DE102006041515B4 - Process for the preparation of single or multi-walled carbon nanotubes coated with one or more transition metals - Google Patents

Process for the preparation of single or multi-walled carbon nanotubes coated with one or more transition metals Download PDF

Info

Publication number
DE102006041515B4
DE102006041515B4 DE102006041515A DE102006041515A DE102006041515B4 DE 102006041515 B4 DE102006041515 B4 DE 102006041515B4 DE 102006041515 A DE102006041515 A DE 102006041515A DE 102006041515 A DE102006041515 A DE 102006041515A DE 102006041515 B4 DE102006041515 B4 DE 102006041515B4
Authority
DE
Germany
Prior art keywords
carbon nanotubes
transition metals
coating
precursors
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
DE102006041515A
Other languages
German (de)
Other versions
DE102006041515A1 (en
Inventor
Albrecht Dr. Leonhardt
Silke Dr. Hampel
Bernd Prof. Dr. Büchner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Original Assignee
Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV filed Critical Leibniz Institut fuer Festkorper und Werkstofforschung Dresden eV
Priority to DE102006041515A priority Critical patent/DE102006041515B4/en
Publication of DE102006041515A1 publication Critical patent/DE102006041515A1/en
Application granted granted Critical
Publication of DE102006041515B4 publication Critical patent/DE102006041515B4/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • B01J21/185Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • B01J23/462Ruthenium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0238Impregnation, coating or precipitation via the gaseous phase-sublimation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4417Methods specially adapted for coating powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/92Metals of platinum group
    • H01M4/925Metals of platinum group supported on carriers, e.g. powder carriers
    • H01M4/926Metals of platinum group supported on carriers, e.g. powder carriers on carbon or graphite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53276Conductive materials containing carbon, e.g. fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

Verfahren zur Herstellung von ein- oder mehrwandigen, mit einem oder mehreren Übergangsmetallen beschichteten Kohlenstoff-Nanoröhren, dadurch gekennzeichnet, dass die Erzeugung der Nanoröhren und die Abscheidung der Übergangsmetalle auf den Nanoröhren mittels CVD durch Abscheidung aus der Gasphase in nur einem einzigen Prozess durchgeführt wird, indem der Precursor für die Synthese der Kohlenstoff-Nanoröhren und ein Precursor für die Beschichtung der Kohlenstoff-Nanoröhren mit Übergangsmetallen gleichzeitig ohne Prozessunterbrechung in einen Abscheidungsreaktor eingebracht werden.method for the production of single- or multi-walled, with one or more transition metals coated carbon nanotubes, characterized in that the generation of the nanotubes and the Deposition of transition metals on the nanotubes by CVD by vapor deposition in a single one Process performed is determined by the precursor for the synthesis of carbon nanotubes and a precursor for the coating the carbon nanotubes with transition metals simultaneously without process interruption in a deposition reactor be introduced.

Figure 00000001
Figure 00000001

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von ein- oder mehrwandigen, mit einem oder mehreren Übergangsmetallen beschichteten Kohlenstoff-Nanoröhren.The The invention relates to a process for the production of single- or multi-walled, with one or more transition metals coated carbon nanotubes.

Verfahren zur Herstellung ein- und mehrwandiger Kohlenstoff-Nanoröhren sind allgemein bekannt und mehrfach ausführlich beschrieben [1, 2]. Es ist auch bekannt, Kohlenstoff-Nanoröhren als Supports für metallische Nanopartikel zu verwenden. Zur Herstellung solcher Nanopartikel sind verschiedene Verfahren entwickelt worden.method for producing mono- and multi-walled carbon nanotubes generally known and repeatedly described in detail [1, 2]. It is also known as carbon nanotubes as supports for metallic To use nanoparticles. For the production of such nanoparticles Various methods have been developed.

Die bisher bekannten Verfahren sind Mehrschritt-Technologien, bei denen in einem ersten Schritt die Kohlenstoff-Nanoröhren hergestellt und in einem zweiten Schritt mit Metallpartikeln beschichtet werden.The Previously known methods are multi-step technologies in which in a first step, the carbon nanotubes produced and in one second step are coated with metal particles.

Für die Herstellung von Kohlenstoff-Nanoröhren sind verschiedene Technologien bekannt.For the production of carbon nanotubes Different technologies are known.

Eines der bekannten Verfahren ist die chemische Abscheidung aus der Gasphase (Chemical Vapor Deposition, CVD) [2]. Dabei werden auch Metallpartikel, z. B. mit Kohlenstoff verkapseltes Eisen, als Katalysator für die Erzeugung der Kohlenstoff-Nanoröhren eingesetzt ( WO 2005/071136 A2 ; WO 2005/075341 A2 ). Die Bildung von Metallschichten an den Kohlenstoff-Nanoröhren ist dabei jedoch nicht zu verzeichnen.One of the known processes is the chemical vapor deposition (CVD) [2]. In this case, metal particles, eg. B. carbon encapsulated iron, used as a catalyst for the production of carbon nanotubes ( WO 2005/071136 A2 ; WO 2005/075341 A2 ). However, the formation of metal layers on the carbon nanotubes is not recorded.

Es ist auch schon bekannt, Kohlenstoff-Nanoröhren in einer metallischen Opferschicht auf einem Substrat zu erzeugen, wobei die Opferschicht danach in einem weiteren Arbeitsschritt weggeätzt wird, so dass gleich lange Kohlenstoff-Nanoröhren auf dem Substrat stehen bleiben ( EP 1 069 206 A2 ). Bekannt ist auch ein Verfahren zur Herstellung anorganische Nanoröhren, bei dem zunächst Kohlenstoff-Nanoröhren erzeugt werden, auf die danach in einem weiteren Schritt durch ALD (Atomic Layer Deposition) ein anorganischer Dünnfilms aufgebracht wird ( EP 1 375 431 A2 ). Bei beiden Verfahren werden ein C-Precursor und ein Metall-Precursor nacheinander in einem CVD- bzw. ALD-Prozess eingeführt, um Kohlenstoff-Nanoröhren bzw. eine Beschichtung zu erzeugen.It is also known to produce carbon nanotubes in a metallic sacrificial layer on a substrate, wherein the sacrificial layer is then etched away in a further working step so that carbon nanotubes of the same length remain on the substrate ( EP 1 069 206 A2 ). Also known is a method for producing inorganic nanotubes, in which first carbon nanotubes are produced, to which an inorganic thin film is subsequently applied in a further step by ALD (Atomic Layer Deposition) ( EP 1 375 431 A2 ). In both methods, a C precursor and a metal precursor are sequentially introduced in a CVD or ALD process to produce carbon nanotubes or a coating, respectively.

Für die Beschichtung von Kohlenstoff-Nanoröhren ist auch die elektrochemische Abscheidung bekannt. Bei einem dieser Verfahren werden die hergestellten Kohlenstoff-Nanoröhren mit Titan auf einem SiO2-Substrat kontaktiert. Das Titan fungiert dabei als Katode und über wässrige Lösungen von beispielsweise HAuCl4 oder K2PtCl4 oder Ag/AgCl als Referenz-Elektrode werden Au-, Pt- oder Ag-Nanopartikel auf den Kohlenstoff-Nanoröhren abgeschieden [3].For the coating of carbon nanotubes also the electrochemical deposition is known. In one of these methods, the produced carbon nanotubes are contacted with titanium on a SiO 2 substrate. The titanium acts as a cathode and Au, Pt or Ag nanoparticles are deposited on the carbon nanotubes via aqueous solutions of, for example, HAuCl 4 or K 2 PtCl 4 or Ag / AgCl as a reference electrode [3].

Bekannt ist auch die stromlose galvanische Abscheidung, bezeichnet als SEED-Verfahren, Substrate Enhanced Elektroless Deposition. Bei diesem Verfahren werden die unterschiedlich großen Redoxpotentiale der Metalle in ihren wässrigen Lösungen ausgenutzt. Zum Beispiel bei Verwendung einer Cu- Folie als Substrat und darauf fixierten Kohlenstoff-Nanoröhren, die als Kathode fungieren. Hierbei werden aus wässrigen Lösungen von Pt- und Au-Salzen Pt- und Au-Nanopartikel auf den Kohlenstoff-Nanoröhren abgeschieden, weil sie ein höheres Redox-Potential besitzen als Kupfer [4, 5].Known is also the electroless plating, referred to as SEED method, Substrate Enhanced Electroless Deposition. In this process be the different sizes Utilized redox potentials of the metals in their aqueous solutions. For example when using a Cu film as a substrate and fixed thereon Carbon nanotubes, which act as a cathode. Here are from aqueous solutions of Pt and Au salts Pt and Au nanoparticles deposited on the carbon nanotubes, because she is a higher one Have redox potential as copper [4, 5].

Eine weitere Methode Kohlenstoff-Nanoröhren mit Metallpartikeln zu beschichten besteht im Imprägnierungsverfahren. Hierbei wird in einem Mehrschrittprozess zuerst Pt-Partikel aus einer Ethylen/Glycol/H2PtCl6x 6H2O-Lösung reduziert und diese dann zusammen mit den Kohlenstoff-Nanoröhren in einer Toluol-Lösung 5 Tage unter Ultraschall behandelt [6]. Durch eine Modifizierung der Platin-Partikel mit Trimethylphosphin, was einen weiteren Zwischenschritt bedeutet, konnte die Pt-Partikel-Abscheidung auf den Nanoröhren verbessert werden.Another method to coat carbon nanotubes with metal particles is the impregnation process. In a multi-step process, Pt particles are first reduced from an ethylene / glycol / H 2 PtCl 6 x 6H 2 O solution and then sonicated for 5 days together with the carbon nanotubes in a toluene solution [6]. By modification of the platinum particles with trimethylphosphine, which represents a further intermediate step, the Pt-particle deposition on the nanotubes could be improved.

Die bisher bekannten Verfahren lassen die Herstellung von metallbeschichteten Kohlenstoff-Nanoröhren nur mit großem Aufwand durch Mehrschritt-Technologien zu.The Previously known methods allow the production of metal-coated Carbon nanotubes only with big Effort through multi-step technologies too.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von ein- oder mehrwandigen, mit einem oder mehreren Übergangsmetallen beschichteten Kohlenstoff-Nanoröhren zu schaffen, das kostengünstig durchführbar ist und eine hohe Verfahrensausbeute gewährleistet.Of the Invention is based on the object, a process for the preparation single- or multi-walled, with one or more transition metals coated carbon nanotubes too create that cost-effectively feasible is and ensures a high process yield.

Diese Aufgabe wird mit den in den Patentansprüchen enthaltenen Merkmalen gelöst.These Task is with the features contained in the claims solved.

Erfindungsgemäß wird die Erzeugung der Nanoröhren und die Abscheidung der Übergangsmetalle auf den Nanoröhren mittels CVD durch Abscheidung aus der Gasphase in nur einem einzigen Prozess durchgeführt, indem der Precursor für die Synthese der Kohlenstoff-Nanoröhren und ein Precursor für die Beschichtung der Kohlenstoff-Nanoröhren mit Übergangsmetallen gleichzeitig ohne Prozessunterbrechung in einen Abscheidungsreaktor eingebracht werden.According to the invention, the production of the nanotubes and the deposition of the transition metals on the nanotubes by CVD by deposition from the gas phase in a single process by by introducing the precursor for the synthesis of the carbon nanotubes and a precursor for the coating of the carbon nanotubes with transition metals simultaneously in a deposition reactor without interrupting the process.

Als Precursoren für die Synthese der Kohlenstoff-Nanoröhren können nach der Erfindung Metallocene verwendet werden.When Precursors for the synthesis of the carbon nanotubes can be used according to the invention metallocenes become.

Als Precursoren für die Beschichtung der Kohlenstoff-Nanoröhren können erfindungsgemäß auch Salze oder metallorganische Verbindungen der Übergangsmetalle Kupfer, Ruthenium, Rhodium, Rhenium, Osmium, Iridium Palladium, Silber, Gold und/oder Platin verwendet werden.When Precursors for The coating of carbon nanotubes according to the invention may also be salts or organometallic compounds of the transition metals copper, ruthenium, Rhodium, rhenium, osmium, iridium palladium, silver, gold and / or Platinum can be used.

Dabei können als Salze erfindungsgemäß Halogenide, Nitrate und andere Salze der Übergangsmetalle verwendet werden. Als Halogenide können K2PtCl4 oder HAuCl4 verwendet werden und als Nitrat kann Cu(NO3)2 zur Anwendung gelangen.Halides, nitrates and other salts of the transition metals can be used as salts according to the invention. As halides K 2 PtCl 4 or HAuCl 4 can be used and as nitrate Cu (NO 3 ) 2 can be used.

Als Precursoren für die Beschichtung der Kohlenstoff-Nanoröhren können erfindungsgemäß auch Acethylacetonate und deren Derivate verwendet werden.When Precursors for According to the invention, the coating of the carbon nanotubes can also be acetylacetonates and their derivatives are used.

Als Lösungsmittel für die Precusoren können erfindungsgemäß Chloroform, Aceton, Acetonitril, Acetylaceton, m-Xylol, Kohlenstofftetrachlorid, Toluol, Benzol, Furan, Tetrahydrofuran, Pentan, Hexan, Cyclohexan, Cyclopentan, Ethanol und/oder deren Mischungen verwendet werden.When solvent for the Precursors can according to the invention chloroform, Acetone, acetonitrile, acetylacetone, m-xylene, carbon tetrachloride, Toluene, benzene, furan, tetrahydrofuran, pentane, hexane, cyclohexane, Cyclopentane, ethanol and / or mixtures thereof are used.

Der CVD-Prozess wird nach der Erfindung in einem Temperaturbereich von 700°C bis 1100°C und bei einem Druck im Bereich zwischen 10 mbar und 1,1 bar durchgeführt.Of the CVD process is according to the invention in a temperature range of 700 ° C to 1100 ° C and carried out at a pressure in the range between 10 mbar and 1.1 bar.

Die Precusoren für die Synthese der Kohlenstoff-Nanoröhren und die Precursoren für die Beschichtung mit den Übergangsmetallen können über ein Aerosol oder eine Injektion in den Abscheidungsreaktor eingebracht werden.The Precursors for the synthesis of carbon nanotubes and the precursors for the coating with the transition metals can over one Aerosol or injection introduced into the deposition reactor become.

Die Kohlenstoff-Nanoröhren werden vorteilhaft auf einem Substrat aus Si, oxidiertem Si oder metallisiertem Si abgeschieden.The Carbon nanotubes are advantageously on a substrate of Si, oxidized Si or metallized Si deposited.

Die metallisierten Si-Substrate können mit Fe, Co oder Ni beschichtet sein.The metallized Si substrates can be coated with Fe, Co or Ni.

Gemäß einer Verfahrensvariante der Erfindung werden die Kohlenstoff-Nanoröhren im Abscheidungsreaktor ohne ein abscheidungsunterstützendes Substrat erzeugt und beschichtet.According to one Process variant of the invention, the carbon nanotubes in Deposition reactor produced without a deposition supporting substrate and coated.

Die erfindungsgemäß hergestellten ein- oder mehrwandigen, mit einem oder mehreren Übergangsmetallen beschichteten Kohlenstoff-Nanoröhren können in vielfältiger Weise vorteilhaft verwendet werden. Besonders vorteilhaft ist die Verwendung als nanostrukturierte Katalysatoren in industriellen chemischen Prozessen, die Verwendung als Katalysatoren für Methanol-Brennstoffzellen, die Verwendung als Kontaktwerkstoff in der Mikro- und Nanoelektronik und die Verwendung als Füllstoff in Kompositen mit einer Matrix aus Metall, Keramik oder Polymer.The produced according to the invention single- or multi-walled, coated with one or more transition metals Carbon nanotubes can in more diverse Be used advantageously way. Particularly advantageous is the Use as nanostructured catalysts in industrial chemical processes used as catalysts for methanol fuel cells, the use as a contact material in micro- and nanoelectronics and use as a filler in composites with a matrix of metal, ceramic or polymer.

Nachstehend ist die Erfindung an Hand von Ausführungsbeispielen näher erläutert.below The invention is explained in more detail with reference to exemplary embodiments.

Beispiel 1example 1

Das Beispiel betrifft die Herstellung von einwandigen, mit Palladium beschichteten Kohlenstoff-Nanoröhren.The Example relates to the production of single-walled palladium coated carbon nanotubes.

In einem vertikalen Quarzglasreaktor wird auf einem Substrathalter aus Stahl ein 10 × 10 mm oxidierter Siliziumwafer aufgebracht und zentrisch in Richtung der Gaseinströmung fixiert. Danach wird ein Argon-Gasstrom durch den Reaktor geleitet und der Bereich, in dem sich der Substrathalter befindet, durch eine induktive Heizung auf 820°C erwärmt.In a vertical quartz glass reactor is placed on a substrate holder made of steel a 10 × 10 mm oxidized silicon wafer applied and centric in the direction the gas inflow fixed. Thereafter, an argon gas stream is passed through the reactor and the area where the substrate holder is located an inductive heater at 820 ° C heated.

Eine präparierte Lösung von Ferrocen (19 mg/ml) und Pd(Acac)2 (40 mg/ml) in Azetonitril (approx 10 ml) in einem Ultraschallbad ausgesetzt. Die Ferrocen-Lösung dient als Precursor für die Synthese der Kohlenstoff-Nanoröhren. Die Pt-Lösung dient als Precursor für die Beschichtung der Kohlenstoff-Nanoröhren mit Pd.A prepared solution of ferrocene (19 mg / ml) and Pd (acac) 2 (40 mg / ml) in acetonitrile (approx 10 ml) was exposed in an ultrasonic bath. The ferrocene solution serves as a precursor for the synthesis of the carbon nanotubes. The Pt solution serves as a precursor for the coating of carbon nanotubes with Pd.

Nach dem Entstehen eines Aerosols über dem Lösungsgemisch wird das Aerosolgemisch mit einem Argon-Transportstrom in den Quarzglasreaktor eingebracht.To the formation of an aerosol the mixed solution the aerosol mixture is introduced into the quartz glass reactor with an argon transport stream brought in.

Nach einer Reaktionszeit von 30 Minuten bei Normaldruck wird der Ultraschall gestoppt. Nach weiteren 2 Minuten wird auch der Argonstrom durch die Lösung gestoppt und der Reaktor unter Argon abgekühlt.To a reaction time of 30 minutes at atmospheric pressure is the ultrasound stopped. After another 2 minutes, the argon flow is through the solution stopped and the reactor cooled under argon.

Im Ergebnis dieser Verfahrensweise liegen, wie aus 1 ersichtlich ist, auf dem Substrat gerichtet abgeschiedene Kohlenstoff-Nanoröhren von einigen μm Länge vor.As a result of this procedure, as out 1 it can be seen, deposited on the substrate deposited carbon nanotubes of several microns in length.

2 zeigt diese Kohlenstoff-Nanoröhren bei höherer Vergrößerung. Aus dieser Abbildung ist ersichtlich, dass auf den Kohlenstoff-Nanoröhren Nanopartikel vorhanden sind. Diese bestehen hier aus Pd. 2 shows these carbon nanotubes at higher magnification. From this figure it can be seen that nanoparticles are present on the carbon nanotubes. These consist of Pd.

Beispiel 2Example 2

Mit diesem Beispiel wird die Herstellung von einwandigen, mit Ru beschichteten Kohlenstoff-Nanoröhren beschrieben.With In this example, the production of single-walled, Ru-coated Carbon nanotubes described.

Verwendet wird hier ein horizontal angeordneter Quarzglasreaktor ohne Substrathalter und Wafer.used Here is a horizontally arranged quartz glass reactor without substrate holder and wafers.

Zunächst wird eine präparierte Lösung von Ferrocen (19 mg/ml) und Ru(Acac)3 (40 mg/ml) in Azetonitril (approx 10 ml) in einem Ultraschallbad ausgesetzt. Die Ferrocen-Lösung dient als Precursor für die Synthese der Kohlenstoff-Nanoröhren. Die Ru-Lösung dient als Precursor für die Beschichtung der Kohlenstoff-Nanoröhren mit Ru.First, a prepared solution of ferrocene (19 mg / ml) and Ru (Acac) 3 (40 mg / ml) in acetonitrile (approx. 10 ml) is exposed in an ultrasonic bath. The ferrocene solution serves as a precursor for the synthesis of the carbon nanotubes. The Ru solution serves as a precursor for the coating of carbon nanotubes with Ru.

Nach dem Entstehen eines Aerosols über dem Lösungsgemisch wird das Aerosolgemisch mit einem Argon-Transportstrom in den Quarzglasreaktor eingebracht, der eine etwa 20 cm lange induktiv auf etwa 830°C erwärmte Reaktionszone aufweist.To the formation of an aerosol the mixed solution the aerosol mixture is introduced into the quartz glass reactor with an argon transport stream introduced, the about 20 cm long inductively heated to about 830 ° C reaction zone having.

In der Reaktionszone entsteht durch diese Verfahrensweise spontan ein unorientierter Filz von Kohlenstoff-Nanoröhren. 3 zeigt diese Kohlenstoff-Nanoröhren bei höherer Vergrößerung. Aus dieser Abbildung ist ersichtlich, dass auf den Kohlenstoff-Nanoröhren Nanopartikel vorhanden sind. Diese bestehen hier aus Ru.In the reaction zone, this procedure spontaneously produces an unoriented felt of carbon nanotubes. 3 shows these carbon nanotubes at higher magnification. From this figure it can be seen that nanoparticles are present on the carbon nanotubes. These consist of Ru.

Die in der nachstehenden zur 3 gehörenden Tabelle enthaltenen Werte einer EDAX-Analyse weisen einen Globalgehalt an Ru von 1,23 Gew.% nach. Durch eine Senkung der Konzentration an Ferrocen und damit relativer Erhöhung der Konzentration von Ru in der Aerosollösung kann der Gehalt an Ru auf etwa 5 Gew.% gesteigert werden.

  • EDAX ZAF Quantification (Standardless)
  • Element Normalized
  • SEC Table: User c:\edax32\eds\genuser.sec
Elem Wt% At% K-Ratio Z A F C K 86.72 93.92 0.4682 1.0110 0.5340 1.0000 N K 0.93 0.87 0.0010 1.0011 0.1059 1.0001 0 K 1.17 0.95 0.0022 0.9921 0.1895 1.0001 SiK 7.82 3.62 0.0699 0.9361 0.9545 1.0005 PtM 0.09 0.01 0.0007 0.6330 1.1932 1.0000 RuL 1.23 0.16 0.0100 0.7432 1.0938 1.0000 FeK 2.04 0.48 0.0169 0.8181 1.0116 1.0001 Total 100.00 100.00 Element Net Inte. Backgrd Inte. Error P/B C K 593.95 1.22 0.41 486.97 N K 1.46 1.66 14.92 0.88 0 K 4.80 1.99 6.15 2.41 SiK 207.08 8.32 0.72 24.89 PtM 0.62 7.88 64.54 0.08 RuL 10.41 6.10 4.55 1.71 FeK 9.44 1.34 3.67 7.05
  • c:\edax32\genesis\genspc.spc
  • Label: ACW17_2
  • Acquisition Time: 17:19:03; Date: 26-Jul-2006
  • kU: 15.00 Tilt: 0.00; Take-off: 35.86; AmpT: 102.4
  • Det Type: SUTW, Sapphire; Res: 129.65; Lsec: 100
The in the following to 3 According to the table belonging to an EDAX analysis, the global content of Ru is 1.23 wt%. By lowering the concentration of ferrocene and thus increasing the relative concentration of Ru in the aerosol solution, the content of Ru can be increased to about 5% by weight.
  • EDAX ZAF Quantification (Standardless)
  • Element Normalized
  • SEC Table: User c: \ edax32 \ eds \ genuser.sec
Elem wt% At% K-Ratio Z A F C K 86.72 93.92 0.4682 1.0110 0.5340 1.0000 N K 0.93 0.87 0.0010 1.0011 0.1059 1.0001 0K 1.17 0.95 0.0022 0.9921 0.1895 1.0001 SiK 7.82 3.62 0.0699 0.9361 0.9545 1.0005 PtM 12:09 12:01 0.0007 0.6330 1.1932 1.0000 RuL 1.23 12:16 0.0100 0.7432 1.0938 1.0000 FeK 2:04 12:48 0.0169 0.8181 1.0116 1.0001 Total 100.00 100.00 element Net Inte. Backgrd Inte. error P / B C K 593.95 1.22 12:41 486.97 N K 1:46 1.66 14.92 0.88 0K 4.80 1.99 6.15 2:41 SiK 207.08 8:32 0.72 24.89 PtM 0.62 7.88 64.54 12:08 RuL 10:41 6.10 4:55 1.71 FeK 9:44 1:34 3.67 7:05
  • c: \ edax32 \ genesis \ genspc.spc
  • Label: ACW17_2
  • Acquisition Time: 17:19:03; Date: 26-Jul-2006
  • kU: 15.00 tilt: 0.00; Take-off: 35.86; AmpT: 102.4
  • Det Type: SUTW, Sapphire; Res: 129.65; Lsec: 100

Literaturverzeichnisbibliography

  • [1] M. S. Dresselhaus. G. Dresselhaus, Ph. Avouris (Eds.): CARBON NANOTUBES (Synthesis, structure, properties and applications) Springer Berlin, Heidelberg (Topics in Appl. Physics, Vol. 80)[1] M. S. Dresselhaus. G. Dresselhaus, Ph. Avouris (Eds.): CARBON NANOTUBES (Synthesis, structure, properties and applications) Springer Berlin, Heidelberg (Topics in Appl. Vol. 80)
  • [2] DE 100 43 891 A1 [2] DE 100 43 891 A1
  • [3] B. M. Quinn, C. Dekker, S. G. Lemay: J. Am. Chem. Soc. 2005, 127, 6146-6147[3] B.M. Quinn, C. Dekker, S.G. Lemay: J. Am. Chem. Soc. 2005 127, 6146-6147
  • [4] L. Qu, L. Dai: J. Am. Chem. Soc. 2005, 127, 10806-10807[4] L. Qu, L. Dai: J. Am. Chem. Soc. 2005, 127, 10806-10807
  • [5] L. Qu, L. Dai, E. Osawa: J. Am. Chem. Soc. 2006, 128, 5523-5532[5] L. Qu, L. Dai, E. Osawa: J. Am. Chem. Soc. 2006, 128, 5523-5532
  • [6] Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan: J. Phys. Chem. B 2005, 109, 22212-22216[6] Y. Mu, H. Liang, J. Hu, L. Jiang, L. Wan: J. Phys. Chem. B 2005, 109, 22212-22216

Claims (12)

Verfahren zur Herstellung von ein- oder mehrwandigen, mit einem oder mehreren Übergangsmetallen beschichteten Kohlenstoff-Nanoröhren, dadurch gekennzeichnet, dass die Erzeugung der Nanoröhren und die Abscheidung der Übergangsmetalle auf den Nanoröhren mittels CVD durch Abscheidung aus der Gasphase in nur einem einzigen Prozess durchgeführt wird, indem der Precursor für die Synthese der Kohlenstoff-Nanoröhren und ein Precursor für die Beschichtung der Kohlenstoff-Nanoröhren mit Übergangsmetallen gleichzeitig ohne Prozessunterbrechung in einen Abscheidungsreaktor eingebracht werden.Process for the preparation of single or multi-walled carbon nanotubes coated with one or more transition metals, characterized in that the production of the nanotubes and the deposition of the transition metals on the nanotubes is performed by CVD by vapor phase deposition in a single process, by simultaneously introducing the precursor for the synthesis of the carbon nanotubes and a precursor for the coating of the carbon nanotubes with transition metals into a deposition reactor without interrupting the process. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Precursoren für die Synthese der Kohlenstoff-Nanoröhren Metallocene verwendet werden.Method according to claim 1, characterized in that that as precursors for used the synthesis of carbon nanotubes metallocenes become. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Precursoren für die Beschichtung der Kohlenstoff-Nanoröhren Salze oder metallorganische Verbindungen der Übergangsmetalle Kupfer, Ruthenium, Rhodium, Rhenium, Osmium, Iridium Palladium, Silber, Gold und/oder Platin verwendet werden.Method according to claim 1, characterized in that that as precursors for the coating of carbon nanotubes salts or organometallic Compounds of transition metals Copper, ruthenium, rhodium, rhenium, osmium, iridium palladium, Silver, gold and / or platinum are used. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als Salze für die Beschichtung der Kohlenstoff-Nanoröhren Halogenide, Nitrate und andere Salze der Übergangsmetalle verwendet werden.Method according to claim 3, characterized that as salts for the coating of carbon nanotubes halides, nitrates and other salts of transition metals be used. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass als Halogenide für die Beschichtung der Kohlenstoff-Nanoröhren K2PtCl4 oder HAuCl4 verwendet werden und als Nitrat Cu(NO3)2 zur Anwendung gelangt.A method according to claim 4, characterized in that are used as halides for the coating of the carbon nanotubes K 2 PtCl 4 or HAuCl 4 and as nitrate Cu (NO 3 ) 2 is used. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Precusoren für die Beschichtung der Kohlenstoff-Nanoröhren Acetylacetonate und deren Derivate verwendet werden.Method according to claim 1, characterized in that that as precursors for the coating of carbon nanotubes acetylacetonates and their derivatives are used. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass als Lösungsmittel für die Precusoren Chloroform, Aceton, Acetonitril, Acetylaceton, m-Xylol, Kohlenstofftetrachlorid, Toluol, Benzol, Furan, Tetrahydrofuran, Pentan, Hexan, Cyclohexan, Cyclopentan, Ethanol und/oder deren Mischungen verwendet werden.Method according to claim 1, characterized in that that as a solvent for the Precursors chloroform, acetone, acetonitrile, acetylacetone, m-xylene, Carbon tetrachloride, toluene, benzene, furan, tetrahydrofuran, Pentane, hexane, cyclohexane, cyclopentane, ethanol and / or mixtures thereof be used. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der CVD-Prozess in einem Temperaturbereich von 700°C bis 1100°C und bei einem Druck im Bereich zwischen 10 mbar und 1,1 bar durchgeführt wird.Method according to claim 1, characterized in that that the CVD process in a temperature range of 700 ° C to 1100 ° C and at a pressure in the range between 10 mbar and 1.1 bar is performed. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Precusoren für die Synthese der Kohlenstoff-Nanoröhren und die Precursoren für die Beschichtung mit den Übergangsmetallen über ein Aerosol oder eine Injektion in den Abscheidungsreaktor eingebracht werden.Method according to claim 1, characterized in that that the precursors for the synthesis of carbon nanotubes and the precursors for the coating with the transition metals over Aerosol or injection introduced into the deposition reactor become. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kohlenstoff-Nanoröhren auf einem Substrat aus Si, oxidiertem Si oder metallisiertem Si abgeschieden werden.Method according to claim 1, characterized in that that the carbon nanotubes on a substrate of Si, oxidized Si or metallized Si be deposited. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Kohlenstoff-Nanoröhren auf einem mit Fe, Co oder Ni metallisiertem Si-Substrat abgeschieden werden.Method according to claim 10, characterized in that that the carbon nanotubes deposited on a Fe, Co or Ni metallized Si substrate become. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kohlenstoff-Nanoröhren im Abscheidungsreaktor ohne ein abscheidungsunterstützendes Substrat erzeugt und beschichtet werden.Method according to claim 1, characterized in that that the carbon nanotubes in the deposition reactor without a deposition assisting Substrate produced and coated.
DE102006041515A 2006-08-28 2006-08-28 Process for the preparation of single or multi-walled carbon nanotubes coated with one or more transition metals Expired - Fee Related DE102006041515B4 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE102006041515A DE102006041515B4 (en) 2006-08-28 2006-08-28 Process for the preparation of single or multi-walled carbon nanotubes coated with one or more transition metals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006041515A DE102006041515B4 (en) 2006-08-28 2006-08-28 Process for the preparation of single or multi-walled carbon nanotubes coated with one or more transition metals

Publications (2)

Publication Number Publication Date
DE102006041515A1 DE102006041515A1 (en) 2008-03-20
DE102006041515B4 true DE102006041515B4 (en) 2008-10-30

Family

ID=39078890

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102006041515A Expired - Fee Related DE102006041515B4 (en) 2006-08-28 2006-08-28 Process for the preparation of single or multi-walled carbon nanotubes coated with one or more transition metals

Country Status (1)

Country Link
DE (1) DE102006041515B4 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170633A (en) * 2011-12-22 2013-06-26 中国科学院大连化学物理研究所 Preparation method of pod-shaped carbon nanotube encapsulation non-noble metal nano-particles

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2581355A1 (en) * 2011-10-11 2013-04-17 Siemens Aktiengesellschaft Ceramic with nanostructure reinforcement
DE102013202544B4 (en) * 2013-02-18 2020-08-13 Leibniz-Institut Für Festkörper- Und Werkstoffforschung Dresden E.V. DISPERGATORS AND PROCESSES FOR WASTE WATER TREATMENT
GB2556051A (en) * 2016-11-14 2018-05-23 Aurubis Belgium Nv/Sa Methods and apparatus for use in producing carbon nanotube/metal composites

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204471A (en) * 1999-01-14 2000-07-25 Sony Corp Metallic fine wire and its production
EP1069206A2 (en) * 1999-07-15 2001-01-17 Lucent Technologies Inc. Nanoscale conductive connectors and method for making same
DE10043891A1 (en) * 2000-09-06 2002-04-04 Infineon Technologies Ag Production of carbon nanotubes from carbon compounds (I) involves using organo-transition metal compound containing (alkyl)cyclopentadienyl and/or carbonyl groups as catalyst
EP1375431A2 (en) * 2002-06-19 2004-01-02 Samsung Electronics Co., Ltd. Method of manufacturing inorganic nanotube
WO2005071136A2 (en) * 2004-01-26 2005-08-04 Cambridge University Technical Services Limited Method of producing carbon-encapsulated metal nanoparticles
WO2005075341A2 (en) * 2004-01-30 2005-08-18 Centre National De La Recherche Scientifique (Cnrs) Method for obtaining carbon nanotubes on supports and composites comprising same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204471A (en) * 1999-01-14 2000-07-25 Sony Corp Metallic fine wire and its production
EP1069206A2 (en) * 1999-07-15 2001-01-17 Lucent Technologies Inc. Nanoscale conductive connectors and method for making same
DE10043891A1 (en) * 2000-09-06 2002-04-04 Infineon Technologies Ag Production of carbon nanotubes from carbon compounds (I) involves using organo-transition metal compound containing (alkyl)cyclopentadienyl and/or carbonyl groups as catalyst
EP1375431A2 (en) * 2002-06-19 2004-01-02 Samsung Electronics Co., Ltd. Method of manufacturing inorganic nanotube
WO2005071136A2 (en) * 2004-01-26 2005-08-04 Cambridge University Technical Services Limited Method of producing carbon-encapsulated metal nanoparticles
WO2005075341A2 (en) * 2004-01-30 2005-08-18 Centre National De La Recherche Scientifique (Cnrs) Method for obtaining carbon nanotubes on supports and composites comprising same

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
B.M. Quinn et al., J. Am. Chem. Soc., 2005, 1217, S. 6146-6147 *
JP 2000204471 A, in: Pat. Abstr. of Jp. inkl. englische Übersetzung der japanischen Offenlegungsschrift *
JP 2000204471, Pat. Abstr. of Jp. inkl. englische Übersetzung der japanischen Offenlegungsschrift
L. Qu, L. Dai, E. Osawai, J. Am. Chem. Soc., 2006, 128, S. 5523-5532 *
L. Qu., L. Dai, J. Am. Chem. Soc., 2005, 127, S. 10806-10807 *
Y. Mu, et al. J. Phys. Chem. B., 2005, 109, S. 22212-22216 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103170633A (en) * 2011-12-22 2013-06-26 中国科学院大连化学物理研究所 Preparation method of pod-shaped carbon nanotube encapsulation non-noble metal nano-particles
CN103170633B (en) * 2011-12-22 2015-01-28 中国科学院大连化学物理研究所 Preparation method of pod-shaped carbon nanotube encapsulation non-noble metal nano-particles

Also Published As

Publication number Publication date
DE102006041515A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
DE2926614A1 (en) METHOD FOR PRODUCING A FINE DISTRIBUTED ALLOY FROM PRECIOUS METAL AND VANADIUM, CATALYST MADE THEREOF AND THE CATODE MADE THEREOF
WO2000059635A1 (en) Method for producing platinum metal catalysts
DE102006041515B4 (en) Process for the preparation of single or multi-walled carbon nanotubes coated with one or more transition metals
EP1996753B1 (en) Metal nanowires with an oxide sheath and production method for same
DE102009058833A1 (en) Nitrogen-doped carbon nanotubes with metal nanoparticles
AT409637B (en) Catalytic chemical vapor deposition, used in production of tubular carbon nano-fibers, comprises applying nickel- or cobalt-based catalyst layer to carrier without using current
DE112019000069T5 (en) Composite catalyst and its manufacturing processes and applications
EP2123602B1 (en) Method for producing carbon nanotubes, carbon nanotubes produced according to the method and use of same
EP2501842A2 (en) Method for spatially resolving the enlargement of nanoparticles on a substrate surface
DE102009015545B4 (en) Coating system with activation element, its use and method for depositing a coating
DE102019219615A1 (en) Manufacturing process for precious metal electrodes
WO1997048837A1 (en) Metallic nanostructure on the basis of self-assembling, geometrically highly-ordered proteins, and process for preparation thereof
EP1599613A1 (en) Method for coating a substrate
US11427915B2 (en) Method for metallising a porous structure made of carbon material
DE102019132015A1 (en) METHOD AND DEVICE FOR PRODUCING A CATALYST FOR FUEL CELLS
EP2588644B1 (en) Tribologically loadable mixed noble metal/metal layers
DE1941494C3 (en) Three-dimensional cellular metal structure made from an alloy and method for its manufacture
DE102008030900B4 (en) Vaporizable silver carboxylate-amine complexes as silver precursors and evaporation processes for same
EP2784182A1 (en) A palladium deposition bath and its use for highly controlled electroless palladium deposition on nanoparticulate structures
EP1920082A2 (en) Substrate with spatially selective metal coating method for production and use thereof
EP0925111B1 (en) Catalyst and process for its manufacture
EP1171239A1 (en) Method for producing a catalyst
EP2735002B1 (en) Method for producing thin electrically conductive layers of silver, a silver layer, a silver complex, the solution of said silver complex, and the use of the silver complex in a solution
DE10043891A1 (en) Production of carbon nanotubes from carbon compounds (I) involves using organo-transition metal compound containing (alkyl)cyclopentadienyl and/or carbonyl groups as catalyst
WO2017137305A1 (en) Method for producing a catalytically active moulded body and catalytically active moulded body

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8364 No opposition during term of opposition
R119 Application deemed withdrawn, or ip right lapsed, due to non-payment of renewal fee