DE102004040104A1 - Verwendung von amphiphilen Copolymerisaten als Solubilisatoren - Google Patents

Verwendung von amphiphilen Copolymerisaten als Solubilisatoren Download PDF

Info

Publication number
DE102004040104A1
DE102004040104A1 DE102004040104A DE102004040104A DE102004040104A1 DE 102004040104 A1 DE102004040104 A1 DE 102004040104A1 DE 102004040104 A DE102004040104 A DE 102004040104A DE 102004040104 A DE102004040104 A DE 102004040104A DE 102004040104 A1 DE102004040104 A1 DE 102004040104A1
Authority
DE
Germany
Prior art keywords
monomer
mol
copolymers
acid
different
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE102004040104A
Other languages
English (en)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Priority to DE102004040104A priority Critical patent/DE102004040104A1/de
Priority to JP2007526333A priority patent/JP2008510043A/ja
Priority to US11/660,403 priority patent/US20080153925A1/en
Priority to EP05783769A priority patent/EP1781719A1/de
Priority to CA002577431A priority patent/CA2577431A1/en
Priority to PCT/EP2005/008408 priority patent/WO2006018135A1/de
Priority to CNA2005800281502A priority patent/CN101080426A/zh
Publication of DE102004040104A1 publication Critical patent/DE102004040104A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F226/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen
    • C08F226/06Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen by a heterocyclic ring containing nitrogen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/141Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers
    • A61K9/146Intimate drug-carrier mixtures characterised by the carrier, e.g. ordered mixtures, adsorbates, solid solutions, eutectica, co-dried, co-solubilised, co-kneaded, co-milled, co-ground products, co-precipitates, co-evaporates, co-extrudates, co-melts; Drug nanoparticles with adsorbed surface modifiers with organic macromolecular compounds

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • General Preparation And Processing Of Foods (AREA)
  • Medicinal Preparation (AREA)
  • Cosmetics (AREA)

Abstract

Die vorliegende Erfindung betrifft die Verwendung von Copolymeren, erhältlich durch Polymerisation von DOLLAR A a) mindestens einer Verbindung der Formel (I) (Monomer A), DOLLAR F1 wobei DOLLAR A R1 und R2 unabhängig voneinander jeweils H oder CH¶3¶, DOLLAR A R3 C¶6¶-C¶10¶-Aryl oder C¶7¶-C¶12¶-Aralkyl, die einen oder mehrere gleiche oder verschiedene C¶1¶-C¶9¶-Alkyl- und/oder C¶1¶-C¶5¶-Alkoxy-Substituenten tragen können, und DOLLAR A n eine ganze Zahl von 0 bis 100 bedeutet, DOLLAR A b) mindestens einer Verbindung, ausgewählt aus der Gruppe der N-Vinylamide, der N-Vinyllactame, der N-Vinylimine und der N-Vinylamine mit 2 bis 15 Kohlenstoffatomen (Monomer B), DOLLAR A c) gegebenenfalls einer oder mehrerer verschiedener difunktioneller Vernetzerkomponenten und DOLLAR A d) gegebenenfalls eines oder mehrerer verschiedener Regler und DOLLAR A e) gegebenenfalls einer oder mehrerer weiterer copolymerisierbarer Komponenten (Monomer C), DOLLAR A als Solubilisatoren.

Description

  • Die vorliegende Erfindung betrifft die Verwendung von Copolymerisaten, erhältlich durch Polymerisation monoethylenisch ungesättigter Carbonsäureester mit N-Vinylamiden, N-Vinyllactamen, N-Vinylaminen bzw. N-Vinyliminen, als Solubilisatoren.
  • Bei der Herstellung homogener pharmazeutischer oder kosmetischer Zubereitungen hat die Solubilisierung von hydrophoben Stoffen eine sehr große praktische Bedeutung erlangt.
  • Unter Solubilisierung ist eine Löslichkeitsverbesserung durch oberflächenaktive Verbindungen zu verstehen, die in der Lage sind, schlecht wasserlösliche oder wasserunlösliche Stoffe in klare, höchstens opaleszierende wässrige Lösungen zu überführen, ohne dass hierbei die chemische Struktur dieser Stoffe eine Veränderung erfährt.
  • Die hergestellten Solubilisate sind dadurch gekennzeichnet, dass der schlecht wasserlösliche oder wasserunlösliche Stoff in den Molekülassoziaten der oberflächenaktiven Verbindungen, die sich in wässriger Lösung bilden gelöst vorliegt. Die resultierenden Lösungen sind stabile einphasige Systeme, die optisch klar bis opaleszent erscheinen und ohne Energieeintrag hergestellt werden können.
  • Solubilisatoren können beispielsweise das Aussehen von kosmetischen Formulierungen sowie von Lebensmittelzubereitungen verbessern, indem sie die Formulierungen transparent machen. Außerdem kann im Falle von pharmazeutischen Zubereitungen auch die Bioverfügbarkeit und damit die Wirkung von Arzneistoffen durch die Verwendung von Solubilisatoren gesteigert werden.
  • Als Solubilisatoren für pharmazeutische Arzneistoffe und kosmetische Wirkstoffe werden hauptsächlich folgende Produkte eingesetzt:
    • – ethoxiliertes (hydriertes) Ricinusöl, (z.B. Cremophor® Marken, Fa. BASF);
    • – ethoxilierte Sorbitanfettsäureester, (z.B. Tween® Marken, Fa. ICI);
    • – ethoxilierte Hydroxystearinsäure, (z.B. Solutol® Marken, Fa. BASF).
  • Die oben beschriebenen, bisher eingesetzten Solubilisatoren zeigen jedoch eine Reihe anwendungstechnischer Nachteile. So besitzen die bekannten Solubilisatoren beispielsweise für einige schwerlösliche Arzneistoffe wie z.B. Clotrimazol, bzw. Wirk- oder Farbstoffe nur eine geringe lösungsvermittelnde Wirkung. Darüber hinaus eignen sich die genannten Solubilisatoren nicht zur Anwendung in festen Lösungen und sind zum Teil aus toxikologischer Sicht nicht unbedenklich.
  • Auch statistische, amphiphile Copolymere wurden als Solubilusatoren angewendet. So betrifft die EP-A 0 876 819 die Verwendung von Copolymerisaten aus N-Vinyl-Pyrrolidon und Alkylacrylsäuren als Solubilisatoren.
  • Die EP-A 0 953 347 betrifft die Verwendung von Polyalkylenoxid-haltigen Pfropfpolymerisaten als Solubilisatoren.
  • Aus der EP-A 0 943 340 ist die Verwendung von polymerisierten Fettsäurederivaten und Fettalkoholderivaten als Solubilisatoren bekannt.
  • Die EP-A 0 948 957 beschreibt die Verwendung von Copolymerisaten monoethylenisch ungesättigter Carbonsäuren als Solubilisatoren.
  • Aus der US-A 5,942,120 sind mikroporöse Ultrafiltrationsmembranen bekannt, die aus einem hydrophoben Polymer und einem Wasser-unlöslichen Additions-Copolymer bestehen, wobei das Copolymer aus speziellen Alkylphenoxy-Polyalkylenglycol-acrylaten einerseits und einer Verbindung ausgewählt aus der Gruppe der Vinylsulfonsäuren, Acrylamide, N-substituierter Acrylamide, Acrylnitrile, Niederalkyl(meth)acrylate, N-Vinyl-Pyrrolidon oder Gemischen derselben besteht.
  • Die JP-A 09 241 335 betrifft ein vernetztes Polymer, das durch Polymerisation mindestens eines N-Vinyl-Monomers ausgewählt aus der Gruppe bestehend aus N-Vinyl-Lactamen, N-Vinyll-amiden, N-Vinyl-Oxazolidonen, N-Vinylcarbamaten und N-Vinyl-Imiden einerseits und speziellen oxyalkylenierten (Meth)acrylsäureestern andererseits und deren Verwendung zur Herstellung Flammen hemmender Materialien.
  • Es bestand nun die Aufgabe, Solubilisatoren für pharmazeutische, kosmetische sowie lebensmitteltechnische Anwendungen bereitzustellen, die die oben genannten Nachteile nicht aufweisen.
  • Die Aufgabe wurde erfindungsgemäß gelöst durch die Verwendung von Copolymeren erhältlich durch Polymerisation von
    • a) mindestens einer Verbindung der Formel (I) (Monomer A)
      Figure 00020001
      wobei R1 und R2 unabhängig voneinander jeweils H oder CH3, R3 C6-C10-Aryl oder C7- C12-Aralkyl, die einen oder mehrere gleiche oder verschiedene C1-C9-Alkyl und/oder C1-C5-Alkoxy-Substituenten trägen können, und n eine ganze Zahl von 0 bis 100 bedeutet,
    • b) mindestens einer Verbindung ausgewählt aus der Gruppe der N-Vinylamide, der N-Vinyllactame, der N-Vinylimine und der N-Vinylamine mit 2 bis 15 Kohlenstoffatomen (Monomer B),
    • c) gegebenenfalls einer oder mehrerer verschiedener difunktioneller Vernetzerkomponenten und
    • d) gegebenenfalls eines oder mehrerer verschiedener Regler und
    • e) gegebenenfalls einer oder mehrerer weiterer copolymerisierbarer Komponenten (Monomer C)
    als Solubilisatoren.
  • Die erfindungsgemäß zu verwendenden Copolymere sind erhältlich durch Polymerisation mindestens eines copolymerisierbaren Momomeren der Formel (I) (Monomer A)
    Figure 00030001
    mit mindestens einem weiteren copolymerisierbaren Monomeren, ausgewählt aus der Gruppe bestehend aus den N-Vinyl-Amiden, den N-Vinyl-Lactamen, den N-Vinyliminen und den N-Vinyl-Aminen mit 2 bis 15 Kohlenstoffatomen (Monomer B).
  • Dabei können in Formel (I) die Reste R1 und R2 jeweils unabhängig voneinander die Bedeutungen H und/oder Methyl annehmen. Es handelt sich somit um Derivate der Acrylsäure und/oder der Methacrylsäure. Der Rest R3 bedeutet einen C6-C10-Arylrest wie beispielsweise Phenyl oder Naphtyl oder einen C7- C12-Aralkylrest wie beispielsweise Benzyl, Phenylethyl oder Phenylpropyl.
  • Die für R3 genannten Reste können einen oder mehrere, in der Regel 1 bis 3 gleiche oder verschiedene C1-C9-Alkyl- und/oder C1-C5-Alkoxy-Substituenten trägen, die geradkettig oder verzweigt, bzw. offenkettig, cyclisch oder alicyclisch sein können . Als C1-C9-Alkyl-Substituenten seien beispielhaft genannt: Methyl, Ethyl, 1-Propyl, 2-Propyl, 1-Butyl, 2-Butyl, 1,1-Dimetylethyl, 1-Pentyl, 2-Pentyl, 1-Hexyl, Cyclohexyl, 1-Heptyl, 1-Octyl, 1-Nonyl. Als C1-C5-Alkoxy-Substituenten seien beispielhaft genannt: Methoxy, Ethoxy, Propoxy, 2-Propoxy, 1-Butoxy, 2-Butoxy, 1,1-Dimetylethoxy, 1-Pentoxy, 2,2-Dimethylpropoxy. Bevorzugte Reste R3 sind beispielsweise: Phenyl, para-Tolyl, Benzyl, para-Hydroxybenzyl, para-Hydroxyphenyl, para-Methoxyphenyl, para-Methoxybenzyl oder Cyclohexyl.
  • Der Index n in Formel (I) bedeutet eine ganze Zahl von 0 bis 100, bevorzugt von 1 bis 100, besonders bevorzugt von 1 bis 25 und insbesondere von 1 bis 10. Steht n für eine Zahl größer 1, so können die Reste R2 der einzelnen Repetitionseinheiten jeweils die gleiche Bedeutung haben oder unabhängig voneinander, gegebenenfalls statistisch verteilt, jeweils für H oder CH3 stehen. In diesem Fall stehen bevorzugt etwa 50% bis etwa 100% der Reste R2 für H und etwa 0 bis etwa 50% der Reste R2 für CH3. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens nehmen in dem Fall, dass n für eine Zahl größer 1 steht, alle Reste die Gleiche Bedeutung an. Besonders bevorzugt bedeutet R2 dann H.
  • Die genannten copolymerisierbaren Monomere der Formel (I) sind erhältlich durch dem Fachmann an sich bekannte Methoden zur Synthese von Estern wie beispielsweise in Vollhardt, Peter; Organische Chemie, Seiten 768-774, 1988, VCH, New York oder auch in der EP-A 646567 beschrieben.
  • Erfindungsgemäß verwendbare Copolymere erhält man durch Polymerisation von Monomerengemischen, die in der Regel etwa 0,1 bis 99,9 Mol-%, bezogen auf die Gesamtmenge der eingesetzten Monomere, des mindestens einen Monomers A enthalten. Bevorzugt enthalten diese Monomerengemische etwa 1 bis etwa 50 Mol-%, besonders bevorzugt etwa 1 bis etwa 30 Mol-% des mindestens einen Monomers A. Die Monomere A können in reiner Form oder in Form von Gemischen zweier oder mehrerer unterschiedlicher Verbindungen wie sie durch Formel (I) definiert sind, eingesetzt werden.
  • Zur Herstellung des erfindungsgemäß zu verwendenden Copolymeren setzt man darüber mindestens ein weiteres copolymerisierbares Monomer (Monomer B) ein, das ausgewählt ist aus den Stoffgruppen der N-Vinylamide, der N-Vinyllactame, der N-Vinylimine und/oder der N-Vinyl-Amine. Die gewählten Monomere besitzen in der Regel 2 bis 15 Kohlenstoffatome, bevorzugt 2 bis 10 Kohlenstoffatome. Als N-Vinylamide bzw. N-Vinyllactame seien beispielhaft jene genannt, die durch die folgende Formel (II) charakterisiert werden:
    Figure 00050001
    in der
    R4, R5 unabhängig voneinander für H oder C1-C6-Alkyl stehen oder gemeinsam einen 4- bis 8-gliedrigen Cyclus bilden können, der gesättigt oder ein- oder mehrfach ungesättigt sein kann und gegebenenfalls weiter Substituenten tragen kann.
  • Geeignete offenkettige Verbindungen dieser Art sind beipielsweise N-Vinylformamid, N-Vinyl-N-methylformamid, N-Vinyl-N-ethylformamid, N-Vinyl-N-propylformamid, N-Vinyl-N-isopropylformamid, N-Vinyl-N-n-butylformamid, N-Vinyl-N-isobutylformamid, N-Vinyl-N-t-butylformamid, N-Vinyl-N-n-pentylformamid, N-Vinyl-N-n-hexylformamid, N-Vinylacetamid, N-Vinyl-N-methylacetamid, N-Vinyl-N-ethylacetamid, N-Vinylpropionamid, N-Vinyl-N-methylpropionamid und N-Vinylbutyramid. Insbesondere bevorzugt sind N-Vinylformamid und N-Vinyl-N-methylacetamid.
  • Von den zyklischen N-Vinylamiden, den N-Vinyllactamen, seien beispielhaft N-Vinylpyrrolidon, N-Vinylpiperidon und N-Vinylcaprolactam genannt. Vorzugsweise setzt man erfindungsgemäß N-Vinylpyrrolidon ein, während man von den offenkettigen N-Vinylamiden vorzugsweise N-Vinylformamid einsetzt. Auch Copolymerisate aus beispielsweise N-Vinylformamid und N-Vinylpyrrolidon, die im Copolymerisat in jedem beliebiebigen Verhältnis vorliegen können, lassen sich in erfindungsgemäßer Weise verwenden.
  • Alternativ dazu lasen sich auch N-Vinylamine, insbesondere N-Vinylamin, und N-Vinylimine wie beispielsweise N-Vinylimidazol, N-Vinyl-2-methylimidazol, N-Vinyl-4-methylimidazol, bevorzugt N-Vinylimidazol, als Monomere zur Herstellung der erfindungsgemäß verwendbaren Copolymere einsetzen.
  • Erfindungsgemäß verwendbare Copolymere erhält man durch Polymerisation von Monomerengemischen, die in der Regel etwa 0,1 bis 99,9 Mol-%, bezogen auf die Gesamtmenge der eingesetzten Monomere, des mindestens einen Monomeren B enthalten. Bevorzugt enthalten diese Monomerengemische etwa 50 bis etwa 99 Mol-%, besonders bevorzugt etwa 70 bis etwa 99 Mol-% des mindestens einen Monomers B. Die Monomere B können in reiner Form oder in Form von Gemischen zweier oder mehrerer unterschiedlicher der oben genannten Verbindungen eingesetzt werden.
  • Die erfindungsgemäß zu verwendenden Capolymere werden erhalten durch Copolymerisation mindestens eines Monomeren der Formel (I) (Monomer A) mit mindestens einem weiteren Mononeren ausgewählt aus den Stoffgruppen der N-Vinylamide bzw. N-Vinyllactame, N-Vinylimine und/oder der N-Vinylamine (Monomer B). Die Polymerisation kann prinzipiell nach allen dem Fachmann geeignet erscheinenden Verfahren vorgenommen werden. Mit besonderem Vorteil führt man eine radikalische Polimerisation durch unter den für diese Art der Polymerisation üblichen Bedingungen bzw. in Gegenwart der dafür geeigneten Reagenzien wie z.B. Radikalstartern.
  • Die Copolymeren besitzen K-Werte von mindestens 7, vorzugsweise von 20 bis 50, besonders bevorzugt von 25 bis 45. Die K-Werte werden bestimmt nach H. Fikentscher, Cellulose-Chemie, Band 13, 58 bis 64 und 71 bis 74 (1932) in wässriger Lösung bei 25°C, bei Konzentrationen, die je nach K-Wert-Bereich zwischen 0,1% und 5% liegen.
  • Die Herstellung erfolgt nach bekannten Verfahren, z.B. der Lösungs-, Fällungs-, oder umgekehrte Suspensionspolymerisation unter Verwendung von Verbindungen, die unter den Polymerisationsbedingungen Radikale bilden.
  • Die Polymerisationstemperaturen liegen üblicherweise in dem Bereich von 30 bis 200°C, vorzugsweise 40 bis 110°C. Geeignete Initiatoren (Radikalstarter) sind beispielsweise Azo- und Peroxyverbindungen sowie die üblichen Redoxinitiatorsysteme, wie Kombinationen aus Wasserstoffperoxid und reduzierend wirkenden Verbindungen, z.B. Natriumsulfit, Natriumbisulfit, Natriumformaldehydsulfoxilat und Hydrazin.
  • Als Reaktionsmedium finden alle üblichen Lösungsmittel Verwendung, in denen die Monomere löslich sind. Vorzugsweise werden alkoholische Lösungsmittel wie z.B. Methanol, Ethanol, n-Propanol oder Isopropanol in reiner Form oder in Form ihrer Gemische eingesetzt. Die genannten Lösungsmittel können auch in Form von Gemischen mit Wasser eingesetzt werden.
  • Um zu gewährleisten, dass die Reaktionen zu homogenen Produkten führen, ist es vorteilhaft, die Monomere und den Starter separat der Reaktionslösung zuzuführen. Dies kann beispielsweise in Form von getrennten Zuläufen für die einzelnen Reaktionspartner erfolgen.
  • Der Feststoffgehalt der erhaltenen organischen Lösung beträgt üblicherweise 20 bis 60 Gew.-%, insbesondere 25 bis 40 Gew.-%.
  • Das für die Polymerisation verwendete Lösungsmittel kann anschließend mittels Wasserdampfdestillation entfernt und gegen Wasser ausgetauscht werden.
  • Die Lösungen der Copolymere können durch verschiedene Trocknungsverfahren wie z.B. Sprühtrocknung, Fluidized Spray Drying, Walzentrocknung oder Gefriertrocknung in Pulverform überführt werden, aus der sich durch Redispergieren in Wasser erneut eine wässrige Dispersion bzw. Lösung herstellen läßt.
  • Die Herstellung der erfindungsgemäß verwendbaren Copolymere kann auch in gegewart von geeigneten difunktioneller Vernetzerkomponenten (Vernetzern) und/oder in Gegenwart von geeigneten Reglern durchgeführt werden.
  • Geeignete Vernetzer sind solche Monomere, die eine vernetzende Funktion besitzen, beispielsweise Verbindungen mit mindestens zwei ethylenisch ungesättigten, nichtkonjugierten Doppelbindungen im Molekül.
  • Beispiele hierfür sind Acrylester, Methacrylester, Allylether oder Vinylether von mindestens zweiwertigen Alkoholen. Die OH-Gruppen der zugrundeliegenden Alkohole können dabei ganz oder teilweise verethert oder verestert sein; die Vernetzer enthalten aber mindestens zwei ethylenisch ungesättigte Gruppen.
  • Beispiele für die zugrundeliegenden Alkohole sind zweiwertige Alkohole wie 1,2-Ethandiol, 1,2-Propandiol, 1,3-Propandiol, 1,2-Butandiol, 1,3-Butandiol, 2,3-Butandiol, 1,4-Butandiol, But-2-en-1,4-diol, 1,2-Pentandiol, 1,5-Pentandiol, 1,2-Hexandiol, 1,6-Hexandiol, 1,10-Decandiol, 1,2-Dodecandiol, 1,12-Dodecandiol, Neopentylglykol, 3-Methylpentan-1,5-diol, 2,5-Dimethyl-1,3-hexandiol, 2,2,4-Trimethyl--1,3-pentandiol, 1,2-Cyclohexandiol, 1,4-Cyclohexandiol, 1,4-Bis(hydroxymethyl)cyclohexan, Hydroxypivalinsäure-neopentylglykolmonoester, 2,2-Bis(4-hydroxyphenyl)-propan, 2,2-Bis[4-(2-hydroxypropyl)phenyl]propan, Diethylenglykol, Triethylenglykol, Tetraethylenglykol, Dipropylenglykol, Tripropylenglykol, Tetrapropylenglykol, 3-Thio-pentan-1,5-diol, sowie Polyethylenglykole, Polypropylenglykole und Polytetrahydrofurane mit Molekulargewichten von jeweils 200 bis 10000. Außer den Homopolymerisaten des Ethylenoxids bzw. Propylenoxids können auch Blockcopolymerisate aus Ethylenoxid oder Propylenoxid oder Copolymerisate, die Ethylenoxid- und Propylenoxid-Gruppen eingebaut enthalten, eingesetzt werden. Beispiele für zugrundeliegende Alkohole mit mehr als zwei OH-Gruppen sind Trimethylolpropan, Glycerin, Pentaerythrit, 1,2,5-Pentantriol, 1,2,6-Hexantriol, Triethoxycyanursäure, Sorbitan, Zucker wie Saccharose, Glucose, Mannose. Selbstverständlich können die mehrwertigen Alkohole auch nach Umsetzung mit Ethylenoxid oder Propylenoxid als die entsprechenden Ethoxylate bzw. Propoxylate eingesetzt werden. Die mehrwertigen Alkohole können auch zunächst durch Umsetzung mit Epichlorhydrin in die entsprechenden Glycidylether überführt werden.
  • Weitere geeignete Vernetzer sind die Vinylester oder die Ester einwertiger, ungesättigter Alkohole mit ethylenisch ungesättigten C3- bis C6-Carbonsäuren, beispielsweise Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure oder Fumarsäure. Beispiele für solche Alkohole sind Allylalkohol, 1-Buten-3-ol, 5-Hexen-1-ol, 1-Octen-3-ol, 9-Decen-1-ol, Dicyclopentenylalkohol, 10-Undecen-1-ol, Zimtalkohol, Citronellol, Crotylalkohol oder cis-9-Octadecen-1-ol. Man kann aber auch die einwertigen, ungesättigten Alkohole mit mehrwertigen Carbonsäuren verestern, beispielsweise Malonsäure, Weinsäure, Trimellitsäure, Phthalsäure, Terephthalsäure, Citronensäure oder Bernsteinsäure.
  • Weitere geeignete Vernetzer sind Ester ungesättigter Carbonsäuren mit den oben beschriebenen mehrwertigen Alkoholen, beispielsweise der Ölsäure, Crotonsäure, Zimtsäure oder 10-Undecensäure.
  • Geeignete Vernetzer sind außerdem geradkettige oder verzweigte, lineare oder cyclische, aliphatische oder aromatische Kohlenwasserstoffe, die über mindestens zwei Doppelbindungen verfügen, die bei aliphatischen Kohlenwasserstoffen nicht konjugiert sein dürfen, z.B. Divinylbenzol, Divinyltoluol, 1,7-Octadien, 1,9-Decadien, 4-Vinyl-1-cyclohexen, Trivinylcyclohexan oder Polybutadiene mit Molekulargewichten von 200 bis 20000.
  • Als Vernetzer sind ferner geeignet die Acrylsäureamide, Methacrylsäureamide und N-Allylamine von mindestens zweiwertigen Aminen. Solche Amine sind zum Beispiel 1,2-Diaminomethan, 1,2-Diaminoethan, 1,3-Diaminopropan, 1,4-Diaminobutan, 1,6-Diaminohexan, 1,12-Dodecandiamin, Piperazin, Diethylentriamin oder Isophorondiamin. Ebenfalls geeignet sind die Amide aus Allylamin und ungesättigten Carbonsäuren wie Acrylsäure, Methacrylsäure, Itaconsäure, Maleinsäure, oder mindestens zweiwertigen Carbonsäuren, wie sie oben beschrieben wurden.
  • Ferner sind Triallylamin und Triallylmonoalkylammoniumsalze, z.B. Triallylmethylammoniumchlorid oder -methylsulfat, als Vernetzer geeignet.
  • Geeignet sind auch N-Vinyl-Verbindungen von Harnstoffderivaten, mindestens zweiwertigen Amiden, Cyanuraten oder Urethanen, beispielsweise von Harnstoff, Ethylenharnstoff, Propylenharnstoff oder Weinsäurediamid, z.B. N,N'-Divinylethylenharnstoff oder N,N'-Divinylpropylenharnstoff.
  • Weitere geeignete Vernetzer sind Divinyldioxan, Tetraallylsilan oder Tetravinylsilan.
  • Selbstverständlich können auch Mischungen der vorgenannten Verbindungen eingesetzt werden. Vorzugsweise werden solche Vernetzer eingesetzt, die in der Monomermischung löslich sind.
  • Besonders bevorzugt eingesetzte Vernetzer sind beispielsweise Methylenbisacrylamid, Triallylamin und Triallylalkylammoniumsalze, Divinylimidazol, Pentaerythrittriallylether, N,N'-Divinylethylenharnstoff, Umsetzungsprodukte mehrwertiger Alkohole mit Acrylsäu re oder Methacrylsäure, Methacrylsäureester und Acrylsäureester von Polyalkylenoxiden oder mehrwertigen Alkoholen, die mit Ethylenoxid und/oder Propylenoxid und/oder Epichlorhydrin umgesetzt worden sind.
  • Ganz besonders bevorzugt als Vernetzer sind Pentaerythrittriallylether, Methylenbisacrylamid, N,N'-Divinylethylenharnstoff, Triallylamin und Triallylmonoalkylammoniumsalze, und Acrylsäureester von Glykol, Butandiol, Trimethylolpropan oder Glycerin oder Acrylsäureester von mit Ethylenoxid und/oder Epichlorhydrin umgesetzten Glykol, Butandiol, Trimethylolpropan oder Glycerin.
  • Die difunktionelle Vernetzerkomponente kann bei der Herstellung der erfindungsgemäß zu verwendenden Copolymere in Mengen von 0 bis zu etwa 5 Mol-%, bevorzugt von 0 bis etwa 3 Mol-%. bezogen auf die Gesamtmenge der eingesetzten Monomere, eingesetzt werden, entweder in reiner Form oder in Form eines Gemisches aus mehreren Vernetzern eingesetzt werden.
  • Die Herstellung der erfindungsgemäß verwendbaren Copolymere kann auch in Gegenwart von geeigneten Reglern durchgeführt werden. Als Regler (Polymerisationsregler) werden allgemein Verbindungen mit hohen Übertragungskonstanten bezeichnet. Regler beschleunigen Kettenübertragungsreaktionen und bewirken damit eine Herabsetzung des Polymerisationsgrades der resultierenden Polymeren, ohne die Bruttoreaktions-Geschwindigkeit zu beeinflussen.
  • Bei den Reglern kann man zwischen mono-, bi- oder polyfunktionalen Reglern unterscheiden je nach Anzahl der funktionellen Gruppen im Molekül, die zu einen oder mehreren Kettenübertragungsreaktionen führen können. Geeignete Regler werden beispielsweise ausführlich beschrieben von K.C. Berger und G. Brandrup in J. Brandrup, E.H. Immergut, Polymer Handbook, 3. Aufl., John Wiley & Sons, New York, 1989, S. II/81 – II/141.
  • Als Regler eignen sich beispielsweise Aldehyde wie Formaldehyd, Acetaldehyd, Propionaldehyd, n-Butyraldehyd, Isobutyraldehyd.
  • Ferner können auch als Regler eingesetzt werden: Ameisensäure, ihre Salze oder Ester, wie Ammoniumformiat, 2,5-Diphenyl-1-hexen, Hydroxylammoniumsulfat, und Hydroxylammoniumphosphat.
  • Weitere geeignete Regler sind Halogenverbindungen, z. B. Alkylhalogenide, wie Tetrachlormethan, Chloroform, Bromtrichlormethan, Bromoform, Allylbromid, und Benzylverbindungen, wie Benzylchlorid oder Benzylbromid.
  • Weitere geeignete Regler sind Allylverbindungen, wie z. B. Allylalkohol, funktionalisierte Allylether, wie Allylethoxylate, Alkylallylether, oder Glycerinmonoallylether.
  • Bevorzugt werden als Regler Verbindungen eingesetzt, die Schwefel in gebundener Form enthalten.
  • Verbindungen dieser Art sind beispielsweise anorganische Hydrogensulfite, Disulfite und Dithionite oder organische Sulfide, Disulfide, Polysulfide, Sulfoxide und Sulfone. Dazu zählen Di-n-butylsulfid, Di-n-octylsulfid, Diphenylsulfid, Thiodiglykol, Ethylthioethanol, Diisopropyldisulfid, Di-n-butyldisulfid, Di-n-hexyldisulfid, Diacetyldisulfid, Diethanolsulfid, Di-t-butyltrisulfid, Dimethylsulfoxid, Dialkylsulfid, Dialkyldisulfid und/oder Diarylsulfid.
  • Besonders bevorzugt sind organische Verbindungen, die Schwefel in gebundener Form enthalten.
  • Bevorzugt als Polymerisationsregler eingesetzte Verbindungen sind Thiole (Verbindungen, die Schwefel in Form von SH-Gruppen erhalten, auch als Mercaptane bezeichnet). Bevorzugt sind als Regler mono-, bi- und polyfunktionale Mercaptane, Mercaptoalkohole und/oder Mercaptocarbonsäuren.
  • Beispiele für diese Verbindungen sind Allylthioglykolate, Ethylthioglykolat, Cystein, 2-Mercaptoethanol, 1,3-Mercaptopropanol, 3-Mercaptopropan-1,2-diol, 1,4-Mercaptobutanol, Mercaptoessigsäure, 3-Mercaptopropionsäure, Mercaptobernsteinsäure, Thioglycerin, Thioessigsäure, Thioharnstoff und Alkylmercaptane wie n-Butylmercaptan, n-Hexylmercaptan oder n-Dodecylmercaptan.
  • Besonders bevorzugte Thiole sind Cystein, 2-Mercaptoethanol, 1,3-Mercaptopropanol, 3-Mercaptopropan-1,2-diol, Thioglycerin, Thioharnstoff.
  • Beispiele für bifunktionale Regler, die zwei Schwefel in gebundener Form enthalten sind bifunktionale Thiole wie z. B. Dimercaptopropansulfonsäure (Natrium Salz), Dimercaptobernsteinsäure, Dimercapto-1-propanol, Dimercaptoethan, Dimercaptopropan, Dimercaptobutan, Dimercaptopentan, Dimercaptohexan, Ethylenglykol-bis-thioglykolate und Butandiol-bis-thioglykolat.
  • Beispiele für polyfunktionale Regler sind Verbindungen, die mehr als zwei Schwefel in gebundener Form enthalten. Beispiele hierfür sind trifunktionale und/oder tetrafunktionale Mercaptane.
  • Bevorzugte trifunktionale Regler sind trifunktionale Mercaptane, wie z. B. Trimethylolpropan-tris(2-mercaptoethanat, Trimethylolpropan-tris(3-mercaptopropionat), Tri methylolpropan-tris(4-mercaptobutanat), Trimethylolpropan-tris(5-mercaptopentanat), Trimethylolpropan-tris(6-mercaptohexanat), Trimethylolpropan-tris(2-mercaptoacetat), Glycerylthioglycolat, Glycerylthiopropionat, Glycerylthioethylat, Glycerylthiobutanat, 1,1,1-Propanetriyl-tris-(mercaptoacetat), 1,1,1-Propanetriyl-tris-(mercaptoethanat), 1,1,1-Propanetriyl-tris-(mercaptoproprionat), 1,1,1-Propanetriyl-tris-(mercaptobutanat), 2-hydroxmethyl-2-methyl-1,3-propandiol-tris-(mercaptoacetat), 2-hydroxmethyl-2-methyl-1,3-propandiol-tris-(mercaptoethanat), 2-hydroxmethyl-2-methyl-1,3-propandioltris-(mercaptopropionat), 2-hydroxmethyl-2-methyl-1,3-propandiol-tris-(mercaptobutanat).
  • Besonders bevorzugte trifunktionale Regler sind Glycerylthioglycolat, Trimethylolpropan-tris(2-mercaptoacetat), 2-hydroxmethyl-2-methyl-1,3-propandiol tris-(mercaptoacetat).
  • Bevorzugte tetrafunktionale Mercaptane sind Pentaerythrit-tetrakis-(2-mercaptoacetat), Pentaerythrit-tetrakis-(2-mercaptoethanat), Pentaerythrit-tetrakis(3-mercaptopropionat), Pentaerythrit-tetrakis-(4-mercaptobutanat), Pentaerythrit-tetrakis(5-mercaptopentanat), Pentaerythrit-tetrakis-(6-mercaptohexanat).
  • Als weitere polyfunktionale Regler eignen sich Si-Verbindungen, die durch Umsetzung von Verbindungen der Formel (IIIa) entstehen. Weiterhin eignen sich als polyfunktionale Regler Si-Verbindungen der Formel (IIIb).
    Figure 00110001
    in der
    n ein Wert von 0 bis 2 ist,
    R1 eine C1-C16-Alkylgruppe oder Phenylgruppe bedeutet,
    R2 eine C1-C18-Alkylgruppe, die Cyclohexyl- oder Phenylgruppe bezeichnet,
    Z für eine C1-C18 Alkylgruppe, C2-C18-Alkylengruppe oder C2-C18-Alkinylgruppe steht, deren Kohlenstoffatome durch nicht benachbarte Sauerstoff- oder Halogenatome ersetzt sein können, oder für eine der Gruppen
    Figure 00120001
    in denen
    R3 eine C1-C12-Alkylgruppe bedeutet und
    R4 eine C1-C18-Alkylgruppe bezeichnet.
  • Besonders bevorzugt sind die Verbindungen der Formel (IIIa), darunter vor allem Mercaptopropyltrimethoxysilan und Mercaptopropyltriethoxysilan.
  • Alle genannten Regler können einzeln oder in Kombination miteinander eingesetzt werden. In einer bevorzugten Ausführungsform des Verfahrens werden multifunktionelle Regler eingesetzt.
  • Der Regler kann bei der Herstellung der erfindungsgemäß zu verwendenden Copolymere in Mengen von 0 bis zu etwa 4 Mol-%, bevorzugt von 0 bis zu etwa 3 Mol-%, bezogen auf die Gesamtmenge der eingesetzen Monomere, eingesetzt werden.
  • Darüber hinaus kann man bei der Herstellung der erfindungsgemäß zu verwendenden Copolymere noch eine oder mehrere weitere copolymerisierbare Komponenten (Monomer C) einsetzen. Beispielhaft seien dafür genannt: Monoethylenisch ungesättigte Carbonsäuren mit 3 bis 8 Kohlenstoffatomen wie beispielsweise Acrylsäure, Methacrylsäure, Dimethacrylsäure, Ethacrylsäure, Maleinsäure, Citraconsäure, Methylenmalonsäure, Allylessigsäure, Vinylessigsäure, Crotonsäure, Fumarsäure, Mesaconsäure und Itaconsäure. Aus dieser Gruppe von Monomeren verwendet man vorzugsweise Acrylsäure, Methacrylsäure, Maleinsäure oder Mischungen der genannten Carbonsäuren. Die monoethylenisch ungesättigten Carbonsäuren können in Form der freien Säure und – soweit vorhanden – der Anhydride oder in partiell oder in vollständig neutralisierter Form bei der Copolymerisation eingesetzt werden. Um diese Monomeren zu neutralisieren, verwendet man vorzugsweise Alkalimetall- oder Erdalkalimetallbasen, Ammoniak oder Amine, z.B. Natronlauge, Kalilauge, Soda, Pottasche, Natriumhydrogencarbonat, Magnesiumoxid, Calciumhydroxid, Calciumoxid, gasförmiges oder wässriges Ammoniak, Triethylamin, Ethanolamin, Diethanolamin, Triethanolamin, Morpholin, Diethylentriamin oder Tetraethylenpentamin.
  • Weitere geeignete Monomere C sind beispielsweise die C1-C30- Alkylester, Amide und Nitrile der oben angegebenen Carbonsäuren, z.B. Acrylsäuremethylester, Acrylsäureethylester, Methacrylsäure-methylester, Methacrylsäureethylester, Hydroxyethylacrylat, Hydroxypropylacrylat, Hydroxybutylacrylat, Hydroxyethylmethacrylat, Hydroxypropylmethacrylat, Hydroxyisobutylacrylat, Hydroxyisobutylmethacrylat, Octylacrylat, 2-Ethylhexylacrylat, 2-Ethylhexylmethacrylat, Nonylacrylat, Decylacrylat, Laurylacrylat, Myristylacrylat, Cetylacrylat, Stearylacrylat, Oleylacrylat, Behenylacrylat, Hexylmethacrylat, Octylmethacrylat, Nonylmethacrylat, Decylmethacrylat, Laurylmethacrylat, Myristyl-methacrylat, Cetylmethacrylat, Stearylmethacrylat, Oleyl-methacrylat, Behenylmethacrylat oder tert.-Butylcyclohexylacrylat.
  • Darüber hinaus geeignete Monomere C sind Maleinsäuremonomethylester, Maleinsäuredimethylester, Maleinsäuremonoethylester, Maleinsäurediethylester, Acrylamid, Methacrylamid, N,N-Dimethylacrylamid, N-tert.-butylacrylamid, Acrylnitril, Methacrylnitril, Dimethylaminoethylacrylat, Diethylaminoethylacrylat, Diethylaminoethylmethacrylat sowie die Salze der zuletzt genannten Monomeren mit Carbonsäuren oder Mineralsäuren sowie die quaternierten Produkte.
  • Weiterhin eignen sich als Monomere C auch N-alkyl- oder N,N-dialkylsubstituierte Carbonsäureamide der Acrylsäure oder der Methacrylsäure, wobei es sich bei den Alkylresten um C1-C18-Alkyl- oder Cycloalkylreste handelt, zum Beispiel N-diethylacrylamid, N-isopropylacrylamid, Dimethylaminopropylmethacrylamid, N-tert-octylacrylamide, N-Stearylacrylamid, N-Stearylmethacrylamid, N-Octylacrylamid, N,N-Dioctylacrylamid, N,N-Dioctylmethacrylamid, N-Cetylacrylamid, N-Cetylmethacrylamid, N-Dodecylacrylamid, N-Dodecylmethacrylamid, N-Myristylacrylamid oder 2-Ethylhexylacrylamid.
  • Weiterhin geeignet als Monomere C sind auch Vinylester aliphatischer Carbonsäuren (C1- bis C30-Carbonsäuren), beispielsweise Vinylacetat, Vinylpropionat und Vinylester der Octan-, Nonan-, Decan-, Undeca-, Laurin-, Tridecan-, Myristin-, Palmitin-, Stearin-, Arachin- oder Behensäure oder der Ölsäure.
  • Weitere geeignete Monomere C sind darüber hinaus die Vinylether, beispielsweise Octadecylvinylether.
  • Außerdem eignen sich als copolymerisierbare Monomere C Acrylamidoglycolsäure, Vinylsulfonsäure, Allylsulfonsäure, Methallylsulfonsäure, Styrolsulfonsäure, Acrylsäure-(3-sulfo-propyl)ester, Methacrylsäure(3-sulfopropyl)ester und Acrylamidomethylpropansulfonsäure sowie Phosphonsäuregruppen enthaltende Monomere, wie Vinylphosphonsäure, Allylphosphonsäure und Acrylamidomethanpropanphosphonsäure.
  • Als weiteres copolymerisierbares Monomer C genannt sei Diallylammoniumchlorid.
  • Die genannten Monomere C können sowohl einzeln als auch in Form von Gemischen mehrerer der genannten Verbindungen erfindungsgemäß eingesetzt werden.
  • Das eine weitere bzw. die mehreren weiteren Monomere C können bei der Herstellung der erfindungsgemäß zu verwendenden Copolymere in Mengen von 0 bis zu etwa 49 Mol-%, bezogen auf die Gesamtmenge der eingesetzen Monomere, eingesetzt werden.
  • In einer besonders bevorzugten Ausführungsform betrifft die Erfindung die Verwendung von Copolymeren als Solubilisatoren, die erhältlich sind durch Polymerisation von:
    • a) 1 bis 30 Mol-% mindestens eines Monomeren der Formel (I), wobei R1, R2 jeweils unabhängig voneinander H oder CH3, R3 Phenyl und n eine ganze Zahl von 1 bis 10 bedeutet,
    • b) 50 bis 99 Mol-% mindestens eines Monomeren ausgewählt aus der Gruppe der Monomeren N-Vinylpyrrolidon und N-Vinylcaprolactam,
    • c) 0 bis 3 Mol-% einer oder mehrerer verschiedener difunktioneller Vernetzerkomponenten,
    • d) 0 bis 3 Mol-% eines oder mehrerer verschiedener Regler und
    • e) 0 bis 49 Mol-% mindestens eines Monomeren C,
    wobei sich die Mol-% Angaben der einzelnen Komponenten zu 100 Mol-% addieren müssen.
  • In einem weiteren Aspekt betrifft die Erfindung Copolymere erhältlich durch Polymerisation von
    • a) mindestens einer Verbindung der Formel (I) (Monomer A)
      Figure 00140001
      wobei R1 und R2 unabhängig voneinander jeweils H oder CH3, R3 C6-C10-Aryl oder C7- C12-Aralkyl, die einen oder mehrere bevorzugt 1 bis 3 gleiche oder verschiedene C1-C9-Alkyl und/oder C1-C5-Alkoxy-Substituenten trägen können, und n 1 oder 2 bedeutet,
    • b) mindestens einer Verbindung ausgewählt aus der Gruppe der N-Vinylamide, der N-Vinyllactame, der N-Vinylimine und der N-Vinylamine mit 2 bis 15 Kohlenstoffatomen (Monomer B),
    • c) gegebenenfalls einer oder mehrerer verschiedener difunktioneller Vernetzerkomponenten und
    • d) gegebenenfalls eines oder mehrerer verschiedener Regler und
    • e) gegebenenfalls einer oder mehrerer weiterer copolymerisierbarer Komponenten (Monomer C).
  • Durch die vorliegende Erfindung werden amphiphile Verbindungen für die Anwendung als Lösungsvermittler für pharmazeutische und kosmetische Zubereitungen sowie für Lebensmittelzubereitungen zur Verfügung gestellt. Sie besitzen die Eigenschaft, schwer lösliche Wirkstoffe auf dem Gebiet der Pharmazie und Kosmetik, schwerlösliche Nahrungsergänzungsmittel, beispielsweise Vitamine und Carotinoide aber auch schwerlösliche Wirkstoffe für den Einsatz in Pflanzenschutzmitteln sowie veterinärmedizinische Wirkstoffe zu solubilisieren.
  • Die erfindungsgemäß zu verwendenden Copolymere eigenen sich insbesondere zur Verwendung als Solubilisatoren in festen Lösungen.
  • Die erfindungsgemäß zu verwendenden Copolymere Copolymere können als Solubilisatoren in kosmetischen Formulierungen eingesetzt werden. Beispielsweise eignen sie sich als Solubilisatoren für kosmetische Öle. Sie besitzen ein gutes Solubilisiervermögen für Fette und Öle, wie Erdnussöl, Jojobaöl, Kokosnußöl, Mandelöl, Olivenöl, Palmöl, Ricinusöl, Sojaöl oder Weizenkeimöl oder für etherische Öle wie Latschenkiefernöl, Lavendelöl, Rosmarinöl, Fichtennadelöl, Kiefernnadelöl, Eukalyptusöl, Pfefferminzöl, Salbeiöl, Bergamottöl, Terpentinöl, Melissenöl, Salbeiöl, Wacholderöl, Zitronenöl, Anisöl, Kardamonöl; Pfefferminzöl, Campheröl etc. oder für Mischungen aus diesen Ölen.
  • Weiterhin können die erfindungsgemäß zu verwendenden Copolymere Polymere als Solubilisatoren für in Wasser schwerlösliche oder unlösliche UV-Absorber wie verwendet werden.
  • Unter UV-Absorber sind im Rahmen der vorliegenden Erfindung UV-A-, UV-B- und/oder Breitbandfilter gemeint.
  • Vorteilhafte Breitbandfilter, UV-A- oder UV-B-Filtersubstanzen sind beispielsweise Vertreter der folgenden Verbindungsklassen:
    Bis-Resorcinyltriazinderivate mit der folgenden Struktur:
    Figure 00160001
    wobei R1, R2 und R3 unabhängig voneinander gewählt werden aus der Gruppe der verzweigten und unverzweigten Alkylgruppen mit 1 bis 10 Kohlenstoffatomen bzw. ein einzelnes Wasserstoffatom darstellen. Insbesondere bevorzugt sind das 2,4-Bis-{[4-(2-Ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin (INCI: Aniso Triazin), welches unter der Handelsbezeichnung Tinosorb® S bei der CIBA-Chemikalien GmbH erhältlich ist.
  • Auch andere UV-Filtersubstanzen, welche das Strukturmotiv
    Figure 00170001
    aufweisen, sind vorteilhafte UV-Filtersubstanzen im Sinne der vorliegenden Erfindung, beispielsweise die in der Europäischen Offenlegungsschrift EP 570 838 A1 beschriebenen s-Triazinderivate, deren chemische Struktur durch die generische Formel
    Figure 00170002
    wiedergegeben wird, wobei
    R einen verzweigten oder unverzweigten C1-C18-Alkylrest, einen C5-C12-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C1-C4- Alkylgruppen, darstellt,
    X ein Sauerstoffatom oder eine NH-Gruppe darstellt,
    R1 einen verzweigten oder unverzweigten C1-C18-Alkylrest, einen C5-C12-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C1-C4- Alkylgruppen, oder ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine Gruppe der Formel
    Figure 00180001
    bedeutet, in welcher
    A einen verzweigten oder unverzweigten C1-C18-Alkylrest, einen C5-C12-Cycloalkyl- oder Arylrest darstellt, gegebenenfalls substituiert mit einer oder mehreren C1-C4-Alkylgruppen,
    R3 ein Wasserstoffatom oder eine Methylgruppe darstellt,
    n eine Zahl von 1 bis 10 darstellt,
    R2 einen verzweigten oder unverzweigten C1-C18-Alkylrest, einen C5-C12-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C1-C4- Alkylgruppen, darstellt, wenn X die NH-Gruppe darstellt, und einen verzweigten oder unverzweigten C1-C18-Alkylrest, einen C5-C12-Cycloalkylrest, gegebenenfalls substituiert mit einer oder mehreren C1-C4- Alkylgruppen, oder ein Wasserstoffatom, ein Alkalimetallatom, eine Ammoniumgruppe oder eine Gruppe der Formel
    Figure 00180002
    bedeutet, in welcher
    A einen verzweigten oder unverzweigten C1-C18-Alkylrest, einen C5-C12-Cycloalkyl- oder Arylrest darstellt, gegebenenfalls substituiert mit einer oder mehreren C1-C4-Alkylgruppen,
    R3 ein Wasserstoffatom oder eine Methylgruppe darstellt,
    n eine Zahl von 1 bis 10 darstellt,
    wenn X ein Sauerstoffatom darstellt.
  • Besonders bevorzugte UV-Filtersubstanz im Sinne der vorliegenden Erfindung ist ferner ein unsymmetrisch substituiertes s-Triazin, dessen chemische Struktur durch die Formel
    Figure 00190001
    wiedergegeben wird, welches im Folgenden auch als Dioctylbutylamidotriazon (INCI: Diethylhexylbutamidotriazone) bezeichnet wird und unter der Handelsbezeichnung UVASORB® HEB bei Sigma 3V erhältlich ist.
  • Vorteilhaft im Sinne der vorliegenden Erfindung ist auch ein symmetrisch substituiertes s-Triazin, das 4,4',4''-(1,3,5-Triazin-2,4,6-triyltriimino)-tris-benzoesäure-tris(2-ethylhexylester), synonym: 2,4,6-Tris-[anilino-(p-carbo-2'-ethyl-1'-hexyloxy)]-1,3,5-triazin (INCI: Ethylhexyl Triazone), welches von der BASF Aktiengesellschaft unter der Warenbezeichnung UVINUL® T 150 vertrieben wird.
  • Auch in der Europäischen Offenlegungsschrift 775 698 werden bevorzugt einzusetzende Bis-Resorcinyltriazinderivate beschrieben, deren chemische Struktur durch die generische Formel
    Figure 00190002
    wiedergegeben wird, wobei R1 und R2 u.a. C3-C18-Alkyl oder C2-C18-Alkenyl und A1 einen aromatischen Rest repräsentieren.
  • Vorteilhaft im Sinne der vorliegenden Erfindung sind ferner das 2,4-Bis-{[4-(3-sulfonato)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin Natriumsalz, das 2,4-Bis-{[4-(3-(2-Propyloxy)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-[4-(2-methoxyethyl-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-{[4-(3-(2-propyloxy)-2-hydroxy-propyloxy)-2-hydroxy]-phenyl}-6-[4-(2-ethyl-carboxyl)-phenylamino]-1,3,5-triazin, das 2,4-Bis-{[4-(2-ethyl-hexyloxy)-2-hydroxy]-phenyl}-6-(1-methyl-pyrrol-2-yl)-1,3,5-triazin, das 2,4-Bis-{[4-tris(trimethylsiloxy-silylpropyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin, das 2,4-Bis-{[4-(2''-methylpropenyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin und das 2,4-Bis-{[4-(1',1',1',3',5',5',5'-Heptamethylsiloxy-2''-methyl-propyloxy)-2-hydroxy]-phenyl}-6-(4-methoxyphenyl)-1,3,5-triazin.
  • Vorteilhafte sulfonierte, wasserlösliche UV-Filter im Sinne der vorliegenden Erfindung sind:
    Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure, welche sich durch folgende Struktur auszeichnet:
    Figure 00200001
  • Sowie ihre Salze, besonders die entsprechenden Natrium-, Kalium- oder Triethanolammonium-Salze, insbesondere das Phenylen-1,4-bis-(2-benzimidazyl)-3,3'-5,5'-tetrasulfonsäure-bis-natriumsalz
    Figure 00200002
    mit der INCI-Bezeichnung Bisimidazylate (CAS-Nr.: 180898-37-7), welches beispielsweise unter der Handelsbezeichnung Neo Heliopan® AP bei Haarmann & Reimer erhältlich ist.
  • Ein weiterer im Sinne der vorliegenden Erfindung vorteilhafter sulfonierter UV-Filter sind die Salze der 2-Phenylbenzimidazol-5-sulfonsäure, wie ihr Natrium-, Kalium- oder ihr Triethanolammonium-Salz, sowie die Sulfonsäure selbst
    Figure 00210001
    mit der INCI Bezeichnung Phenylbenzimidazole Sulfonsäure (CAS.-Nr. 27503-81-7), welches beispielsweise unter der Handelsbezeichnung Eusolex® 232 bei Merck oder unter Neo Heliopan® Hydro bei Haarmann & Reimer erhältlich ist.
  • Eine weiterer vorteilhafter sulfonierter UV-Filter ist die 3,3'-(1,4-Phenylendimethylene) bis (7,7-dimethyl-2-oxo-bicyclo-[2.2.1]hept-1-ylmethane Sulfonsäure, wie ihr Natrium-, Kalium- oder ihr Triethanolammonium-Salz, sowie die Sulfonsäure selbst:
    Figure 00210002
    mit der INCI-Bezeichnung Terephtalidene Dicampher Sulfonsäure (CAS.-Nr.: 90457-82-2), welche beispielsweise unter dem Handelsnamen Mexoryl® SX von der Fa. Chimex erhältlich ist.
  • Weitere vorteilhafte wasserlösliche UV-B- und/oder Breitband-Filtersubstanzen sind z. B.:
    Sulfonsäure-Derivate des 3-Benzylidencamphers, wie z. B. 4-(2-Oxo-3-bornylidenmethyl)benzolsulfonsäure, 2-Methyl-5-(2-oxo-3-bornylidenmethyl)sulfonsäure und deren Salze.
  • Die UV-B- und/oder Breitband-Filter können öllöslich oder wasserlöslich sein. Vorteilhafte öllösliche UV-B- und/oder Breitband-Filtersubstanzen sind z.B.:
    3-Benzylidencampher-Derivate, vorzugsweise 3-(4-Methylbenzyliden)campher, 3-Benzylidencampher;
    4-Aminobenzoesäure-Derivate, vorzugsweise 4-(Dimethylamino)-benzoesäure(2-ethylhexyl)ester, 4-(Dimethylamino)benzoesäureamylester, 4-Bis(polyethoxy)aminobenzoesäurepolyethoxyethylester (unter der Handelsbezeichnung Uvinul® P25 von der Fa. BASF erhältlich);
    Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4-methoxybenzophenon (unter der Handelsbezeichnung Uvinul® M40 von der Fa. BASF erhältlich) 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'-Dihydroxy-4-methoxybenzophenon, 2-Hydroxy-4-methoxybenzophenon-5-sulfonsäure (unter der Handelsbezeichnung Uvinul® MS40 von der Fa. BASF erhältlich), 2,2',4,4'-Tetrahydroxybenzophenon (unter der Handelsbezeichnung Uvinul® D 50 von der Fa. BASF erhältlich);
    sowie an Polymere gebundene UV-Filter.
  • Besonders vorteilhafte bei Raumtemperatur flüssige UV-Filtersubstanzen im Sinne der vorliegenden Erfindung sind Homomenthylsalicylat, 2-Ethylhexyl-2-cyano-3,3-diphenylacrylat, 2-Ethylhexyl-2-hydroxybenzoat und Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure(2-ethylhexyl)ester und 4-Methoxyzimtsäureisopentylester.
  • Homomenthylsalicylat (INCI: Homosalate) zeichnet sich durch die folgende Struktur aus:
    Figure 00220001
  • 2-Ethylhexyl-2-cyano-3,3-diphenylacrylat (INCI: Octocrylene) ist von BASF unter der Bezeichnung Uvinul® N 539T erhältlich und zeichnet sich durch folgende Struktur aus:
    Figure 00230001
  • 2-Ethylhexyl-2-hydroxybenzoat (2-Ethylhexylsalicylat, Octylsalicylat, INCI: Ethylhexyl Salicylate) ist beispielsweise bei Haarmann & Reimer unter der Handelsbezeichnung Neo Heliopan® OS erhältlich und zeichnet sich durch die folgende Struktur aus:
    Figure 00230002
  • 4-Methoxyzimtsäure(2-ethylhexyl)ester (2-Ethylhexyl-4-methoxycinnamat, INCI: Ethylhexyl Methoxycinnamate) ist beispielsweise bei Fa. BASF unter der Handelsbezeichnung Uvinul® MC 80 erhältlich und zeichnet sich durch die folgende Struktur aus:
    Figure 00230003
  • 4-Methoxyzimtsäureisopentylester (Isopentyl-4-methoxycinnamat, INCI: Isoamyl p-Methoxycinnamate) ist beispielsweise bei Haarmann & Reimer unter der Handelsbezeichnung Neo Heliopan® E 1000 erhältlich und zeichnet sich durch die folgende Struktur aus:
    Figure 00230004
  • Eine weitere vorteilhafte, bei Raumtemperatur flüssige UV-Filter Substanz im Sinne der vorliegenden Erfindung (3-(4-(2,2-bis-Ethoxycarbonylvinyl)-phenoxy)propenyl)- methylsiloxan/Dimethylsiloxan Copolymer, welches beispielsweise bei Hoffmann-La Roche unter der Handelsbezeichnung Parsol® SLX erhältlich ist.
  • Vorteilhafte Dibenzoylmethanderivate im Sinne der vorliegenden Erfindung sind, insbesondere das 4-(tert.-Butyl)-4'-methoxydibenzoylmethan (CAS-Nr. 70356-09-1), welches von BASF unter der Marke Uvinul® BMBM und von Merck unter der Handelsbezeichnung Eusolex® 9020 verkauft wird zeichnet sich durch folgende Struktur aus:
    Figure 00240001
  • Ein weiters vorteilhaftes Dibenzoylmethanderivat ist das 4-Isopropyl-Dibenzoylmethan (CAS-Nr. 63250-25-9), welches von Merck unter dem Namen Eusolex® 8020 verkauft wird. Das Eusolex 8020 zeichnet sich durch folgende Sturktur aus:
    Figure 00240002
  • Benzotriazole zeichnen sich durch die folgende Strukturformel aus:
    Figure 00240003
    worin
    R1 und R2 unabhängig voneinander lineare oder verzweigte, gesättigte oder ungesättigte, substituierte (z.B. mit einem Phenylrest substituierte) oder unsubstituierte Alkylreste mit 1 bis 18 Kohlenstoffatomen und/oder Polymerreste, welche selbst nicht UV- Strahlen absorbieren (wie z. B. Silikonreste, Acrylatreste und dergleichen mehr), darstellen können und R3 aus der Gruppe H oder Alkylrest mit 1 bis 18 Kohlenstoffatomen gewählt wird.
  • Ein vorteilhaftes Benzotriazol im Sinne der vorliegenden Erfindung ist das 2,2'-Methylen-bis-(6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)-phenol), ein Breitbandfilter, welcher durch die chemische Strukturformel
    Figure 00250001
    gekennzeichnet ist und unter der Handelsbezeichnung Tinosorb® M bei der CIBA-Chemikalien GmbH erhältlich ist.
  • Vorteilhaftes Benzotriazol im Sinne der vorliegenden Erfindung ist ferner das 2-(2H-benzotriazol-2-yl)-4-methyl-6-[2-methyl-3-[1,3,3,3-tetramethyl-1-[(trimethylsilyl)oxy]disiloxanyl]-propyl]-phenol (CAS-Nr.: 155633-54-8) mit der INCI-Bezeichnung Drometrizole Trisiloxane, welches von Fa. Chimex unter der Marke Mexoryl® XL verkauft wird und durch die folgende chemische Strukturformel
    Figure 00250002
    gekennzeichnet ist.
  • Weitere vorteilhafte Benzotriazole im Sinne der vorliegenden Erfindung sind [2,4'-Dihydroxy-3-(2H-benzotriazol-2-yl)-5-(1,1,3,3-tetramethylbutyl)-2'-n-octoxy-5'-benzoyl]diphenylmethan, 2,2' Methylen-bis-[6-(2H-benzotriazol-2-yl)-4-(methyl)phenol], 2,2'-Methylen-bis-[6-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol], 2-(2'- Hydroxy-5'-octylphenyl)-benzotriazol, 2-(2'-Hydroxy-3',5'-di-t-amylphenyl)benzotriazol und 2-(2'-Hydroxy-5'-methylphenyl)benzotriazol.
  • Ein weiterer im Sinne der vorliegenden Erfindung vorteilhafter UV-Filter ist die in EP-A-0 916 335 beschriebene Diphenylbutadienverbindung der folgenden Formel.
  • Figure 00260001
  • Ein weiterer im Sinne der vorliegenden Erfindung vorteilhafter UV-A-Filter ist der in EP-A-0 895 776 beschriebene 2-(4-Ethoxy-anilinomethylen)-propandicarbonsäurediethylester der folgenden Formel.
  • Figure 00260002
  • Vorteilhaft im Sinne der vorliegenden Erfindung ist ebenfalls ein aminosubstituiertes Hydroxybenzophenon der folgenden Formel:
    Figure 00260003
    welche von der BASF Aktiengesellschaft als UV-A Filter unter der Warenbezeichnung UVINUL® A Plus vertrieben wird.
  • Gegenstand der vorliegenden Erfindung sind daher auch kosmetische Zubereitungen, die mindestens eines der erfindungsgemäß zu verwendenden Copolymere der ein gangs genannten Zusammensetzung als Solubilisatoren enthalten. Bevorzugt sind solche Zubereitungen, die neben dem Solubilisator einen oder mehrere schwerlösliche kosmetische Wirkstoffe, beispielsweise die oben genannten Öle oder UV-Absorber oder auch Farbstoffe enthalten.
  • Bei diesen Formulierungen handelt es sich um Solubilisate auf Wasser oder Wasser/Alkohol Basis. Die erfindungsgemäß zu verwendenden Solubilisatoren werden im Verhältnis von 0,2:1 bis 20:1, bevorzugt 1:1 bis 15:1, besonders bevorzugt 2:1 bis 12:1 zum schwerlöslichen kosmetischen Wirkstoff eingesetzt.
  • Der Gehalt an erfindungsgemäß zu verwendendem Solubilisator in der kosmetischen Zubereitung liegt, abhängig vom Wirkstoff, im Bereich von 1 bis 50 Gew.-%, bevorzugt 3 bis 40 Gew.-%, besonders bevorzugt 5 bis 30 Gew.-%.
  • Zusätzlich können dieser Formulierung weitere Hilfsstoffe zugesetzt werden, beispielsweise nichtionische, kationische oder anionische Tenside wie Alkylpolyglycoside, Fettalkoholsulfate, Fettalkoholethersulfate, Alkansulfonate, Fettalkoholethoxilate, Fettalkoholphosphate, Alkylbetaine, Sorbitanester, POE-Sorbitanester, Zuckertettsäureester, Fettsäurepolyglycerinester, Fettsäurepartialglyceride, Fettsäurecarboxylate, Fettalkoholsulfosuccinate, Fettsäuresarcosinate, Fettsäureisethionate, Fettsäuretaurinate, Zitronensäureester, Silikon-Copolymere, Fettsäurepolyglykolester, Fettsäureamide, Fettsäurealkanolamide, quartäre Ammoniumverbindungen, Alkylphenoloxethylate, Fettaminoxethylate, Cosolventien wie Ethylenglykol, Propylenglykol, Glycerin u.a..
  • Als weitere Bestandteile können natürliche oder synthetische Verbindungen, z.B. Lanolinderivate, Cholesterinderivate, Isopropylmyristat, Isopropylpalmitat, Elektrolyte, Farbstoffe, Konservierungsmittel, Säuren (z.B. Milchsäure, Zitronensäure) zugesetzt werden.
  • Diese Formulierungen finden beispielsweise in Badezusatzpräparaten wie Badeölen, Rasierwässern, Gesichtswässern, Mundwässern, Haarwässern, Eau de Cologne, Eau de Toilette sowie in Sonnenschutzmitteln Verwendung.
  • Bei der Herstellung der Solubilisate für kosmetische Formulierugen können die erfindungsgemäß zu verwendenden Copolymere als 100 %ige Substanz oder bevorzugt als wässrige Lösung eingesetzt werden.
  • Üblicherweise wird der Solubilisator in Wasser gelöst und mit dem jeweils zu verwendenden schwerlöslichen kosmetischen Wirkstoff intensiv vermischt.
  • Es kann aber auch der Solubilisator mit dem jeweils zu verwendenden schwerlöslichen kosmetischen Wirkstoff intensiv vermischt werden und anschließend unter ständigem Rühren mit demineralisiertem Wasser versetzt werden.
  • Die erfindungsgemäß zu verwendenden Copolymerisate eignen sich ebenso für die Verwendung als Solubilisator in pharmazeutischen Zubereitungen jeder Art, die dadurch gekennzeichnet sind, dass sie einen oder mehrere in Wasser schwer lösliche oder wasserunlösliche Wirkstoffe bzw. Arzneistoffe sowie Vitamine und/oder Carotinoide enthalten können. Insbesondere handelt es sich dabei um wässrige Lösungen bzw. Solubilisate zur oralen oder zur parenteralen Applikation.
  • Des weiteren eignen sich die erfindungsgemäß zu verwendenden Copolymere zum Einsatz in oralen Darreichungsformen wie Tabletten, Kapseln, Pulvern, Lösungen. Hier können Sie den schwerlöslichen Arzneistoff mit einer erhöhten Bioverfügbarkeit zur Verfügung stellen.
  • Bei der parenteralen Applikation können neben Solubilisaten auch Emulsionen, beispielsweise Fettemulsionen eingesetzt werden. Auch für diesen Zweck eignen sich die erfindungsgemäßen Copolymere um einen schwerlöslichen Arzneistoff zu verarbeiten.
  • Pharmazeutische Formulierungen der oben genannten Art können durch Verarbeiten der erfindungsgemäß zu verwendenden Copolymere mit pharmazeutischen Wirkstoffen nach herkömmlichen Methoden und unter Einsatz bekannter und neuer Wirkstoffe erhalten werden.
  • Die erfindungsgemäße Anwendung kann zusätzlich pharmazeutische Hilfsstoffe und/oder Verdünnungsmittel enthalten. Als Hilfsstoffe werden Cosolventien, Stabilisatoren, Konservierungsmittel besonders aufgeführt.
  • Die verwendeten pharmazeutischen Wirkstoffe sind in Wasser unlösliche bzw. wenig lösliche Substanzen. Gemäß DAB 9 (Deutsches Arzneimittelbuch) erfolgt die Einstufung der Löslichkeit pharmazeutischer Wirkstoffe wie folgt: wenig löslich (löslich in 30 bis 100 Teilen Lösungsmittel); schwer löslich (löslich in 100 bis 1000 Teilen Lösungsmittel); praktisch unlöslich (löslich in mehr als 10000 Teilen Lösungsmittel). Die Wirkstoffe können dabei aus jedem Indikationsbereich kommen.
  • Als Beispiele für Wirkstoffklassen bzw. Wirkstoffe, die durch die erfindungsgemäß zu verwendenden Copolymere in Lösung gebracht werden können, seien hier genannt: Benzodiazepine, Antihypertensiva, Vitamine, Cytostatika – insbesondere Taxol, Anästhetika, Neuroleptika, Antidepressiva, Antibiotika, Antimykotika, Fungizide, Chemotherapeutika, Urologika, Thrombozytenaggregationshemmer, Sulfonamide, Spasmolytika, Hormone, Immunglobuline, Sera, Schilddrüsentherapeutika, Psychopharmaka, Parkin sonmittel und andere Antihyperkinetika, Ophthalmika, Neuropathiepräparate, Calciumstoffwechselregulatoren, Muskelrelaxantia, Narkosemittel, Lipidsenker, Lebertherapeutika, Koronarmittel, Kardiaka, Immuntherapeutika, regulatorische Peptide und ihre Hemmstoffe, Hypnotika, Sedativa, Gynäkologika, Gichtmittel, Fibrinolytika, Enzympräparate und Transportproteine, Enzyminhibitoren, Emetika, Durchblutungsfördernde Mittel, Diuretika, Diagnostika, Corticoide, Cholinergika, Gallenwegstherapeutika, Antiasthmatika, Broncholytika, Betarezeptorenblocker, Calciumantagonisten, ACE-Hemmer, Arteriosklerosemittel, Antiphlogistika, Antikoagulantia, Antihypotonika, Antihypoglykämika, Antihypertonika, Antifibrinolytika, Antiepileptika, Antiemetika, Antidota, Antidiabetika, Antiarrhythmika, Antianämika, Antiallergika, Anthelmintika, Analgetika, Analeptika, Aldosteronantagonisten, Abmagerungsmittel.
  • Eine mögliche Herstellvariante ist das Auflösen des Solubilisators in der wässrigen Phase, gegebenenfalls unter leichtem Erwärmen und das anschließende Lösen des Wirkstoffs in der wässrigen Solubilisatorlösung. Das gleichzeitige Auflösen von Solubilisator und Wirkstoff in der wässrigen Phase ist ebenfalls möglich.
  • Die erfindungsgemäße Verwendung der Copolymere als Lösungsvermittler kann beispielsweise auch in der Weise erfolgen, dass der Wirkstoff in dem Solubilisator, gegebenenfalls unter Erwärmen, dispergiert wird und unter Rühren mit Wasser vermischt wird.
  • Gegenstand der Erfindung sind daher auch pharmazeutische Zubereitungen, die mindestens einen der erfindungsgemäß zu verwendenden Copolymere als Solubilisator enthalten. Bevorzugt sind solche Zubereitungen, die neben dem Solubilisator einen in Wasser schwerlöslichen oder wasserunlöslichen pharmazeutischen Wirkstoff, beispielsweise aus den oben genannten Indikationsgebieten enthalten.
  • Besonders bevorzugt sind von den oben genannten pharmazeutischen Zubereitungen solche, bei denen es sich um parenteral applizierbare Formulierungen handelt.
  • Der Gehalt an erfindungsgemäßem Solubilisator in der pharmazeutischen Zubereitung liegt, abhängig vom Wirkstoff, im Bereich von 1 bis 50 Gew.-%, bevorzugt 3 bis 40 Gew.-%, besonders bevorzugt 5 bis 30 Gew.-%.
  • Ein weiterer Aspekt der vorliegenden Erfindung betrifft die Verwendung der genannten Copolymere als Solubilisatoren in molekulardispersen Systemen. Feststoffdispersionen, also homogene feinstdisperse Phasen von zwei oder mehreren Feststoffen sowie ihr Sonderfall der sogenannten „festen Lösungen" (molekulardisperse Systeme), sowie ihr Einsatz in der pharmazeutischen Technoloigie sind allgemein bekannt (vgl. Chiou und Riegelmann, J. Pharm. Sci., 1971, 60, 1281 – 1300. Daneben betrifft die vorliegende Erfindung auch feste Lösungen die mindestens ein erfindungsgemäß zu verwendendes Copolymer enthalten.
  • Die Herstellung von festen Lösungen kann mit Hilfe von Schmelzeverfahren oder nach dem Lösungsverfahren erfolgen.
  • Als polymerer Hilfsstoff, d.h. Solubilisator für die Herstellung solcher Feststoffdispersionen bzw. fester Lösungen eignen sich die erfindungsgemäßen Copolymere.
  • Beispielhaft sei die erfindungsgemäße Verwendung eines Copolymeren zur Herstellung einer festen Lösung sowie die anschließende Formulierung einer festen Darreichungsform, die 200 mg eines Wirkstoffes, z.B. Carbamazepin enthält, beschrieben. Das beispielhaft gewählte Copolymer besteht hierbei aus 98 Mol-% N-Vinylpyrrolidon und 2 Mol-% Phenoxyacrylat.
  • Nach dem Schmelzeverfahren können beispielsweise Carbamazepin und das gewählte Copolymer im gewünschten Verhältnis, z.B. zu gleichen Teilen abgewogen und gemischt werden. Zur Mischung eignet sich beispielsweise ein Freifallmischer. Die Mischung kann anschließend, z.B. in einem Zweischneckenextruder, extrudiert werden. Der Durchmesser des so erhaltenen, abgekühlten Produktstranges, bestehend aus einer festen Lösung des gewählten Wirkstoffes in dem gewählten erfindungsgemäß zu verwendenden Copolymeren, ist abhängig vom Durchmesser der Perforation der Lochscheiben des Extruders. Durch das Abschneiden der gekühlten Produktstränge mit Hilfe eines rotierenden Messers können zylindrische Partikel gewonnen werden, deren Höhe abhängig ist vom Abstand zwischen Lochscheibe und Messer. Der mittlere Durchmesser der zylindrischen Partikel beträgt in der Regel etwa 1000 bis etwa 3000 μm, die Höhe in der Regel etwa 2000 bis etwa 5000 μm. Größere Extrudate können in einem nachgeschalteten Schritt zerkleinert werden.
  • Alternativ kann man feste Lösung auch im Lösungsverfahren herstellen. Hierzu löst man üblicherweise den gewählten schwerlöslichen Wirkstoff und das gewählte, als Solubilisator dienende erfindungsgemäß zu verwendende Copolymer in einem geeigneten Lösungsmittel. Anschließend wird die Lösung üblicherweise in eine geeignete Form gegossen, und das Lösungsmittel, beispielsweise durch Trocknung, entfernt. Die Trocknungsbedingungen wählt man vorteilhaft je nach den Eigenschaften von Wirkstoff (z.B Thermolabilität) und Lösungsmittel (z.B. Siedepunkt).
  • Unter Beachtung des Materialverhaltens kann der entstandene Formling bzw. das Extrudat beispielsweise mit einer geeigneten Mühle (z.B. Stiftmühle) zerkleinert werden. Die feste Lösung zerkleinert man vorteilhafterweise bis zu einer mittleren Teilchengröße von weniger als etwa 2000 μm, bevorzugt weniger als etwa 1000 μm und besonders bevorzugt weniger als etwa 500 μm.
  • Mit geeigneten Hilfsstoffen kann nun das entstandene Schüttgut zu einer Tablettiermischung oder zu einem Kapselfüllgut verarbeitet werden. Die Tablettierung führt man vorteilhaft so durch, dass man Tabletten mit Härte von größer etwa 35 N, bevorzugt größer etwa 60 N, besonders bevorzugt von etwa 80 bis etwa 100 N erhält.
  • Die so erhältlichen Formulierungen können wie herkömmliche Formulierungen erforderlichenfalls mit geeigneten Überzugsmaterialien zur Erzielung von Magensaftresistenz, Retardierung, Geschmacksmaskierung usw. überzogen werden.
  • Neben der Anwendung in der Kosmetik und Pharmazie eignen sich die erfindungsgemäß zu verwendenden Copolymere auch als Solubilisatoren im Lebensmittelbereich für schwer wasserlösliche oder wasserunlösliche Nähr-, Hilfs- oder Zusatzstoffe, wie z.B. fettlösliche Vitamine oder Carotinoide. Als Beispiele seien klare, mit Carotinoiden gefärbte Getränke genannt. Gegenstand der Erfindung sind daher auch lebensmitteltechnische Zubereitungen, die mindestens eines der erfindungsgemäß zu verwendenden Copolymere als Solubilisator enthalten. Zu den Lebensmittelzubereitungen sind im Rahmen der vorliegenden Erfindung auch Nahrungsergänzungsmittel wie z.B. Lebensmittelfarbstoffe enthaltende Zubereitungen und diätetische Lebensmittel zu verstehen. Darüber hinaus eigenen sich die genannten Copolymere auch als Solubilisatoren für Futtermittelzusätze für die Tierernährung.
  • Die Anwendung der erfindungsgemäß zu verwendenden Copolymere als Solubilisatoren in der Agrochemie kann u.a. Formulierungen umfassen, die Pestizide, Herbizide, Fungizide oder Insectizide enthalten, vor allem auch solche Zubereitungen von Pflanzenschutzmitteln, die als Spritz- oder Gießbrühen zum Einsatz kommen.
  • Die folgenden Beispiele zur Herstellung und Verwendung der erfindungsgemäß zu verwendenden Copolymere veranschaulichen die Erfindung, ohne sie jedoch in irgendeiner Weise zu beschränken:
  • Beispiel 1: Herstellung des Copolymers 1
  • Eine Lösung bestehend aus 0,4 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 105 g Ethanol, 8,6 g N-Vinylpyrrolidon, 0.1 g 2,2'-Azobis-2-(amidinopropan)-dihydrochlorid (Wako V50, Fa. Wako) und 105 g Wasser wurde unter Stickstoffatmosphäre auf 75°C erhitzt. Eine zweite Lösung bestehend aus 77,8 g Vinylpyrrolidon, 15 g Ethanol, 3.2 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft) und 15 g Wasser wurde innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 17,7 g Ethanol, 0,8 g 2,2'-Azobis-2-(amidinopropan)-dihydrochlorid (Wako V50, Fa. Wako) und 17,7 g Wasser innerhalb von 5 h zugegeben. Nach weiteren 2 h wurde das Produkt einer Dampfdestillation un terworfen und unter Vakuum bei 75°C getrocknet. Das erhaltene Polymer wies einen K-Wert von 30,4 (1% in N-Methylpyrrolidon) auf.
  • Beispiel 2: Herstellung des Copolymers 2
  • Eine Lösung bestehend aus 0,4 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 210 g Ethanol, 9,6 g Vinylpyrrolidon und 0.05 g 2,2'-Azobis-2-(Methylbutyronitril) (Wako V59, Fa. Wako) wurde unter Stickstoffatmosphäre auf 70°C erhitzt. Eine zweite Lösung bestehend aus 86,4 g N-Vinylpyrrolidon, 30 g Ethanol und 3,6 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft) wurde innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 35 g Ethanol und 0,45 g 2,2'-Azobis-2-(Methylbutyronitril) (Wako V59, Fa. Wako) innerhalb von 4 h zugegeben. Nach weiteren 2 h wurde das Produkt einer Dampfdestillation unterworfen und unter Vakuum bei 75°C getrocknet. Das erhaltene Polymer wies einen K-Wert von 42,3 (1 % in N-Methylpyrrolidon) auf.
  • Beispiel 3: Herstellung des Copolymers 3
  • Eine Lösung bestehend aus 0,4 g Polyethylenglycol-Phenylether-acrylat (Mn≈324 D, Fa. Aldrich) 210 g Ethanol, 9,6 g Vinylpyrrolidon und 0,1 g 2,2'-Azobis-2-(Methylbutyronitril) (Wako V59, Fa. Wako) wurde unter Stickstoffatmosphäre auf 70°C erhitzt. Eine zweite Lösung bestehend aus 85,4 g N-Vinylpyrrolidon, 30 g Ethanol und 4,6 g Polyethylenglycol-Phenylether-acrylat (Mn≈324 D, Fa. Aldrich) wurde innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 35 g Ethanol und 0,9 g 2,2'-Azobis-2-(Methylbutyronitril) (Wako V59, Fa. Wako) innerhalb von 4 h zugegeben. Nach weiteren 2 h wurde das Produkt einer Dampfdestillation unterworfen und unter Vakuum bei 75°C getrocknet. Das erhaltene Polymer wies einen K-Wert von 32,3 (1 % in N-Methylpyrrolidon) auf.
  • Beispiel 4: Herstellung des Copolymers 4
  • Eine Lösung bestehend aus 0,4 g Polyethylenglycol-Phenylether-acrylat (Mn≈280 D, Fa. Aldrich) 210 g Ethanol, 9,6 g Vinylpyrrolidon und 0,1 g 2,2'-Azobis-2-(Methylbutyronitril) (Wako V59, Fa. Wako) wurde unter Stickstoffatmosphäre auf 70°C erhitzt. Eine zweite Lösung bestehend aus 85,4 g N-Vinylpyrrolidon, 30 g Ethanol und 4,6 g Polyethylenglycol-Phenylether-acrylat (Mn≈280 D, Fa. Aldrich) wurde innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 35 g Ethanol und 0,9 g 2,2'-Azobis-2-(Methylbutyronitril) (Wako V59, Fa. Wako) innerhalb von 4 h zugegeben. Nach weiteren 2 h wurde das Produkt einer Dampfdestillation unterworfen und unter Vakuum bei 75°C getrocknet. Das erhaltene Polymer wies einen K-Wert von 32,8 (1% in N-Methylpyrrolidon) auf.
  • Beispiel 5: Herstellung des Copolymers 5
  • Eine Lösung bestehend aus 5 g Vinylpyrrolidon und 100 g Isopropanol wurde unter Stickstoffatmosphäre auf 80°C erhitzt. Eine zweite Lösung bestehend aus 10 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft) und 200 g Isopropanol wurde innerhalb von 5 h zugegeben. Parallel dazu wurden eine dritte Lösung bestehend aus 85,0 g Vinylpyrrolidon und 200 g Isopropanol innerhalb von 5,5 h zugegeben und eine vierte Lösung bestehend aus 4,0 g tert-Butylperpivalat (75 %ig) und 50 g Isopropanol innerhalb von 6,0 h zugegeben. Nach einer weiteren Stunde wurde das Produkt unter Vakuum bei 75°C getrocknet.
  • Beispiel 6: Herstellung des Copolymers 6
  • Eine Lösung bestehend aus 5 g Vinylpyrrolidon und 100 g Isopropanol wurde unter Stickstoffatmosphäre auf 80°C erhitzt. Eine zweite Lösung bestehend aus 10 g Polyethylenglycol-phenylether-acrylat (Mn≈280 D, Fa. Aldrich) und 200 g Isopropanol wurde innerhalb von 5 h zugegeben. Parallel dazu wurden eine dritte Lösung bestehend aus 85,0 g Vinylpyrrolidon und 200 g Isopropanol innerhalb von 5,5 h zugegeben und eine vierte Lösung bestehend aus 4 g tert-Butylperpivalat (75%ig) und 50 g Isopropanol innerhalb von 6 h zugegeben. Nach einer weiteren Stunde wurde das Produkt unter Vakuum bei 75°C getrocknet. Das so erhaltene Polymer wies einen K-Wert von 13,7 (1 % in Wasser) auf.
  • Beispiel 7: Herstellung des Copolymers 7
  • Eine Lösung bestehend aus 5 g Vinylpyrrolidon und 100 g Isopropanol wurde unter Stickstoffatmosphäre auf 80°C erhitzt. Eine zweite Lösung bestehend aus 10 g Polyethylenglycol-Phenylether-acrylat (Mn≈324 D, Fa. Aldrich) und 200 g Isopropanol wurde innerhalb von 5 h zugegeben. Parallel dazu wurden eine dritte Lösung bestehend aus 85,0 g Vinylpyrrolidon und 200 g Isopropanol innerhalb von 5,5 h zugegeben und eine vierte Lösung bestehend aus 4,0 g tert-Butylperpivalat (75 %ig) und 50 g Isopropanol innerhalb von 6,0 h zugegeben. Nach einer weiteren Stunde wurde das Produkt unter Vakuum bei 75°C getrocknet. Das erhaltene Polymer wies einen K-Wert von 14,8 (1 in Wasser) auf.
  • Beispiel 8: Herstellung des Copolymers 8
  • Eine Lösung bestehend aus 0,4 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 105 g Ethanol, 105 g Wasser, 8,6 g Vinylpyrrolidon und 0.1 g 2,2'-azobis(2-amidinopropan)dihydrochlorid (Wako V50, Fa. Wako) wurde unter Stickstoffatmosphäre auf 75°C erhitzt. Eine zweite Lösung bestehend aus 77,8 g N-Vinylpyrrolidon, 15 g Ethanol, 15 g Wasser, 3,2 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft) und 0,45 g Triallylamin wurde innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 17,7 g Ethanol, 17,7 g Wasser und 0,8 g 2,2'-azobis(2-amidinopropan)dihydrochlorid (Wako V50, Fa. Wako) innerhalb von 5 h zugegeben. Nach weiteren 2 h wurde das Produkt einer Dampfdestillation unterworfen und unter Vakuum bei 70°C getrocknet.
  • Beispiel 9: Herstellung des Copolymers 9
  • Eine Lösung bestehend aus 0,4 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 105 g Ethanol, 105 g Wasser, 8,6 g Vinylpyrrolidon und 0.1 g 2,2'-azobis(2-amidinopropan)dihydrochlorid (Wako V50, Fa. Wako) wurde unter Stickstoffatmosphäre auf 75°C erhitzt. Eine zweite Lösung bestehend aus 77,8 g N-Vinylpyrrolidon, 15 g Ethanol, 15 g Wasser, 3,2 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft) und 0,45 g Divinylethylenharnstoff wurde innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 17,7 g Ethanol, 17,7 g Wasser und 0,8 g 2,2'-azobis(2-amidinopropan)dihydrochlorid (Wako V50, Fa. Wako) innerhalb von 5 h zugegeben. Nach weiteren 2 h wurde das Produkt einer Dampfdestillation unterworfen und unter Vakuum bei 70°C getrocknet.
  • Beispiel 10: Herstellung des Copolymers 10
  • Eine Lösung bestehend aus 2,1 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 75 g Isopropanol, 15,3 g Vinylpyrrolidon, 2,1 g Laurylacrylat, 10,5 g Vinylcaprolactam wurde unter Stickstoffatmosphäre erhitzt. Nachdem 75°C erreicht wurden, wurden 0,2 g tert-Butylperpivalat (75%) und 3,0 g Isopropanol zugegeben. Nach 10 Minuten wurde eine zweite Lösung bestehend aus 18,9 g 2-Phenoxyethylacrylat, 135 g Isopropanol, 137,7 g Vinylpyrrolidon, 18,9 g Laurylacrylat und 94,5 g Vinylcaprolactam innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 3,8 g tert-Butylperpivalat (75%) und 57,0 g Isopropanol innerhalb von 5 h zugegeben. Nach weiteren 3 h wurde das Isopropanol abdestilliert und anschließend mit Wasser verdünnt. Das Produkt wurde einer Dampfdestillation unterworfen und gefriergetrocknet.
  • Beispiel 11: Herstellung des Copolymers 11
  • Eine Lösung bestehend aus 2,1 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 70 g Isopropanol, 15,1 g Vinylpyrrolidon, 2,1 g Laurylacrylat, 10,5 g Vinylcaprolactam wurde unter Stickstoffatmosphäre auf 75°C erhitzt und 0,2 g tert-Butylperpivalat (75 %) und 3,0 g Isopropanol zugegeben. Nach 10 Minuten wurde eine zweite Lösung bestehend aus 18,9 g 2-Phenoxyethyl-acrylat, 90 g Isopropanol, 136,4 g Vinylpyrrolidon, 18,9 g Laurylacrylat und 94,5 g Vinylcaprolactam innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 1,5 g Divinylethy lenharnstoff und 50 g Isopropanol innerhalb von 4 h zugegeben und eine vierte Lösung bestehend aus 3,8 g tert-Butylperpivalat (75 %) und 57,0 g Isopropanol innerhalb von 5 h zugegeben. Nach weiteren 2 h wurde das Isopropanol abdestilliert und anschließend mit Wasser verdünnt. Das Produkt wurde einer Dampfdestillation unterworfen und gefriergetrocknet.
  • Beispiel 12: Herstellung des Copolymers 12
  • Eine Lösung bestehend aus 3,0 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 70 g Isopropanol, 23,9 g Vinylpyrrolidon, 3,0 g Laurylacrylat, wurde unter Stickstoffatmosphäre auf 75°C erhitzt und anschließend 0,2 g tert-Butylperpivalat (75 %) und 3,0 g Isopropanol zugegeben. Nach 10 Minuten wurde eine zweite Lösung bestehend aus 27,0 g 2-Phenoxyethyl-acrylat, 90 g Isopropanol, 215,1 g Vinylpyrrolidon und 27,0 g Laurylacrylat innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 0,9 g Divinylethylenharnstoff und 50 g Isopropanol innerhalb von 4 h zugegeben und eine vierte Lösung bestehend aus 3,8 g tert-Butylperpivalat (75 %) und 57,0 g Isopropanol innerhalb von 5 h zugegeben. Nach weiteren 2 h wurde das Isopropanol abdestilliert und anschließend mit Wasser verdünnt. Das Produkt wurde einer Dampfdestillation unterworfen und gefriergetrocknet.
  • Beispiel 13: Herstellung des Copolymers 13
  • Eine Lösung bestehend aus 2,5 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 125 g Isopropanol, 45 g Vinylpyrrolidon, 2,5 g Laurylacrylat, wurde unter Stickstoffatmosphäre erhitzt. Nachdem 73°C erreicht wurden, wurden 0,33 g tert-Butylperpivalat (75 %) und 5,0 g Isopropanol zugegeben. Nach 10 Minuten wurde eine zweite Lösung bestehend aus 22.5 g 2-Phenoxyethyl-acrylat, 225 g Isopropanol, 405 g Vinylpyrrolidon und 22,5 g Laurylacrylat innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 6,33 g tert-Butylperpivalat (75 %) und 95 g Isopropanol innerhalb von 5 h zugegeben. Nach weiteren 2 h wurde das Isopropanol abdestilliert und anschließend mit Wasser verdünnt. Das erhaltene Produkt wurde einer Dampfdestillation unterworfen und gefriergetrocknet.
  • Beispiel 14: Herstellung des Copolymers 14
  • Eine Lösung bestehend aus 5 g 2-Phenoxyethyl-acrylat (Laromer® POEA, BASF Aktiengesellschaft), 225 g Isopropanol, 42,5 g Vinylpyrrolidon, 2,5 g Laurylacrylat, wurde unter Stickstoffatmosphäre erhitzt. Nachdem 73°C erreicht wurden, wurden 0,33 g tert-Butylperpivalat (75 %) und 5,0 g Isopropanol zugegeben. Nach 10 Minuten wurde eine zweite Lösung bestehend aus 45 g 2-Phenoxyethyl-acrylat, 225 g Isopropanol, 382,5 g Vinylpyrrolidon und 22,5 g Laurylacrylat innerhalb von 4 h zugegeben. Parallel dazu wurde eine dritte Lösung bestehend aus 6,33 g tert-Butylperpivalat (75 %) und 95,0 g Isopropanol innerhalb von 5 h zugegeben. Nach weiteren 2 h wurde das Isopropanol abdestilliert und anschließend mit Wasser verdünnt. Das Produkt wurde einer Dampfdestillation unterworfen und gefriergetrocknet.
  • Beispiele 15 und 16: Bestimmung der Solubilisierungseigenschaften der Copolymere 1 bis 14
  • Beispiel 15: Allgemeine Arbeitsvorschrift 1:
  • 0,5 des gewählten Polymers und 0,1 g einer in Wasser zu lösenden Verbindung wurden in etwa 20 ml N,N-Dimethylformamid (DMF) gelöst. Das Gemisch wurde gerührt und anschließend von DMF befreit. Man erhielt eine feste Dispersion der gewählten, in Lösung zu bringenden Verbindung mit dem gewählten Copolymer. Die feste Dispersion wurde in 100 ml Wasser (gepuffert auf pH 6,8) gegeben und das Gemisch 24 h gerührt. Nach Filtration erhielt man Lösungen, deren Gehalt an der in Lösung zu bringenden Verbindung UV-spektroskopisch bestimmt wurde. Die Ergebnisse sind in Tabelle 1 zusammengestellt. Tabelle 3 stellt die Literaturwerte für Wasserlöslichkeiten der gewählten Verbindungen sowie die Wellenlänge der UV-spektroskopischen Messung zusammen: Tabelle 1:
    Figure 00360001
  • Beispiel 16: Allgemeine Arbeitsvorschrift 2:
  • In einem Becherglas wurden ca. 2 g Polymer eingewogen. Anschließend wurde dem Ansatz jeweils 0,2 g Piroxicam oder 0,3 g Carbamazepin zugewogen, um eine übersättigte Lösung zu erhalten. Anschließend wurden man 20 g Phosphatpuffer pH 7,0 zugegeben. Nach Filtration erhielt man Lösungen, deren Gehalt an der in Lösung zu brin genden Verbindung UV-spektroskopisch bestimmt wurde. Die Ergebnisse sind in Tabelle 2 zusammengestellt.
  • Tabelle 2:
    Figure 00370001
  • Tabelle 3:
    Figure 00370002
  • Beispiel 17: Herstellung von festen Lösungen
  • Zur Herstellung des Polymer-Wirkstoff-Gemischs wurden jeweils 2 g eines der Copolymere 1 oder 6 bis 14 und 2 g je eines der Wirkstoffe Clotrimazol, Piroxicam, Estradiol oder Carbamazepin in ein geeignetes Glasgefäß eingewogen. Anschließend wurden 16 ml N,N Dimethylformamid zugegeben. Der Ansatz wurde bei Raumtemperatur 24 Stunden mit einem Magnetrührer gerührt. Die Lösung wurde anschließend mit Hilfe eines 120 μm-Rakels auf einer Glasplatte ausgezogen und anschließend 0,5 h bei Raumtemperatur im Abzug getrocknet. Danach wurde die beschichtete noch im Tro ckenschrank bei 50°C und 10 mbar weitere 0,5 Stunden bis zur quantitativen Entfernung des Lösungsmittels getrocknet. Man erhielt den im Copolymer molekulardispers gelösten Wirkstoff in Form einer festen Lösung.
  • Beispiel 18: Herstellung einer pharmazeutischen Formulierung unter Verwendung fester Lösungen:
  • Tabelle 4:
    Figure 00380001
  • Eine wie in Beispiel 17 hergestellte feste Lösung bestehend aus 50 Gew.-% eines der Wirkstoffe Carbamazepin, Clotrimazol, Piroxicam oder Estradiol und 50 Gew.-% eines Copolymeren aus 98 Mol-% N-Vinylpyrrolidon und 2 Mol-% Phenoxyacrylat, das Sprengmittel, das Bindemittel sowie das Fließregulierungsmittel wurden abgewogen und in einem Freifallmischer 10 Minuten gemischt. Anschließend wurde das Schmiermittel hinzugefügt und erneut 5 Minuten gemischt. Das Schüttgut wurde auf einer Rundläuferpresse bei einem Pressdruck von 20 kN (Stempel: oblong, mit Bruchkerbe) verpresst. Friabilität, Zerfall und Wirkstofffreisetzung entsprechen den Spezifikationen des Arzneibuchs.

Claims (14)

  1. Verwendung von Copolymeren erhältlich durch Polymerisation von a) mindestens einer Verbindung der Formel (I) (Monomer A)
    Figure 00390001
    wobei R1 und R2 unabhängig voneinander jeweils H oder CH3, R3 C6-C10-Aryl oder C7- C12-Aralkyl, die einen oder mehrere gleiche oder verschiedene C1-C9-Alkyl und/oder C1-C5-Alkoxy-Substituenten trägen können, und n eine ganze Zahl von 0 bis 100 bedeutet, b) mindestens einer Verbindung ausgewählt aus der Gruppe der N-Vinylamide, der N-Vinyllactame, der N-Vinylimine und der N-Vinylamine mit 2 bis 15 Kohlenstoffatomen (Monomer B), c) gegebenenfalls einer oder mehrerer verschiedener difunktioneller Vernetzerkomponenten und d) gegebenenfalls eines oder mehrerer verschiedener Regler und e) gegebenenfalls einer oder mehrerer weiterer copolymerisierbarer Komponenten (Monomer C) als Solubilisatoren.
  2. Verwendung von Copolymeren nach Anspruch 1, erhältlich durch Polymerisation von a) 1 bis 50 Mol-% mindestens eines Monomeren A b) 50 bis 99 Mol-% mindestens eines Monomeren B c) 0 bis 5 Mol-% einer oder mehrerer verschiedener difunktioneller Vernetzerkomponenten und d) 0 bis 4 Mol-% eines oder mehrerer verschiedener Regler und e) 0 bis 49 Mol-% mindestens eines Monomeren C wobei sich die Mol-% Angaben der einzelnen Komponenten zu 100 Mol-% addieren müssen.
  3. Verwendung von Copolymeren nach Anspruch 1 oder 2, erhältlich durch Polymerisation von a) 1 bis 30 Mol-% mindestens eines Monomeren A b) 50 bis 99 Mol-% mindestens eines Monomeren B c) 0 bis 3 Mol-% einer oder mehrerer verschiedener difunktioneller Vernetzerkomponenten und d) 0 bis 3 Mol-% eines oder mehrerer verschiedener Regler und e) 0 bis 49 Mol-% mindestens eines Monomeren C wobei sich die Mol-% Angaben der einzelnen Komponenten zu 100 Mol-% addieren müssen.
  4. Verwendung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man das mindestens eine Monomer A auswählt aus der Gruppe der Monomere der Formel (I), wobei R1 und R2 jeweils H, R3 Phenyl und n eine ganze Zahl von 1 bis 10 bedeutet.
  5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man das mindestens eine Monomer B auswählt aus der Gruppe der Monomere N-Vinylpyrrolidon, N-Vinylcaprolactam, N-Vinylformamid, Vinylamin und N-Vinylimidazol.
  6. Verwendung von Copolymere wie definiert in einem der Ansprüche 1 bis 5 als Solubilisatoren in pharmazeutischen und/oder kosmetischen Zubereitungen und/oder Lebensmittelzubereitungen oder Pflanzenschutzzubereitungen.
  7. Verwendung von Copolymeren wie definiert in einem der Ansprüche 1 bis 5 als Solubilisatoren in festen Lösungen
  8. Pharmazeutische Zubereitungen, enthaltend mindestens eines der Copolymere wie definiert in einem der Ansprüche 1 bis 5.
  9. Zubereitungen nach Anspruch 8, enthaltend mindestens einen in Wasser schwerlöslichen oder unlöslichen pharmazeutischen Wirkstoff.
  10. Kosmetische Zubereitungen, enthaltend mindestens eines der Copolymere wie definiert in einem der Ansprüche 1 bis 5.
  11. Zubereitungen nach Anspruch 10, enthaltend mindestens einen in Wasser schwerlöslichen oder unlöslichen kosmetischen Wirkstoff.
  12. Lebensmittelzubereitungen, enthaltend mindestens eines der Copolymere wie definiert in einem der Ansprüche 1 bis 5.
  13. Copolymere erhältlich durch Polymerisation von a) mindestens einer Verbindung der Formel (I) (Monomer A)
    Figure 00410001
    wobei R1 und R2 unabhängig voneinander jeweils H oder CH3, R3 C6-C10-Aryl oder C7- C12-Aralkyl, die einen oder mehrere gleiche oder verschiedene C1-C9-Alkyl und/oder C1-C5-Alkoxy-Substituenten trägen können, und n 1 oder 2 bedeutet, b) mindestens einer Verbindung ausgewählt aus der Gruppe der N-Vinylamide, der N-Vinyllactame, der N-Vinylimine und der N-Vinylamine mit 2 bis 15 Kohlenstoffatomen (Monomer B), c) gegebenenfalls einer oder mehrerer verschiedener difunktioneller Vernetzerkomponenten und d) gegebenenfalls eines oder mehrerer verschiedener Regler und e) gegebenenfalls einer oder mehrerer weiterer copolymerisierbarer Komponenten (Monomer C) wobei sich die Mol-% Angaben der einzelnen Komponenten zu 100 Mol-% addieren müssen.
  14. Feste Lösungen enthaltend mindestens ein Copolymer wie definiert in einem der Ansprüche 1 bis 5.
DE102004040104A 2004-08-18 2004-08-18 Verwendung von amphiphilen Copolymerisaten als Solubilisatoren Withdrawn DE102004040104A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE102004040104A DE102004040104A1 (de) 2004-08-18 2004-08-18 Verwendung von amphiphilen Copolymerisaten als Solubilisatoren
JP2007526333A JP2008510043A (ja) 2004-08-18 2005-08-03 可溶化剤としての両親媒性共重合体の使用
US11/660,403 US20080153925A1 (en) 2004-08-18 2005-08-03 Use of Amphiphilic Copolymers as Solubilising Agents
EP05783769A EP1781719A1 (de) 2004-08-18 2005-08-03 Verwendung von amphiphilen copolymerisaten als solubilisatoren
CA002577431A CA2577431A1 (en) 2004-08-18 2005-08-03 Use of amphiphilic copolymers as solubilising agents
PCT/EP2005/008408 WO2006018135A1 (de) 2004-08-18 2005-08-03 Verwendung von amphiphilen copolymerisaten als solubilisatoren
CNA2005800281502A CN101080426A (zh) 2004-08-18 2005-08-03 两亲共聚物作为增溶剂的用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004040104A DE102004040104A1 (de) 2004-08-18 2004-08-18 Verwendung von amphiphilen Copolymerisaten als Solubilisatoren

Publications (1)

Publication Number Publication Date
DE102004040104A1 true DE102004040104A1 (de) 2006-02-23

Family

ID=35511147

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102004040104A Withdrawn DE102004040104A1 (de) 2004-08-18 2004-08-18 Verwendung von amphiphilen Copolymerisaten als Solubilisatoren

Country Status (7)

Country Link
US (1) US20080153925A1 (de)
EP (1) EP1781719A1 (de)
JP (1) JP2008510043A (de)
CN (1) CN101080426A (de)
CA (1) CA2577431A1 (de)
DE (1) DE102004040104A1 (de)
WO (1) WO2006018135A1 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10026698A1 (de) 2000-05-30 2001-12-06 Basf Ag Selbstemulgierende Wirkstoffformulierung und Verwendung dieser Formulierung
US8025899B2 (en) 2003-08-28 2011-09-27 Abbott Laboratories Solid pharmaceutical dosage form
US8377952B2 (en) 2003-08-28 2013-02-19 Abbott Laboratories Solid pharmaceutical dosage formulation
WO2009040248A1 (en) * 2007-09-27 2009-04-02 Basf Se Systemicity enhancers
JP5646340B2 (ja) * 2007-12-12 2014-12-24 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ポリマー性対イオンと活性成分との塩
CN103202293A (zh) * 2008-02-21 2013-07-17 巴斯夫欧洲公司 涂覆的惰性颗粒
MY157679A (en) 2009-05-11 2016-07-15 Basf Se Polymers for increasing the soil mobility of low-solubility insecticides
WO2012029038A1 (de) * 2010-09-01 2012-03-08 Basf Se Amphiphil zur solubilisierung schwerlöslicher wirkstoffe
BR112020021969A2 (pt) 2018-04-27 2021-01-26 Wirtz Manufacturing Company, Inc sistema e método de ferramenta de máquina de bateria
JP7195771B2 (ja) * 2018-06-11 2022-12-26 株式会社日本触媒 ポリビニルピロリドン重合体の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AR207867A1 (es) * 1974-07-04 1976-11-08 Smith & Nephew Res Un copolimero hidrogel ligeramente entrelazado
US4071508A (en) * 1975-02-11 1978-01-31 Plastomedical Sciences, Inc. Anionic hydrogels based on hydroxyalkyl acrylates and methacrylates
GB1514810A (en) * 1976-08-19 1978-06-21 Patel S Crosslinked polymers
US4946967A (en) * 1988-11-03 1990-08-07 Gaf Chemicals Corporation Polymerizable derivatives of 5-oxo-pyrrolidinecarboxylic acid
JPH09241335A (ja) * 1996-03-08 1997-09-16 Nippon Shokubai Co Ltd 難燃材
DE19719187A1 (de) * 1997-05-07 1998-11-12 Basf Ag Verwendung von Copolymerisaten des N-Vinyl-pyrrolidons in Zubereitungen wasserunlöslicher Stoffe
US5942120A (en) * 1997-12-04 1999-08-24 Wilkinson; Kenneth Composite microporous ultrafiltration membrane, method of making thereof, and separation methods
DE19811919A1 (de) * 1998-03-18 1999-09-23 Basf Ag Verwendung von Copolymerisaten monoethylenisch ungesättigter Carbonsäuren als Solubilisatoren
DE19814739A1 (de) * 1998-04-02 1999-10-07 Basf Ag Verwendung von Polyalkylenoxid-haltigen Pfropfpolymerisaten als Solubilisatoren
US6632457B1 (en) * 1998-08-14 2003-10-14 Incept Llc Composite hydrogel drug delivery systems

Also Published As

Publication number Publication date
WO2006018135A1 (de) 2006-02-23
CN101080426A (zh) 2007-11-28
CA2577431A1 (en) 2006-02-23
EP1781719A1 (de) 2007-05-09
US20080153925A1 (en) 2008-06-26
JP2008510043A (ja) 2008-04-03

Similar Documents

Publication Publication Date Title
EP1781719A1 (de) Verwendung von amphiphilen copolymerisaten als solubilisatoren
EP1945183B1 (de) Verwendung von copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen
EP1913039B1 (de) Silicongruppen-haltiges copolymer, dessen herstellung und verwendung
EP1913038B1 (de) Ampholytisches copolymer, dessen herstellung und verwendung
EP1805236B1 (de) Amphotere ethylmethacrylat-copolymere und deren verwendung
EP0953347B1 (de) Verwendung von Polyalkylenoxid-haltigen Pfropfpolymerisaten als Solubilisatoren
EP1503722B1 (de) Kosmetisches mittel enthaltend wenigstens ein wasserlösliches copolymer mit (meth)acrylsäureamideinheiten
WO2009013202A1 (de) Verfahren zur herstellung von durch pfropfpolymerisation in lösung erhaltenen copolymeren auf basis von polyethern in fester form
EP2029107A2 (de) Verwendung von vinylacetat-sulfonat-copolymeren als solubilisatoren für in wasser schwerlösliche verbindungen
EP2324068A2 (de) Fällungspolymerisation in gegenwart von glycerinmonostearat
EP2066705A1 (de) Kationische polymere als verdicker für wässrige und alkoholische zusammensetzungen
EP0948957B1 (de) Verwendung von Copolymerisaten monoethylenisch ungesättigter Carbonsäuren als Solubilisatoren
EP1915407A2 (de) Copolymere auf basis von n-vinylcaprolactam und deren verwendung als solubilisatoren
WO2007012623A1 (de) Copolymere auf basis von n-vinylpyrrolidon und verzweigten aliphatischen carbonsäuren und deren verwendung als solubilisatoren
EP1132078B1 (de) Kosmetische oder dermatologische Lichtschutzmittelzubereitungen
WO2015059084A1 (de) Fällungspolymerisation in gegenwart eines tertiären amins und eines anhydrids
DE10259815A1 (de) Polymere enthaltend Pyrrolidon-4-carbonsäuregruppen und deren Verwendung
DE19600324A1 (de) Granulate für kosmetische und pharmazeutische Zubereitungen
DE102005003010A1 (de) Copolymere für kosmetische Mittel, hergestellt in Gegenwart polyfunktioneller Regler
WO2007014964A2 (de) Kosmetische und pharmazeutische mittel enthaltend isoalkanolalkoxilate
DE10350359A1 (de) Kosmetisches Mittel enthaltend ein Copolymer mit (Meth)acrylsäureamideinheiten und einen Ester der p-Aminobenzoesäure
DE10219889A1 (de) Kosmetisches Mittel enthaltend wenigstens ein wasserlösliches Copolymer mit (Meth)acrylsäureamideinheiten
DE102005013037A1 (de) Vinylimidazol-Polymerisate als Verdicker für wässrige Zusammensetzungen
DE102005026711A1 (de) Wasserlösliche oder wasserdispergierbare Copolymere und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
8139 Disposal/non-payment of the annual fee