dem Kabelschlauch;
  • 9 eine Längsschnittansicht längs entlang des Kabels;
  • 10 eine Explosionsansicht einer Befestigungseinrichtung zum Befestigen des Kabelschlauchs an einer Wandung der Ladestation;
  • 11 eine Seitenansicht der Befestigungseinrichtung an der Ladestation; und
  • 12 eine Längsschnittansicht durch die Befestigungseinrichtung.
  • 1 zeigt eine Ladestation 1, die zum Aufladen eines elektrisch angetriebenen Fahrzeugs 4, auch bezeichnet als Elektrofahrzeug, dient. Die Ladestation 1 ist dazu ausgestaltet, einen Ladestrom in Form eines Wechselstroms oder eines Gleichstroms zur Verfügung zu stellen und weist ein Kabel 2 auf, das mit einem Ende 201 mit der Ladestation 1 und mit einem anderen Ende 200 mit einem Steckverbinderteil 3 in Form eines Ladesteckers verbunden ist.
  • Wie aus der vergrößerten Ansicht gemäß 2 ersichtlich, weist das Steckverbinderteil 3 an einem Gehäuse 30 Steckabschnitte 300, 301 auf, mit denen der Steckverbinderteil 3 steckend mit einem zugeordneten Gegensteckverbinderteil 40 in Form einer Ladebuchse an dem Fahrzeug 4 in Eingriff gebracht werden kann. Auf diese Weise kann die Ladestation 1 elektrisch mit dem Fahrzeug 4 verbunden werden, um Ladeströme von der Ladestation 1 hin zu dem Fahrzeug 4 zu übertragen.
  • Um ein zügiges Aufladen des Elektrofahrzeugs 4 zu ermöglichen, weisen die übertragenen Ladeströmen eine große Stromstärke, z.B. größer als 100 A, gegebenenfalls sogar in der Größenordnung von 200 A oder darüber, auf. Aufgrund solch hoher Ladeströme kommt es an den Leitungsadern des Kabels 2 zu thermischen Verluste, die zu einem Erwärmen des Kabels 2 führen können. Bei dem an einer Ladestation 1 heutzutage verwendeten Stromstärken können beispielsweise thermische Verluste im Bereich von 50 W pro Meter des Kabels 2 oder gar mehr auftreten, was mit einer erheblichen Erwärmung an dem Kabel 2 einhergehen kann.
  • Um an dem Kabel 2 entstehende Wärme abzuleiten, ist bei dem anhand von 2 bis 9 veranschaulichten Ausführungsbeispiel eines Kabels 2 eine Fluidleitung 21 vorgesehen, die dazu dient, ein Fluid zum Kühlen von Leitungsadern 22, 23 des Kabels 2 zuzuführen. Mittels des Fluids, das gasförmig oder flüssig sein kann, wird an den Leitungsadern 22, 23 entstehende Wärme aufgenommen und abtransportiert, sodass einer (übermäßigen) Erwärmung an dem Kabel 2 entgegengewirkt wird.
  • Die Leitungsadern 22, 23 sind genauso wie die Fluidleitung 21 in einem Kabelschlauch 20 des Kabels 2 eingefasst. Der Kabelschlauch 20 erstreckt sich hierbei zwischen der Ladestation 1 und dem Steckverbinderteil 3 und ist mit einem ersten Ende 201 mit der Ladestation 1 und mit einem zweiten Ende 200 mit dem Steckverbinderteil 3 verbunden. Die Leitungsadern 22, 23 und die Fluidleitung 21 erstrecken sich längs innerhalb eines durch den Kabelschlauch 20 eingefassten Schlauchinnenraums 202 und sind innerhalb des Kabelschlauchs 20 zwischen der Ladestation 1 und dem Steckverbinderteil 3 geführt.
  • Die Leitungsadern 22, 23 erstrecken sich von der Ladestation 1 bis hin zu dem Steckverbinderteil 3 und in das Steckverbinderteil 3 hinein, um elektrisch mit einer Kontaktbaugruppe des Steckverbinderteils 3 zu kontaktieren. Über die Leitungsadern 22, 23 werden bei einem Aufladevorgang Ladeströme zwischen der Ladestation 1 und dem Fahrzeug 4 übertragen.
  • Die Fluidleitung 21 erstreckt sich demgegenüber von der Ladestation 1 bis in den Bereich des dem Steckverbinderteil 3 zugeordneten Endes 200 des Kabelschlauchs 20, endet jedoch vor dem Steckverbinderteil 3, wie dies in 9 veranschaulicht ist. Über die Fluidleitung 21 wird ein Fluid in eine Flussrichtung F1 von Seiten der Ladestation 1 aus zugeführt und tritt an einer Austrittsöffnung 210 an einem Ende der Fluidleitung 21 aus und in den Schlauchinnenraum 202 des Kabelschlauchs 20 ein. Über die Fluidleitung 21 strömt das Fluid in die Flussrichtung F1 somit in den Schlauchinnenraum 202 hinein und strömt dann innerhalb des Schlauchinnenraums 202 von dem dem Steckverbinderteil 3 zugeordneten Ende 200 des Kabelschlauchs 20 zurück in die Flussrichtung F2 hin zu dem der Ladestation 1 zugewandten Ende 201, um auf dem Weg die Leitungsadern 22, 23 zu umströmen und Wärme an den Leitungsadern 22, 23 aufzunehmen.
  • Die Fluidleitung 21 weist im Vergleich zu dem Kabelschlauch 20 einen deutlich kleineren Innendurchmesser D1 auf. Das Fluid strömt in der Fluidleitung 21 somit mit vergleichsweise großer Strömungsgeschwindigkeit und gelangt über die Austrittsöffnung 210 am Ende der Fluidleitung 21 in den Schlauchinnenraum 202 hinein. Aufgrund des vergrößerten Durchmessers D2 und des damit einhergehenden vergrößerten Strömungsquerschnitts des Schlauchinnenraums 202 des Kabelschlauchs 20 strömt das Fluid in die Flussrichtung F2 sodann mit reduzierter Strömungsgeschwindigkeit innerhalb des Schlauchinnenraums 202 (aber außerhalb der Fluidleitung 21).
  • Die Fluidleitung 21 und der Kabelschlauch 20 weisen, in einem nicht verformten Zustand, einen zumindest näherungsweise kreisförmigen Querschnitt auf, sind dabei aber derart flexibel, dass das Kabel 2 in einfach zu handhabender Weise durch einen Nutzer hin zu einem aufzuladenden Fahrzeug 4 verlegt werden kann.
  • Die Leitungsadern 22, 23 und die Fluidleitung 21 sind innerhalb des Kabelschlauchs 20 in geordneter Weise verlegt und hierzu an einer Mehrzahl von Distanzstücken 24 angeordnet, die – wie aus der schematischen Ansicht gemäß 5 ersichtlich – in regelmäßig beabstandeter Weise entlang des Kabels 2 platziert sind. Die Distanzstücke 24 sind als Kunststoffformteile ausgebildet und weisen jeweils Aufnahmeeinrichtungen 241243 zum Aufnehmen der Fluidleitung 21 (in der Aufnahmeeinrichtung 241) und der Leitungsadern 22, 23 (in den Aufnahmeeinrichtungen 242, 243) auf. Über die Aufnahmeeinrichtungen 241243 können die Fluidleitung 21 und die Leitungsadern 22, 23 in clipsender Weise mit den Distanzstücken 24 verbunden werden, um auf diese Weise die Fluidleitung 21 und die Leitungsadern 22, 23 in definierter Weise innerhalb des Schlauchinnenraums 202 zueinander festzulegen.
  • Wie aus der Ansicht gemäß 8B ersichtlich, werden die Fluidleitung 21 und die Leitungsadern 22, 23 über die Distanzstücke 24 auf Abstand zueinander gehalten. Die Distanzstücke 24 liegen hierbei jeweils über Anlagekanten 240, 244246 innenseitig an der Wandung des Kabelschlauchs 20 an, sodass die Fluidleitung 21 und die Leitungsadern 22, 23 in geordneter Weise innerhalb des Schlauchinnenraums 202 gehalten werden.
  • Durch Verwendung der Distanzstücke 24 kann vermieden werden, dass bei einem Biegen des Kabels 2 es zu einem ungeordneten Aufeinanderliegen und Verdrehen von Leitungsadern 22, 23 kommt, infolgedessen Wärmenester mit erhöhter Erwärmung auftreten könnten. Durch die Distanzstücke 24 wird sichergestellt, dass die Leitungsadern 22, 23 und die Fluidleitung 21 auch bei einem Verbiegen des Kabels 2 in geordneter Weise innerhalb des Kabelschlauchs 20 verlegt bleiben.
  • Wie aus der Schnittansicht gemäß 9 ersichtlich, strömt das Fluid, zugeführt über die Fluidleitung 21, an der Austrittsöffnung 210 der Fluidleitung 21 in den Schlauchinnenraum 202 hinein. Dadurch, dass die Fluidleitung 21 bis nahezu hin zu dem dem Steckverbinderteil 3 zugeordneten Ende 200 des Kabelschlauchs 20 erstreckt ist, wird das Fluid somit im Bereich dieses Endes 200 in den Schlauchinnenraum 202 eingelassen. Um hierbei ein Abfließen des Fluids über das Steckverbinderteil 3 zu verhindern, ist der Übergang zwischen dem Kabelschlauch 20 und dem Steckverbinderteil 3 über eine Verschlusseinrichtung 203 in Form eines plattenförmige Dichtungselement abgedichtet, sodass das Fluid innerhalb des Schlauchinnenraums 202 vor dem Steckverbinderteil 3 umgelenkt wird und von dem dem Steckverbinderteil 3 zugeordneten Ende 200 innerhalb des Kabelschlauchs 20 hin zu dem der Ladestation 1 zugeordneten Ende 201 des Kabels 2 strömt.
  • Das Fluid kann grundsätzlich flüssig oder gasförmig sein.
  • Wird ein flüssiges Fluid, beispielsweise Wasser, zum Kühlen verwendet, so wird vorzugsweise ein geschlossener Kühlmittelkreislauf bereitgestellt, im Rahmen dessen das Fluid an dem der Ladestation 1 zugewandten Ende 201 des Kabels 2 über eine geeignete Leitung abgeleitet und beispielsweise über eine Kühlmittelpumpe zurück in die Fluidleitung 21 gespeist wird.
  • Wird hingegen ein gasförmiges Fluid, beispielsweise Luft, zum Kühlen verwendet, so kann ein geöffneter Kühlmittelkreislauf zur Verfügung gestellt werden, im Rahmen dessen das gasförmige Fluid an dem der Ladestation 1 zugewandten Ende 201 des Kabelschlauchs 20 aus dem Kabelschlauch 20 ausgelassen und nicht (unmittelbar) in die Fluidleitung 21 zurück gespeist wird.
  • Ein Ausführungsbeispiel einer Befestigungseinrichtung zum Befestigen des Kabelschlauchs 20 an der Ladestation 1 zur Bereitstellung eines solchen geöffneten Kreislaufs ist in 10 bis 12 dargestellt. Bei diesem Ausführungsbeispiel ist der Kabelschlauch 20 mit seinem Ende 201 an einen Ansetzstutzen 250 eines Befestigungselements 25 angesetzt, das über einen an einen sechskantigen Bund 251 anschließenden Gewindeabschnitt 252 in eine Gewindeöffnung 263 in einem Körper 260 eines Rohrelements 26 eingeschraubt ist. Das Rohrelement 26 durchgreift mit einem Gewindeabschnitt 261 eine Öffnung 100 in einer Gehäusewandung 10 der Ladestation 1 und ist über eine Mutter 262 rückseitig an der Gehäusewandung 10 festgelegt.
  • Innerhalb des Rohrelements 26 ist ein Dichtungsstopfen 27 zum Abdichten des Kabelschlauchs 20 an diesem Ende 201 angeordnet. Der Dichtungsstopfen 27 liegt mit einem Schaft 270 in dem Rohrelement 26 ein und liegt mit einem Bund 271 stirnseitig an dem Gewindeabschnitt 261 des Rohrelement 26 an, wie dies aus der Schnittansicht gemäß 11 ersichtlich ist.
  • An dem Körper 260 des Rohrelements 26 ist, vertikal nach unten weisend, eine Austrittsöffnung 264 angeordnet, über die das in dem Schlauchinnenraum 202 außerhalb der Fluidleitung 21 geleitete Fluid aus dem Kabelschlauch 20 ausströmen kann. Die Austrittsöffnung 264 ist durch ein Dichtungselement 265 gegen einen Feuchtigkeitseintritt von außen abgedichtet und bildet eine Membran mit einer Schlitzöffnung 266 aus, durch die hindurch Fluid aus dem Schlauchinnenraum 202 ausströmen kann.
  • Wie aus 11 ersichtlich, weist der Dichtungsstopfen 27 innerhalb des Rohrelements 26 eine Schrägfläche 274 auf, mittels derer das Fluid hin zu der Austrittsöffnung 264 an der Unterseite des Körpers 260 des Rohrelement 26 geleitet wird.
  • In dem Dichtungsstopfen 27 sind Öffnungen 272, 273 ausgebildet (siehe 10), durch die hindurch Leitungsadern 22, 23, 28 sowie die Fluidleitung 21 geführt sind. Über die Öffnung 273 wird hierbei insbesondere auch die Fluidleitung 21 von Seiten der Ladestation 1 in den Kabelschlauch 20 des Kabels 2 eingeführt, sodass mittels einer geeigneten Pumpeinrichtung der Ladestation 1 ein Fluid in die Fluidleitung 21 hinein gefördert werden kann.
  • Über die Öffnungen 272, 273 sind die Leitungsadern 22, 23, 28 und die Fluidleitung 21 in fluiddichter Weise durch den Dichtungsstopfen 21 hindurch verlegt, sodass das Fluid aus dem Schlauchinnenraum 202 nicht an den Leitungsadern 22, 23, 28 und der Fluidleitung 21 vorbei durch den Dichtungsstopfen 27 treten kann.
  • Bei dem dargestellten Ausführungsbeispiel ist das Kabel 2 fest mit der Ladestation 1 verbunden. Dies kann zwar vorteilhaft sein, ist aber nicht zwingend. Grundsätzlich ist auch denkbar und möglich, das Kabel 2 über ein geeignetes Steckverbinderteil (lösbar) an die Ladestation 1 anzuschließen, wobei in diesem Fall an dem Steckverbinderteil ein geeigneter Strömungskontakt zum Anschließen der Fluidleitung 21 vorzusehen ist.
  • Der der Erfindung zugrunde liegende Gedanke ist nicht auf die vorangehend geschilderten Ausführungsbeispiele beschränkt, sondern lässt sich grundsätzlich auch bei gänzlich andersgearteten Ausführungsformen verwirklichen.
  • Vorteilhafterweise sind Leitungsadern in einem Kabel der beschriebenen Art in gesonderter, vereinzelter Weise verlegt und insbesondere nicht durch einen (gemeinsamen) Kabelmantel umhüllt. Das Fluid in dem Schlauchinnenraum kann somit die Leitungsadern einzeln umströmen und somit in effektiver Weise Wärme an den Leitungsadern aufnehmen.
  • Weil der Kabelschlauch einen vergrößerten Innendurchmesser und somit eine lichte Weite aufweist, innerhalb dessen ein Fluid die in dem Kabelschlauch geführten Leitungsadern umströmen kann, dient der Kabelschlauch selbst als Rückleitung für das Fluid. Über die Fluidleitung innerhalb des Kabelschlauchs wird somit lediglich ein Fluid zugeführt, das dann aus der Fluidleitung austritt und entlang des Kabelschlauchs die Leitungsadern innerhalb des Kabelschlauchs umströmt.
  • Grundsätzlich ist denkbar und möglich, an der Fluidleitung mehrere Austrittsöffnungen vorzusehen, sodass ein Fluid an mehreren Stellen aus der Fluidleitung austreten und in den Schlauchinnenraum des Kabelschlauchs eintreten kann.
  • Bezugszeichenliste
  • 1
    Ladestation
    10
    Gehäusewandung
    100
    Öffnung
    2
    Ladekable
    20
    Kabelschlauch
    200, 201
    Ende
    202
    Innenraum
    203
    Verschlusseinrichtung (Dichtungselement)
    21
    Fluidleitung
    210
    Austrittsöffnung
    22, 23
    Leitungsader
    24
    Distanzstück
    240
    Anlagekante
    241–243
    Aufnahmeeinrichtung
    244–246
    Anlagekante
    25
    Befestigungselement
    250
    Ansetzstutzen
    251
    Bund
    252
    Gewindeabschnitt
    26
    Rohrelement
    260
    Körper
    261
    Gewindeabschnitt
    262
    Mutter
    263
    Gewindeöffnung
    264
    Öffnung
    265
    Dichtungselement
    266
    Schlitzöffnung
    27
    Dichtungsstopfen
    270
    Schaft
    271
    Bund
    272
    Öffnungen
    273
    Öffnung
    274
    Schrägfläche
    28
    Leitungsadern
    3
    Ladestecker
    30
    Gehäuse
    300, 301
    Steckabschnitt
    4
    Fahrzeug
    40
    Ladebuchse
    D1, D2
    Durchmesser
    F1, F2
    Fluss
  • ZITATE ENTHALTEN IN DER BESCHREIBUNG
  • Diese Liste der vom Anmelder aufgeführten Dokumente wurde automatisiert erzeugt und ist ausschließlich zur besseren Information des Lesers aufgenommen. Die Liste ist nicht Bestandteil der deutschen Patent- bzw. Gebrauchsmusteranmeldung. Das DPMA übernimmt keinerlei Haftung für etwaige Fehler oder Auslassungen.
  • Zitierte Patentliteratur
    • DE 102010007975 B4 [0005, 0005]

Claims (17)

  1. Kabel (2) zum Übertragen eines elektrischen Stroms, mit – einem Kabelschlauch (20), der einen Schlauchinnenraum (202) einfasst, – zumindest einer in dem Schlauchinnenraum (202) erstreckten Leitungsader (22, 23, 28) zum Leiten eines elektrischen Stroms und – einer in dem Schlauchinnenraum (202) erstreckten Fluidleitung (21) zum Führen eines Fluids zum Kühlen des Kabels (2), dadurch gekennzeichnet, dass die Fluidleitung (21) zumindest eine Austrittsöffnung (210) aufweist, die in den Schlauchinnenraum (202) zum Leiten des Fluids in den Schlauchinnenraum (202) mündet.
  2. Kabel (2) nach Anspruch 1, dadurch gekennzeichnet, dass das Fluid flüssig oder gasförmig ist.
  3. Kabel (2) nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Austrittsöffnung (210) an einem Ende der Fluidleitung (21) innerhalb des Kabelschlauchs (20) angeordnet ist.
  4. Kabel (2) nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Fluidleitung (21) von einem ersten Ende (201) des Kabelschlauchs (20) hin zu einem zweiten Ende (200) des Kabelschlauchs (2) innerhalb des Schlauchinnenraums (202) erstreckt ist.
  5. Kabel (2) nach Anspruch 4, dadurch gekennzeichnet, dass die Fluidleitung (21) an dem ersten Ende (201) des Kabelschlauchs (20) in den Schlauchinnenraum (202) eintritt und die zumindest eine Austrittsöffnung (210) im Bereich des zweiten Endes (200) des Kabelschlauchs (20) angeordnet ist.
  6. Kabel (2) nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass der Kabelschlauch (20) an dem zweiten Ende (200) mit einem Steckverbinderteil (3), das einen Steckabschnitt (300, 301) zum steckenden Verbinden mit einem zugeordneten Gegensteckverbinderteil (40) aufweist, verbunden ist.
  7. Kabel (2) nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der Kabelschlauch (20) an seinem zweiten Ende (200) eine Verschlusseinrichtung (203) aufweist, das den Schlauchinnenraum (202) gegen einen Fluidaustritt an dem zweiten Ende (200) verschließt.
  8. Kabel (2) nach einem der Ansprüche 4 bis 7, dadurch gekennzeichnet, dass das Kabel (2) im Bereich des ersten Endes (201) des Kabelschlauchs (20) eine Auslassöffnung (264) aufweist, die ausgebildet ist, das Fluid aus dem Schlauchinnenraum (20) auszulassen.
  9. Kabel (2) nach Anspruch 8, dadurch gekennzeichnet, dass die Auslassöffnung (264) durch ein Dichtungselement (265) verschlossen ist, das ausgebildet ist, einen Fluidaustritt aus dem Kabelschlauch (20) zu ermöglichen, die Auslassöffnung (264) aber gegen einen Feuchtigkeitseintritt in den Kabelschlauch (20) abzudichten.
  10. Kabel (2) nach einem der Ansprüche 4 bis 9, dadurch gekennzeichnet, dass der Kabelschlauch (20) an seinem ersten Ende (201) mit einer Befestigungseinrichtung (25, 26) zum Befestigen des Kabelschlauchs (20) an einer Ladestation (1) verbunden ist.
  11. Kabel (2) nach Anspruch 10, dadurch gekennzeichnet, dass die Befestigungseinrichtung (25, 26) einen Dichtungsstopfen (27) aufweist, das den Schlauchinnenraum (202) gegen einen Fluidaustritt an dem ersten Ende (200) abdichtet.
  12. Kabel (2) nach Anspruch 11, dadurch gekennzeichnet, dass der Dichtungsstopfen (27) zumindest eine erste Öffnung (272) zum Hindurchführen der zumindest einen Leitungsader (22, 23, 28) und eine zweite Öffnung (273) zum Hindurchführen der Fluidleitung (21) aufweist.
  13. Kabel (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass mehrere Leitungsadern (22, 23, 28) als gesonderte Einzelleitungen in dem Kabelschlauch (20) verlegt sind.
  14. Kabel (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass der Innendurchmesser (D2) des Kabelschlauchs (20) mehr als doppelt so groß ist wie der Innendurchmesser (D1) der Fluidleitung (21).
  15. Kabel (2) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Kabel (2) zumindest ein in dem Schlauchinnenraum (202) angeordnetes Distanzstück (24) aufweist, an dem die zumindest eine Leitungsader (22, 23, 28) und die Fluidleitung (21) angeordnet und in Position zueinander gehalten sind.
  16. Kabel (2) nach Anspruch 15, dadurch gekennzeichnet, dass das Kabel (2) eine Mehrzahl von in dem Schlauchinnenraum (202) angeordneten, entlang des Kabelschlauchs (20) zueinander versetzten Distanzstücken (24) aufweist.
  17. Ladestation (1) mit einem Kabel (2) nach einem der vorangehenden Ansprüche.
DE102015117508.8A 2015-10-15 2015-10-15 Elektrisches Kabel mit einer Fluidleitung zum Kühlen Ceased DE102015117508A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102015117508.8A DE102015117508A1 (de) 2015-10-15 2015-10-15 Elektrisches Kabel mit einer Fluidleitung zum Kühlen
DE202016008941.3U DE202016008941U1 (de) 2015-10-15 2016-10-13 Elektrisches Kabel mit einer Fluidleitung zum Kühlen
EP16791533.9A EP3362312A1 (de) 2015-10-15 2016-10-13 Elektrisches kabel mit einer fluidleitung zum kühlen
PCT/EP2016/074532 WO2017064157A1 (de) 2015-10-15 2016-10-13 Elektrisches kabel mit einer fluidleitung zum kühlen
US15/763,122 US20180264957A1 (en) 2015-10-15 2016-10-13 Electric cable comprising a fluid conduit for cooling
CN201680060167.4A CN108136929A (zh) 2015-10-15 2016-10-13 包含用于冷却的流体管线的电缆

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102015117508.8A DE102015117508A1 (de) 2015-10-15 2015-10-15 Elektrisches Kabel mit einer Fluidleitung zum Kühlen

Publications (1)

Publication Number Publication Date
DE102015117508A1 true DE102015117508A1 (de) 2017-04-20

Family

ID=57249773

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102015117508.8A Ceased DE102015117508A1 (de) 2015-10-15 2015-10-15 Elektrisches Kabel mit einer Fluidleitung zum Kühlen
DE202016008941.3U Active DE202016008941U1 (de) 2015-10-15 2016-10-13 Elektrisches Kabel mit einer Fluidleitung zum Kühlen

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE202016008941.3U Active DE202016008941U1 (de) 2015-10-15 2016-10-13 Elektrisches Kabel mit einer Fluidleitung zum Kühlen

Country Status (5)

Country Link
US (1) US20180264957A1 (de)
EP (1) EP3362312A1 (de)
CN (1) CN108136929A (de)
DE (2) DE102015117508A1 (de)
WO (1) WO2017064157A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208606B3 (de) 2017-05-22 2018-09-27 Leoni Kabel Gmbh Klemmeinrichtung für Kabelanordnung mit Kühlleitung, Kabelanordnung sowie Verfahren zum Montieren einer Kabelanordnung
DE102017120725A1 (de) 2017-09-08 2019-03-14 Lisa Dräxlmaier GmbH Entwärmungsvorrichtung für eine elektrische leitung, damit ausgestattete leitungsanordnung und verfahren zum entwärmen einer elektrischen leitung
DE102019208679A1 (de) * 2019-06-14 2020-12-17 Vitesco Technologies GmbH Starkstromkabel

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102016206266A1 (de) * 2016-04-14 2017-10-19 Phoenix Contact E-Mobility Gmbh Ladekabel zur Übertragung elektrischer Energie, Ladestecker und Ladestation zur Abgabe elektrischer Energie an einen Empfänger elektrischer Energie
DE102018100732A1 (de) * 2018-01-15 2019-07-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Schnellladestation mit Ladekabel und Temperiervorrichtung für das Ladekabel
DE102018100828B4 (de) * 2018-01-16 2023-07-27 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladestecker für eine Ladesäule und Ladesäule mit einem solchen Stecker
DE102018100827A1 (de) * 2018-01-16 2019-07-18 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Ladekabel und Ladestation für Elektroautos
DE102018102207A1 (de) * 2018-02-01 2019-08-01 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Kraftfahrzeugladekabel
EP3611738B1 (de) * 2018-08-14 2022-01-19 Gebauer & Griller Kabelwerke Gesellschaft m.b.H. Kühlmanschette für energieleitungen
DE102019101979A1 (de) * 2019-01-28 2020-07-30 HARTING Automotive GmbH Zugentlastung für einen Kabelschlauch
US10756498B1 (en) * 2019-03-22 2020-08-25 Te Connectivity Corporation Terminal heat exchanger for an electrical connector
CN110001431A (zh) * 2019-04-22 2019-07-12 王莎莎 一种新能源汽车防缠绕充电线
DE102020208964A1 (de) * 2020-07-17 2022-01-20 Conti Tech Techno-Chemie Gmbh Ladeleitung für ein Elektrofahrzeug
DE102020208965A1 (de) * 2020-07-17 2022-01-20 Conti Tech Techno-Chemie Gmbh Ladeleitung für ein Elektrofahrzeug
DE102021114495A1 (de) 2021-06-07 2022-12-08 Phoenix Contact E-Mobility Gmbh Kabel mit aktiver Kühlung
LU500252B1 (de) 2021-06-07 2022-12-08 Phoenix Contact E Mobility Gmbh Kabel mit aktiver Kühlung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2233217A1 (de) * 1972-07-06 1974-01-24 Kabel Metallwerke Ghh Trommelbare kabellaenge eines gasisolierten hochspannungskabels
DE2352808A1 (de) * 1973-10-20 1975-04-30 Kabel Metallwerke Ghh Fluessigkeitsgekuehltes hochstromkabel, insbesondere anschlusskabel fuer elektrische lichtbogen-schmelzoefen
US4607133A (en) * 1984-03-23 1986-08-19 Les Cables De Lyon Liquid-cooled electric cable
WO1992011647A1 (de) * 1990-12-22 1992-07-09 Edwin Schmidt Tiefkühlbarer elektrischer hohlleiter und verfahren zu seiner anwendung
DE102010007975B4 (de) 2010-02-15 2012-10-04 Siemens Aktiengesellschaft Ladestation für einen elektrischen Energiespeicher und zugehöriger elektrischer Energiespeicher
US20150217654A1 (en) * 2014-02-05 2015-08-06 Tesla Motors, Inc. Cooling of charging cable

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2344752A1 (de) * 1973-09-01 1975-03-06 Aeg Telefunken Kabelwerke Kuehlsystem fuer energiekabel
US3946142A (en) * 1974-09-30 1976-03-23 Mazin Kellow Cooling of power cables utilizing an open cycle cooling system
DE2554650C3 (de) * 1975-12-05 1978-09-21 Hydro-Quebec, Montreal, Quebec (Kanada) Vorrichtung und Verfahren zum Kühlen erdverlegter Starkstromkabel
US5684380A (en) * 1996-07-26 1997-11-04 Delco Electronics Corp. Oil cooled high power inductive coupler
JP2000133058A (ja) * 1998-10-27 2000-05-12 Toyota Autom Loom Works Ltd 給電用ケーブル
WO2007032391A1 (ja) * 2005-09-13 2007-03-22 Autonetworks Technologies, Ltd. 車両用導電体
DE202011050446U1 (de) * 2011-06-15 2011-09-28 Amad Mennekes Holding Gmbh & Co. Kg Elektrisches Steckvorrichtungselement
NO340457B1 (no) * 2013-05-08 2017-04-24 Nexans Indre kjøling av kraftforsyningskabler og kraftforsyningsumbilikaler

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2233217A1 (de) * 1972-07-06 1974-01-24 Kabel Metallwerke Ghh Trommelbare kabellaenge eines gasisolierten hochspannungskabels
DE2352808A1 (de) * 1973-10-20 1975-04-30 Kabel Metallwerke Ghh Fluessigkeitsgekuehltes hochstromkabel, insbesondere anschlusskabel fuer elektrische lichtbogen-schmelzoefen
US4607133A (en) * 1984-03-23 1986-08-19 Les Cables De Lyon Liquid-cooled electric cable
WO1992011647A1 (de) * 1990-12-22 1992-07-09 Edwin Schmidt Tiefkühlbarer elektrischer hohlleiter und verfahren zu seiner anwendung
DE102010007975B4 (de) 2010-02-15 2012-10-04 Siemens Aktiengesellschaft Ladestation für einen elektrischen Energiespeicher und zugehöriger elektrischer Energiespeicher
US20150217654A1 (en) * 2014-02-05 2015-08-06 Tesla Motors, Inc. Cooling of charging cable

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208606B3 (de) 2017-05-22 2018-09-27 Leoni Kabel Gmbh Klemmeinrichtung für Kabelanordnung mit Kühlleitung, Kabelanordnung sowie Verfahren zum Montieren einer Kabelanordnung
DE102017120725A1 (de) 2017-09-08 2019-03-14 Lisa Dräxlmaier GmbH Entwärmungsvorrichtung für eine elektrische leitung, damit ausgestattete leitungsanordnung und verfahren zum entwärmen einer elektrischen leitung
DE102019208679A1 (de) * 2019-06-14 2020-12-17 Vitesco Technologies GmbH Starkstromkabel

Also Published As

Publication number Publication date
EP3362312A1 (de) 2018-08-22
US20180264957A1 (en) 2018-09-20
DE202016008941U1 (de) 2020-11-20
WO2017064157A1 (de) 2017-04-20
CN108136929A (zh) 2018-06-08

Similar Documents

Publication Publication Date Title
DE102015117508A1 (de) Elektrisches Kabel mit einer Fluidleitung zum Kühlen
DE102011102244B4 (de) Verbinder für eine beheizbare Fluidleitung und beheizbare Fluidleitung
EP2453973B2 (de) Verbindungsvorrichtung zum zusammenführen wenigstens zweier leitungsabschnitte bei einem unterdruckwundbehandlungssystem
WO2018006903A1 (de) Flüssigkeitsgekühltes kontaktelement
DE102015114133A1 (de) Stromkabel mit einer Kühlleitung
EP2655950A1 (de) Konfektionierte medienleitung sowie verwendung in einem scr-katalysator-system
WO2013170927A1 (de) Mediumverteilvorrichtung zum anschliessen an ein temperiersystem für einen modularen energiespeicher sowie energiespeicher mit zumindest einer solchen mediumverteilvorrichtung
DE102018125835A1 (de) Kabelbaugruppe mit einer Kühlleitung und einer Zugentlastungsbaugruppe
WO2020058137A1 (de) Ladestrangeinrichtung für eine batterie eines kraftfahrzeugs
DE102016225527A1 (de) Verbindungselement und Verbindungsvorrichtung zum elektrischen Verbinden eines Kabels mit einem elektrischen Gerät eines Kraftfahrzeugs
DE202010007529U1 (de) Beheizbare Medienleitung, insbesondere für Prozessmedien einer Brennstoffzellenanlage, sowie Brennstoffzellenanlagen
DE102016206300A1 (de) Ladestecker und ladestation zur abgabe elektrischer energie an einen empfänger elektrischer energie
DE202017102368U1 (de) Ladekabel für Elektrofahrzeuge
EP3369170B1 (de) Kühlmodul für eine photovoltaikeinheit
DE202011100991U1 (de) Medienleitung
DE102005036369A1 (de) Vorrichtung zum Temperieren einer Fluidleitung
DE202014105908U1 (de) Beheizungssystem für eine fluidführende Leitung
WO2017194361A1 (de) Baugruppe zum übertragen eines elektrischen stroms, insbesondere für ein ladesystem zum aufladen eines elektrisch angetriebenen fahrzeugs
DE212010000159U1 (de) Spulenkühlsystem und flüssigkeitsgekühIte Spule
DE202016008631U1 (de) Flüssigkeitsgekühltes Kontaktelement
DE102017129281A1 (de) Flüssigkeitsgekühltes Kontaktelement
DE102020133662A1 (de) Kabelbaugruppe zum Übertragen eines elektrischen Stroms
EP3336986B1 (de) Vorrichtung zum führen von mindestens zwei leitungen sowie ein anschlussmaterial umfassend eine solche vorrichtung
DE102020121723A1 (de) Hochvoltleitung und hochvoltsystem
DE102013015545A1 (de) Schnellverschlusskupplung

Legal Events

Date Code Title Description
R012 Request for examination validly filed
R002 Refusal decision in examination/registration proceedings
R003 Refusal decision now final