DE102005022844A1 - Abtrennung von Geruchsstoffen aus Gasen - Google Patents

Abtrennung von Geruchsstoffen aus Gasen Download PDF

Info

Publication number
DE102005022844A1
DE102005022844A1 DE102005022844A DE102005022844A DE102005022844A1 DE 102005022844 A1 DE102005022844 A1 DE 102005022844A1 DE 102005022844 A DE102005022844 A DE 102005022844A DE 102005022844 A DE102005022844 A DE 102005022844A DE 102005022844 A1 DE102005022844 A1 DE 102005022844A1
Authority
DE
Germany
Prior art keywords
acid
gas
dicarboxylic acid
porous
mof
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102005022844A
Other languages
English (en)
Inventor
Ulrich Dr. Müller
Markus Dr. Schubert
Michael Dr. Hesse
Hermann Dr. Pütter
Helge Dr. Wessel
Jürgen Dr. Huff
Marcus Dr. Guzmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE102005022844A priority Critical patent/DE102005022844A1/de
Priority to JP2008511685A priority patent/JP2008540110A/ja
Priority to PCT/EP2006/062312 priority patent/WO2006122920A1/de
Priority to KR1020077028615A priority patent/KR20080020619A/ko
Priority to CNA2006800170580A priority patent/CN101175548A/zh
Priority to EP06755189A priority patent/EP1885474A1/de
Priority to US11/913,977 priority patent/US20080190289A1/en
Publication of DE102005022844A1 publication Critical patent/DE102005022844A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3242Layers with a functional group, e.g. an affinity material, a ligand, a reactant or a complexing group
    • B01J20/3244Non-macromolecular compounds
    • B01J20/3265Non-macromolecular compounds with an organic functional group containing a metal, e.g. a metal affinity ligand
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/01Products
    • C25B3/13Organo-metallic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/90Odorous compounds not provided for in groups B01D2257/00 - B01D2257/708

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)
  • Treating Waste Gases (AREA)
  • Separation Of Gases By Adsorption (AREA)

Abstract

Die vorliegende Erfindung betrifft Verfahren zur Abtrennung von Geruchsstoffen aus Gasen, wobei das Gas mit einem Filter, enthaltend ein poröses metallorganisches Gerüstmaterial, das mindestens eine an mindestens ein Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung enthält, in Kontakt gebracht wird.

Description

  • Die vorliegende Erfindung betrifft Verfahren zur Abtrennung von Geruchsstoffen aus Gasen unter Verwendung von porösen Gerüstmaterialien.
  • Geruchsstoffe spielen eine wichtige Rolle bei der objektiven und subjektiven Beurteilung der Qualität von Gasen beziehungsweise in Gasgemischen wie Luft, in denen die Geruchsstoffe gelöst vorliegen.
  • Hierbei kann es sich um die verschiedenartigsten Gase sowie Geruchsstoffe handeln, was deren chemische Beschaffenheit anbelangt.
  • Eines der gängigsten Mittel zur Abtrennung von Geruchsstoffen aus Gasen stellt die Adsorption der Geruchsstoffe an Aktivkohle, die meist in einem Filter fixiert vorliegt, dar. Um das Filtern der Luft zu beschleunigen wird meist das zu filternde Gas, wie beispielsweise die Raumluft, mit Hilfe geeigneter Vorrichtungen wie einem Gebläse angesaugt und über den Filter wieder ausgestoßen und so an die Umgebungsluft wieder abgegeben.
  • Die Art der eingesetzten Filter oder Filtersysteme sowie die Deponierung des Adsorbens in solchen Filtern hängen stark von der zu Grunde liegenden Verwendung ab und sind im Stand der Technik für die jeweiligen Anwendungen ausführlich beschrieben.
  • Zwar gelingt es durch optimierte Filtersysteme und Ansaugmechanismen die Effizienz der Filter zu steigern, jedoch kommt dem Adsorptionsvermögen des Adsorbens hierbei eine ausschlaggebende Rolle zu.
  • Hierbei zeigt sich, dass Adsorbentien wie Aktivkohle nachteilig in Bezug auf deren Adsorptionsverhalten und Sicherheit sein können. Die geringere Adsorptionskapazität der Adsorbentien des Standes der Technik sowie deren geringe Selektivität bedingt größere Volumina an zu entsorgenden Rückständen.
  • Die Aufgabe der vorliegenden Erfindung liegt somit darin, alternative Adsorbentien für Verfahren zur Abtrennung von Geruchsstoffen bereitzustellen, die über bessere Eigenschaften verfügen können, als diejenigen des Standes der Technik. Insbesondere sollen sich die erfindungsgemäßen Adsorbentien möglichst ohne wesentliche Verluste an Adsorptionskapazität recyclieren lassen.
  • Die Aufgabe wird gelöst durch ein Verfahren zur Abtrennung von Geruchsstoffen aus Gasen den Schritt enthaltend
  • Inkontaktbringen des Gases mit mindestens einem Filter enthaltend ein poröses metallorganisches Gerüstmaterial, wobei das Gerüstmaterial mindestens eine an mindestens ein Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung enthält.
  • Es wurde nämlich gefunden, dass die Abtrennung von Geruchsstoffen aus Gasen in effizienter Weise durch Einsatz der porösen metallorganischen Gerüstmaterialien (Englisch: „Metal-Organic-Framework (MOF)") durchgeführt werden kann.
  • Im Rahmen der vorliegenden Erfindung wird vereinfachend der Begriff „Gas" auch dann verwendet, wenn es sich um Gasgemische wie beispielsweise Luft handelt. Bei den betreffenden Gasen ist es lediglich erforderlich, dass diese beim in Kontakt bringen gasförmig vorliegen.
  • Vorzugsweise weist das Gas einen Siedepunkt oder -bereich auf, der unter der Raumtemperatur liegt. Es ist jedoch auch möglich, dass höher siedende fluide Systeme zum Einsatz gelangen, wenn diese beispielsweise bei erhöhter Temperatur als Abgase freigesetzt werden und vor ihrer Kondensation dem MOF zugeführt werden.
  • Vorzugsweise handelt es sich bei dem Gas um Erdgas, Biogas, Abgas, Luft, Abluft oder Inertgas. Mehr bevorzugt sind Erdgas, Biogas, Luft und Abluft. Insbesondere bevorzugt sind Biogas, Luft und Abluft.
  • Das Gas kann in offenen oder zumindest teilweise geschlossenen Systemen vorliegen. Insbesondere im Fall von Erd- und Biogas kann es sich um Rohrleitungen, Piplines, Kessel-, Transport- oder Erdgasbehälter, wie sie beispielsweise zur Lagerung in der Erde oder als Tanks für Kraftfahrzeuge verwendet werden, handeln. Im Falle von Abgasen handelt es sich vorzugsweise um Industrieabgase oder solche Abgase, wie sie bei Verbrennungsvorgängen (z.B. bei Verbrennungsmotoren) anfallen. Weiterhin bevorzugt handelt es sich bei dem Gas um Raumluft in Gebäuden oder Räumen wie in Wohn- und Esszimmern oder insbesondere in Küchen. Auch die Raumluft in Fortbewegungsmitteln wie Personenkraftfahrzeuge, Lastkraftfahrzeuge, Züge oder Schiffe ist hierbei zu nennen. Ebenso ist die Raumluft in Geräten wie beispielsweise Geschirrspülmaschinen zu nennen.
  • Insbesondere in den Fällen, bei denen das Gas Erdgas, Luft, Abluft oder Inertgas darstellt, kann der Geruchsstoff ursprünglich Bestandteil eines flüssigen (beispielsweise Wasser oder Erdöl) oder festen Mediums sein, der dann in die Phase des über der flüssigen oder festen Oberfläche anliegenden Gases übertritt und anschließend aus dieser entfernt werden. Beispielsweise kann es sich um ein Gas innerhalb einer Verpackung (Umgebungsgas) von festen Gegenständen handeln, die im Laufe der Zeit Geruchsstoffe innerhalb der Verpackung an das Umgebungsgas abgeben. Hierbei handelt es sich bei dem Umgebungsgas um Luft oder Inertgas. Ein weiteres Beispiel stellen Polymere dar, bei denen Monomere, die bei der Herstellung der Polymere nicht umgesetzt wurden, wobei diese jedoch noch im Polymer verblieben sind und im Laufe der Zeit an das Umgebungsgas, wie beispielsweise die Raumluft, abgegeben werden und die abzutrennenden Geruchsstoffe darstellen. Ebenso können im Polymer weitere leichtflüchtige Komponenten enthalten sein, die in das Umgebungsgas abgegeben werden können. Hierbei sind beispielsweise Starter oder Stabilisatoren und weitere Additive zu nennen. Einen Überblick über solche Komponenten gibt Plastics additive Handbook, Hans Zweifel, Hanser Verlag, München (ISBN 3-446-21654-5).
  • Der Geruchsstoff kann in dem Gas in gelöster Form vorliegen oder selbst gasförmig sein und somit einen „Bestandteil" eines Gasgemisches darstellen. Im Rahmen der vorliegenden Erfindung wird der Begriff „Geruchsstoff" ebenfalls vereinfachend verwendet, auch wenn es sich um ein Gemisch von mehreren Geruchsstoffen handelt. Geruchsstoffe sind hierbei Stoffe, die über den Geruchssinn des Menschen wahrgenommen werden können.
  • Vorzugsweise handelt es sich bei dem Geruchsstoff um eine flüchtige organische oder anorganische Verbindung, die mindestens eines der Elemente Stickstoff, Phosphor, Sauerstoff, Schwefel, Fluor, Chlor, Brom oder Iod enthält oder ein ungesättigter oder aromatischer Kohlenwasserstoff oder ein gesättigter oder ungesättigter Aldehyd oder Keton ist. Mehr bevorzugte Elemente sind Stickstoff, Sauerstoff, Phosphor, Schwefel, Chlor, Brom; insbesondere bevorzugt sind Stickstoff, Sauerstoff, Phosphor und Schwefel.
  • Insbesondere handelt es sich bei dem Geruchsstoff um Ammoniak, Schwefelwasserstoff, Schwefeloxide, Stickoxide, Ozon, zyklische oder azyklische Amine, Thiole, Thioether sowie Aldehyde, Ketone, Ester, Ether Säuren oder Alkohole. Besonders bevorzugt sind Ammoniak, Schwefelwasserstoff, organische Säuren (bevorzugt Essigsäure, Propionsäure, Buttersäure, Isobuttersäure, Valeriansäure, Isovaleriansäure, Capronsäure, Heptylsäure, Laurinsäure, Pelargonsäure) sowie zyklische oder azyklische Kohlenwasserstoffe, die Stickstoff oder Schwefel enthalten sowie gesättigte oder ungesättigte Aldehyde, wie Hexanal, Heptanal, Oktanal, Nonanal, Decanal, Octenal oder Nonenal und insbesondere flüchtige Aldehyde wie Butyraldehyd, Propionaldehyd, Acetaldehyd und Formaldehyd und weiterhin Treibstoffe wie Benzin, Diesel (Inhaltsstoffe).
  • Bei den Geruchsstoffen kann es sich auch um Riechstoffe, die beispielsweise zur Herstellung von Parfümen verwendet werden. Beispielhaft seien als Riechstoffe oder Öle, die solche Riechstoffe freisetzen zu nennen: ätherische Öle, Basilikumöl, Geranienöl, Minzöl, Canangabaumöl, Kardamomöl, Lavendelöl, Pfefferminzöl, Muskatöl, Kamillenöl, Eukalyptusöl, Rosmarinöl, Zitronenöl, Limettenöl, Orangenöl, Bergamottenöl, Muskatellersalbeiöl, Korianderöl, Zypressenöl, 1,1-Dimethoxy-2-pherylethan, 2,4-Dimethyl-4-phenyltetrahydrofuran, Dimethyltetrahydrobenzaldehyd, 2,6-Dimethyl-7-octen-2-ol, 1,2-Diethoxy-3,7-dimethyl-2,6-octadien, Phenylacetaldehyd, Rosenoxid, Ethyl 2-methylpentanoat, 1-(2,6,6-Trimethyl-1,3-cyclohexadien-1-yl)-2-buten-1-on, Ethylvanillin, 2,6-Dimethyl-2-octenol, 3,7-Dimethyl-2-octenol, tert-Butyl cyclohexylacetat, Anisylacetate, Allylcyclohexyloxyacetat, Ethyllinalool, Eugenol, Coumarin, Ethyl acetacetat, 4-Phenyl-2,4,6-trimethyl-1,3-dioxan, 4-Methylen-3,5,6,6-tetramethyl-2-heptanon, Ethyltetrahydrosafranat, Geranylnitril, cis-3-Hexen-1-ol, cis-3-Hexenylacetat, cis-3-Hexenylmethylcarbonate, 2,6-Dimethyl-5-hepten-1-al, 4-Tricyclo[5.2.1.0]decylidene)-8-butanal, 5-(2,2,3-Trimethyl-3-cyclopentenyl)-3-methylpentan-2-ol, p-tert-Butyl-alpha-methylhydrozimtaldehyd, Ethyl[5.2.1.0]tricyclodecancarboxylat, Geraniol, Citronellol, Citral, Linalool, Linalylacetat, Jonone, Phenylethanol oder Mischungen hiervon.
  • Im Rahmen der vorliegenden Erfindung weist ein flüchtiger Geruchsstoff vorzugsweise einen Siedepunkt oder Siedepunktsbereich von weniger als 300 °C auf. Mehr bevorzugt ist der Geruchsstoff eine leicht flüchtige Verbindung oder Gemisch. Insbesondere bevorzugt weist der Geruchsstoff einen Siedepunkt oder Siedebereich von weniger als 250 °C, mehr bevorzugt weniger als 230 °C, insbesondere bevorzugt weniger als 200 °C auf.
  • Bevorzugt sind ebenfalls Geruchsstoffe, die eine hohe Flüchtigkeit aufweisen. Als Maß für die Flüchtigkeit kann der Dampfdruck herangezogen werden. Im Rahmen der vorliegenden Erfindung weist ein flüchtiger Geruchsstoff vorzugsweise einen Dampfdruck von mehr als 0,001 kPa (20°C) auf. Mehr bevorzugt ist der Geruchsstoff eine leicht flüchtige Verbindung oder Gemisch. Insbesondere bevorzugt weist der Geruchsstoff einen Dampfdruck von mehr als 0,01 kPa (20°C) auf, mehr bevorzugt einen Dampfdruck von mehr als 0,05 kPa (20°C) auf. Besonders bevorzugt weisen die Geruchsstoffe einen Dampfdruck von mehr als 0,1 kPa (20°C) auf.
  • Die Form und Beschaffenheit des Filters kann beliebig gewählt und der entsprechenden Verwendung angepasst werden. Einsetzbare Filtersysteme sind dem Fachmann bekannt. Als einfaches Beispiel für einen Filter kann ein Kunststoffbeutel, der Poren oder kleine Löcher aufweist und gasdurchlässig ist, dienen, der mit dem MOF Material, vorzugsweise als Formkörper vorliegend, gefüllt ist. Ebenso können gängige Luft- oder Abluftfilter eingesetzt werden. Auch Filter, wie sie in Dunstabzugshauben, Klimageräten, Umwälzanlagen, Auspuffanlagen, Staubsaugern aber auch in Industrieanlagen verwendet werden, können eingesetzt werden. Das MOF Material kann auch in Kartuschen, vorzugsweise mit einer zylindrischen Form, gefüllt werden, die am Ende mit porösem, gasdurchlässigem Material verschlossen sind und von dem zu reinigenden Medium durchströmt werden können. Das zur Verpackung verwendete Material sollte vorzugsweise thermisch stabil sein, damit der Filter bzw. die Filtereinheit beispielsweise zwecks Recycling beispielsweise durch thermische Desorption aufgereinigt werden kann. Hierzu bieten sich Glas, Metall, wie beispielsweise Aluminium, oder dem Fachmann bekannte Kunststoffe wie Polyvinylchlorid, Polystyrol, Polymethylmethacrylat, Polycarbonat, Polyvinylpyrrolidon, Polyethersulfon, Polyester, Epoxyharze, Polyacetal usw. an. Das MOF Material ist zur passiven Anwendung (Kontakt mit dem Gas durch Konvektion bzw. vorhandene Strömungen) und zur aktiven Anwendung (Kontakt mit dem Gas intensiviert durch Pumpen, Druckdifferenzen etc.) geeignet. Es kann zur Vorbehandlung der Innenraumluft in Transportmitteln wie Fahrzeugen, Flugzeugen, Schienenfahrzeugen, Schiffen, aber auch in Abluftfiltern bei Verbrennungsmotoren, elektrischen und elektronischen Geräten dienen. Ebenso findet es Einsatz zur Luftreinigung in Geschäfts-, Wohn- und Lagerräumen, Behältnissen, Containern, Kühlschränken, Fahrzeugen etc. sowie bei Kautschukhalbzeugen und Fertigteilen.
  • Vorzugsweise ist der Filter regenerierbar. Dies ist prinzipiell möglich, da die Adsorption des Geruchsstoffes an das MOF Material reversibel ist. So kann beispielsweise durch Temperaturerhöhung oder Druckerniedrigung eine Desorption erfolgen. Auch kann der Geruchsstoff durch in Spülgas verdrängt werden. Die Art und Weise, wie eine Desorption durchgeführt werden kann, ist dem Fachmann bekannt. Anleitungen hierzu finden sich beispielsweise in Werner Kast, „Adsorption aus der Gasphase", Verlag VCH, Weinheim, 1988.
  • Weiterhin bevorzugt lässt sich die Sättigung des Filters (Filtermaterials) mit Geruchsstoffen durch eine Farbveränderung des MOF feststellen. Dies ist insbesondere der Fall, wenn Kupfer als Metallion im MOF verwendet wird. Dem Anwender wird dadurch die einfache, visuelle Prüfung der verbleibenden Kapazität des Filtermediums, insbesondere bei Verwendung eines transparenten Verpackungsmaterials ermöglicht.
  • Das poröse metallorganische Gerüstmaterial enthält mindestens eine an mindestens ein Metallion koordinativ gebundene mindestens zweizähnige organische Verbindung. Dieses metallorganische Gerüstmaterial (MOF) wird beispielsweise beschrieben in US 5,648,508 , EP-A-0 709 253, M. O-Keeffe et al., J. Sol. State Chem., 152 (2000), Seite 3 bis 20, H. Li et al., Nature 402, (1999), Seite 276, M. Eddaoudi et al., Topics in Catalysis 9, (1999), Seite 105 bis 111, B. Chen et al., Science 291, (2001), Seite 1021 bis 1023 und DE-A-101 11 230.
  • Die MOF's gemäß der vorliegenden Erfindung enthalten Poren, insbesondere Mirko- und/oder Mesoporen. Mikroporen sind definiert als solche mit einem Durchmesser von 2 nm oder kleiner und Mesoporen sind definiert durch einen Durchmesser im Bereich von 2 bis 50 nm, jeweils entsprechend nach der Definition, wie sie Pure Applied Chem. 45, Seite 71, insbesondere auf Seite 79 (1976) angegeben ist. Die Anwesenheit von Mikro- und/oder Mesoporen kann mit Hilfe von Sorptionsmessungen überprüft werden, wobei diese Messungen die Aufnahmekapazität der MOF für Stickstoff bei 77 Kelvin gemäß DIN 66131 und/oder DIN 66134 bestimmt.
  • Vorzugsweise beträgt die spezifische Oberfläche – berechnet nach dem Langmuir-Modell (DIN 66131, 66134) für ein MOF in Pulverform bei mehr als 5 m2/g, mehr bevorzugt über 10 m2/g, mehr bevorzugt mehr als 50 m2/g, weiter mehr bevorzugt mehr als 500 m2/g, weiter mehr bevorzugt mehr als 1000 m2/g und besonders bevorzugt mehr als 1500 m2/g.
  • MOF Formkörper können eine niedrigere spezifische Oberfläche besitzen; vorzugsweise jedoch mehr als 10 m2/g, mehr bevorzugt mehr als 50 m2/g, weiter mehr bevorzugt mehr als 500 m2/g.
  • Die Metallkomponente im Gerüstmaterial nach der vorliegenden Erfindung ist vorzugsweise ausgewählt aus den Gruppen Ia, IIa, IIIa, IVa bis VIIIa und Ib bis VIb. Besonders bevorzugt sind Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W, Mn, Re, Fe, Ro, Os, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Hg, Al, Ga, In, Tl, Si, Ge, Sn, Pb, As, Sb und Bi. Mehr bevorzugt sind Zn, Cu, Ni, Pd, Pt, Ru, Rh und Co. Insbesondere bevorzugt Zn, Al, Ni und Cu. In Bezug auf die Ionen dieser Elemente sind besonders zu erwähnen Mg2+, Ca2+, Sr2+, Ba2+, Sc3+, Y3+, Ti4+, Zr4+, Hf4+, V4+, V3+, V2+, Nb3+, Ta3+, Cr3+, Mo3+,W3+, Mn3+, Mn2+, Re3+, Re2+, Fe3+, Fe2+, Ru3+, Ru2+, Os3+, Os2+, Co3+, Co2+, Rh2+, Rh+, Ir2+, Ir+, Ni2+, Ni+, Pd2+, Pd+, Pt2+, Pt+, Cu2+, Cu+, Ag+, Au+, Zn2+, Cd2+, Hg2+, Al3+, Ga3+, In3+, Tl3+, Si4+, Si2+, Ge4+, Ge2+, Sn4+, Sn2+, Pb2+, Pb2+, As5+, As3+, As+, Sb5+, Sb3+, Sb+, Bi5+, Bi3+ und Bi+.
  • Der Begriff "mindestens zweizähnige organische Verbindung" bezeichnet eine organische Verbindung, die mindestens eine funktionelle Gruppe enthält, die in der Lage ist, zu einem gegebenen Metallion mindestens zwei, bevorzugt zwei koordinative Bindungen, und/oder zu zwei oder mehr, bevorzugt zwei Metallatomen jeweils eine koordinative Bindung auszubilden.
  • Als funktionelle Gruppen, über die die genannten koordinativen Bindungen ausgebildet werden kann, sind insbesondere beispielsweise folgende funktionellen Gruppen zu nennen: -CO2H, -CS2H, -NO2, -B(OH)2, -SO3H, -Si(OH)3, -Ge(OH)3, -Sn(OH)3, -Si(SH)4, -Ge(SH)4, -Sn(SH)3, -PO3H, -AsO3H, -AsO4H, -P(SH)3, -As(SH)3, -CH(RSH)2, -C(RSH)3> -CH(RNH2)2> -C(RNH2)3, -CH(ROH)2, -C(ROH)3, -CH(RCN)2, -C(RCN)3> wobei R beispielsweise bevorzugt eine Alkylengruppe mit 1, 2, 3, 4 oder 5 Kohlenstoffatomen wie beispielsweise eine Methylen-, Ethylen-, n-Propylen-, i-Propylen, n-Butylen-, i-Butylen-, tert-Butylen- oder n-Pentylengruppe, oder eine Arylgruppe, enthaltend 1 oder 2 aromatische Kerne wie beispielsweise 2 C6-Ringe, die gegebenenfalls kondensiert sein können und unabhängig voneinander mit mindestes jeweils einem Substituenten geeignet substituiert sein können, und/oder die unabhängig voneinander jeweils mindestens ein Heteroatom wie beispielsweise N, O und/oder S enthalten können. Gemäß ebenfalls bevorzugter Ausführungsformen sind funktionelle Gruppen zu nennen, bei denen der oben genannte Rest R nicht vorhanden ist. Diesbezüglich sind unter anderem -CH(SH)2, -C(SH)3, -CH(NH2)2, -C(NH2)3, -CH(OH)2, -C(OH)3, -CH(CN)2 oder -C(CN)3 zu nennen.
  • Die mindestens zwei funktionellen Gruppen können grundsätzlich an jede geeignete organische Verbindung gebunden sein, solange gewährleistet ist, dass die diese funktionellen Gruppen aufweisende organische Verbindung zur Ausbildung der koordinativen Bindung und zur Herstellung des Gerüstmaterials befähigt ist.
  • Bevorzugt leiten sich die organischen Verbindungen, die die mindestens zwei funktionellen Gruppen enthalten, von einer gesättigten oder ungesättigten aliphatischen Verbindung oder einer aromatischen Verbindung oder einer sowohl aliphatischen als auch aromatischen Verbindung ab.
  • Die aliphatische Verbindung oder der aliphatische Teil der sowohl aliphatischen als auch aromatischen Verbindung kann linear und/oder verzweigt und/oder cyclisch sein, wobei auch mehrere Cyclen pro Verbindung möglich sind. Weiter bevorzugt enthält die aliphatische Verbindung oder der aliphatische Teil der sowohl aliphatischen als auch aromatischen Verbindung 1 bis 15, weiter bevorzugt 1 bis 14, weiter bevorzugt 1 bis 13, weiter bevorzugt 1 bis 12, weiter bevorzugt 1 bis 11 und insbesondere bevorzugt 1 bis 10 C-Atome wie beispielsweise 1, 2, 3, 4, 5, 6, 7, 8, 9 oder 10 C-Atome. Insbesondere bevorzugt sind hierbei unter anderem Methan, Adamantan, Acetylen, Ethylen oder Butadien.
  • Die aromatische Verbindung oder der aromatische Teil der sowohl aromatischen als auch aliphatischen Verbindung kann einen oder auch mehrere Kerne wie beispielsweise zwei, drei, vier oder fünf Kerne aufweisen, wobei die Kerne getrennt voneinander und/oder mindestens zwei Kerne in kondensierter Form vorliegen können. Besonders bevorzugt weist die aromatische Verbindung oder der aromatische Teil der sowohl aliphatischen als auch aromatischen Verbindung einen, zwei oder drei Kerne auf, wobei einer oder zwei Kerne besonders bevorzugt sind. Unabhängig voneinander kann weiter jeder Kern der genannten Verbindung mindestens ein Heteroatom wie beispielsweise N, O, S, B, P, Si, Al, bevorzugt N, O und/oder S enthalten. Weiter bevorzugt enthält die aromatische Verbindung oder der aromatische Teil der sowohl aromatischen als auch aliphatischen Verbindung einen oder zwei C6-Kerne, wobei die zwei entweder getrennt voneinander oder in kondensierter Form vorliegen. Insbesondere sind als aromatische Verbindungen Benzol, Naphthalin und/oder Biphenyl und/oder Bipyridyl und/oder Pyridyl zu nennen.
  • Beispielsweise sind unter anderem trans-Muconsäure oder Fumarsäure oder Phenylenbisacrylsäure zu nennen.
  • Beispielsweise sind im Rahmen der vorliegenden Erfindung Dicarbonsäuren wie etwa Oxalsäure, Bernsteinsäure, Weinsäure, 1,4-Butandicarbonsäure, 4-Oxo-Pyran-2,6-dicarbonsäure, 1,6-Hexandicarbonsäure, Decandicarbonsäure, 1,8-Heptadecandicarbonsäure, 1,9-Heptadecandicarbonsäure, Heptadecandicarbonsäure, Acetylendicarbonsäure, 1,2-Benzoldicarbonsäure, 2,3-Pyridindicarbonsäure, Pyridin-2,3-dicarbonsäure, 1,3-Butadien-1,4-dicarbonsäure, 1,4-Benzoldicarbonsäure, p-Benzoldicarbonsäure, Imidazol-2,4-dicarbonsäure, 2-Methyl-chinolin-3,4-dicarbonsäure, Chinolin-2,4-dicarbonsäure, Chinoxalin-2,3-dicarbonsäure, 6-Chlorchinoxalin-2,3-dicarbonsäure, 4,4-Diaminphenylmethan-3,3'-dicarbonsäure, Chinolin-3,4-dicarbonsäure, 7-Chlor-4-hydroxychinolin-2,8-dicarbonsäure, Diimiddicarbonsäure, Pyridin-2,6-dicarbonsäure, 2-Methylimidazol-4,5-dicarbonsäure, Thiophen-3,4-dicarbonsäure, 2-Isopropylimidazol-4,5-dicarbonsäure, Tetrahydropyran-4,4-dicarbonsäure, Perylen-3,9-dicarbonsäure, Perylendicarbonsäure, Pluriol E 200-dicarbonsäure, 3,6-Dioxaoctandicarbonsäure, 3,5-Cyclohexadien-1,2-dicarbonsäure, Octadicarbonsäure, Pentan-3,3-carbonsäure, 4,4'-Diamino-1,1'-diphenyl-3,3'-dicarbon-säure, 4,4'-Diaminodiphenyl-3,3'-dicarbonsäure, Benzidin-3,3'-dicarbonsäure, 1,4-bis-(Phenylamino)-benzol-2,5-dicarbonsäure, 1 J'-Dinaphthyl-S.S'-dicarbonsäure, 7-Chlor-8-methylchinolin-2,3-dicarbonsäure, 1-Anilinoanthrachinon-2,4'-dicarbonsäure, Poly-tetrahydrofuran-250-dicarbonsäure, 1,4-bis-(Carboxymethyl)-piperazin-2,3-dicarbon-säure, 7-Chlorchinolin-3,8-dicarbonsäure, 1-(4-Carboxy)-phenyl-3-(4-chlor)-phenylpyrazolin-4,5-dicarbonsäure, 1,4,5,6,7,7,-Hexachlor-5-norbornen-2,3-dicarbonsäure, Phenylindandicarbonsäure, 1,3-Dibenzyl-2-oxoimidazolidin-4,5-dicarbonsäure, 1,4-Cyclohexandicarbonsäure, Naphthalin-1,8-dicarbonsäure, 2-Benzoylbenzol-1,3-dicarbonsäure, 1,3-Dibenzyl-2-oxoimidazolidin-4,5-cisdicarbonsäure, 2,2'-Bichinolin-4,4'-dicarbonsäure, Pyridin-3,4-dicarbonsäure, 3,6,9-Trioxaundecandicarbonsäure, O-Hydroxybenzophenondicarbonsäure, Pluriol E 300-dicarbonsäure, Pluriol E 400-dicarbonsäure, Pluriol E 600-dicarbonsäure, Pyrazol-3,4-dicarbonsäure, 2,3-Pyrazindicarbonsäure, 5,6-Dimethyl-2,3-pyrazindicarbonsäure, 4,4'-Diaminodiphenyletherdiimiddicarbonsäure, 4,4'-Diaminodiphenylmethandiimiddicarbonsäure, 4,4'-Diaminodiphenylsulfondiimiddicarbonsäure, 2,6-Naphthalindicarbonsäure, 1,3-Adamantandicarbonsäure, 1,8-Naphthalindicarbonsäure, 2,3-Naphthalindicarbonsäure, 8-Methoxy-2,3-naphthalindicarbonsäure, 8-Nitro-2,3-naphthalincar bonsäure, 8-Sulfo-2,3-naphthalindicarbonsäure, Anthracen-2,3-dicarbonsäure, 2',3'-Diphenyl-p-terphenyl-4,4''-dicarbonsäure, Diphenylether-4,4'-dicarbonsäure, Imidazol-4,5-dicarbonsäure, 4(1 H)-Oxothiochromen-2,8-dicarbonsäure, 5-tert-Butyl-1,3-benzoldicarbonsäure, 7,8-Chinolindicarbonsäure, 4,5-Imidazoldicarbonsäure, 4-Cyclohexen-1,2-dicarbonsäure, Hexatriacontandicarbonsäure, Tetradecandicarbonsäure, 1,7-Heptadicarbonsäure, 5-Hydroxy-1,3-Benzoldicarbonsäure, Pyrazin-2,3-dicarbonsäure, Furan-2,5-dicarbonsäure, 1-Nonen-6,9-dicarbonsäure, Eicosendicarbonsäure, 4,4'-Dihydroxydiphenylmethan-3,3'-dicarbonsäure, 1-Amino-4-methyl-9,10-dioxo-9,10-dihydroanthracen-2,3-dicarbonsäure, 2,5-Pyridindicarbonsäure, Cyclohexen-2,3-dicarbonsäure, 2,9-Dichlorfluorubin-4,11-dicarbonsäure, 7-Chlor-3-mtehylchinolin-6,8-dicarbonsäure, 2,4-Dichlorbenzophenon-2',5'-dicarbonsäure, 1,3-benzoldicarbonsäure, 2,6-Pyridindicarbonsäure, 1-Methylpyrrol-3,4-dicarbonsäure, 1-Benzyl-1H-pyrrol-3,4-dicarbonsäure, Anthrachinon-1,5-dicarbonsäure, 3,5-Pyrazoldicarbonsäure, 2-Nitrobenzol-1,4-dicarbonsäure, Heptan-1,7-dicarbonsäure, Cyclobutan-1,1-dicarbonsäure 1,14-Tetradecandicarbonsäure, 5,6-Dehydronorbornan-2,3-dicarbonsäure oder 5-Ethyl-2,3-Pyridindicarbonsäure,
    Tricarbonsäuren wie etwa
    2-Hydroxy-1,2,3-propantricarbonsäure, 7-Chlor-2,3,8-chinolintricarbonsäure, 1,2,4-Benzoltricarbonsäure, 1,2,4-Butantricarbonsäure, 2-Phosphono-1,2,4-butantricarbonsäure, 1,3,5-Benzoltricarbonsäure, 1-Hydroxy-1,2,3-Propantricarbonsäure, 4,5-Dihydro-4,5-dioxo-1H-pyrrolo[2,3-F]chinolin-2,7,9-tricarbonsäure, 5-Acetyl-3-amino-6-methylbenzol-1,2,4-tricarbonsäure, 3-Amino-5-benzoyl-6-methylbenzol-1,2,4-tricarbonsäure, 1,2,3-Propantricarbonsäure oder Aurintricarbonsäure,
    oder Tetracarbonsäuren wie etwa
    1,1-Dioxidperylo[1,12-BCD]thiophen-3,4,9,10-tetracarbonsäure, Perylentetracarbonsäuren wie Perylen-3,4,9,10-tetracarbonsäure oder Perylen-1,12-sulfon-3,4,9,10-tetracarbonsäure, Butantetracarbonsäuren wie 1,2,3,4-Butantetracarbonsäure oder Meso-1,2,3,4-Butantetracarbonsäure, Decan-2,4,6,8-tetracarbonsäure, 1,4,7,10,13,16-Hexaoxacyclooctadecan-2,3,11,12-tetracarbonsäure, 1,2,4,5-Benzoltetracarbonsäure, 1,2,11,12-Dodecantetracarbonsäure, 1,2,5,6-Hexantetracarbonsäure, 1,2,7,8-Octantetracarbonsäure, 1,4,5,8-Naphthalintetracarbonsäure, 1,2,9,10-Decantetracarbonsäure, Benzophenontetracarbonsäure, 3,3',4,4'-Benzophenontetracarbonsäure, Tetrahydrofurantetracarbonsäure oder Cyclopentantetracarbonsäuren wie Cyclopentan-1,2,3,4-tetracarbonsäure
    zu nennen.
  • Ganz besonders bevorzugt werden gegebenenfalls mindestens einfach substituierte mono-, di-, tri-, tetra- oder höherkernige aromatische Di-, Tri- oder Tetracarbonsäuren eingesetzt, wobei jeder der Kerne mindestens ein Heteroatom enthalten kann, wobei zwei oder mehr Kerne gleiche oder unterschiedliche Heteroatome enthalten kann. Beispielsweise bevorzugt werden monokernige Dicarbonsäuren, monokernige Tricarbonsäuren, monokernige Tetracarbonsäuren, dikernige Dicarbonsäuren, dikernige Tricarbonsäuren, dikernige Tetracarbonsäuren, trikernige Dicarbonsäuren, trikernige Tricarbonsäuren, trikernige Tetracarbonsäuren, tetrakernige Dicarbonsäuren, tetrakernige Tricarbonsäuren und/oder tetrakernige Tetracarbonsäuren. Geeignete Heteroatome sind beispielsweise N, O, S, B, P, Si, Al, bevorzugte Heteroatome sind hierbei N, S und/oder O. Als geeigneter Substituent ist diesbezüglich unter anderem -OH, eine Nitrogruppe, eine Aminogruppe oder eine Alkyl- oder Alkoxygruppe zu nennen.
  • Insbesondere bevorzugt werden als mindestens zweizähnige organische Verbindungen Acetylendicarbonsäure (ADC), Benzoldicarbonsäuren, Naphthalindicarbonsäuren, Biphenyldicarbonsäuren wie beispielsweise 4,4'-Biphenyldicarbonsäure (BPDC), Bipyridindicarbonsäuren wie beispielsweise 2,2'-Bipyridindicarbonsäuren wie beispielsweise 2,2'-Bipyridin-5,5'-dicarbonsäure, Benzoltricarbonsäuren wie beispielsweise 1,2,3-Benzoltricarbonsäure oder 1,3,5-Benzoltricarbonsäure (BTC), Adamantantetracarbonsäure (ATC), Adamantandibenzoat (ADB) Benzoltribenzoat (BTB), Methantetrabenzoat (MTB), Adamantantetrabenzoat oder Dihydroxyterephthalsäuren wie beispielsweise 2,5-Dihydroxyterephthalsäure (DHBDC) eingesetzt.
  • Ganz besonders bevorzugt werden unter anderem Isophtalsäure, Terephthalsäure, 2,5-Dihydroxyterephthalsäure, 1,2,3-Benzoltricarbonsäure, 1,3,5-Benzoltricarbonsäure oder 2,2-Bipyridin-5,5'-dicarbonsäure eingesetzt.
  • Neben diesen mindestens zweizähnigen organischen Verbindungen kann der MOF auch eine oder mehrere einzähnige Liganden umfassen.
  • Geeignete Lösemittel zur Herstellung der MOF sind unter anderem Ethanol, Dimethylformamid, Toluol, Methanol, Chlorbenzol, Diethylformamid, Dimethylsulfoxid, Wasser, Wasserstoffperoxid, Methylamin, Natronlauge, N-Methylpolidonether, Acetonitril, Benzylchlorid, Triethylamin, Ethylenglykol und Gemische hiervon. Weitere Metallionen, mindestens zweizähnige organische Verbindungen und Lösemittel für die Herstellung von MOF sind unter anderem in US-A 5,648,508 oder DE-A 101 11 230 beschrieben.
  • Die Porengröße des MOF kann durch Wahl des geeigneten Liganden und/oder der mindestens zweizähnigen organischen Verbindung gesteuert werden. Allgemein gilt, dass je größer die organische Verbindung desto größer die Porengröße ist. Vorzugs weise beträgt die Porengröße von 0,2 nm bis 30 nm, besonders bevorzugt liegt die Porengröße im Bereich von 0,3 nm bis 3 nm bezogen auf das kristalline Material.
  • In einem MOF-Formkörper treten jedoch auch größere Poren auf, deren Größenverteilung variieren kann. Vorzugsweise wird jedoch mehr als 50 % des gesamten Porenvolumens, insbesondere mehr als 75 %, von Poren mit einem Porendurchmesser von bis zu 1000 nm gebildet. Vorzugsweise wird jedoch ein Großteil des Porenvolumens von Poren aus zwei Durchmesserbereichen gebildet. Es ist daher weiter bevorzugt, wenn mehr als 25 % des gesamten Porenvolumens, insbesondere mehr als 50 % des gesamten Porenvolumens von Poren gebildet wird, die in einem Durchmesserbereich von 100 nm bis 800 nm liegen und wenn mehr als 15 % des gesamten Porenvolumens, insbesondere mehr als 25 % des gesamten Porenvolumens von Poren gebildet wird, die in einem Durchmesserbereich von bis zu 10 nm liegen. Die Porenverteilung kann mittels Quecksilber-Porosimetrie bestimmt werden.
  • Nachfolgend sind Beispiele für MOF's angegeben. Neben der Kennzeichnung des MOF, dem Metall sowie dem mindestens zweizähnigen Liganden ist weiterhin das Lösemittel sowie die Zellenparameter (Winkel α, β und γ sowie die Abstände A, B und C in Å) angegeben. Letztere wurden durch Röntgenbeugung bestimmt.
    Figure 00110001
    Figure 00120001
    Figure 00130001
    Figure 00140001
    Figure 00150001
    Figure 00160001
    Figure 00170001
    Figure 00180001
    Figure 00190001
    Figure 00200001
    Figure 00210001
    Figure 00220001
    Figure 00230001
  • ADC
    Acetylendicarbonsäure
    NDC
    Naphthalindicarbonsäure
    BDC
    Benzoldicarbonsäure
    ATC
    Adamantantetracarbonsäure
    BTC
    Benzoltricarbonsäure
    BTB
    Benzoltribenzoesäure
    MTB
    Methantetrabenzoesäure
    ATB
    Adamantantetrabenzoesäure
    ADB
    Adamantandibenzoesäure
  • Weitere MOF sind MOF-177, MOF-178, MOF-74, MOF-235, MOF-236, MOF-69 bis 80, MOF-501, MOF-502, welche in der Literatur beschrieben sind.
  • Insbesondere bevorzugt ist ein poröses metallorganisches Gerüstmaterial, bei dem Zn oder Cu als Metallion und die mindestens zweizähnige organische Verbindung Terephtalsäure, Isophtalsäure, 2,6-Naphthalindicarbonsäure oder 1,3,5-Benzoltricarbonsäure ist.
  • Neben der konventionellen Methode zur Herstellung der MOF, wie sie beispielsweise in US 5,648,508 beschrieben ist, können diese auch auf elektrochemischem Wege hergestellt werden. Diesbezüglich wird auf die deutsche Patentanmeldung Nr. 103 55 087.9 sowie die internationale Anmeldung Nr. PCT/EP2004/013236 verwiesen. Die auf diesem Weg hergestellten MOFs weisen besonders gute Eigenschaften in Zusammenhang mit der Adsorption und Desorption von chemischen Stoffen, insbesondere von Gasen. Sie unterscheiden sich somit von denen, die konventionell hergestellt werden, auch wenn diese aus den gleichen organischen und Metallionenbestandteilen gebildet werden und sind daher als neue Gerüstmaterialien zu betrachten. Im Rahmen der vorliegenden Erfindung sind elektrochemisch hergestellte MOFs besonders bevorzugt.
  • Demgemäß betrifft die elektrochemischen Herstellung ein kristallines poröses metallorganischen Gerüstmaterial, enthaltend mindestens eine an mindestens ein Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung, welches in einem Reaktionsmedium, enthaltend die mindestens eine zweizähnige organische Verbindung mindestens ein Metallion durch Oxidation mindestens einer das entsprechende Metall enthaltenden Anode erzeugt wird.
  • Der Begriff "elektrochemische Herstellung" bezeichnet ein Herstellverfahren, bei dem die Bildung mindestens eines Reaktionsproduktes mit der Wanderung von elektrischen Ladungen oder dem Auftreten von elektrischen Potentialen verbunden ist.
  • Der Begriff "mindestens ein Metallion", wie er im Zusammenhang mit der elektrochemischen Herstellung verwendet wird, bezeichnet Ausführungsformen, gemäß denen mindestens ein Ion eines Metalls oder mindestens ein Ion eines ersten Metalls und mindestens ein Ion mindestens eines vom ersten Metall verschiedenen zweiten Metalls durch anodische Oxidation bereit gestellt werden.
  • Demgemäß umfasst die elektrochemische Herstellung Ausführungsformen, in denen mindestens ein Ion mindestens eines Metalls durch anodische Oxidation und mindestens ein Ion mindestens eines Metalls über ein Metallsalz bereit gestellt werden, wobei das mindestens eine Metall im Metallsalz und das mindestens eine Metall, das über anodische Oxidation als Metallion bereit gestellt werden, gleich oder voneinander verschieden sein können. Daher umfasst die vorliegende Erfindung in Bezug auf elektrochemisch hergestellte MOF beispielsweise eine Ausführungsform, gemäß der das Reaktionsmedium ein oder mehrere unterschiedliche Salze eines Metalls enthält und das in diesem Salz oder in diesen Salzen enthaltene Metallion zusätzlich durch anodische Oxidation mindestens einer dieses Metall enthaltenden Anode bereitgestellt wird. Ebenso kann das Reaktionsmedium ein oder mehrere unterschiedliche Salze mindestens eines Metalls enthalten und mindestens ein von diesen Metallen unterschiedliches Metall kann über anodische Oxidation als Metallion im Reaktionsmedium bereitgestellt werden.
  • Gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung im Zusammenhang mit der elektrochemischen Herstellung wird das mindestens eine Metallion durch anodische Oxidation mindestens einer der dieses mindestens eine Metall enthaltenden Anode bereitgestellt, wobei kein weiteres Metall über ein Metallsalz bereitgestellt wird.
  • Der Begriff "Metall", wie im Rahmen der vorliegenden Erfindung im Zusammenhang mit der elektrochemischen Herstellung von MOFs verwendet wird, umfasst sämtliche Elemente des Periodensystems, die über anodische Oxidation auf elektrochemischem Weg in einem Reaktionsmedium bereitgestellt werden können und mit mindestens einer mindestens zweizähnigen organischen Verbindungen mindestens ein metallorganisches poröses Gerüstmaterial zu bilden in der Lage sind.
  • Unabhängig von dessen Herstellung fällt das erhaltene MOF in pulverförmiger bzw. kristalliner Form an. Dieses kann als solches als Sorbens im erfindungsgemäßen Verfahren alleine oder zusammen mit anderen Sorbentien oder weiteren Materialien eingesetzt werden. Vorzugsweise geschieht dies als Schüttgut, insbesondere in einem Festbett. Weiterhin kann das MOF in einen Formkörper umgewandelt werden. Bevorzugte Verfahren sind hierbei die Verstrangung oder Tablettierung. Bei der Formkörperherstellung können zum MOF weiterer Materialien, wie beispielsweise Binder, Gleitmittel oder andere Additive hinzugesetzt werden. Ebenso ist es denkbar, dass Mischungen von MOF und anderen Adsorbentien beispielsweise Aktivkohle als Formkörper hergestellt werden oder getrennt Formkörper ergeben, die dann als Formkörpermischungen eingesetzt werden.
  • Hinsichtlich der möglichen Geometrien dieser MOF Formkörper existieren im Wesentlichen keine Beschränkungen. Beispielsweise sind unter anderem Pellets wie beispielsweise scheibenförmige Pellets, Pillen, Kugeln, Granulat, Extrudate wie beispielsweise Stränge, Waben, Gitter oder Hohlkörper zu nennen.
  • Zur Herstellung dieser Formkörper sind grundsätzlich sämtliche geeigneten Verfahren möglich. Es sind insbesondere folgende Verfahrensführungen bevorzugt:
    • – Kneten des Gerüstmaterials allein oder zusammen mit mindestens einem Bindemittel und/oder mindestens einem Anteigungsmittel und/oder mindestens einer Templatverbindung unter Erhalt eines Gemisches; Verformen des erhaltenen Gemisches mittels mindestens einer geeigneten Methode wie beispielsweise Extrudieren; optional Waschen und/oder Trocknen und/oder Calcinieren des Extrudates; optional Konfektionieren.
    • – Aufbringen des Gerüstmaterials auf mindestens ein gegebenenfalls poröses Trägermaterial. Das erhaltene Material kann dann gemäß der vorstehend beschriebenen Methode zu einem Formkörper weiterverarbeitet werden.
    • – Aufbringen des Gerüstmaterials auf mindestens ein gegebenenfalls poröses Substrat.
    • – Einschäumen in poröse Kunststoffe wie z.B. Polyurethan.
  • Kneten und Verformen kann gemäß jedes geeigneten Verfahrens erfolgen, wie beispielsweise in Ullmanns Enzyklopädie der Technischen Chemie, 4. Auflage, Band 2, S. 313 ff. (1972) beschrieben, deren diesbezüglicher Inhalt durch Bezugnahme in den Kontext der vorliegenden Anmeldung vollumfänglich einbezogen wird.
  • Beispielsweise bevorzugt kann das Kneten und/oder Verformen mittels einer Kolbenpresse, Walzenpresse in Anwesenheit oder Abwesenheit mindestens eines Bindermaterials, Compoundieren, Pelletieren, Tablettieren, Extrudieren, Co-Extrudieren, Verschäumen, Verspinnen, Beschichten, Granulieren, bevorzugt Sprühgranulieren, Versprühen, Sprühtrocknen oder einer Kombination aus zwei oder mehr dieser Methoden erfolgen.
  • Ganz besonders werden Pellets und/oder Tabletten hergestellt.
  • Das Kneten und/oder Verformen kann bei erhöhten Temperaturen wie beispielsweise im Bereich von Raumtemperatur bis 300°C und/oder bei erhöhtem Druck wie beispielsweise im Bereich von Normaldruck bis hin zu einigen hundert bar und/oder in einer Schutzgasatmosphäre wie beispielsweise in Anwesenheit mindestens eines Edelgases, Stickstoff oder einem Gemisch aus zwei oder mehr davon erfolgen.
  • Das Kneten und/oder Verformen wird gemäß einer weiteren Ausführungsform unter Zugabe mindestens eines Bindemittels durchgeführt, wobei als Bindemittel grundsätzlich jede chemische Verbindung eingesetzt werden kann, die die zum Kneten und/oder Verformen gewünschte Viskosität der zu verknetenden und/oder verformenden Masse gewährleistet. Demgemäß können Bindemittel im Sinne der vorliegenden Erfindung sowohl Viskositätserhöhende als auch Viskositätserniedrigende Verbindungen sein.
  • Als unter anderem bevorzugte Bindemittel sind beispielsweise Aluminiumoxid oder Aluminiumoxid enthaltende Binder, wie sie beispielsweise in der WO 94/29408 beschrieben sind, Siliciumdioxid, wie es beispielsweise in der EP 0 592 050 A1 beschrieben ist, Mischungen als Siliciumdioxid und Aluminiumoxid, wie sie beispielsweise in der WO 94/13584 beschrieben sind, Tonminerale, wie sie beispielsweise in der JP 03-037156 A beschrieben sind, beispielsweise Montmorillonit, Kaolin, Bentonit, Hallosit, Dickit, Nacrit und Anauxit, Alkoxysilane, wie sie beispielsweise in der EP 0 102 544 B1 beschrieben sind, beispielsweise Tetraalkoxysilane wie beispielsweise Tetramethoxysilan, Tetraethoxysilan, Tetrapropoxysilan, Tetrabutoxysilan, oder beispielsweise Trialkoxysilane wie beispielsweise Trimethoxysilan, Triethoxysilan, Tripropoxysilan, Tributoxysilan, Alkoxytitanate, beispielsweise Tetraalkoxytitanate wie beispielsweise Tetramethoxytitanat, Tetraethoxytitanat, Tetrapropoxytitanat, Tetrabutoxytitanat, oder beispielsweise Trial koxytitanate wie beispielsweise Trimethoxytitanat, Triethoxytitanat, Tripropoxytitanat, Tributoxytitanat, Alkoxyzirkonate, beispielsweise Tetraalkoxyzirkonate wie beispielsweise Tetramethoxyzirkonat, Tetraethoxyzirkonat, Tetrapropoxyzirkonat, Tetrabutoxyzirkonat, oder beispielsweise Trialkoxyzirkonate wie beispielsweise Trimethoxyzirkonat, Triethoxyzirkonat, Tripropoxyzirkonat, Tributoxyzirkonat, Silikasole, amphiphile Substanzen und/oder Graphite zu nennen. Insbesondere bevorzugt ist Graphit.
  • Als viskositätssteigernde Verbindung kann beispielsweise auch, gegebenenfalls zusätzlich zu den oben genannten Verbindungen, eine organische Verbindung und/oder ein hydrophiles Polymer wie beispielsweise Cellulose oder ein Cellulosederivat wie beispielsweise Methylcellulose und/oder ein Polyacrylat und/oder ein Polymethacrylat und/oder ein Polyvinylalkohol und/oder ein Polyvinylpyrrolidon und/oder ein Polyisobuten und/oder ein Polytetrahydrofuran eingesetzt werden.
  • Als Anteigungsmittel kann unter anderem bevorzugt Wasser oder mindestens ein Alkohol wie beispielsweise ein Monoalkohol mit 1 bis 4 C-Atomen wie beispielsweise Methanol, Ethanol, n-Propanol, iso-Propanol, 1-Butanol, 2-Butanol, 2-Methyl-1-propanol oder 2-Methyl-2-propanol oder ein Gemisch aus Wasser und mindestens einem der genannten Alkohole oder ein mehrwertiger Alkohol wie beispielsweise ein Glykol, bevorzugt ein wassermischbarer mehrwertiger Alkohol, allein oder als Gemisch mit Wasser und/oder mindestens einem der genannten einwertigen Alkohole eingesetzt werden.
  • Weitere Additive, die zum Kneten und/oder Verformen eingesetzt werden können, sind unter anderem Amine oder Aminderivate wie beispielsweise Tetraalkylammonium-Verbindungen oder Aminoalkohole und Carbonat enthaltende Verbindungen wie etwa Calciumcarbonat. Solche weiteren Additive sind etwa in der EP 0 389 041 A1 , der EP 0 200 260 A1 oder der WO 95/19222 beschrieben.
  • Die Reihenfolge der Additive wie Templatverbindung, Binder, Anteigungsmittel, viskositätssteigernde Substanz beim Verformen und Kneten ist grundsätzlich nicht kritisch.
  • Gemäß einer weiteren bevorzugten Ausführungsform wird der gemäß Kneten und/oder Verformen erhaltene Formkörper mindestens einer Trocknung unterzogen, die im Allgemeinen bei einer Temperatur im Bereich von 25 bis 300°C, bevorzugt im Bereich von 50 bis 300°C und besonders bevorzugt im Bereich von 100 bis 300°C durchgeführt wird. Ebenso ist es möglich, im Vakuum oder unter Schutzgasatmosphäre oder durch Sprühtrocknung zu trocknen.
  • Gemäß einer besonders bevorzugten Ausführungsform wird im Rahmen dieses Trocknungsvorgangs mindestens eine der als Additive zugesetzten Verbindungen zumindest teilweise aus dem Formkörper entfernt.
  • Ein weiterer Gegenstand der Erfindung ist die Verwendung eines porösen metallorganischen Gerüstmaterials, wobei das Gerüstmaterial mindestens eine an mindestens ein Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung enthält, zur Abtrennung von Geruchsstoffen aus Gasen.
  • Sofern es sich bei den im Filter durch das metallorganische Gerüstmaterial abgetrennten Geruchsstoffen um organische Verbindungen handelt, können diese weiterhin mit Hilfe von elektrischer Entladung vorzugsweise vollständig zu anorganische Verbindungen zersetzt werden. Hierbei kann der Filter in eine Hochspannungseinheit integriert werden oder die Einheit selbst bildet den Filter.
  • Beispiel 1 Geruchsreduktion durch metallorganische Gerüstmaterialien Zink enthaltend
  • Geprüfte Proben:
    • MOF-5 (Zn-MOF basierend auf Terephthalsäure)
    • IRMOF-8 (Zn-MOF basierend auf Naphthalindicarbonsäure)
  • Jeweils 2 g von MOF-5 und MOF-8 werden in selbst hergestellten „Teebeuteln" (Größe ca. 5 × 6 cm) aus Filterpapier gegeben. Diese hängen frei in 500 ml-Weithalsflaschen. In die Flaschen wird eine bestimmte Anzahl an Tropfen der Prüfsubstanz gegeben, ohne dass hierbei die Tropfen mit dem Beutel in Kontakt kommen, anschließend werden die Flaschen verschlossen. Nach circa einer Stunde Einwirkzeit wird der Gas-Gehalt in der Flasche mittels Dräger-Röhrchen (Drägerwerk AG, Lübeck, DE) überprüft.
  • Bei Ammoniak wurde der Geruch olfaktorisch überprüft.
  • Figure 00280001
  • Figure 00290001
  • Wie aus der Tabelle ersichtlich ist, lässt sich eine merkliche Reduktion der Konzentration der Prüfsubstanzen in der Umgebungsluft wahrnehmen bzw. feststellen.
  • Beispiel 2 (erfindungsgemäß)
  • Ein Rohrreaktor mit Innendurchmesser 10 mm wird mit 10 g des zuvor verpressten und dann gesplitteten MOF-Materials (Korngrößenverteilung zwischen 1 bis 2 mm Siebfraktion) befüllt und bei 25°C mit einem Gasgemisch im geraden Durchgang beaufschlagt.
  • Bei dem MOF-Material handelt es sich um ein elektrochemisch hergestelltes Cu-MOF-Material. Die Herstellung ist in Beispiel 2 von PCT/EP2004/013236 beschrieben.
  • Das Gasgemisch besteht aus Methan mit einer Belastung von 6250 Lgas/LMOF/h und ist mit 13 ppmv an Tetrahydrothiophen (THT) als Odorierungsmittel versetzt.
  • Im Ausgang des Reaktors wird das austretende Gas mit einem Gaschromatographen analysiert (Flammen-Ionisations-Detektor). Die Analyse auf Schwefelverbindungen wird mittels eines Flammen-Photometers in gleicher Weise betrieben. Nach Beendigung des Versuchs wird das Probenmaterial ausgebaut und der Gehalt an Schwefel mittels Methoden der organischen Elementanalyse bestimmt (vgl. „Quantitative Organische Elementaranalyse", Ehrenberger, VCH Verlagsgesellschaft, Weinheim, 1991, S. 242 ff.).
  • Die Aufnahmekapazität des MOF-Materials bis zum Auftreten von Werten größer 2 ppm THT in der Durchbruchskurve wird zu 70 g THT/LMOF bestimmt.
  • Beispiel 3 (Vergleichsbeispiel)
  • Analog zu Beispiel 2 werden 10 g Aktivkohle (Fa. Norit, Type RB4) verwendet. Nach Durchführung des Versuches wird die Aufnahmekapazität an Schwefel auf der Aktivkohle zu 0,5 g THT/g Aktivkohle bestimmt.
  • Beispiel 4 (Vergleichsbeispiel)
  • Analog zu Beispiel 2 werden 10 g Aktivkohle (Fa. CarboTech, Type C38/4) verwendet. Nach Durchführung des Versuches werden die Aufnahmekapazität an Schwefel auf der Aktivkohle zu 6,5 g THT/g Aktivkohle bestimmt.
  • Beispiel 5 Temperaturprogrammierte Desorption
  • Zur Bestimmung des Sorptionsvermögens von metallorganischen Gerüstmaterialien in Bezug auf Geruchsstoffe wird die Peak-Maximum Temperatur (TPM) durch Temperaturprogrammierte Desorption bestimmt. Hierfür wird das Gerät AutoChem II 2920 V3.00 der Firma Micromeritics GmbH (Mönchengladbach, DE) verwendet.
  • Hierbei wird zunächst das Gerüstmaterial mit dem Geruchsstoff bei 40 °C gesättigt und anschließend wird die Temperatur auf 300°C erhöht (Rampe 10 K/min.). Das Maximum wird mit Hilfe des Wärmeleitfähigkeits-Signals ermittelt.
  • Als Gerüstmaterialien werden handelt es sich um Zn MOF-5 (MOF A) und um ein wie für Beispiel 2 elektrochemisch hergestelltes Cu-MOF-Material (MOF B).
  • In der nachfolgenden Tabelle sind die ermittelten Peak-Maximum Temperaturen aufgeführt. Als Vergleich sind ebenfalls die Siedepunkte (Sdp) bei Standardbedingungen angegeben.
  • Figure 00300001

Claims (11)

  1. Verfahren zur Abtrennung von Geruchsstoffen aus Gasen den Schritt enthaltend Inkontaktbringen des Gases mit mindestens einem Filter enthaltend ein poröses metallorganisches Gerüstmaterial, wobei das Gerüstmaterial mindestens eine an mindestens ein Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung enthält.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Gas ausgewählt ist aus Erdgas, Biogas, Abgas, Luft, Abluft oder Inertgas.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Geruchsstoff eine flüchtige organische oder anorganische Verbindung, die mindestens eines der Elemente Stickstoff, Phosphor, Sauerstoff, Schwefel, Fluor, Chlor, Brom oder Iod enthält oder ein ungesättigter oder aromatischer Kohlenwasserstoff oder ein gesättigter oder ungesättigter Aldehyd oder Keton ist.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Geruchsstoff leicht flüchtig ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Filter regenerierbar ist.
  6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Sättigung des Filters (Filtermaterials) durch eine Farbänderung erkennbar ist, wenn das mindestens eine Metallion ein Cu-ion ist.
  7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das poröse metallorganische Gerüstmaterial auf einem Trägermaterial aufgebracht wird.
  8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das poröse metallorganische Gerüstmaterial mindestens eine der folgenden Eigenschaften aufweist: a. Spezifische Oberfläche > 5 m2/g (nach DIN 66131); b. Porengröße des kristallinen MOF liegt im Bereich von 0,2 nm bis 30 nm; c. Mindestens die Hälfte des Porenvolumens wird von Poren mit einem Porendurchmesser bis 1000 nm gebildet.
  9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das poröse metallorganische Gerüstmaterial elektrochemisch hergestellt wurde.
  10. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass das poröse metallorganische Gerüstmaterial Zn, Al, Ni oder Cu als Metallion enthält und die mindestens zweizähnige organische Verbindung Terephthalsäure, Isophthalsäure, 2,4-Naphthalindicarbonsäure oder 1,3,5-Benzoltricarbonsäure ist.
  11. Verwendung eines porösen metallorganischen Gerüstmaterials, wobei das Gerüstmaterial mindestens eine an mindestens ein Metallion koordinativ gebundene, mindestens zweizähnige organische Verbindung enthält, zur Abtrennung von Geruchsstoffen aus Gasen.
DE102005022844A 2005-05-18 2005-05-18 Abtrennung von Geruchsstoffen aus Gasen Withdrawn DE102005022844A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102005022844A DE102005022844A1 (de) 2005-05-18 2005-05-18 Abtrennung von Geruchsstoffen aus Gasen
JP2008511685A JP2008540110A (ja) 2005-05-18 2006-05-15 ガスからの臭気物質の分離
PCT/EP2006/062312 WO2006122920A1 (de) 2005-05-18 2006-05-15 Abtrennung von geruchsstoffen aus gasen
KR1020077028615A KR20080020619A (ko) 2005-05-18 2006-05-15 가스 악취 물질 분리
CNA2006800170580A CN101175548A (zh) 2005-05-18 2006-05-15 从气体中分离出有气味物质
EP06755189A EP1885474A1 (de) 2005-05-18 2006-05-15 Abtrennung von geruchsstoffen aus gasen
US11/913,977 US20080190289A1 (en) 2005-05-18 2006-05-15 Gas Odorous Substance Separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102005022844A DE102005022844A1 (de) 2005-05-18 2005-05-18 Abtrennung von Geruchsstoffen aus Gasen

Publications (1)

Publication Number Publication Date
DE102005022844A1 true DE102005022844A1 (de) 2006-11-23

Family

ID=36660739

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102005022844A Withdrawn DE102005022844A1 (de) 2005-05-18 2005-05-18 Abtrennung von Geruchsstoffen aus Gasen

Country Status (7)

Country Link
US (1) US20080190289A1 (de)
EP (1) EP1885474A1 (de)
JP (1) JP2008540110A (de)
KR (1) KR20080020619A (de)
CN (1) CN101175548A (de)
DE (1) DE102005022844A1 (de)
WO (1) WO2006122920A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145175A1 (en) * 2007-05-28 2008-12-04 Nm Tech Nanomaterials Microdevice Technology Ltd. Breathing means
WO2009056184A1 (de) * 2007-11-04 2009-05-07 BLüCHER GMBH Sorptionsfiltermaterial und seine verwendung
WO2010003903A2 (de) * 2008-07-08 2010-01-14 Basf Se Verfahren zur entfernung von schwefelhaltigen verbindungen aus kraftstoffen
US7815716B2 (en) 2005-11-14 2010-10-19 Basf Aktiengesellschaft Porous organo-metallic skeleton material containing an additional polymer
US8252255B2 (en) 2007-09-10 2012-08-28 Shell Oil Company Process for producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants with a metal-organic framework
US8372779B2 (en) 2007-04-24 2013-02-12 Basf Se Metal organic frameworks based on aluminum, iron and chromium
US8518264B2 (en) 2006-04-18 2013-08-27 Basf Se Method of using a metal organic frameworks based on aluminum fumarate
US8603225B2 (en) 2006-10-30 2013-12-10 Basf Se Aluminum naphthalenedicarboxylate as porous metal-organic framework material
DE202013102315U1 (de) 2013-04-06 2014-04-09 BLüCHER GMBH Aktivkohle mit spezieller Ausrüstung
US8703644B2 (en) 2011-04-21 2014-04-22 Basf Se Shaped body containing porous aromatic framework material
WO2014118074A1 (en) 2013-01-31 2014-08-07 Basf Se Metal-organic framework extrudates with high packing density and tunable pore volume
EP2985075A1 (de) 2014-08-15 2016-02-17 Basf Se Formkörper hergestellt aus einem porösen Material
EP3311913A1 (de) 2014-03-27 2018-04-25 Basf Se Poröse folien mit metallorganischen gerüstmaterialien
WO2019036140A1 (en) 2017-07-17 2019-02-21 Zymergen Inc. METALLO-ORGANIC STRESS MATERIALS
US10737239B2 (en) 2015-11-27 2020-08-11 Basf Se Ultrafast high space-time-yield synthesis of metal-organic frameworks

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007101797A1 (de) * 2006-03-09 2007-09-13 Basf Se Geschlossenes reversibles atemgerät mit metallorganischem gerüstmaterial
DE102006037194A1 (de) * 2006-08-09 2008-02-14 Merck Patent Gmbh Monolithische Materialien für Gasspeicher
DE102006061587A1 (de) 2006-12-27 2008-07-03 Basf Se Verwendung poröser metallorganischer Gerüstmaterialien zur farblichen Kennzeichung von Filtern
JP2010523911A (ja) * 2007-04-05 2010-07-15 ビーエーエスエフ ソシエタス・ヨーロピア 有機金属骨格材料を含む混合物を含むガス圧容器並びに潜熱蓄熱装置
TW200914115A (en) 2007-05-14 2009-04-01 Shell Int Research Process for producing purified natural gas from natural gas comprising water and carbon dioxide
JP2011520592A (ja) * 2008-04-22 2011-07-21 ユニヴェルシテ ドゥ モンス ガス吸着剤
US20110277767A1 (en) * 2008-12-18 2011-11-17 The Regents Of The University Of California Metal organic frameworks (mofs) for air purification
US8709134B2 (en) * 2009-02-02 2014-04-29 The Regents Of The University Of California Reversible ethylene oxide capture in porous frameworks
JP2012520756A (ja) * 2009-03-20 2012-09-10 ビーエーエスエフ ソシエタス・ヨーロピア アミンを含浸した有機金属骨格材料を用いた酸性ガスの分離方法
US8876953B2 (en) * 2009-06-19 2014-11-04 The Regents Of The University Of California Carbon dioxide capture and storage using open frameworks
WO2011123795A1 (en) 2010-04-02 2011-10-06 Battelle Memorial Institute Methods for associating or dissociating guest materials with a metal organic framework, systems for associating or dissociating guest materials within a series of metal organic frameworks, and gas separation assemblies
US8518153B2 (en) 2010-08-19 2013-08-27 Northwestern University Metal-organic frameworks for Xe/Kr separation
CN103228663A (zh) 2010-09-27 2013-07-31 加利福尼亚大学董事会 传导性开放骨架
US9307790B2 (en) * 2011-08-01 2016-04-12 Massachusetts Institute Of Technology Porous catalytic matrices for elimination of toxicants found in tobacco combustion products
US10182593B2 (en) 2011-08-01 2019-01-22 Massachusetts Institute Of Technology Porous catalytic matrices for elimination of toxicants found in tobacco combustion products
CN103877939B (zh) * 2012-12-19 2016-03-23 上海工程技术大学 常温脱氯剂及其制备方法
RU2532554C1 (ru) * 2013-04-18 2014-11-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Ивановский государственный химико-технологический университет" (ФГБОУ ВПО "ИГХТУ") Способ получения титансодержащего металлоорганического каркасного соединения
US10035127B2 (en) 2013-11-04 2018-07-31 The Regents Of The University Of California Metal-organic frameworks with a high density of highly charged exposed metal cation sites
JP6555861B2 (ja) * 2013-12-12 2019-08-07 日本製鉄株式会社 ふっ素を含有する配位性錯体又はその塩、ガス吸着材とその製法、これを用いたガス分離装置およびガス貯蔵装置
JP6452357B2 (ja) * 2013-12-12 2019-01-16 新日鐵住金株式会社 ふっ素を含有する配位高分子錯体、ガス吸着材、これを用いたガス分離装置およびガス貯蔵装置
WO2015127033A1 (en) 2014-02-19 2015-08-27 The Regents Of The University Of California Acid, solvent, and thermal resistant metal-organic frameworks
EP3074405A2 (de) 2014-03-18 2016-10-05 The Regents of the University of California Mesoskopische materialien aus geordneten supergittern aus mikroporösen metallorganische gerüsten
US10087205B2 (en) 2014-03-28 2018-10-02 The Regents Of The University Of California Metal organic frameworks comprising a plurality of SBUS with different metal ions and/or a plurality of organic linking ligands with different functional groups
CN103980881A (zh) * 2014-05-05 2014-08-13 北京化工大学 一种羧酸类双配体稀土配位聚合物光致发光体及其合成方法
KR101719730B1 (ko) * 2014-11-05 2017-03-27 국방과학연구소 양친성 분자로 표면이 개질된 불소화 금속 유기 골격체 분말, 이를 포함한 정화통 및 상기 정화통을 포함한 방독면
US10118877B2 (en) 2014-12-03 2018-11-06 The Regents Of The University Of California Metal-organic frameworks for aromatic hydrocarbon separations
US9190114B1 (en) 2015-02-09 2015-11-17 Western Digital Technologies, Inc. Disk drive filter including fluorinated and non-fluorinated nanopourous organic framework materials
US10058855B2 (en) 2015-05-14 2018-08-28 The Regents Of The University Of California Redox-active metal-organic frameworks for the catalytic oxidation of hydrocarbons
EP3339281B1 (de) 2015-08-17 2020-08-05 Daikin Industries, Ltd. Verfahren zur reinigung von halogenierten ungesättigten kohlenstoffverbindungen
EP3380437A1 (de) 2015-11-27 2018-10-03 The Regents of The University of California Zeolithische imidazolatrahmen
US10597408B2 (en) 2015-11-27 2020-03-24 The Regents Of The University Of California Covalent organic frameworks with a woven structure
CN105536574B (zh) * 2015-12-15 2019-12-03 中能科泰(北京)科技有限公司 过滤膜及其制备方法和用途
EP3424583A4 (de) * 2016-03-01 2019-04-24 Panasonic Corporation Beseitigung einer schwefelverbindungen aus einer flüssigkeit
WO2018139108A1 (ja) * 2017-01-26 2018-08-02 パナソニック株式会社 脱硫装置および脱硫方法
CN106902746A (zh) * 2017-03-23 2017-06-30 江苏苏净集团有限公司 一种金属有机框架/分子筛复合吸附材料
CN107376851A (zh) * 2017-08-23 2017-11-24 三峡大学 一种部分硫化金属有机框架复合材料的制备方法及其应用
EP3453450B1 (de) 2017-09-12 2021-06-30 Centre National De La Recherche Scientifique Abtrennung von essigsäure mit metallorganischen gerüstverbindungen
JP2019181452A (ja) * 2018-03-30 2019-10-24 パナソニックIpマネジメント株式会社 脱硫器、水素生成装置、および燃料電池システム
CN109897192A (zh) * 2019-03-26 2019-06-18 广州康滤净化科技有限公司 用于空气净化的功能性金属有机框架材料及其制备方法
EP4013544A4 (de) 2019-08-15 2024-02-28 Numat Tech Inc Zusammensetzungen eines wasserstabilen kupferschaufelrad-metallorganischen gerüsts (mof) und verfahren unter verwendung der mofs
CN111974354B (zh) * 2020-08-25 2023-04-25 内蒙古农业大学 一种Mg-MOFs单晶吸附材料及其制备方法与应用
CN113145078B (zh) * 2021-03-28 2023-04-07 桂林理工大学 一种适用于烟气中NO吸附分离的具有高分散纳米Rh组分的复合MOFs材料
CN113304736B (zh) * 2021-06-07 2022-03-04 浙江月旭材料科技有限公司 一种抗水型复合材料及其制备方法和用途
CN114369253B (zh) * 2021-12-15 2023-05-16 广东石油化工学院 一种改性mof材料及其制备方法
WO2023153070A1 (ja) * 2022-02-08 2023-08-17 パナソニックIpマネジメント株式会社 脱硫剤
CN115368639B (zh) * 2022-08-11 2023-05-30 桂林理工大学 一种兼具紫外阻隔和氨气响应功能的羧甲基淀粉/聚乙烯醇基纳米复合材料及其制备方法
WO2024038835A1 (ja) * 2022-08-16 2024-02-22 パナソニックIpマネジメント株式会社 脱硫剤
WO2024053339A1 (ja) * 2022-09-09 2024-03-14 パナソニックIpマネジメント株式会社 吸着剤およびその使用方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004009956A1 (de) * 2004-03-01 2005-09-29 Eurofilters N.V. Adsorbens für Staubsammelfilter, Staubsammelfilter und Verfahren zur Geruchsadsorption
US5648508A (en) * 1995-11-22 1997-07-15 Nalco Chemical Company Crystalline metal-organic microporous materials
JPH09227571A (ja) * 1996-02-28 1997-09-02 Osaka Gas Co Ltd ガス貯蔵性金属錯体とその製造方法及びガス貯蔵装置並びにガス貯蔵装置を装備した自動車
JP3566655B2 (ja) * 2001-01-10 2004-09-15 大陽東洋酸素株式会社 ガス吸着剤の製造法
DE10111230A1 (de) * 2001-03-08 2002-09-19 Basf Ag Metallorganische Gerüstmaterialien und Verfahren zu deren Herstellung
US6929679B2 (en) * 2002-02-01 2005-08-16 Basf Aktiengesellschaft Method of storing, uptaking, releasing of gases by novel framework materials
JP2003342260A (ja) * 2002-05-23 2003-12-03 Osaka Gas Co Ltd 三次元型金属錯体、吸着材および分離材
US6893564B2 (en) * 2002-05-30 2005-05-17 Basf Aktiengesellschaft Shaped bodies containing metal-organic frameworks
AU2003299528A1 (en) * 2002-06-19 2004-06-07 University Of Iowa Research Foundation Gas storage materials and devices
US7309380B2 (en) * 2003-06-30 2007-12-18 Basf Aktiengesellschaft Gas storage system
DE10355087A1 (de) * 2003-11-24 2005-06-09 Basf Ag Verfahren zur elektrochemischen Herstellung eines kristallinen porösen metallorganischen Gerüstmaterials
DE102004061238A1 (de) * 2004-12-20 2006-06-22 Basf Ag Adsorptive Anreicherung von Methan in Methan-haltigen Gasgemischen

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7815716B2 (en) 2005-11-14 2010-10-19 Basf Aktiengesellschaft Porous organo-metallic skeleton material containing an additional polymer
US8518264B2 (en) 2006-04-18 2013-08-27 Basf Se Method of using a metal organic frameworks based on aluminum fumarate
US8734652B2 (en) 2006-04-18 2014-05-27 Basf Se Metal organic frameworks based on aluminum fumarate, the preparation thereof, shaped bodies comprising such frameworks, and uses therefor
US8603225B2 (en) 2006-10-30 2013-12-10 Basf Se Aluminum naphthalenedicarboxylate as porous metal-organic framework material
US8372779B2 (en) 2007-04-24 2013-02-12 Basf Se Metal organic frameworks based on aluminum, iron and chromium
WO2008145175A1 (en) * 2007-05-28 2008-12-04 Nm Tech Nanomaterials Microdevice Technology Ltd. Breathing means
US8252255B2 (en) 2007-09-10 2012-08-28 Shell Oil Company Process for producing purified synthesis gas from synthesis gas comprising trace amounts of sulphur contaminants with a metal-organic framework
WO2009056184A1 (de) * 2007-11-04 2009-05-07 BLüCHER GMBH Sorptionsfiltermaterial und seine verwendung
RU2446875C2 (ru) * 2007-11-04 2012-04-10 Блюхер Гмбх Сорбционный фильтрующий материал и его использование
CN102006929B (zh) * 2007-11-04 2013-06-12 布吕歇尔有限公司 吸持过滤材料及其应用
WO2010003903A2 (de) * 2008-07-08 2010-01-14 Basf Se Verfahren zur entfernung von schwefelhaltigen verbindungen aus kraftstoffen
WO2010003903A3 (de) * 2008-07-08 2010-07-15 Basf Se Verfahren zur entfernung von schwefelhaltigen verbindungen aus kraftstoffen
US8703644B2 (en) 2011-04-21 2014-04-22 Basf Se Shaped body containing porous aromatic framework material
WO2014118074A1 (en) 2013-01-31 2014-08-07 Basf Se Metal-organic framework extrudates with high packing density and tunable pore volume
US9370771B2 (en) 2013-01-31 2016-06-21 Basf Se Metal-organic framework extrudates with high packing density and tunable pore volume
DE202013102315U1 (de) 2013-04-06 2014-04-09 BLüCHER GMBH Aktivkohle mit spezieller Ausrüstung
DE102013105471A1 (de) 2013-04-06 2014-10-09 BLüCHER GMBH Aktivkohle mit spezieller Ausrüstung sowie deren Herstellung und Verwendung
WO2014161705A1 (de) 2013-04-06 2014-10-09 BLüCHER GMBH Aktivkohle mit spezieller ausrüstung sowie deren herstellung und verwendung
EP3311913A1 (de) 2014-03-27 2018-04-25 Basf Se Poröse folien mit metallorganischen gerüstmaterialien
US10888838B2 (en) 2014-03-27 2021-01-12 Basf Se Porous films comprising metal-organic framework materials
EP2985075A1 (de) 2014-08-15 2016-02-17 Basf Se Formkörper hergestellt aus einem porösen Material
US10737239B2 (en) 2015-11-27 2020-08-11 Basf Se Ultrafast high space-time-yield synthesis of metal-organic frameworks
WO2019036140A1 (en) 2017-07-17 2019-02-21 Zymergen Inc. METALLO-ORGANIC STRESS MATERIALS
US11452967B2 (en) 2017-07-17 2022-09-27 Zymergen Inc. Metal-organic framework materials

Also Published As

Publication number Publication date
US20080190289A1 (en) 2008-08-14
CN101175548A (zh) 2008-05-07
WO2006122920A1 (de) 2006-11-23
KR20080020619A (ko) 2008-03-05
EP1885474A1 (de) 2008-02-13
JP2008540110A (ja) 2008-11-20

Similar Documents

Publication Publication Date Title
DE102005022844A1 (de) Abtrennung von Geruchsstoffen aus Gasen
EP1888129B1 (de) Suspension zur verminderung von geruch
EP2168971B1 (de) Flüssigkeitsabsorption durch metallorganische Gerüstmaterialien
DE102005000938A1 (de) Adsorptive Gewinnung von Xenon aus Krypton-Xenon Gasgemischten
DE102004061238A1 (de) Adsorptive Anreicherung von Methan in Methan-haltigen Gasgemischen
EP2408536B1 (de) Verfahren zum abtrennen saurer gase mit hilfe von mit aminen imprägnierten metallorganischen gerüstmaterialien
EP2010546A1 (de) Metallorganische gerüstmaterialien aus zirkonium
WO2007118888A1 (de) Verfahren zur herstellung metallorganischer gerüstmaterialien mit metallen der iv. nebengruppe
EP1954395A1 (de) Metallorganische gerüstmaterialien der iii. nebengruppe
DE102006020852A1 (de) Gasdruckbehälter für gasbetriebene Kraftfahrzeuge
WO2009092777A1 (de) Poröse metallorganische gerüstmaterialien als trockenmittel
DE102005039623A1 (de) Verfahren zur Herstellung von metallorganischen Gerüstmaterialien Hauptgruppen Metallionen enthaltend
WO2007101797A1 (de) Geschlossenes reversibles atemgerät mit metallorganischem gerüstmaterial
EP2142297A1 (de) Mit katalysator-metallkomponenten beladene poröse metallorganische gerüstmaterialien
EP2155390A2 (de) Metallorganische gerüstmaterialien mit hexagonal-trigonaler struktur basierend auf aluminium, eisen oder chrom, sowie einer dicarbonsäure
WO2008000694A2 (de) Speicherung von acetylenhaltigen gasen mit hilfe von metallorganischen gerüstmaterialien
WO2008080813A1 (de) Verwendung poröser metallorganischer gerüstmaterialien zur farblichen kennzeichnung von filtern
EP2117676B1 (de) Verfahren zur trennung von gasen mit hilfe eines porösen metallorganischen gerüstmaterials

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee