DE102012013576A1 - DLC coatings with increased corrosion resistance - Google Patents

DLC coatings with increased corrosion resistance Download PDF

Info

Publication number
DE102012013576A1
DE102012013576A1 DE102012013576.9A DE102012013576A DE102012013576A1 DE 102012013576 A1 DE102012013576 A1 DE 102012013576A1 DE 102012013576 A DE102012013576 A DE 102012013576A DE 102012013576 A1 DE102012013576 A1 DE 102012013576A1
Authority
DE
Germany
Prior art keywords
component
nitriding
layer
corrosion resistance
treatment chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102012013576.9A
Other languages
German (de)
Inventor
Albert Peter Gerhard Janssen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Surface Solutions AG Pfaeffikon
Original Assignee
Oerlikon Trading AG Truebbach
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Trading AG Truebbach filed Critical Oerlikon Trading AG Truebbach
Priority to DE102012013576.9A priority Critical patent/DE102012013576A1/en
Priority to PCT/EP2013/001851 priority patent/WO2014008983A1/en
Publication of DE102012013576A1 publication Critical patent/DE102012013576A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation
    • C21D1/10Surface hardening by direct application of electrical or wave energy; by particle radiation by electric induction
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0209Pretreatment of the material to be coated by heating
    • C23C16/0218Pretreatment of the material to be coated by heating in a reactive atmosphere
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/24Nitriding
    • C23C8/26Nitriding of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Abstract

Die Erfindung betrifft ein Verfahren zur Behandlung einer Komponente zur Härtung, Erhöhung der Korrosionsbeständigkeit, Herabsetzung der Reibung und Schwärzung der Oberfläche, wobei das Verfahren folgende Schritte umfasst: – Bereitstellung der zu behandelnden Komponente – Härtung der Komponente vorzugsweise mittels Induktionshärtung – Erzeugung einer Stickstoffdiffusionsschicht mittels Nitrierung – Erzeugung einer Verbindungsschicht mit ε- und γ'-Eisennitriden ebenfalls mittels Nitrierung – Beschichtung der Komponente mit einer amorphen KohlenstoffschichtThe invention relates to a process for the treatment of a component for curing, increasing the corrosion resistance, reducing the friction and blackening of the surface, the process comprising the following steps: - Provision of the component to be treated - Curing of the component, preferably by induction hardening - Production of a nitrogen diffusion layer by nitriding - Production of a bonding layer with ε- and γ'-iron nitrides also by nitriding - Coating of the component with an amorphous carbon layer

Description

Die vorliegende Erfindung bezieht sich auf ein Verfahren zur Schwärzung von Metalloberflächen, wobei gleichzeitig Korrosionsbeständigkeit und Härte erreicht werden soll bei niedriger bzw. herabgesetzter Reibung.The present invention relates to a method of blackening metal surfaces while maintaining corrosion resistance and hardness at low friction.

Anwendung findet das erfinderische Verfahren auf Produkte z. B. aus der Automobilindustrie auf der Basis von niedrig legierten Kohlenstoff Stahl, insbesondere auf Produkte deren Materialstärke 2 mm nicht übersteigt.Application finds the inventive method on products z. B. from the automotive industry based on low-alloy carbon steel, especially on products whose material thickness does not exceed 2 mm.

Typischerweise werden solche Teile heutzutage zunächst mittels Induktionserwärmen gehärtet. Die dabei entstehende Martensitstruktur führt zu einer Härte von ca. 2000 MPa. In wässrigen Umgebungen neigen die entsprechenden Oberflächen jedoch zur interkristallinen Korrosion. Würde man nun auf die derart gehärtete Oberfläche eine Kohlenstoffschicht aufbringen, so wäre die dadurch entstehende Oberfläche zwar hart, schwarz und reibungsvermindert, jedoch nicht korrosionsbeständig. Um dem entgegenzuwirken werden die Oberflächen in der Regel nach dem Induktionshärten mit einer 20 bis 25 μm dicken Chromschicht mittels Galvanik überzogen. Anschliessend wird die Oberfläche poliert um die bei dem Galvanikverfahren entstehenden Risse zuzuschmieren. Anschliessend wird die Komponente dann noch mit einer DLC-Schicht bedeckt, welche der Oberfläche die schwarze Farbe verleiht und die Reibung herabsetzt.Typically, such parts are initially cured by induction heating today. The resulting martensite structure leads to a hardness of about 2000 MPa. In aqueous environments, however, the corresponding surfaces tend to intergranular corrosion. If a carbon layer were to be applied to the surface hardened in this way, the resulting surface would be hard, black and reduced in friction, but not resistant to corrosion. To counteract this, the surfaces are usually coated after induction hardening with a 20 to 25 microns thick chromium layer by electroplating. Subsequently, the surface is polished to lubricate the resulting cracks in the electroplating process. Subsequently, the component is then covered with a DLC layer, which gives the surface the black color and reduces the friction.

DLC bedeutet dabei Diamond Like Carbon. (diamantähnlicher Kohlenstoff). Dies sind amorphe Kohlenstoffschichten bei denen im Nanometerbereich grafitähnliche und diamantähnliche Strukturen nebeneinander vorkommen, d. h. der Kohlenstoff in sogenannter sp2 und sp3 Hybridisierung vorkommt. Ein hoher sp3-Anteil führt zu einer harten, diamantähnlichen Schicht. Ein hoher sp2-Anteil führt zu einer weichen graphitähnlichen Schicht.DLC means Diamond Like Carbon. (diamond-like carbon). These are amorphous carbon layers in which graphite-like and diamond-like structures occur side by side in the nanometer range, ie the carbon occurs in so-called sp 2 and sp 3 hybridization. A high sp3 content leads to a hard, diamond-like layer. A high sp2 content results in a soft graphite-like layer.

Nachteilig bei diesem Verfahren sind allerdings die vor allem dabei entstehenden hohen Produktionskosten die im Wesentlichen auf die notwendige Galvanik zurückgehen. Aus diesem Grund ist die Anwendung dieses Verfahrens derzeit auf sogenannte High-End Produkte beschränkt. Das Galvanikverfahren ist nicht nur Kostenintensiv sondern belastet aufgrund der dafür notwendigen Lösungsmittel in erheblichem Masse die Umwelt. Auch aus diesem Grund möchte man von dieser Technologie möglichst wegkommen.A disadvantage of this method, however, are the resulting high production costs, which are essentially due to the necessary electroplating. For this reason, the application of this method is currently limited to so-called high-end products. The electroplating process is not only cost intensive but also significantly pollutes the environment due to the necessary solvents. For this reason too, one wants to get away from this technology as much as possible.

Gemäss einem alternativen Ansatz wird die zu behandelnde Oberfläche zunächst nitriert und dann mit einer DLC-Schicht beschichtet. Durch das Nitrieren zu kombinieren mit DLC wird eine gewisse Korrosionsbeständigkeit erzielt. Weiterhin verleiht die DLC-Schicht der Oberfläche die gewünschte Farbe und setzt die Reibung herab. Problematisch ist allerdings, dass durch ein solches Verfahren nicht die oftmals notwendige Härte erreicht wird.According to an alternative approach, the surface to be treated is first nitrided and then coated with a DLC layer. Nitriding combined with DLC provides some corrosion resistance. Furthermore, the DLC layer gives the surface the desired color and reduces the friction. However, the problem is that such a process does not achieve the often necessary hardness.

Es besteht daher das Bedürfnis nach einem Verfahren mit dem eine Schwärzung von Metalloberflächen erreicht wird, wobei gleichzeitig Korrosionsbeständigkeit und Härte erreicht werden soll bei niedriger bzw. herabgesetzter Reibung.There is therefore a need for a method with which a blackening of metal surfaces is achieved, at the same time corrosion resistance and hardness to be achieved at low or reduced friction.

Der Erfindung liegt die Aufgabe zugrunde, ein solches Verfahren anzugeben. Erfindungsgemäss wird die Aufgabe Komponenten mit einer Stärke von nicht mehr als zwei Millimeter dadurch gelöst, dass die Komponente zunächst beispielsweise mittels Induktionshärten gehärtet wird. Anschliessend wird die Komponente nitriert um die Oberfläche korrosionsbeständig zu machen. Durch das Nitrieren wird die Härte der Komponente zu einem gewissen Grad wieder herabgesetzt. Die durch die Nitrierung entstehende Verbindungs- und Diffusionsschicht verleiht aber der dünnen Komponente beidseitig zusätzliche Stabilität. Anschliessend wird die Komponente mit einer DLC-Schicht beschichtet, die der Oberfläche eine schwarze Farbe verleiht und die die Reibung der Oberfläche herabsetzt.The invention has for its object to provide such a method. According to the invention, the object is achieved by components having a thickness of not more than two millimeters in that the component is first hardened, for example, by means of induction hardening. Subsequently, the component is nitrided to make the surface corrosion resistant. Nitriding reduces the hardness of the component to a certain degree again. However, the connection and diffusion layer formed by the nitriding gives the thin component additional stability on both sides. Subsequently, the component is coated with a DLC layer, which gives the surface a black color and reduces the friction of the surface.

Die Erfindung wird nun im Detail beispielhaft und mit Hilfe der Figur näher erläutert.The invention will now be described in more detail by way of example and with the aid of the figure.

1 zeigt schematisch den Schichtaufbau einer mit dem erfindungsgemässen Verfahren behandelten Komponente. 1 schematically shows the layer structure of a treated with the inventive method component.

Im Beispiel sei die Komponente ein Rohr mit 1.6 mm Wanddicke aus niedrig legierten Stahl mit Perlit-Gefüge. Das Rohr wird zunächst in einem Induktionsofen soweit erhitzt, dass der Perlit in Austenit umwandelt. Hierzu sind zwischen 700°C und 1100°C notwendig. Dabei ist darauf zu achten, dass das Rohr genügend lange und gleichmässig erhitzt wird, so dass die Umwandlung in Austenit vollständig vor sich geht. Anschliessend erfolgt das Abschrecken, beispielsweise indem das Rohr mit gekühltem Stickstoff oder Ammoniak umströmt wird, so dass ein tetragonal verzerrtes Eisengitter (Martensit) erzeugt wird in dem Kohlenstoff eingelagert ist. Eine Einteilung des Abschreckens in Intervalle um Zugrisse und Schalenrisse zu vermeiden ist dabei nicht unbedingt notwendig, da das Rohr dünn genug ist. Nach dem Abschrecken ist das gehärtete Rohr spröde. Erfindungsgemäss kann aber auf das beim Härten sonst übliche Anlassen verzichtet werden, da das Rohr nun nitriert wird und bei dieser Nitrierung das Rohr auf ca. 450° erhitzt wird. Zum Nitrieren eignet sich beispielsweise das Plasmanitrieren oder das Gasnitrieren. Beim Plasmanitrieren wird das Rohr in eine Behandlungskammer gegeben, welche zunächst evakuiert wird und in die anschliessen Ammoniak eingelassen wird. Mittels Plasmagenerator wird nun über dem Rohr ein Plasma gezündet, in welchem Ammoniak zu Stickstoff und Wasserstoff dissoziiert. Der Stickstoff diffundiert in die Oberfläche des Rohres ein und bildet dort eine 0.3 bis 0.4 mm dicke Diffusionsschicht, wobei an der Oberfläche direkt eine ca. 20 μm dicke sogenannte Verbindungsschicht mit ε- und γ'-Eisennitriden entsteht. Um die Korrosionsbeständigkeit dieser Verbindungsschicht weiter zu erhöhen kann diese oxidiert werden. Hierzu kann beispielsweise eine Dampfbeaufschlagung verwendet werden die die Eisenanteile korrodieren lässt und so eine Oxidschutzschicht gebildet wird.In the example, the component is a tube with 1.6 mm wall thickness of low alloy steel with pearlite structure. The tube is first heated in an induction furnace to the extent that the perlite is converted into austenite. For this purpose between 700 ° C and 1100 ° C are necessary. It is important to ensure that the tube is heated for a sufficient length of time so that the transformation into austenite is complete. Subsequently, the quenching takes place, for example, by flowing around the tube with cooled nitrogen or ammonia, so that a tetragonal distorted iron lattice (martensite) is produced in which carbon is embedded. A division of the quenching in intervals to avoid cracks and shell cracks is not absolutely necessary because the tube is thin enough. After quenching, the hardened tube is brittle. According to the invention, however, it is possible to dispense with the usual tempering during tempering, since the tube is now nitrided and during this nitration the tube is heated to approximately 450 °. For nitriding, for example, plasma nitriding or gas nitriding is suitable. In plasma nitriding, the tube is placed in a treatment chamber, which is first evacuated and then ammonia is introduced into the tube. By means of a plasma generator, a plasma is now ignited above the tube, in which ammonia dissociates to form nitrogen and hydrogen. The nitrogen diffuses into the surface of the tube and forms there a 0.3 to 0.4 mm thick diffusion layer, wherein on the surface directly a about 20 microns thick so-called bonding layer with ε- and γ'-iron nitrides. In order to further increase the corrosion resistance of this compound layer, it can be oxidized. For this purpose, it is possible, for example, to use steaming which corrodes the iron components and thus forms an oxide protective layer.

Im Vergleich zur Induktionshärtung würde die Härte konkret auf ca. 900 MPa absinken, allerdings verleiht die durch die Nitrierung entstehende Verbindungs- und Diffusionsschicht der dünnen Komponente beidseitig wieder zusätzlich Stabilität. Anschliessend wird die Komponente mit einer 2 μm dicken DLC-Schicht, beispielsweise mittels PECVD beschichtet, die der Oberfläche eine schwarze Farbe verleiht und die die Reibung der Oberfläche herabsetzt. Diese Beschichtung kann in derselben Behandlungskammer stattfinden wie die Plasmanitrierung. Die Herabsetzung der Reibung der Oberfläche kann beispielsweise dadurch erreicht werden, dass in die DLC-Schicht ein Wasserstoffanteil von 16at% bis 20at% eingebaut wird, wodurch es verstärkt zur sp2 Hybridisierung der Kohlenstoffverbindungen kommt.In comparison to induction hardening, the hardness would concretely drop to approx. 900 MPa, but the bonding and diffusion layer of the thin component resulting from the nitriding additionally provides additional stability on both sides. Subsequently, the component is coated with a 2 μm thick DLC layer, for example by means of PECVD, which gives the surface a black color and reduces the friction of the surface. This coating can take place in the same treatment chamber as the plasma nitriding. The reduction of the friction of the surface can be achieved, for example, by incorporating in the DLC layer a hydrogen content of 16% to 20% by%, which leads to increased sp 2 hybridization of the carbon compounds.

Aufgrund des Verfahrens entsteht ein wie in 1 schematisch als Teilbereich dargestelltes Rohr dessen Substrat 3 zu einem grossen Prozentsatz Martensit-Gefüge aufweisst, in dessen Oberfläche Stickstoff eindiffundiert ist und somit eine Diffusionsschicht 5 bildet. Auf der Diffusionsschicht 5 ist eine durch das Nitrieren entstandene Verbindungschicht 7, deren äusserer Bereich vorzugsweise oxidiert ist. Auf dieser Verbindungschicht 7 ist eine DLC-Schicht vorgesehen, die der dem Rohr ein schwarzes Finish verleiht und die die Reibung der Oberfläche herabsetzt.Due to the process arises a like in 1 schematically illustrated as a sub-section tube whose substrate 3 to a large extent martensite structure, in whose surface nitrogen is diffused and thus a diffusion layer 5 forms. On the diffusion layer 5 is a compound layer formed by nitriding 7 whose outer region is preferably oxidized. On this compound layer 7 a DLC layer is provided which gives the tube a black finish and reduces the friction of the surface.

Bemerkenswert an dem oben beschriebenen Verfahren ist auch, dass sämtliche Verfahrensschritte in ein und derselben Behandlungskammer durchgeführt werden können. Die Behandlungskammer sollte hierzu einen Induktionsofen, einen Plasmagenerator für das Nitrieren und die PECVD Beschichtung sowie Gaszugänge für das Ammoniak umfassen. Während mittels Induktion das Rohr erhitzt wird kann dann schon damit begonnen werden, die Behandlungskammer zu evakuieren. Zum Abschrecken kann man dann gekühltes Ammoniak in die Behandlungskammer strömen lassen: Dies hat den Vorteil dass das zur Abschreckung verwendete Fluidum nicht mehr vollständig abgepumpt werden muss, weil es für den darauffolgenden Plasma-Nitierschritt sowieso benötigt wird.It is also noteworthy in the method described above that all method steps can be carried out in one and the same treatment chamber. The treatment chamber should include an induction furnace, a plasma generator for nitriding and the PECVD coating and gas access for the ammonia. While the tube is heated by induction can then be started to evacuate the treatment chamber. Chilled ammonia may then be allowed to flow into the treatment chamber for quenching: this has the advantage that the fluid used for deterrence no longer needs to be completely pumped off because it is needed anyway for the subsequent plasma nitriding step.

Claims (10)

Verfahren zur Behandlung einer Komponente zur Härtung, Erhöhung der Korrosionsbeständigkeit, Herabsetzung der Reibung und Schwärzung der Oberfläche, wobei das Verfahren folgende Schritte umfasst: – Bereitstellung der zu behandelnden Komponente – Härtung der Komponente vorzugsweise mittels Induktionshärtung – Erzeugung einer Stickstoffdiffusionsschicht mittels Nitrierung – Erzeugung einer Verbindungsschicht mit ε- und γ'-Eisennitriden ebenfalls mittels Nitrierung – Beschichtung der Komponente mit einer amorphen KohlenstoffschichtA method of treating a component for curing, increasing corrosion resistance, reducing friction and blackening the surface, the method comprising the steps of: - Provision of the component to be treated - Hardening of the component, preferably by induction hardening - Generation of a nitrogen diffusion layer by nitriding - Generation of a bonding layer with ε- and γ'-iron nitrides also by nitriding - Coating of the component with an amorphous carbon layer Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass es sich bei der Nitrierung um eine Plasmanitrierung handelt.A method according to claim 1, characterized in that the nitration is a plasma nitration. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Verbindungsschicht oxidiert wird, beispielsweise zur Erhöhung der Korrosionsbeständigkeit.A method according to claim 1 or 2, characterized in that the bonding layer is oxidized, for example, to increase the corrosion resistance. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet dass die Härtung zumindest eine Aufheizung und zumindest eine Abschreckung umfasst, wobei für die Abschreckung ein Fluid verwendet wird welches im Nitrierschritt ebenfalls zur Verwendung kommt.Method according to one of the preceding claims, characterized in that the hardening comprises at least one heating and at least one quench, wherein for the quenching a fluid is used which is also used in the nitriding step. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Fluid Ammoniak zumindest umfasst.A method according to claim 5, characterized in that the fluid comprises at least ammonia. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Nitrierung unmittelbar auf die Induktionshärtung ohne ein dazwischen liegendes Anlassen durchgeführt wird.Method according to one of the preceding claims, characterized in that the nitriding is carried out directly on the induction hardening without an intermediate annealing. Verfahren nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die beschriebenen Verfahrensschritte alle in derselben Behandlungskammer durchgeführt werden.Method according to one of the preceding claims, characterized in that the described method steps are all carried out in the same treatment chamber. Anwendung eines Verfahrens nach einem der vorangehenden Ansprüche auf eine Komponente welche eine maximale Dicke von 2.0 mm hat.Application of a method according to any one of the preceding claims to a component having a maximum thickness of 2.0 mm. Behandlungskammer zum Durchführen eines der Verfahren nach Ansprüche 1 bis 8, dadurch gekennzeichnet, dass die Behandlungskammer eine Induktionsheizung zum Durchführen der Induktionshärtung und einen Plasmagenerator, sowie Mittel zur Evakuation und Gaseinlässe für Prozessgase umfasst.Treatment chamber for carrying out any of the methods according to claims 1 to 8, characterized in that the treatment chamber is an induction heater for performing the induction hardening and a plasma generator, and means for Evacuation and gas inlets for process gases includes. Komponente (1) deren Substrat (3) Martensit-Gefüge zumindest teilweise aufweisst, in deren Oberfläche Stickstoff eindiffundierter Stickstoff eine Diffusionsschicht (5) bildet wobei auf der Diffusionsschicht (5) ist eine durch das Nitrieren entstandene Verbindungschicht (7) vorhanden ist, deren äusserer Bereich vorzugsweise oxidiert ist und auf dieser Verbindungschicht (7) ist eine DLC-Schicht (9) vorgesehen, die der Komponente ein schwarzes Finish verleiht und die die Reibung der Oberfläche im Vergleich zum Substrat (3) herabsetzt.Component ( 1 ) whose substrate ( 3 ) Has martensite structure at least partially, in whose surface nitrogen diffused nitrogen a diffusion layer ( 5 ) is formed on the diffusion layer ( 5 ) is a compound layer formed by nitriding ( 7 ) is present, the outer region is preferably oxidized and on this compound layer ( 7 ) is a DLC layer ( 9 ) which gives the component a black finish and which reduces the friction of the surface in relation to the substrate ( 3 ).
DE102012013576.9A 2012-07-11 2012-07-11 DLC coatings with increased corrosion resistance Withdrawn DE102012013576A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102012013576.9A DE102012013576A1 (en) 2012-07-11 2012-07-11 DLC coatings with increased corrosion resistance
PCT/EP2013/001851 WO2014008983A1 (en) 2012-07-11 2013-06-24 Dlc coatings with increased corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012013576.9A DE102012013576A1 (en) 2012-07-11 2012-07-11 DLC coatings with increased corrosion resistance

Publications (1)

Publication Number Publication Date
DE102012013576A1 true DE102012013576A1 (en) 2014-01-16

Family

ID=48703402

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102012013576.9A Withdrawn DE102012013576A1 (en) 2012-07-11 2012-07-11 DLC coatings with increased corrosion resistance

Country Status (2)

Country Link
DE (1) DE102012013576A1 (en)
WO (1) WO2014008983A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724661C2 (en) * 1997-06-11 1999-10-28 Leico Werkzeugmaschb Gmbh & Co Process for producing a toothed gear part
DE19825860A1 (en) * 1998-06-10 1999-12-16 Elgan Diamantwerkzeuge Gmbh & Piston ring for piston engine, with diamond-like coating
WO2005015065A2 (en) * 2002-12-18 2005-02-17 Masco Corporation Of Indiana Valve component with multiple surface layers
DE102004018921A1 (en) * 2004-04-20 2005-11-17 Bayerische Motoren Werke Ag Method for producing a connecting rod involves use of the heat introduced in the heat treatment operation for preliminary heating in the subsequent coating operation
EP2103711A1 (en) * 2006-12-28 2009-09-23 JTEKT Corporation Highly corrosion-resistant members and processes for production thereof
DE102008051665B4 (en) * 2008-10-15 2011-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the surface treatment of metallic components

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3895000B2 (en) * 1996-06-06 2007-03-22 Dowaホールディングス株式会社 Carburizing, quenching and tempering method and apparatus
US6105374A (en) * 1998-07-28 2000-08-22 Nu-Bit, Inc. Process of nitriding metal-containing materials
AT504482B1 (en) * 2007-03-01 2008-06-15 Ruebig Gmbh & Co Kg Producing optionally-doped coating of amorphous silicon, germanium or their oxides on metallic substrate, subjects area to oxidation before coating deposition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19724661C2 (en) * 1997-06-11 1999-10-28 Leico Werkzeugmaschb Gmbh & Co Process for producing a toothed gear part
DE19825860A1 (en) * 1998-06-10 1999-12-16 Elgan Diamantwerkzeuge Gmbh & Piston ring for piston engine, with diamond-like coating
WO2005015065A2 (en) * 2002-12-18 2005-02-17 Masco Corporation Of Indiana Valve component with multiple surface layers
EP1581758B1 (en) * 2002-12-18 2012-01-18 Masco Corporation Of Indiana Valve component with multiple surface layers
DE102004018921A1 (en) * 2004-04-20 2005-11-17 Bayerische Motoren Werke Ag Method for producing a connecting rod involves use of the heat introduced in the heat treatment operation for preliminary heating in the subsequent coating operation
EP2103711A1 (en) * 2006-12-28 2009-09-23 JTEKT Corporation Highly corrosion-resistant members and processes for production thereof
DE102008051665B4 (en) * 2008-10-15 2011-03-03 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Process for the surface treatment of metallic components

Also Published As

Publication number Publication date
WO2014008983A1 (en) 2014-01-16

Similar Documents

Publication Publication Date Title
EP1831410A1 (en) Method for thermally treating a component consisting of a fully hardenable, heat-resistant steel and a component consisting of said steel
EP2561111B1 (en) Method for carbonitriding metallic components
EP2024527A2 (en) Method for hardening running surfaces of roller bearing components
DE4139975A1 (en) METHOD FOR TREATING ALLOY STEELS AND REFRACTIVE METALS
DE102005015450B3 (en) Process to quench heat-treated metal components in an evacuated chamber by cold liquid followed by cold gas
WO2019223925A1 (en) Method for producing a metal component
EP2034038B1 (en) Method for producing an anti-wear layer on a magnetic component
EP1333105B1 (en) Process for heat treating metallic articles and heat treated article
EP3538676B1 (en) Method for the heat treatment of a workpiece consisting of a high-alloy steel
DE102012013576A1 (en) DLC coatings with increased corrosion resistance
DE102015006079A1 (en) Component, in particular for a vehicle, and method for producing such a component
DE10254846B4 (en) Method for case-hardening components made of hot-work steels by means of vacuum carburizing
EP1745158B1 (en) Method for treating surfaces
DE102015204656A1 (en) Layer formation for rolling bearing components
DE202014007106U1 (en) Stainless steel drilling screw made of duplex steel
DE2527026C3 (en) Process for producing a component with a long service life
EP1215411A2 (en) Hydraulic piston and process for its surface treatment
DE10118029C1 (en) Process for the thermo-chemical pre-treatment of metallic workpieces, especially case hardening steel is carried out in an atmosphere containing hydrogen and hydrogen-containing gases to which oxygen and air are added
EP0545069A1 (en) Method of treating steel and refractory metals
JPH0361327A (en) Heat treatment of gear
DE102008050319A1 (en) Method of case-hardening steel gear wheels or other components used in e.g. automobile industry, work-hardens before carburization and heat treatment
WO2024037954A1 (en) Method for heat treating chrome steels
DE10227521A1 (en) Component with a region made of non-magnetic steel and a magnetic surface layer and method for its production
DE3029339A1 (en) Glow discharge heat treatment plant - with vacuum furnace and auxiliary electrodes initiating discharge
DE102020122734A1 (en) Heat treatment process for secondary hardening steels

Legal Events

Date Code Title Description
R163 Identified publications notified
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee