DE102006027836A1 - Autofokuseinrichtung für die Mikroskopie - Google Patents

Autofokuseinrichtung für die Mikroskopie Download PDF

Info

Publication number
DE102006027836A1
DE102006027836A1 DE102006027836A DE102006027836A DE102006027836A1 DE 102006027836 A1 DE102006027836 A1 DE 102006027836A1 DE 102006027836 A DE102006027836 A DE 102006027836A DE 102006027836 A DE102006027836 A DE 102006027836A DE 102006027836 A1 DE102006027836 A1 DE 102006027836A1
Authority
DE
Germany
Prior art keywords
microscope
beam path
camera
modulation object
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
DE102006027836A
Other languages
English (en)
Other versions
DE102006027836B4 (de
Inventor
Peter Dr. Westphal
Daniel Dr. Bublitz
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carl Zeiss Microscopy GmbH
Original Assignee
Carl Zeiss MicroImaging GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss MicroImaging GmbH filed Critical Carl Zeiss MicroImaging GmbH
Priority to DE102006027836.4A priority Critical patent/DE102006027836B4/de
Priority to EP07785823A priority patent/EP2030062B1/de
Priority to US12/305,183 priority patent/US8643946B2/en
Priority to PCT/EP2007/005309 priority patent/WO2007144197A1/de
Priority to AT07785823T priority patent/ATE481658T1/de
Priority to DE502007005053T priority patent/DE502007005053D1/de
Publication of DE102006027836A1 publication Critical patent/DE102006027836A1/de
Application granted granted Critical
Publication of DE102006027836B4 publication Critical patent/DE102006027836B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/241Devices for focusing
    • G02B21/244Devices for focusing using image analysis techniques

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Microscoopes, Condenser (AREA)
  • Automatic Focus Adjustment (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Es wird beschrieben ein Mikroskop mit einem eine Probe (2) entlang eines Mikroskopstrahlenganges abbildenden Objektiv (4) und einer Autofokuseinrichtung, die einen Autofokusstrahlengang aufweist, welcher über einen Strahlteiler (6, 11') in den Mikroskopstrahlengang in Probenabbildungsrichtung an einer Stelle nach dem Objektiv (4) eingekoppelt ist, einen Lichtmodulator (12) zur Erzeugung eines zweidimensionalen, intensitätsmodulierten Modulationsobjektes aufweist, das im Autofokusstrahlengang in einer zur Fokusebene des Objektivs (4) konjugierten Ebene liegt oder diese schneidet und in die Fokusebene des Objektivs (4) abgebildet ist, und eine Kamera (16) zur Aufnahme eines zweidimensionalen Bildes aufweist, auf die das in der Probe (2) liegende Bild des Modulationsobjektes abgebildet ist, wobei die Bildebene der Kamera (16) eine zum Modulationsobjekt konjugierte Ebene schneidet oder in dieser Ebene liegt und die Kamera (16) den Kontrast des in der Probe (2) liegenden Bildes des Modulationsobjektes erfaßt, wobei das Modulationsobjekt und/oder die Bildebene der Kamera (16) schräg zur optischen Achse (OA2, OA3) des Autofokusstrahlenganges liegen/liegt.

Description

  • Die Erfindung bezieht sich auf ein Mikroskop mit einem eine Probe entlang eines Mikroskopstrahlenganges abbildenden Objektiv und einer Autofokusvorrichtung, welche über einen Strahlteiler in den Mikroskopstrahlengang eingespiegelt ist.
  • Um mittels einer Abbildungsoptik präzise Abbildungen einer Probe bzw. eines Probenschnitts zu erhalten, ist es erforderlich, die Probe exakt in die Fokusposition des Objektivs zu stellen. Ist die Abbildung unscharf, ist es wichtig zu erfahren, um welchen Betrag und in welcher Richtung eine Lageveränderung der Probe relativ zur Abbildungsoptik bzw. zum Objektiv zu veranlassen ist und gegebenenfalls entsprechende Stellbefehle abzuleiten, die zu einer Nachfokussierung genutzt werden können. In diesem Zusammenhang sind im wesentlichen Triangulationsverfahren, abbildende Verfahren mit Kontrastauswertung und die Positionsbestimmung mittels schräg gestellter konfokaler Spaltblende bekannt. Bei Triangulationsverfahren wird ein kollimierter Laserstrahl in die Pupillenebene eines Objektives eingespiegelt und aus dem Verlauf dieses Laserstrahls relativ zum Abbildungsstrahlengang auf die z-Position des von der Probe reflektierten Laserlichts geschlossen. Bei der Abbildung des Laserlichts in unterschiedlich tief gelegene Ebenen der Probe treten jedoch Bildfehler auf, so daß die Autofokusgüte über einen gegebenen Tiefenschärfebereich stark variiert. Auch sind Schwankungen dahingehend festzustellen, ob das Meßergebnis vom Zentrum oder am Rand der Probe bzw. des verwendeten Detektors ermittelt wird. Üblicherweise wird ein Triangulationsverfahren deshalb iterativ ausgeführt, was verhältnismäßig zeitraubend ist.
  • Bei abbildenden Verfahren mit Kontrastauswertung wird die Probe mit einer bestimmten Intensitätsverteilung beleuchtet, meist indem in eine Feldblendenebene eines Beleuchtungsstrahlengangs ein Gitter gestellt wird. Man nimmt eine Serie von Bildern mit unterschiedlichen Abständen zwischen Abbildungsoptik und Probe auf und ermittelt in dieser Serie das Bild mit dem höchsten Kontrast, dem dann der optimale Fokusabstand zugeordnet ist. Nachteilig hieran ist, daß zur Aufnahme der Bildserie verschiedene z-Positionen mit hoher Genauigkeit angefahren werden müssen, was wiederum zeitraubend ist. Beispiele für eine Autofokuseinrichtung mittels Kontrastanalyse eines auf eine Probe projizierten Musters finden sich in der US 5604344 oder der US 6545756 .
  • Bei der Positionsbestimmung mittels schräg gestellter konfokaler Spaltblende wird in eine Feldblendenebene des Beleuchtungsstrahlengangs eine Spaltblende gestellt und auf die Probe abgebildet. Das von der Probe reflektierte Licht wird auf eine relativ zur Spaltblende geneigt angeordnete CCD-Zeile gerichtet und es wird die Position auf der CCD-Zeile bestimmt, an dem das reflektierte Licht ein Maximum hat. Dieses Verfahren ist sehr schnell, hat allerdings Probleme mit Verunreinigungen auf der Probe oder Probenoberfläche, die zu Intensitätsschwankungen führen können. Auch ist ein sehr großer Justieraufwand bei der Abbildung des Spaltes auf die CCD-Zeile aufzubringen, denn der Spalt muß, um eine hohe Genauigkeit erreichen zu können, sehr schmal sein. Eine Verbesserung der Positionsbestimmung mittels schräggstellter konfokaler Spaltblende ist in der DE 103 19 182 A1 geschildert.
  • Allen Verfahren ist gemein, daß sie die Fokusebene zwar sehr genau finden können, jedoch die Lage dieser Fokusebene innerhalb der Probe, insbesondere bezüglich weiterer Grenzflächen, nur eingeschränkt zu ermitteln erlauben.
  • Oftmals möchte man jedoch nicht nur die Meßebene exakt finden, sondern auch deren Lage, d. h. deren Abstand zu einer Referenzebene ermitteln. Ein Bezug auf eine als Referenzebene dienende Grenzfläche kann dabei im Stand der Technik entweder dadurch erfolgen, daß eine zweite Autofokuseinrichtung verwendet wird, die auf die Grenzfläche fokussiert wird. Das erhöht natürlich den optischen Aufwand, und meist muß man einen Bereich der Detektions- bzw. Beleuchtungsapertur für diesen zusätzlichen Autofokus reservieren. Mehrere Autofokusstrahlengänge zu verwenden, ist beispielsweise in der WO 00/43820 beschrieben. Zum anderen ist es im Stand der Technik bekannt, für kurze Zeit die Messung zu unterbrechen und durch eine Fokusverstellung die Autofokuseinrichtung auf die gewünschte Referenzebene einzustellen. Der Betrag der Fokusverstellung stellt dann ein Maß für den Abstand der Meßebene zur Referenzebene dar. Nachteilig ist dabei, daß die eigentliche mikroskopische Messung für die Bestimmung des Abstandes zur Referenzebene unterbrochen werden muß.
  • Die gleiche Problemstellung ergibt sich, wenn in einer Probe ein Objekt, das an unterschiedlichen z-Positionen liegen kann, gefunden oder verfolgt werden soll. Ein solches Objekt kann z. B. eine in einer Probe befindliche Zelle sein, die sich in der Probe (z. B. in einer flüssigen Lösung) bewegt.
  • Der Erfindung liegt also die Aufgabe zugrunde, ein Mikroskop mit einer Autofokusvorrichtung anzugeben, mit der nicht nur die Lage der Meßebene exakt bestimmt werden kann, sondern zugleich auch der Abstand zu einer Referenzebene erfaßbar oder ein Objektracking oder -finder möglich ist. Insbesondere sollte eine separate Autofokusvorrichtung, die nur zur Bestimmung der Referenzebene vorgesehen ist, und/oder ein wiederholtes Verstellen der Fokuslage in z-Richtung vermieden werden.
  • Diese Aufgabe wird gelöst durch ein Mikroskop mit einem eine Probe entlang eines Mikroskopstrahlenganges abbildenden Objektiv und einer Autofokuseinrichtung, die einen Autofokusstrahlengang aufweist, welcher über einen Strahlteiler in den Mikroskopstrahlengang in Probenabbildungsrichtung an einer Stelle nach dem Objektiv eingekoppelt ist, einen Lichtmodulator zur Erzeugung eines zweidimensionalen, intensitätsmodulierten Modulationsobjektes aufweist, das im Autofokusstrahlengang in einer zur Fokusebene des Objektives konjugierten Ebene liegt oder diese schneidet und in die Fokusebene des Objektives abgebildet ist, und eine Kamera zur Aufnahme eines zweidimensionalen Bildes aufweist, auf die das in der Probe liegende Bild des Modulationsobjektes abgebildet ist, wobei die Bildebene der Kamera eine zum Modulationsobjekt konjugierte Ebene schneidet oder in dieser Ebene liegt und die Kamera den Kontrast des in der Probe liegenden Bildes des Modulationsobjekt erfaßt, wobei das Modulationsobjekt und/oder die Bildebene der Kamera schräg zur optischen Achse des Autofokusstrahlenganges liegen/liegt.
  • Die Erfindung sieht also vor, daß ein zweidimensionales Modulationsobjekt, z. B. durch Beleuchtung eines entsprechenden Lichtmodulators (Gitter, LCD oder DMD) erzeugt und in den Mikroskopstrahlengang, z. B. den Beleuchtungsstrahlengang, eingespiegelt wird, um eine strukturierte Autofokus-Beleuchtung der Probe zu erreichen. Die strukturierte Beleuchtung erfolgt dabei über eine separate Lichtquelle, die von der Beleuchtungsquelle unabhängig ist, vorzugsweise über LED. Natürlich sind beliebige Weißlicht- oder farbige Beleuchtungsquellen möglich. Zusätzlich wird an einer Stelle eine zweidimensionale Kamera (z. B. CCD oder CMOS) in den Strahlengang eingefügt. Verschiedene Orte sind hier möglich. Entweder die Kamera oder das Modulationsobjekt liegt schräg zur optischen Achse. Auch beide können schräg zur optischen Achse liegen. Dadurch kann eine Dimension der Kamera einem gewissen Tiefenbereich und somit verschiedenen Fokusebenen zugeordnet werden. Über die Wahl der Schräglage kann der erfaßte Tiefenbereich eingestellt werden. Ziel ist es, die Lage einer rückstreuenden oder reflektierenden (d.h. spiegelnden) Grenzflächean, in oder bei der Probe und/oder die Lage einer Probe mit Eigenkontrast zu bestimmen.
  • Das Modulationsobjekt wird räumlich moduliert und kann bei Verwendung eines verstellbaren Lichtmodulators auch zusätzlich zeitlich moduliert werden. Eine zeitliche Modulation kann man dazu verwenden, die Beleuchtung durch das Modulationsobjekt von der übrigen Mikroskopbeleuchtung zu unterscheiden. Hierbei kann eine Lock-In-Technik zum Einsatz kommen. Eine zeitliche Modulation erfolgt vorzugsweise mit so hoher Frequenz, daß sie bei visueller Beobachtung im Mikroskop, z. B. durch ein Mikroskopokular nicht wahrnehmbar ist. Ein möglicher Frequenzbereich liegt oberhalb der Bildverschmelzungsfrequenz des Auges, die im helladaptierten Zustand etwa 50 Hz beträgt, beispielsweise zwischen 50 und 200 Hz sind ein möglicher Bereich.
  • Die Ein- und Auskopplung der strukturierten Beleuchtung sowie der Abbildung der strukturiert beleuchteten Probe auf die Kamera kann vorteilhafterweise mit Teilerspiegeln erfolgen, die nur einen geringen Einfluß auf den übrigen Mikroskopstrahlengang haben, z. B. durch einen hohen Transmissionsgrad (ca. 95% und höher sind möglich). Weiter ist es günstig, sie einseitig zu entspiegeln, um den übrigen Mikroskopstrahlengang möglichst gering zu beeinflussen. Natürlich kann bei Bedarf der Reflexionsgrad aber auch auf Kosten des Transmissionsgrades erhöht werden. Arbeitet das Autofokussystem mit einer infraroten (NIR)-Beleuchtungsquelle, so wird vorzugsweise mindestens ein dichroitischer Strahlteiler verwendet, die die NIR-Strahlung mit hoher Effizienz im Autofokus-Strahlengang führt oder umlenkt.
  • Vorteilhaft erfolgt durch die Abbildung des Modulationsobjekts eine Streifenbeleuchtung, bei der das Modulationsobjekt dann ein Streifenmuster ist. Auf der Kamera erscheint dann ein Streifenmuster, dessen Kontrast in der zur aktuellen Fokusebene konjugierten Ebene maximal ist. Hierdurch läßt sich ein sehr zuverlässiges und genaues Autofokussystem für Grenzflächen an der Probe (z. B. Glas/Wasser, Glas/Luft oder Wasser/Luft) realisieren. Die zweite Dimension der Kamera liefert redundante Informationen, wodurch vorzugsweise über Mittelung mehrerer Zeilensignale ein sehr robustes Autofokussignal entsteht.
  • Um möglichst geringe Einflüsse durch die Abbildung des Meßobjektes in die Probe zu erzeugen, kann die Struktur eines räumlich modulierten Modulationsobjektes in schneller Folge (z. B. mit größer als 30 Hz) alternierend lateral verschoben werden. Eine weitere Möglichkeit, die bei einem verstellbaren Lichtmodulator gegeben ist, besteht darin, immer oder zeitweise (z. B. nach Auffinden eines zu mikroskopierenden Objektes) nur noch bestimmte Teil-Bereiche des vom Objektiv erfaßten Objektfeldes auszuleuchten. Hierdurch kann der Bildkontrast für das Autofokus bzw. die Meßobjektnachführung, gegebenenfalls aber auch für die normale Mikroskopdetektion erhöht werden.
  • Wesentlich für die Erfindung ist, daß entweder das Modulationsobjekt oder die Kamera schräg zur optischen Achse steht. Es können auch beide schräg dazu stehen. Es kann also das Modulationsobjekt schräg zur optischen Achse und die Bildebene der Kamera senkrecht zur optischen Achse stehen, es kann das Modulationsobjekt senkrecht zur optischen Achse und die Bildebene der Kamera schräg zur optischen Achse stehen, oder es ist eine gegenseitige Schrägstellung von Modulationsobjekt und Bildebene möglich, wobei diese dann bezogen auf die optische Achse gegensinnig schräg gestellt sein müssen.
  • Durch Verwendung mehrerer Kameras ist auch ein dreidimensionales Bildobjektnachführungs- bzw. Autofokus-System möglich. Dann kann zusätzlich eine zweite Kamera senkrecht zur optischen Achse stehen, und eine dritte ist um eine Kippachse gedreht, die nicht mit der Kippachse der ersten Kamera zusammenfällt.
  • Die strukturierte Autofokus-Beleuchtung kann natürlich im Durchlicht und/oder in Dunkelfeldbeleuchtung realisiert werden. Im Durchlichtprobenbetrieb wäre die Anwendung dann allerdings auf transparente Probenträger eingeschränkt.
  • Bei allen Varianten des Mikroskops ist es vorzuziehen, eine rechnerische Auswertevorrichtung zu verwenden, die die Signalauswertung der Kameras vornimmt, einen gegebenenfalls verstellbaren Lichtmodulator ansteuert und die Steuerung von gegebenenfalls vorhandenen mechanischen Stelleinheiten am Mikroskop (z. B. zur Fokusverstellung, zu x-y-Verstellung, zum Einschwenken und/oder Einschalten von Filtern etc.) vornimmt. Auswertung und Steuerung können sowohl Schaltungs- als auch Software-technisch implementiert werden.
  • Für stark lichtstreuende Oberflächen ist eine Weiterbildung der Erfindung möglich, die das von der Probe reflektierte bzw. gestreute Licht analysiert. Hier ist es vorgesehen, daß sowohl Kamera als auch Modulationsobjekt gegenüber der optischen Achse verkippt sind. Beide liegen in zueinander konjugierten Ebenen. Der Kippwinkel ist vorzugsweise gleich. Es wird von der Probe gestreutes oder reflektiertes Licht moduliert auf die Kamera abgebildet. Die Stärke der Modulation liefert Strukturinformationen über die Probe und kann für Autofokus und/oder Bildobjektnachführungszwecke verwendet werden. Aufgrund der Schrägstellung von Modulationsobjekt und Kamera erhält man simultan Strukturinformation aus verschiedenen Tiefen (z-Positionen der Fokusebene des Objektives) der Probe.
  • In ungünstigen Fällen kann die Lichtmodulation, die auf der Kamera nachgewiesen wird, d. h. das Bild des in die Probe abgebildeten Objektes, durch Speckle-Effekte beeinträchtigt werden. Für derartige Zwecke kann es vorteilhaftig sein, die Probe oder das Modultionsobjekt und/oder ggf. die diese beleuchtende Lichtquelle gleichförmig oder periodisch zu bewegen, um Speckle-Muster herauszumitteln. Alternativ ist auch ein synchrones Bewegen von Modulationsobjekt und Kamera möglich.
  • Prinzipiell können weitere Kameras eingespiegelt werden, die Strukturinformationen von der Probe ableiten. Diese Kameras sind dann so angeordnet, daß auf Ihnen unterschiedliche Schnittebenen der Probe abgebildet werden, d. h. die Kameras sind mit unterschiedlichen Kippwinkeln zur optischen Achse bzw. unterschiedlichen Drehwinkeln um die optische Achse angeordnet.
  • Zur Erhöhung des Autofokus-Fangbereiches in z-Richtung kann zusätzlich noch eine Kamera in einer zum Lichtmodulator nicht-konjugierten Ebene angebracht sein. Durch den entsprechenden Verkippwinkel läßt sich der Fangbereich einstellen. Das Schrägstellen einer nicht-konjugiert angeordneten Kamera ist äquivalent zu einem geänderten Winkel, den das Modulationsobjekt mit der optischen Achse einschließt. Da dieser Winkel jedoch aus praktischen Gründen wegen sphärischen Bildfehlern und Reflexionsverlusten kaum kleiner als 30° gewählt werden kann, ergibt sich durch eine solche weitere Kamera die Möglichkeit den Fangbereich der Autofokuseinrichtung zu erhöhen.
  • Das Mikroskop kann insbesondere als inverses Mikroskop ausgebildet sein, wie es z. B. zum Auslesen von Titerplatten verwendet wird, die nach oben geöffnete Küvetten mit Flüssigkeiten besitzen. Zu Fokussieren ist hier regelmäßig auf die Glas/Flüssigkeits-Grenzfläche des Titerplattenbodens, an der meist Zellen haften. Da solche Zellen den Kontrast des abgebildeten Modulationsobjektes beeinträchtigen, wird vorzugsweise über mehrere Zeilen der zweidimensionalen Kamera gemittelt, um die Meßgenauigkeit zu verbessern.
  • Zwischen Objektiv und Titerplattenboden kann Luft oder eine Immersionsflüssigkeit angeordnet werden. Ohne Immersionsflüssigkeit erzeugt die Luft/Glas-Grenzfläche am Titerplattenboden den höchsten Kontrast. Mit Immersionsflüssigkeit erhält man den stärksten Kontrast von der Grenzfläche zwischen Küvettenflüssigkeit und Titerplattenboden-Oberseite.
  • Eine besonders gute Anpassung an verschiedene Proben ist gegeben, wenn der Lichtmodulator ansteuerbar und zur Erzeugung eines räumlich oder zeitlich intensitätsmodulierten Modulationsobjektes ausgebildet ist. Diese Ansteuerbarkeit kann dadurch erreicht werden, daß als Lichtmodulator ein beleuchtetes LCD- oder DMD-Element verwendet wird. Die dabei eingesetzte Wellenlänge unterscheidet sich vorzugsweise von der normalen Beleuchtungsstrahlung im Mikroskop. Prinzipiell kann die Autofokuseinrichtung hinsichtlich des Lichtmodulators und/oder der Kamera in den Beleuchtungsstrahlengang eines Auflicht-Mikroskopes eingekoppelt werden. Alternativ ist eine Einstrahlung parallel zum Auflichtbeleuchtungsstrahlengang in den Mikroskopstrahlengang möglich, d. h. im Mikroskopstrahlengang befindet sich ein eigener Strahlteiler für den Autofokusstrahlengang. Dann kann Strahlung verwendet werden, die bezüglich Ihrer Wellenlänge oberhalb der für die Mikroskopiervorgänge verwendeten Wellenlängen liegt, da nicht auf die möglicherweise dichroitischen Eigenschaften des Beleuchtungs-Strahlenteilers im Mikroskop Rücksicht genommen werden muß – die Autofokuseinrichtung ist über einen eigenen Strahlenteiler eingebunden. Bei der Fluoreszenzmikroskopie sind für die Autofokus-Beleuchtung Wellenlängen oberhalb 800 nm bevorzugt, da dann für Fluoreszenz- oder Durchlichtmessungen keine nennenswerten Einschränkungen zu befürchten sind. Durch einen geeigneten Spektralfilter vor der Kamera der Autofokuseinrichtung kann potentiell störende Strahlung der Mikroskopbeleuchtung effektiv unterdrückt und bei der Autofokuseinrichtung ausgeblendet werden. Für die simultane Anwendung des Autofokus bei 2-Photonen-Mikroskopie wird der Strahlteiler so ausgelegt, daß er nur einen schmalen Wellenlängenbereich, z.B. 20 nm, der sich nicht mit der 2-Photonen-Anregungsstrahlung überschneidet, reflektiert. Grundsätzlich kann jedoch auch der gesamte sichtbare Bereich und UV für die Autofokusfunktion verwendet werden.
  • Eine besonders einfache Analyse des in die Probe abgebildeten Modulationsobjektes erhält man, wenn das abgebildete Modulationsobjekt eine Streifengitterstruktur aufweist.
  • Zweckmäßigerweise wird man die Autofokuseinrichtung in den Strahlengang des Mikroskops über einen Strahlteiler einspiegeln, wobei zugleich die Abbildung des Modulationsobjektes, wie auch die Rück-Abbildung des abgebildeten Modulationsobjektes auf die Kamera über denselben Strahlteiler eingekoppelt ist. Der Aufbau ist dann besonders einfach an ein bestehendes Mikroskop anzupassen. Dies ist jedoch nicht zwingend.
  • Der Winkel der Schrägstellung von Bildebene der Kamera bzw. Modulationsobjekt zur optischen Achse stellt den Fangbereich bzw. Tiefenbereich ein, in dem die Autofokuseinrichtung arbeitet. Ein Winkel zwischen 20° und 70° ist zweckmäßig. Wie bereits erwähnt, kann man mehrere Kameras verwenden, deren Bildebenen zueinander, insbesondere unterschiedlich, geneigt sind.
  • Die Erfindung wird nachfolgend unter Bezugnahme auf die Zeichnung beispielhalber noch näher erläutert. Es zeigen:
  • 1 ein Mikroskop mit einer Autofokuseinrichtung für Reflexionsmessungen,
  • 2 ein Mikroskop mit einer Autofokuseinrichtung für Fluoreszenzmessungen,
  • 3 ein Mikroskop ähnlich dem der 1, adaptiert für streuende Proben,
  • 4 ein Mikroskop ähnlich dem der 1 mit einem erhöhten Fangbereich,
  • 5 ein inverses Mikroskop mit einer Autofokuseinrichtung mit Einspiegelung der Beleuchtung zwischen Objektiv und Filterwürfel und
  • 6 ein inverses Mikroskop mit einer Autofokuseinrichtung mit Einspiegelung im Mikroskopbeleuchtungsstrahlengang.
  • 1 zeigt ein Mikroskop 1, mit dem eine Probe 2, die sich auf einem Probenträger 3 befindet mittels eines Objektivs 4 auf einen Detektor 5 abgebildet wird. Die Darstellung in 1 ist dabei stark vereinfacht. Bei dem Mikroskop 1 kann es sich um ein Weitfeldmikroskop handeln, d. h. der Detektor 5 ist z.B. eine Kamera oder ein Okulareinblick. Aber auch jede andere Mikroskopbauweise kommt für das Mikroskop 1 in Frage, beispielsweise ein Laser-Scanning-Mikroskop. Dann ist dem Mikroskopstrahlengang noch eine Scananordnung vorgesehen, die auf der optischen Achse OA1 liegt. Das Objektiv 4 ist in seiner Fokuslage verstellbar, wie der Doppelpfeil andeutet. Alternativ kann auch der Probenträger 3 verstellbar sein.
  • An einem Strahlteiler 6, der gegebenenfalls als Dichroit oder als plattenförmiger Farbteiler ausgebildet sein kann, ist Mikroskop-Beleuchtungsstrahlung aus einer Mikroskop-Beleuchtungsquelle 8 eingekoppelt, die über eine Beleuchtungs-Tubusoptik 7 die Probe 2 durch das Objektiv 4 beleuchtet. In diesen Beleuchtungsstrahlengang ist mittels eines Strahlteilers 11 eine Autofokuseinrichtung eingekoppelt. Die Autofokuseinrichtung verfügt über einen Lichtmodulator 12, der von einer Lichtquelle 13, beispielsweise eine LED im Transmissionsbetrieb oder von einer Lichtquelle 14 (z.B. eine LED) im Reflexionsbetrieb beleuchtet ist. Der beleuchtete Lichtmodulator 12 generiert ein Modulationsobjekt. Dies wird über den Strahlteiler 11, die Beleuchtungs-Tubusoptik 7, den Strahlteiler 6 sowie das Objektiv 4 in die Probe 2 projiziert, also abgebildet. Dadurch ist eine Autofokus-Beleuchtung realisiert. Das in der Probe 2 erzeugte Bild des Modulationsobjektes wird im gegenläufigen Weg mittels einer Kamera 16 erfaßt, der ein Strahlteiler 15 auf der optischen Achse OA2 der Autofokuseinrichtung vorgelagert ist. Die dabei erhaltene optische Achse OA3 ist optional weiter noch über einen Strahlteiler 17 auf eine Kamera 18 geleitet.
  • Von den Kameras sind in den Figuren generell nur die Bildebenen gezeichnet. Die Kameras können generell CCD-Kameras sein.
  • In der Bauweise der 1 liegt der Lichtmodulator 12 und damit das Modulationsobjekt senkrecht zur optischen Achse OA2. Die Kamera 16 steht mit ihrer Bildebene dagegen schräg zur optischen Achse OA3. Nimmt der Lichtmodulator 12 beispielsweise eine räumliche Modulation vor, z. B. ein Streifenmuster, findet sich der maximale Kontrast in einer senkrecht zur Zeichenebene liegenden Zeile der Kamera 16. Die Lage der Zeile längs der Kamera 16 ist ein Maß für die Lage der Fokusebene längs der optischen Achse, d. h. in z-Richtung.
  • Mit Hilfe der Beleuchtungstubusoptik 7 und des Objektivs 4 wird das Modulationsobjekt, das vom Lichtmodulator 12 entweder in Transmissionsbetrieb (Lichtquelle 13) oder im Reflexionsbetrieb (Lichtquelle 14) erzeugt wird, in die Probe abgebildet. Durch die schräggestellte Kamera 16 erfolgt eine Tiefenauflösung. Mittels der Kamera 18 kann zusätzlich eine laterale Verschiebung der strukturiert beleuchteten Probe detektiert werden.
  • Im Falle eines Fluoreszenzmikroskops werden ein Anregungsfilter 10 sowie ein Emissionsfilter 9 (für die Fluoreszenzstrahlung) verwendet. Das Mikroskop 1 kann ohne weitere Einschränkung hinsichtlich der Autofokuseinrichtung auch als scannendes Mikroskop, insbesondere als Laser-Scanning-Mikroskop ausgebildet sein.
  • 2 zeigt eine alternative Gestaltung des Mikroskops der 1 hinsichtlich der Autofokuseinrichtung. Im Mikroskop der 2 sind Bauteile, die bereits anhand 1 erläutert wurden, mit denselben Bezugszeichen versehen; auf ihre wiederholte Beschreibung wird deshalb verzichtet. Die Kamera 16 detektiert hier den Fluoreszenzkontrast der Probe, welcher durch die strukturierte Autofokus-Beleuchtung noch verstärkt werden kann.
  • Die Abbildung des Modulationsobjektes erfolgt ähnlich wie bei der Bauweise gemäß 1. Die Erfassung des in die Probe 2 abgebildeten Modulationsbildes geschieht jedoch nicht aus dem Beleuchtungsstrahlengang heraus, sondern über einen eigenständigen Strahlteiler aus dem Mikroskopstrahlengang. Um das in die Probe abgebildete Modulationsobjekt mittels der Kamera 16 erfassen zu können, ist dieser Kamera eine entsprechende Relaisoptik 20 vorgeordnet, deren optische Charakteristik dafür sorgt, daß die Bildebene der Kamera 16 eine konjugierte Ebene zum Modulationsobjekt schneidet, idealerweise nahe oder auf der optischen Achse (wie bei 1 auch).
  • Die von der Fokuseinrichtung, insbesondere der Kamera 16 gelieferten Signale werden zur Ansteuerung einer Fokusverstellung längs der z-Achse verwertet. Dies ist in 1 schematisch durch einen Doppelpfeil veranschaulicht. Das dabei eingesetzte Steuergerät ist in den 1 und 2 nicht gezeigt.
  • Ist das Mikroskop 1 in 2 als Laser-Scanning-Mikroskop ausgebildet, wird wiederum die Kombination aus Emissionsfilter 9 und Anregungsfilter 10 vorgesehen, wie auch optional ein weiterer Spektralfilter 21, der dafür sorgt, daß auf die Kamera 16 der Spektralbereich des leuchtenden Modulationsobjektes fällt und nicht weiter interessierende Strahlenbereiche ausgeblendet sind.
  • 3 zeigt eine Ausbildung des Mikroskops 1 für stark streuende und wenig reflektierende Proben. Elemente, die bereits anhand der 1 oder 2 erläutert wurden, werden nicht weiter beschrieben. Sie sind in der Figur mit den gleichen Bezugszeichen versehen.
  • Für stark lichtstreuende Oberflächen, wie z. B. Gewebeschnitte ist die Autofokuseinrichtung gemäß 3 abgewandelt. Es handelt sich um eine Einrichtung, die vorwiegend das von der Probe gestreute Licht analysiert.
  • Bei dieser Anordnung schließt der zweidimensionale Lichtmodulator 12 mit der optischen Achse OA2 einen Winkel zwischen 0° und 90°, bevorzugt zwischen 20° und 70° ein. Der Lichtmodulator 12 entspricht wieder der bereits geschilderten Bauweise, d. h. es kann sich um ein Transmissions-LCD, ein Reflexions-LCD, ein DMD oder ein Amplitudengitter mit Verschiebevorrichtung handeln. Die Struktur besteht vorzugsweise wiederum aus Hell-Dunkel-Streifen. Die Beleuchtung des Lichtmodulators 12 erfolgt vorzugsweise durch eine oder mehrere leistungsstarke LED. Auch dies war bei den 1 und 2 möglich. Bei einem Transmissionsmodulator ist dabei die Lichtquelle 13 vorgesehen, bei einem Reflexionsmodulator die Lichtquelle 14. Übliche optische Vorrichtungen zur Lichthomogenisierungen und Optiken zu Zwischenabbildungen können zur Erzeugung des Modulationsobjektes mit dem Lichtmodulator 12 verwendet werden und sind aus Gründen der Übersicht in der 3 (wie auch in den 1 und 2) nicht dargestellt.
  • Mit Hilfe der Beleuchtungstubusoptik 7 und des Objektivs 4 wird das Modulationsobjekt in die Probe 2 abgebildet. Da der Lichtmodulator 12 und damit das Modulationsobjekt nicht senkrecht zur optischen Achse steht, wird das Modulationsobjekt (z. B. alternierende Hell-Dunkel-Streifen) schräg zur optischen Achse und damit in die Tiefe der Probe abgebildet.
  • Die Bildebene der Kamera 18 liegt in einer zum Lichtmodulator 12 und damit zum Modulationsobjekt konjugierten Ebene. Sie ist also im gleichen Winkel zur optischen Achse (hier die optische Achse OA3) verkippt, wie der Lichtmodulator 12. Hierdurch wird von der Probe gestreutes Licht moduliert auf die Kamera 18 abgebildet. Der Kontrast des Modulationsobjektes erscheint auf Kamera 18 nur dort, wo er von der Probe gestreut wird. Daher ist die Ausführung in 2 besonders für dünne oder intransparente, streuende Proben geeignet, beispielsweise in der Materialmikroskopie.
  • Zusätzlich weist die Autofokuseinrichtung für die Autofokusfunktion noch die Kamera 16 auf, deren Bildebene gegenüber dem Lichtmodulator 12 und damit dem Modulationsobjekt schräg steht, da sie senkrecht zur optischen Achse OA3 liegt. Sie ist über einen 50%-Splitter 17 eingespiegelt.
  • 4 zeigt eine weitere Abwandlung des Mikroskops hinsichtlich der Autofokuseinrichtung. Die Anordnung der 4 unterscheidet sich von der der 3 dadurch, daß die Kamera 18 nun gegensinnig zum Lichtmodulator verkippt ist. Die Bildebene der Kamera 18 und der Lichtmodulator 12 sind hier derart verkippt, daß sie nicht konjugiert zueinander liegen. Hierdurch kann der Fangbereich vergrößert, typischerweise verdoppelt werden.
  • 4 zeigt gestrichelt noch eine Alternative zur Ankopplung der Autofokuseinrichtung an den Strahlengang des Mikroskops 1. Diese Alternative ist prinzipiell für alle Bauweisen der Autofokuseinrichtung möglich und sieht einen eigenständigen Strahlteiler 11' im Mikroskopstrahlengang vor, der die Strahlung des Lichtmodulators 12 einkoppelt und die Darstellung des in die Probe abgebildeten Modulationsobjektes auf die Kamera 16 bzw. 18 leitet. In der Darstellung der 4 entfällt bei dieser Bauweise dann der Strahlteiler 11. Statt dessen ist optional ein Umlenkspiegel 11" vorgesehen. Auch erfolgt die Einkopplung über den Strahlteiler 11 mittels einer optionalen Optik 20, die eine gegebenenfalls nötige Zwischenabbildung erzeugt und sicherstellt, daß das Modulationsobjekt, d. h. der beleuchtete Lichtmodulator 12, in einer zur Fokusebene des Objektives 4 konjugierten Ebene liegt, mithin das Modulationsobjekt durch das Objektiv 4 in die Probe 2 abgebildet wird.
  • Die in 4 exemplarisch alternativ eingezeichnete Bauweise hat den Vorteil, daß die Autofokuseinrichtung sehr zuverlässig simultan zu allen gängigen Mikroskopiervorgängen arbeiten kann. Insbesondere ist es möglich, für das Modulationsobjekt, d. h. die Beleuchtung des Lichtmodulators 12, Strahlung zu verwenden, die mit ihrer Wellenlänge oberhalb der für die Mikroskopiervorgänge verwendeten Wellenlängen liegt. Bei Fluoreszenz- oder Durchlichtmessungen kann ein Wellenlängenbereich oberhalb von 700 nm, vorzugsweise oberhalb von 800 nm für die Autofokuseinrichtung verwendet werden. Ein zusätzlicher Spektralfilter vor der Kamera bzw. den Kameras kann potentiell störendes Licht der Mikroskopbeleuchtung effektiv unterdrücken.
  • Die Bauweisen der 1 bis 4 zeigen die Anordnung der Autofokuseinrichtung bei einem aufrechten Mikroskop 1 mit einem Objektträger als Probenhalter. Zwischen Objektträger und Objektiv kann sich ein Deckglas wie auch eine Immersionsflüssigkeit (z. B. Öl, Wasser, Glycerin) befinden. Dies ist aber nicht zwingend erforderlich. Es gibt also zwei zu unterscheidende Anwendungsfälle: Ohne Immersionsflüssigkeit erzeugt den höchsten Gitterkontrast die Luft/Glas-Grenzfläche an der Deckglas- oder Objektträgeroberseite. Mit Immersionsflüssigkeit erhält man den höchsten Gitterkontrast von der Grenzfläche zwischen Deckglas-Unterseite und Einbettmedium. Zur Unterdrückung von Streulicht oder unerwünschten Reflexen können Blenden, z.B. halbkreisförmige Blenden, in den Autofokus-Strahlengang eingebracht werden.
  • Der Strahlteiler 11 oder 11' kann eine planparallele Glasplatte sein, die auf einer Seite entspiegelt ist, ohne störende Sekundärbilder zu vermeiden. Die der Reflexion des Autofokussignals dienende Seite der Glasplatte kann auch eine dichroitische Beschichtung aufweisen, die die Reflektivität für das langwellige Autofokuslicht erhöht (wenn die Variante mit langwelliger Autofokusbeleuchtung verwendet wird) und das kurzwelligere Nutzlicht der Mikroskopie (z. B. Fluoreszenzstrahlung) überwiegend transmittieren.
  • 5 zeigt ein inverses Mikroskop 1 mit einer erfindungsgemäßen Autofokusvorrichtung. Solche inversen Mikroskope werden vorwiegend zum Auslesen von Titerplatten verwendet, welche nach oben geöffente Küvetten 22 mit Flüssigkeiten besitzen. Zu Fokussieren ist hier meist auf die der Glas/Flüssigkeits-Grenzfläche des Titerplattenbodens oder in der Nähe, an dem meist Zellen haften. Da diese Zellen den Kontrast des projizierten Gitters, d. h. des Modulationsobjektes, beeinträchtigen, werden bei dieser Bauweise vorzugsweise mindestens 10 Zeilen der flächigen Kamera 16 ausgewertet. Dadurch kann das Kontrastsignal über eine größere Anzahl von Zeilen gemittelt werden, was die Meßgenauigkeit wesentlich verbessert. Zwischen Objektiv 4 und Titerplattenboden kann sich wiederum Luft oder eine Immersionsflüssigkeit befinden, das oben bereits Gesagte gilt analog. Der einzige Unterschied besteht darin, daß anstelle des Einbettmediums eine ausgedehnte Flüssigkeitssäule vorliegt, die über der Probe in der Küvette 22 steht.
  • Die Autofokuseinrichtung ist in der Bauweise der 5 wiederum über einen eigenen Strahlteiler 11' in den Mikroskopstrahlengang und nicht in den Beleuchtungsstrahlengang eingekoppelt. Ansonsten gilt das bereits Gesagte analog. Zusätzlich ist in 5 noch der optionale Spektralfilter 21 eingezeichnet. Auch ist die Ausleuchtungsoptik 23 zur Erzeugung des Modulationsobjektes aus dem Lichtmodulator 12 exemplarisch dargestellt. Zur homogenen Ausleuchtung des Lichtmodulators 12 enthält vorzugsweise die Ausleuchtungsoptik 23 auch eine Streuscheibe. Eine Ausleuchtungsoptik 23 kann in allen beschriebenen Varianten verwendet werden.
  • Weiter zeigt 5, daß die Signale der Kamera 16 an ein Steuergerät 26 geleitet werden, das entsprechende Berechnungen vornimmt und unter anderem einen z-Antrieb 27 zur Verstellung der Fokuslage ansteuert. Natürlich ist das Steuergerät 26 in der Regel auch mit dem Lichtmodulator 12 verbunden, sofern dieser ansteuerbar ist. Gleiches gilt für die Lichtquelle 13. Das Steuergerät und die damit verbundenen Elemente sind auch bei den Bauweisen gemäß 1 bis 4 möglich.
  • 6 zeigt eine Abwandlung der Bauweise der 5. Hier ist nun analog zur Bauweise der 1 die Autofokuseinrichtung über den Strahlteiler 11 in den Beleuchtungsstrahlengang eingespiegelt. Die separate Optik 20 kann entfallen, da dann keine Autofokusbeleuchtungstubusoptik nötig ist; deren Funktion wird von der Beleuchtungstubusoptik 7 erfüllt. Zusätzlich sind in 6 noch optionale Filter 24 und 25 im Beleuchtungsstrahlengang eingezeichnet. Auch ist der Einkopplung über den Strahlteiler 11 in Abbildungsrichtung des Modulationsobjektes eine Verkleinerungsoptik 28 vorgeordnet, die den Fangbereich der Autofokuseinrichtung beeinflußt und so dessen ideale Auslegung ermöglicht. Die Optiken 7, 20 und 28 können auch als (motorisierte) Variooptiken ausgelegt sein, um unterschiedliche Objektiwergrößerungen auszugleichen.
  • Für alle Ausführungsformen des Mikroskops 1 mit Autofokuseinrichtung gilt folgendes.:
    Um bei einem Online-Tracking möglichst geringe Einflüsse durch die strukturierte Beleuchtung, d. h. das Bild des Modulationsobjektes, zu produzieren, kann als Modulationsobjekt ein Streifenmuster auf die Probe projiziert werden, das in schneller Folge (>30 Hz) alternierend lateral verschoben wird. Bei zwei Positionen wäre es eine Phasenverschiebung um 180°, bei drei Positionen eine Phasenverschiebung um 120°. Die Gitterstruktur (Gitterkonstante, Hell/Dunkel-Verhältnis) kann dabei über den elektronischen Lichtmodulator 12 in der Ansteuerung leicht derart angepaßt werden, daß im zeitlichen Mittel eine homogene Beleuchtung entsteht. Die Anpassung der optimalen Gitterstruktur an das jeweils verwendete Objektiv 4 bzw. dessen NA oder Vergrößerung ist auch möglich.
  • Ein weiterer Vorteil eines verstellbaren, insbesondere ansteuerbaren Lichtmodulators 12 und damit einer variablen Autofokus-Beleuchtungsstruktur besteht darin, nach dem Auffinden eines Objektes nur noch die interessanten Bereiche des Objektfeldes auszuleuchten. Hierdurch kann der Bildkontrast für die Tracking-Vorrichtung, gegebenenfalls aber auch für den normalen Detektionskanal erhöht werden.
  • Prinzipiell ist die strukturierte Autofokus-Beleuchtung, z.B. mittels LCD oder DMD, auch bei einem Durchlichtmikroskop und/oder als Dunkelfeldbeleuchtung realisierbar. Im Durchlicht ist die Anwendung dann aber auf transparente Probenträger sowie auf streuende oder fluoreszierende Proben eingeschränkt.
  • Bei allen Varianten des Autofokus- und Tracking-Systems wird eine rechnerische Steuer- und Auswerteeinrichtung (z.B. ein Computer) verwendet, die die Signalanalyse und die Steuerung des Aktuatoren (z-Trieb, x-y-Tisch, Filter etc.) vornimmt. Auswertung und Steuerung können Firmware- und/oder Software-technisch implementiert werden. Diese Steuer- und Auswerteeinrichtung übernimmt sämtliche hier geschilderte Ablaufsteuerung.
  • Statt verstellbarer, z. B. elektrisch schaltbarer Lichtmodulatoren (z. B. LCD, DMD) können auch statische Lichtmodulatoren (Transmissions- oder Phasengitter) verwendet werden. Das projizierte Modulationsobjekt kann mit verkippbaren Planplatten oder anderen Vorrichtungen probenseitig verschiebbar sein. Ein Austausch der Gitter kann zur Variation der Gitterkonstante oder -struktur ebenfalls möglich sein. Alternativ dazu kann eine flächige Gitterstruktur verwendet werden, die mehrere unterschiedliche Gitterperioden aufweist, beispielsweise 2 bis 10 nebeneinander angeordnete Streifengitter mit unterschiedlichen Gitterfrequenzen.
  • Da das erfindungsgemäße Autofokusverfahren mit flächigen (zweidimensionalen) Kameras arbeitet, kann für jeden Anwendungsfall das am besten geeignete Gitter durch Auslesen der entsprechenden Kamerazeilen gewählt werden, ohne mechanische Änderungen (Austausch des Gitters) vornehmen zu müssen. Grundsätzlich sind senkrecht zur optischen Achse stehende Lichtmodulatoren 12 als Transmissionsmodulatoren leichter implementierbar, während geneigte Lichtmodulatoren 12 leichter als Reflexionsmodulatoren realisierbar sind. Sollen sehr kleine Objekte durch das Tracking-System erfaßt werden, so kann es vorkommen, daß eine hinreichend hochfrequente Beleuchtungsmodulation nicht mehr möglich ist. In diesem Fall kann auch räumlich unmoduliert beleuchtet und nur die Intensität der gestreuten oder reflektierten Signale ausgewertet werden. Als ortsauflösende Detektoren kommen neben CCD-Kameras auch CMOS- sowie alle anderen Arten von Digitalkameras in Frage.
  • Die Autofokuseinrichtung soll einen bestimmten Bereich der Probe automatisch fokussieren oder in der Fokusebene des Objektivs halten. Hierzu kann ein Offset (typisch 0 ... 1000 μm) zwischen Grenzfläche und relevanter Probenebene vorgegeben werden. Wird dieser Offset in Stufen variiert, so ist es auch möglich sogenannte z-Stapel von Bildern aufzunehmen, wobei jedes Bild einen definierten und kontrollierten Abstand zur Grenzfläche hat. Die Anordnung kann in Verbindung mit allen gängigen Kontrastverfahren der Mikroskopie verwendet werden: u.a. Fluoreszenz, Durchlicht, Phasenkontrast, Interferenzkontrast, Polarisationskontrast, Auflicht, Luminiszenz, CARS (= Coherent Anti-Stokes Raman Scattering), OCT (= Optical Coherence Tomography), SPIM (= Selective Plane Illumination) etc.

Claims (13)

  1. Mikroskop mit einem eine Probe (2) entlang eines Mikroskopstrahlenganges abbildenden Objektiv (4) und einer Autofokuseinrichtung, die a) einen Autofokusstrahlengang aufweist, welcher über einen Strahlteiler (6, 11') in den Mikroskopstrahlengang eingekoppelt ist, b) einen Lichtmodulator (12) zur Erzeugung eines zweidimensionalen, intensitätsmodulierten Modulationsobjektes aufweist, das im Autofokusstrahlengang in einer zur Fokusebene des Objektives (4) konjugierten Ebene liegt oder diese schneidet und in die Fokusebene des Objektives (4) abgebildet ist, und c) eine Kamera (16) zur Aufnahme eines zweidimensionalen Bildes aufweist, auf die das in der Probe (2) liegende Bild des Modulationsobjektes abgebildet ist, wobei die Bildebene der Kamera (16) eine zum Modulationsobjekt konjugierte Ebene schneidet oder in dieser Ebene liegt und die Kamera (16) den Kontrast des in der Probe (2) liegenden Bildes des Modulationsobjekt erfaßt, d) wobei das Modulationsobjekt und/oder die Bildebene der Kamera (16) schräg zur optischen Achse (OA2, OA3) des Autofokusstrahlenganges liegen/liegt.
  2. Mikroskop nach Anspruch 1, dadurch gekennzeichnet, daß der Lichtmodulator (12) ansteuerbar und zur Erzeugung eines räumlich oder zeitlich intensitätsmodulierten Modulationsobjektes ausgebildet ist.
  3. Mikroskop nach Anspruch 2, dadurch gekennzeichnet, daß der Lichtmodulator (12) ein beleuchtetes LCD- oder DMD-Element aufweist.
  4. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß das abgebildete Modulationsobjekt eine Streifengitterstruktur oder mehrere unterschiedliche Streifenstrukturen aufweist.
  5. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß das in der Probe (2) liegende Bild des Modulationsobjektes auf die Kamera (16) über eine zwischen Lichtmodulator (12) und Strahlteiler (6) liegenden weiteren Strahlteiler (15) abgebildet ist.
  6. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß das Modulationsobjekt und/oder die Bildebene der Kamera (16) einen Winkel zwischen 10° und 80° mit der optischen Achse (OA2, OA3) einschließen/einschließt.
  7. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß zumindest das Modulationsobjekt in einen Auflichtbeleuchtungsstrahlengang (7, 8) eingespiegelt ist.
  8. Mikroskop nach Anspruch 7, dadurch gekennzeichnet, daß die Kamera (16) parallel zum Auflichtbeleuchtungsstrahlengang (7, 8) mittels einer Optik (20) in den Mikroskopstrahlengang eingespiegelt ist.
  9. Mikroskop nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß der Autofokusstrahlengang in einen Auflichtbeleuchtungsstrahlengang (7, 8) des Mikroskops oder über eine Optik (10) parallel zum Auflichtbeleuchtungsstrahlengang (7, 8) in den Mikroskopstrahlengang eingespiegelt ist.
  10. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß zwei Kameras (16, 18) gemäß Merkmal c) des Anspruchs 1 vorgesehen sind, deren Bildebenen zueinander geneigt sind.
  11. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß ein festes Transmissions- oder Reflexionsgitter als Modulationsobjekt verwendet ist.
  12. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß ein Dichroit (6, 11') zur Ein-/Auskopplung der Autofokusstrahlung verwendet ist.
  13. Mikroskop nach einem der obigen Ansprüche, dadurch gekennzeichnet, daß das Modulationsobjekt von einer oder mehreren LED beleuchtet ist.
DE102006027836.4A 2006-06-16 2006-06-16 Mikroskop mit Autofokuseinrichtung Active DE102006027836B4 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
DE102006027836.4A DE102006027836B4 (de) 2006-06-16 2006-06-16 Mikroskop mit Autofokuseinrichtung
EP07785823A EP2030062B1 (de) 2006-06-16 2007-06-15 Autofokuseinrichtung für die mikroskopie
US12/305,183 US8643946B2 (en) 2006-06-16 2007-06-15 Autofocus device for microscopy
PCT/EP2007/005309 WO2007144197A1 (de) 2006-06-16 2007-06-15 Autofokuseinrichtung für die mikroskopie
AT07785823T ATE481658T1 (de) 2006-06-16 2007-06-15 Autofokuseinrichtung für die mikroskopie
DE502007005053T DE502007005053D1 (de) 2006-06-16 2007-06-15 Autofokuseinrichtung für die mikroskopie

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102006027836.4A DE102006027836B4 (de) 2006-06-16 2006-06-16 Mikroskop mit Autofokuseinrichtung

Publications (2)

Publication Number Publication Date
DE102006027836A1 true DE102006027836A1 (de) 2007-12-20
DE102006027836B4 DE102006027836B4 (de) 2020-02-20

Family

ID=38512411

Family Applications (2)

Application Number Title Priority Date Filing Date
DE102006027836.4A Active DE102006027836B4 (de) 2006-06-16 2006-06-16 Mikroskop mit Autofokuseinrichtung
DE502007005053T Active DE502007005053D1 (de) 2006-06-16 2007-06-15 Autofokuseinrichtung für die mikroskopie

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE502007005053T Active DE502007005053D1 (de) 2006-06-16 2007-06-15 Autofokuseinrichtung für die mikroskopie

Country Status (5)

Country Link
US (1) US8643946B2 (de)
EP (1) EP2030062B1 (de)
AT (1) ATE481658T1 (de)
DE (2) DE102006027836B4 (de)
WO (1) WO2007144197A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007055530A1 (de) * 2007-11-21 2009-05-28 Carl Zeiss Ag Laserstrahlbearbeitung
DE102008005356A1 (de) 2008-01-21 2009-07-23 Carl Zeiss Sms Gmbh Autofokusvorrichtung und Autofokussierverfahren für eine Abbildungsvorrichtung
DE102008005355A1 (de) 2008-01-21 2009-07-23 Carl Zeiss Sms Gmbh Autofokusvorrichtung und Autofokussierverfahren für eine Abbildungsvorrichtung
DE102011077236A1 (de) * 2011-06-08 2012-12-13 Carl Zeiss Microlmaging Gmbh Autofokusverfahren für Mikroskop und Mikroskop mit Autofokuseinrichtung
EP2824498A1 (de) * 2013-07-11 2015-01-14 Carl Zeiss Microscopy GmbH Verfahren zur Detektion und Zufuhrsteuerung eines Immersionsmediums
DE102014002584A1 (de) 2014-01-23 2015-07-23 Euroimmun Medizinische Labordiagnostika Ag Verfahren zum Abbilden eines Obiektes und Optikvorrichtung
US9229209B2 (en) 2008-01-21 2016-01-05 Carl Zeiss Smt Gmbh Autofocus device and autofocusing method for an imaging device
US9297994B2 (en) 2011-09-09 2016-03-29 Carl Zeiss Sms Gmbh Grating-assisted autofocus device and autofocusing method for an imaging device
US9389405B2 (en) 2012-12-13 2016-07-12 Carl Zeiss Microscopy Gmbh Autofocus method for microscope and microscope with autofocus device
DE102015116452A1 (de) 2015-09-29 2017-03-30 Carl Zeiss Microscopy Gmbh Mikroskop
DE102016108079A1 (de) * 2016-05-02 2017-11-02 Carl Zeiss Microscopy Gmbh Artefaktreduktion bei der winkelselektiven beleuchtung
DE102016113068A1 (de) * 2016-07-15 2018-01-18 Carl Zeiss Microscopy Gmbh Verfahren und Vorrichtung zum Bestimmen der Lage einer optischen Grenzfläche entlang einer ersten Richtung
EP2495592A4 (de) * 2009-07-13 2018-04-18 Nikon Corporation Dreidimensionale steuervorrichtung für direktionale drift und mikroskopvorrichtung damit
EP2592460B1 (de) * 2011-11-11 2020-10-28 ATMOS Medizintechnik GmbH & Co. KG Maßstabseinblendung
DE102013106585B4 (de) * 2012-07-31 2021-04-29 Cognex Corporation System und Verfahren zur Feststellung der Brennweite einer Objektivanordnung

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5289756B2 (ja) * 2007-11-26 2013-09-11 オリンパス株式会社 顕微鏡観察システム
DE102008018951A1 (de) * 2008-04-15 2009-10-22 Carl Zeiss Microimaging Gmbh Mikroskop mit Haltefokuseinheit
DE102008018952B4 (de) 2008-04-15 2021-01-14 Carl Zeiss Microscopy Gmbh Mikroskop mit Haltefokus-Regelung
DE102008018864B4 (de) 2008-04-15 2022-01-05 Carl Zeiss Microscopy Gmbh Mikroskop mit Haltefokus-Steuerung
DE102008029661A1 (de) * 2008-06-24 2009-12-31 Khs Ag Redundante Inspektion
US20110228070A1 (en) * 2009-11-07 2011-09-22 Courosh Mehanian System and Method for Determining Image Focus by Sampling the Image at Multiple Focal Planes Simultaneously
CN102893198B (zh) * 2010-05-18 2015-11-25 皇家飞利浦电子股份有限公司 自动聚焦成像***、成像方法及显微镜
US8988508B2 (en) * 2010-09-24 2015-03-24 Microsoft Technology Licensing, Llc. Wide angle field of view active illumination imaging system
FR2969282B1 (fr) * 2010-12-21 2014-07-18 Horiba Jobin Yvon Sas Dispositif et procede de visualisation et de mesure de diffusion raman
US20130169959A1 (en) * 2011-07-08 2013-07-04 Optopo Inc. d/b/a Centice Corp. Zero order sensing to increase light collection in a spectrometer
DE102011084562B4 (de) 2011-10-14 2018-02-15 Leica Microsystems Cms Gmbh Verfahren und Vorrichtung zur Feststellung und Korrektur von sphärischen Abbildungsfehlern in einem mikroskopischen Abbildungsstrahlengang
DE102011086018A1 (de) 2011-11-09 2013-05-16 Carl Zeiss Ag Verfahren und Anordnung zur Autofokussierung eines Mikroskops
US9488819B2 (en) * 2012-08-31 2016-11-08 Nanotronics Imaging, Inc. Automatic microscopic focus system and method for analysis of transparent or low contrast specimens
US20140168402A1 (en) * 2012-12-13 2014-06-19 Vala Sciences, Inc. Continuous-Scanning Image Acquisition in Automated Microscopy Using Reflective Autofocus
US20140282984A1 (en) * 2013-03-14 2014-09-18 Microsoft Corporation Service relationship and communication management
CN109142195B (zh) 2013-03-15 2021-10-01 艾瑞思国际股份有限公司 用于体液样品中的粒子分析的自聚焦***和方法
US9316635B2 (en) 2013-03-15 2016-04-19 Iris International, Inc. Sheath fluid systems and methods for particle analysis in blood samples
US9857361B2 (en) 2013-03-15 2018-01-02 Iris International, Inc. Flowcell, sheath fluid, and autofocus systems and methods for particle analysis in urine samples
DE102013016367A1 (de) 2013-09-30 2015-04-02 Carl Zeiss Microscopy Gmbh Lichtmikroskop und Verfahren zum Untersuchen einer Probe mit einem Lichtmikroskop
GB201318919D0 (en) 2013-10-25 2013-12-11 Isis Innovation Compact microscope
JP6131204B2 (ja) 2014-02-28 2017-05-17 富士フイルム株式会社 観察装置
US10274715B2 (en) * 2014-08-06 2019-04-30 Cellomics, Inc. Image-based laser autofocus system
TWI653465B (zh) * 2014-10-24 2019-03-11 億觀生物科技股份有限公司 顯微鏡模組及顯微鏡裝置
GB201507021D0 (en) 2015-04-24 2015-06-10 Isis Innovation Compact microscope
WO2017053891A1 (en) * 2015-09-24 2017-03-30 Leica Biosystems Imaging, Inc. Real-time focusing in line scan imaging
CN108351504A (zh) 2015-11-11 2018-07-31 斯科皮奥实验室有限公司 用于在不同照射条件下生成图像的计算显微镜及方法
DE102016108226A1 (de) 2016-05-03 2017-11-09 Carl Zeiss Microscopy Gmbh Mikroskop
DE102016212462A1 (de) * 2016-07-08 2018-01-11 Carl Zeiss Smt Gmbh Vorrichtung zur Moiré-Vermessung eines optischen Prüflings
ES2666712B1 (es) * 2016-10-03 2019-03-28 Consejo Superior Investigacion Uso de un material para la fabricacion de un cubreobjetos, un portamuestras o un recipiente de cultivo celular
DE102016122528A1 (de) 2016-11-22 2018-05-24 Carl Zeiss Microscopy Gmbh Verfahren zum Steuern oder Regeln einer Mikroskopbeleuchtung
DE102016122529A1 (de) 2016-11-22 2018-05-24 Carl Zeiss Microscopy Gmbh Mikroskop zur Abbildung eines Objekts
EP3547895B1 (de) * 2016-11-30 2021-02-17 Alcon Inc. Visualisierungssysteme und verfahren für optimierte optische kohärenztomografie
US10477097B2 (en) 2017-01-03 2019-11-12 University Of Connecticut Single-frame autofocusing using multi-LED illumination
JP6786424B2 (ja) * 2017-03-13 2020-11-18 株式会社モリタ製作所 三次元スキャナ
US10502944B2 (en) 2017-10-02 2019-12-10 Nanotronics Imaging, Inc. Apparatus and method to reduce vignetting in microscopic imaging
TWI791046B (zh) * 2017-10-02 2023-02-01 美商奈米創尼克影像公司 減少顯微鏡成像中之暈影的設備及方法
US10247910B1 (en) 2018-03-14 2019-04-02 Nanotronics Imaging, Inc. Systems, devices and methods for automatic microscopic focus
US10146041B1 (en) 2018-05-01 2018-12-04 Nanotronics Imaging, Inc. Systems, devices and methods for automatic microscope focus
WO2020064108A1 (en) * 2018-09-27 2020-04-02 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Method of and apparatus for forming and shifting a light intensity distribution in a focal area of an objective lens
DE102018126009B4 (de) 2018-10-19 2022-05-19 Leica Microsystems Cms Gmbh Verfahren und Mikroskop zur Bestimmung der Dicke eines Deck- oder Tragglases
US10895727B1 (en) 2019-10-19 2021-01-19 SequLITE Genomics US, Inc. Microscope for locating structures on the inner surface of a fluidic channel
CN111679418B (zh) * 2020-07-01 2022-06-14 湖南国科智瞳科技有限公司 基于激光图像的显微镜自动聚焦方法、***及计算机设备
CN113687492A (zh) * 2021-08-17 2021-11-23 深圳市卡提列光学技术有限公司 自动调焦***

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127284A1 (de) * 2001-06-05 2002-12-12 Zeiss Carl Jena Gmbh Autofokussiereinrichtung für ein optisches Gerät
DE10319182A1 (de) * 2003-04-29 2004-12-23 Carl Zeiss Jena Gmbh Verfahren und Anordnung zur Bestimmung der Fokusposition bei der Abbildung einer Probe

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3212393A1 (de) * 1982-04-02 1983-10-13 Karl Süss KG, Präzisionsgeräte für Wissenschaft und Industrie - GmbH & Co, 8046 Garching Verfahren zur interferenzverschmierung sowie ausrichtverfahren und -vorrichtung
JPH07122694B2 (ja) * 1986-10-16 1995-12-25 オリンパス光学工業株式会社 顕微鏡用照明装置
DD253688A1 (de) 1986-11-06 1988-01-27 Zeiss Jena Veb Carl Optische anordnung und verfahren zur lichtelektrischen entfernungseinstellung
DE4131737C2 (de) * 1991-09-24 1997-05-07 Zeiss Carl Fa Autofokus-Anordnung für ein Stereomikroskop
US5239170A (en) 1991-10-23 1993-08-24 Karl Suss America, Incorporated Autofocus method and apparatus for imaging microscopy using a predetermined visual imaging feature
US5416562A (en) * 1992-03-06 1995-05-16 Nikon Corporation Method of detecting a position and apparatus therefor
JPH0787378A (ja) * 1993-09-09 1995-03-31 Topcon Corp 合焦検出装置
US5923466A (en) 1993-10-20 1999-07-13 Biophysica Technologies, Inc. Light modulated confocal optical instruments and method
US5587832A (en) 1993-10-20 1996-12-24 Biophysica Technologies, Inc. Spatially light modulated confocal microscope and method
IL111229A (en) * 1994-10-10 1998-06-15 Nova Measuring Instr Ltd Autofocusing microscope
US5867604A (en) * 1995-08-03 1999-02-02 Ben-Levy; Meir Imaging measurement system
GB9603788D0 (en) 1996-02-22 1996-04-24 Isis Innovation Confocal microscope
US5991004A (en) * 1996-04-03 1999-11-23 Mrs Technology, Inc. Lens focus shift sensor
JP3462006B2 (ja) 1996-05-20 2003-11-05 株式会社ミツトヨ オートフォーカス装置
IT1286838B1 (it) 1996-09-25 1998-07-17 Consiglio Nazionale Ricerche Metodo per la raccolta di immagini in microscopia confocale
DE19758745C5 (de) 1997-01-27 2008-09-25 Carl Zeiss Jena Gmbh Laser-Scanning-Mikroskop
DE19713362A1 (de) * 1997-03-29 1998-10-01 Zeiss Carl Jena Gmbh Konfokale mikroskopische Anordnung
EP0911667B1 (de) 1997-10-22 2003-04-02 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Programmierbares räumlich lichtmoduliertes Mikroskop und Mikroskopieverfahren
US6677565B1 (en) * 1998-08-18 2004-01-13 Veeco Tucson Inc. High speed autofocus and tilt for an optical imaging system
CN1338045A (zh) 1998-09-21 2002-02-27 亚历山大·阿哈多维奇·加聂耶夫 样品的热离子热雾化方法及装置
GB9901365D0 (en) 1999-01-22 1999-03-10 Isis Innovations Ltd Confocal microscopy apparatus and method
US6640014B1 (en) 1999-01-22 2003-10-28 Jeffrey H. Price Automatic on-the-fly focusing for continuous image acquisition in high-resolution microscopy
AU6075100A (en) 1999-07-07 2001-01-30 Ljl Biosystems, Inc. Light detection device
EP1098166B1 (de) 1999-11-08 2008-12-03 Leica Microsystems CMS GmbH Verfahren und Vorrichtung zur Dickenmessung von durchsichtigen Filmen
DE10013254A1 (de) 2000-03-17 2001-10-04 Friz Biochem Gmbh Vorrichtung und Verfahren zum Nachweis organischer Moleküle in einer Probensubstanz
US6567163B1 (en) 2000-08-17 2003-05-20 Able Signal Company Llc Microarray detector and synthesizer
DE10112639A1 (de) 2001-03-16 2002-09-19 Zeiss Carl Jena Gmbh Mikroskop mit Autofokussiereinrichtung
US6794625B2 (en) * 2001-05-15 2004-09-21 Applied Materials Dynamic automatic focusing method and apparatus using interference patterns
JP5048899B2 (ja) 2001-09-28 2012-10-17 オリンパス株式会社 顕微鏡
US6885492B2 (en) * 2001-11-08 2005-04-26 Imaginative Optics, Inc. Spatial light modulator apparatus
GB0200819D0 (en) 2002-01-15 2002-03-06 Cole Polytechnique Federale De Microscopy imaging apparatus and method for generating an image
DE10304105B4 (de) * 2003-01-31 2006-05-18 Carl Zeiss Verfahren zur Bestimmung der Fokusabweichung einer optischen Anordnung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10127284A1 (de) * 2001-06-05 2002-12-12 Zeiss Carl Jena Gmbh Autofokussiereinrichtung für ein optisches Gerät
DE10319182A1 (de) * 2003-04-29 2004-12-23 Carl Zeiss Jena Gmbh Verfahren und Anordnung zur Bestimmung der Fokusposition bei der Abbildung einer Probe

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8389893B2 (en) 2007-11-21 2013-03-05 Nanoscribe Gmbh Laser beam machining
DE102007055530A1 (de) * 2007-11-21 2009-05-28 Carl Zeiss Ag Laserstrahlbearbeitung
DE102008005356B4 (de) * 2008-01-21 2017-01-26 Carl Zeiss Smt Gmbh Autofokusvorrichtung und Autofokussierverfahren für eine Abbildungsvorrichtung
DE102008005356A1 (de) 2008-01-21 2009-07-23 Carl Zeiss Sms Gmbh Autofokusvorrichtung und Autofokussierverfahren für eine Abbildungsvorrichtung
DE102008005355A1 (de) 2008-01-21 2009-07-23 Carl Zeiss Sms Gmbh Autofokusvorrichtung und Autofokussierverfahren für eine Abbildungsvorrichtung
US9229209B2 (en) 2008-01-21 2016-01-05 Carl Zeiss Smt Gmbh Autofocus device and autofocusing method for an imaging device
DE102008005355B4 (de) * 2008-01-21 2016-10-06 Carl Zeiss Smt Gmbh Autofokusvorrichtung und Autofokussierverfahren für eine Abbildungsvorrichtung
US10613311B2 (en) 2009-07-13 2020-04-07 Nikon Corporation Three-dimensional drift control apparatus and microscope apparatus
EP2495592A4 (de) * 2009-07-13 2018-04-18 Nikon Corporation Dreidimensionale steuervorrichtung für direktionale drift und mikroskopvorrichtung damit
DE102011077236A1 (de) * 2011-06-08 2012-12-13 Carl Zeiss Microlmaging Gmbh Autofokusverfahren für Mikroskop und Mikroskop mit Autofokuseinrichtung
WO2012168244A1 (de) 2011-06-08 2012-12-13 Carl Zeiss Microscopy Gmbh Autofokusverfahren für mikroskop und mikroskop mit autofokuseinrichtung
US10116855B2 (en) 2011-06-08 2018-10-30 Carl Zeiss Microscopy Gmbh Autofocus method for microscope and microscope comprising autofocus device
US9297994B2 (en) 2011-09-09 2016-03-29 Carl Zeiss Sms Gmbh Grating-assisted autofocus device and autofocusing method for an imaging device
EP2592460B1 (de) * 2011-11-11 2020-10-28 ATMOS Medizintechnik GmbH & Co. KG Maßstabseinblendung
DE102013106585B4 (de) * 2012-07-31 2021-04-29 Cognex Corporation System und Verfahren zur Feststellung der Brennweite einer Objektivanordnung
US9389405B2 (en) 2012-12-13 2016-07-12 Carl Zeiss Microscopy Gmbh Autofocus method for microscope and microscope with autofocus device
US9753266B2 (en) 2013-07-11 2017-09-05 Carl Zeiss Microscopy Gmbh Method for detecting and controlling supply of an immersion medium
EP2824498A1 (de) * 2013-07-11 2015-01-14 Carl Zeiss Microscopy GmbH Verfahren zur Detektion und Zufuhrsteuerung eines Immersionsmediums
DE102014002584A1 (de) 2014-01-23 2015-07-23 Euroimmun Medizinische Labordiagnostika Ag Verfahren zum Abbilden eines Obiektes und Optikvorrichtung
DE102015116452A1 (de) 2015-09-29 2017-03-30 Carl Zeiss Microscopy Gmbh Mikroskop
DE102016108079A1 (de) * 2016-05-02 2017-11-02 Carl Zeiss Microscopy Gmbh Artefaktreduktion bei der winkelselektiven beleuchtung
US10838184B2 (en) 2016-05-02 2020-11-17 Carl Zeiss Microscopy Gmbh Artefact reduction for angularly-selective illumination
DE102016113068A1 (de) * 2016-07-15 2018-01-18 Carl Zeiss Microscopy Gmbh Verfahren und Vorrichtung zum Bestimmen der Lage einer optischen Grenzfläche entlang einer ersten Richtung

Also Published As

Publication number Publication date
EP2030062A1 (de) 2009-03-04
DE102006027836B4 (de) 2020-02-20
WO2007144197A1 (de) 2007-12-21
US20100033811A1 (en) 2010-02-11
EP2030062B1 (de) 2010-09-15
DE502007005053D1 (de) 2010-10-28
ATE481658T1 (de) 2010-10-15
US8643946B2 (en) 2014-02-04

Similar Documents

Publication Publication Date Title
DE102006027836B4 (de) Mikroskop mit Autofokuseinrichtung
EP2219815B1 (de) Laserstrahlbearbeitung
EP2718763B1 (de) Autofokusverfahren für mikroskop und mikroskop mit autofokuseinrichtung
DE10257237B4 (de) Anordnung zur optischen Erfassung von in einer Probe angeregter und/oder rückgestreuter Lichtstrahlung
EP3489735B1 (de) Verfahren und anordnung zur lichtblattmikroskopie
EP2673671B1 (de) Mikroskop mit autofokuseinrichtung und verfahren zur autofokussierung bei mikroskopen
DE10004191B4 (de) Fluoreszenz-Scanmikroskop
DE19629725C2 (de) Doppelobjektiv-System für ein Mikroskop, insbesondere Rastermikroskop
DE102007017598A1 (de) Verfahren und Anordnung zum Positionieren eines Lichtblattes in der Fokusebene einer Detektionsoptik
WO2014063764A1 (de) Mikroskop mit mindestens einem beleuchtungsstrahl in form einer lichtscheibe
DE102012223128B4 (de) Autofokusverfahren für Mikroskop und Mikroskop mit Autofokuseinrichtung
DE3610165A1 (de) Optisches abtastmikroskop
EP1423746A2 (de) Mikroskop
DE102005020545A1 (de) Vorrichtung zur Steuerung von Lichtstrahlung
EP3172610A1 (de) Verfahren und vorrichtung zum mikroskopischen untersuchen einer probe
EP3948392B1 (de) Verfahren und vorrichtung zum erfassen von verlagerungen einer probe gegenüber einem objektiv
EP1882970A1 (de) Laser-Scanning-Mikroskop zur Fluoreszenzuntersuchung
EP4220270A1 (de) Verfahren und vorrichtung zum untersuchen einer probe
DE102005022125A1 (de) Lichtrastermikroskop mit Autofokusmechanismus
DE102009012293A1 (de) Autofokusverfahren und Autofokuseinrichtung
DE10024135B4 (de) Mikroskop
EP3418789A1 (de) Verfahren und mikroskopiesystem zum aufnehmen eines bildes
EP2784564A1 (de) Lichtmikroskop und Verfahren zum Untersuchen einer mikroskopischen Probe
DE102018126009B4 (de) Verfahren und Mikroskop zur Bestimmung der Dicke eines Deck- oder Tragglases
EP1543369B1 (de) Autofokus-einrichtung und verfahren zur optischen untersuchung oder/und erfassung von schichten

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
R012 Request for examination validly filed

Effective date: 20111109

R082 Change of representative

Representative=s name: GEYER, FEHNERS & PARTNER (G.B.R.), DE

R081 Change of applicant/patentee

Owner name: CARL ZEISS MICROSCOPY GMBH, DE

Free format text: FORMER OWNER: CARL ZEISS MICROIMAGING GMBH, 07745 JENA, DE

Effective date: 20130204

R082 Change of representative

Representative=s name: PATENTANWAELTE GEYER, FEHNERS & PARTNER MBB, DE

Effective date: 20130204

Representative=s name: GEYER, FEHNERS & PARTNER (G.B.R.), DE

Effective date: 20130204

R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final