DE10125415A1 - Apparatus for the measurement of respiratory gases converts exhaled air into the correct composition of breathing air using a non-dispersive infra red spectroscope - Google Patents

Apparatus for the measurement of respiratory gases converts exhaled air into the correct composition of breathing air using a non-dispersive infra red spectroscope

Info

Publication number
DE10125415A1
DE10125415A1 DE10125415A DE10125415A DE10125415A1 DE 10125415 A1 DE10125415 A1 DE 10125415A1 DE 10125415 A DE10125415 A DE 10125415A DE 10125415 A DE10125415 A DE 10125415A DE 10125415 A1 DE10125415 A1 DE 10125415A1
Authority
DE
Germany
Prior art keywords
air
carbon dioxide
breathing air
cooling
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE10125415A
Other languages
German (de)
Inventor
Heinz Fischer
Klaus Wetzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FISCHER ANALYSEN INSTR GmbH
Original Assignee
FISCHER ANALYSEN INSTR GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FISCHER ANALYSEN INSTR GmbH filed Critical FISCHER ANALYSEN INSTR GmbH
Priority to DE10125415A priority Critical patent/DE10125415A1/en
Priority to PCT/DE2002/001907 priority patent/WO2002095397A1/en
Priority to DE10292249.7T priority patent/DE10292249B4/en
Publication of DE10125415A1 publication Critical patent/DE10125415A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • G01N33/0036General constructional details of gas analysers, e.g. portable test equipment concerning the detector specially adapted to detect a particular component
    • G01N33/004CO or CO2
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

To measure the mixture ratio of <13>CO2/<12>CO2 in respiratory gases fed by tube into the larynx, with probands enriched by a higher oxygen content than in the ambient atmosphere, the carbon dioxide is separated from the breathing air by cooling, sorption, or a combined cooling/sorption action. To measure the mixture ratio of <13>CO2/<12>CO2 in respiratory gases fed by tube into the larynx, with probands enriched by a higher oxygen content than in the ambient atmosphere, the carbon dioxide is separated from the breathing air by cooling, sorption, or a combined cooling/sorption action. The separated carbon dioxide is vaporized, desublimated or desorbed and mixed with a gas to give the composition of normal breathing air. The apparatus has flow barriers (1-3), a heat exchanger (4), a non-dispersive infra red spectrometer (5), a tube (6) to dry the breathing air and filled with Mg(ClO4)2, a tube (7) to separate the carbon dioxide from the inhaled breathing air and filled with soda lime, and a tube (8) filled with Mg(ClO4)2 to dry the inhaled ambient breathing air.

Description

Charakteristik der bekannten technischen LösungenCharacteristic of the known technical solutions

Patienten auf Intensivstationen werden zum Zwecke der Entlastung ihres Blutkreislaufs häufig mit einem Gas beatmet, dessen Sauerstoffgehalt gegenüber dem der atmosphärischen Luft beträchtlich angereichert ist. Ein orotrachealer Tubus führt dem Patienten reinen Sauerstoff oder ein Sauerstoff-Stickstoff-Gemisch mit einem Sauerstoff-Gehalt von etwa 80 Vol.% oder mehr Sauerstoff zu. Andererseits besteht ein großes Interesse daran, den Stoffwechsel-Zustand gerade solcher Patienten laufend zu kontrollieren, um umgehend eingreifen zu können, wenn dieser Zustand kritische Parameter erreicht. Hierfür bieten sich 13C-Atemtests an, bei denen den Probanden 13C- markierte chemische Verbindungen verabreicht werden. In bestimmten Zeitabständen nach deren Aufnahme wird gemessen, wie schnell diese Stoffe im Organismus des Patienten abgebaut und als 13C-markiertes Kohlendioxid mit der Atemluft ausgeschieden werden. Diese Geschwindigkeit kann zur Beurteilung des klinischen Zustands des Patienten, insbesondere hinsichtlich der Leistungsfähigkeit seiner Leber, seiner Bauchspeicheldrüse oder seines Magen-Darm Trakts, herangezogen werden. Solche 13C-Atemtests haben seit der Mitte der 80-er Jahre des vorigen Jahrhunderts Einzug gehalten in die medizinische Forschung und in die klinische Diagnostik. Die Messung des 13CO2/12CO2-Verhältnisses in der Atemluft geschieht entweder massenspektrometrisch oder mittels der nichtdispersiven Infrarotspektrometrie (NDIR- Spektrometrie), wobei die letztere, im Vergleich zur Massenspektrometrie viel einfachere und weniger kostspielige Variante gerade bei der Untersuchung der Atemluft intubierter Patienten auf eine Schwierigkeit stößt: Die bei Messungen im Bereich des Atmosphärendrucks schon merkliche Druckverbreiterung der Hyperfeinstruktur der Absorptionsspektren führt zu einer zunehmenden Überlappung der Absorptionsbanden des 13CO2 und des 12CO2 mit steigendem Sauerstoffgehalt. Es steigt die Querempfindlichkeit und es sinkt die Messgenauigkeit also mit zunehmendem Sauerstoffgehalt. Die Folge davon ist, dass die Messung des 13CO2/12CO2-Verhältnisses in der Atemluft intubierter Probanden mittels NDIR-Spektrometrie gestört wird durch den gegenüber der Zusammensetzung der Luft erhöhten Sauerstoffgehalt der Atemluft. Bisher umgeht man diese Störung, indem man die Atemluft der intubierten Probanden mit Stickstoff verdünnt, bis der Sauerstoffgehalt auf den der normalen Atemluft gesunken ist. Freilich nimmt man dabei in Kauf, dass die Messsignale für 13CO2 und 12CO2 und damit die Messgenauigkeit um den Faktor 4 bis 5 verringert werden.Patients in intensive care units are often ventilated with a gas whose oxygen content is significantly enriched compared to that of the atmospheric air in order to relieve their blood circulation. An orotracheal tube supplies the patient with pure oxygen or an oxygen-nitrogen mixture with an oxygen content of approximately 80% by volume or more oxygen. On the other hand, there is great interest in continuously monitoring the metabolic state of such patients in order to be able to intervene immediately if this state reaches critical parameters. 13 C breath tests are recommended for this, in which the test subjects are given 13 C-labeled chemical compounds. At certain intervals after their intake, it is measured how quickly these substances are broken down in the patient's organism and excreted as 13 C-labeled carbon dioxide in the breathing air. This speed can be used to assess the clinical condition of the patient, in particular with regard to the performance of his liver, pancreas or gastrointestinal tract. Such 13 C breath tests have been used in medical research and clinical diagnostics since the mid-1980s. The measurement of the 13 CO 2/12 CO 2 ratio in the breath is done either by mass spectrometry or intubated As the investigation of the breathing air by means of the non-dispersive infrared spectroscopy (NDIR spectrometry), the latter, in comparison to the mass spectrometry simpler much and less expensive variant Patients encountered a difficulty: The noticeable pressure broadening of the hyperfine structure of the absorption spectra during measurements in the area of atmospheric pressure leads to an increasing overlap of the absorption bands of 13 CO 2 and 12 CO 2 with increasing oxygen content. The cross sensitivity increases and the measuring accuracy decreases with increasing oxygen content. The result is that the measurement of the 13 CO 2 / 12CO is disturbed 2 ratio in the breath intubated subjects using NDIR spectrometry by the composition of the air over the increased oxygen content of the breathing air. So far, this problem has been avoided by diluting the breathing air of the intubated test subjects with nitrogen until the oxygen content has dropped to that of the normal breathing air. Of course, one accepts that the measurement signals for 13 CO 2 and 12 CO 2 and thus the measurement accuracy are reduced by a factor of 4 to 5.

Darlegung des Wesens der ErfindungState the nature of the invention

Es ist das Ziel der Erfindung, diesen Mangel zu beheben. Das Wesen des erfindungsgemäßen Verfahrens besteht darin, das vom Probanden ausgeatmete Kohlendioxid durch Kühlung, durch Sorption oder durch eine Kombination von Kühlung und Sorption aus der ausgeatmeten Luft abzuscheiden und anschließend zu verdampfen, zu desublimieren bzw. zu desorbieren und einem Gas beizumischen, dessen Zusammensetzung etwa derjenigen normaler Atemluft entspricht. Im Interesse einer hohen Messgenauigkeit sollte dieses Gas vor dem Zudosieren des vom Probanden ausgeatmeten Kohlendioxids kein Kohlendioxid enthalten und im Hinblick auf die Hauptbestandteile der Zusammensetzung der atmosphärischen Luft entsprechen. Nach dem Zudosieren des vom Probanden ausgeatmeten Kohlendioxids sollte das Gas einen der Atemluft entsprechenden Kohlendioxidgehalt (also etwa 2 bis 5 Vol-%) aufweisen, damit in üblicher Weise geeichte NDIR-Geräte für die Ausführung von 13C-Atemtests verwendet werden können.The aim of the invention is to remedy this deficiency. The essence of the method according to the invention is to separate the carbon dioxide exhaled by the test person from the exhaled air by cooling, by sorption or by a combination of cooling and sorption and then to vaporize, desublimate or desorb and to add a gas, the composition of which is approximately corresponds to that of normal breathing air. In the interest of high measuring accuracy, this gas should not contain any carbon dioxide before metering in the carbon dioxide exhaled by the test subject and should correspond to the composition of the atmospheric air with regard to the main components. After metering in the carbon dioxide exhaled by the test person, the gas should have a carbon dioxide content corresponding to the breathing air (i.e. about 2 to 5% by volume) so that NDIR devices calibrated in the usual way can be used to carry out 13 C breath tests.

Wenn die Abscheidung des Kohlendioxids aus der Atemluft durch Kühlung bewirkt werden soll, dann können Peltierelemente, Kältemittel oder kleine Kältemaschinen eingesetzt werden, wie das in den Ansprüchen 2, 3, 4, 5 und 6 zum Ausdruck gebracht wird. Als Kältemittel ist flüssige Luft bzw. flüssiger Stickstoff besonders geeignet. Wie in den Ansprüchen 7 und 8 erwähnt, kann die Abscheidung des Kohlendioxids aus der Atemluft intubierter Patienten auch durch Absorption mittels einer Flüssigkeit bewirkt werden. Wenn hierfür Natronlauge oder die wässrige Lösung einer anderen starken Base verwendet wird, so erfolgt die Wiederfreisetzung des Kohlendioxids durch Zusatz einer äquivalenten Menge bzw. eines Überschusses einer starken Säure wie Salzsäure oder Schwefelsäure. When the separation of carbon dioxide from the air we breathe is caused by cooling then Peltier elements, refrigerants or small chillers are used, as expressed in claims 2, 3, 4, 5 and 6 becomes. Liquid air or liquid nitrogen is particularly suitable as a refrigerant. As mentioned in claims 7 and 8, the deposition of carbon dioxide can occur the breathing air of intubated patients also by absorption with a liquid be effected. If for this sodium hydroxide solution or the aqueous solution of another strong base is used, the carbon dioxide is released again by Add an equivalent amount or excess of a strong acid such as Hydrochloric acid or sulfuric acid.  

Wie im Anspruch 9 herausgestellt wird, ist es besonders vorteilhaft, die zur Absorption des Kohlendioxids verwendete Flüssigkeit im Gegenstrom zur Atemluft des Probanden zu führen, weil dann eine weitergehende Abtrennung des Kohlendioxids gelingt und so eine Verfälschung des zu messenden 13CO2/12CO2-Verhältnisses vermieden wird. Der hierfür erforderliche Stoff- und Isotopenaustausch zwischen flüssiger und fester Phase kann durch Einbauten bzw. Füllkörper in der Gegenstromanordnung intensiviert werden.As will be pointed out in the claim 9, it is particularly advantageous to conduct the liquid used for absorption of the carbon dioxide in countercurrent to the breath of the subject, because then achieves a more extensive separation of the carbon dioxide and so a distortion of the measured 13 CO 2/12 CO 2 Ratio is avoided. The material and isotope exchange between the liquid and solid phases required for this can be intensified by internals or packing elements in the counterflow arrangement.

Vorteile bietet auch die Anwendung von Adsorbentien bei der Abscheidung des Kohlendioxids aus der Atemluft intubierter Probanden, wie das in den Ansprüchen 10, 11 und 12 zum Ausdruck gebracht wird. In den Ansprüchen 11 und 12 werden die besonderen Vorteile einer Kombination von Adsorption und Kühlung bei der Abscheidung des Kohlendioxids hervorgehoben.The use of adsorbents in the separation of the also offers advantages Carbon dioxide from the breath of intubated subjects, such as that in claims 10, 11 and 12 is expressed. In claims 11 and 12, the particular advantages of a combination of adsorption and cooling in the Separation of carbon dioxide highlighted.

In vielen Krankenhäusern und größeren Arztpraxen wird Sauerstoff nicht aus Druckflaschen bereitgestellt, sondern entweder größeren, mit flüssigem Sauerstoff beschickten Tanks entnommen oder an Ort und Stelle in einer Luftverflüssigungsanlage mit anschließender Tieftemperaturdestillation erzeugt. Es liegt nahe, in diesen Fällen die von solchen Aggregaten bereitgestellte Kälte für die Realisierung des erfindungsgemäßen Verfahrens zu nutzen, wie das im Anspruch 13 zum Ausdruck kommt.In many hospitals and larger medical practices, oxygen does not go out Pressure cylinders are provided, but either larger, with liquid oxygen removed from loaded tanks or on site in an air liquefaction plant with subsequent low-temperature distillation. It stands to reason in these cases the cold provided by such units for the realization of the Use method according to the invention, as expressed in claim 13 comes.

Ausführungsbeispielembodiment

Anhand eines Ausführungsbeispiels soll das erfindungsgemäße Verfahren unter Benutzung der Fig. 1, 2 und 3 näher erläutert werden. Darin bedeuten: 1, 2 und 3 Absperrorgane
4 Wärmeaustauscher
5 NDIR-Messgerät
6 mit Mg(ClO4)2 gefülltes Rohr zur Trocknung der Atemluft
7 mit Natronkalk gefülltes Rohr zur Entfernung des Kohlendioxids aus der angesaugten Umgebungsluft
8 mit Mg(ClO4)2 gefülltes Rohr zur Trocknung der angesaugten Umgebungsluft
On the basis of an exemplary embodiment, the method according to the invention will be explained in more detail using FIGS. 1, 2 and 3. This means: 1 , 2 and 3 shut-off devices
4 heat exchangers
5 NDIR measuring device
6 Tube filled with Mg (ClO 4 ) 2 for drying the breathing air
7 Pipe filled with soda lime to remove the carbon dioxide from the aspirated ambient air
8 Pipe filled with Mg (ClO 4 ) 2 for drying the aspirated ambient air

Die in den Fig. 1, 2 und 3 in verschiedenen Betriebszuständen dargestellte Apparatur besteht aus den Absperrorganen 1, 2 und 3, einem Wärmeaustauscher 4 zur Kühlung auf die Temperatur des flüssigen Stickstoffs bzw. zum Aufheizen auf Raumtemperatur, einem NDIR-Messgerät 5, einem mit Mg(ClO4)2 gefüllten Röhrchen 6 zur Trocknung der Atemluft, einem mit Natronkalk gefüllten Röhrchen 7 zur Entfernung des Kohlendioxids aus der angesaugten Umgebungsluft und einem mit Mg(ClO4)2 gefüllten Röhrchen zur Trocknung der angesaugten Umgebungsluft. Diese Bauteile sind durch Rohrleitungen miteinander verbunden, die in Fig. 1, 2 und 3 durch ausgezogene Linien dargestellt sind. Wenn in einer solchen Rohrleitung Atemluft des Probanden, CO2-freie Umgebungsluft oder ein Gemisch aus CO2-freier Umgebungsluft und durch Desublimation im Wärmeaustauscher 4 entstehendem CO2 strömt, so ist dies in Fig. 1, 2 und 3 durch gestrichelte Pfeile gekennzeichnet, wobei die Pfeile in Strömungsrichtung weisen.The apparatus shown in FIGS. 1, 2 and 3 in various operating states consists of the shut-off devices 1 , 2 and 3 , a heat exchanger 4 for cooling to the temperature of the liquid nitrogen or for heating to room temperature, an NDIR measuring device 5 , one tubes 6 filled with Mg (ClO 4 ) 2 for drying the breathing air, tubes 7 filled with soda lime for removing the carbon dioxide from the aspirated ambient air and tubes filled with Mg (ClO 4 ) 2 for drying the aspirated ambient air. These components are connected to each other by pipelines, which are shown in Fig. 1, 2 and 3 by solid lines. If -free ambient air or a mixture of CO 2 -free ambient air and by desublimation in the heat exchanger 4 nascent CO 2 flows in such piping breath of the subject, CO 2, so this is in Fig. 1, indicated by dashed arrows 2 and 3, the arrows point in the direction of flow.

Fig. 1 zeigt den normalen Betriebszustand: Die vom Probanden ausgeatmete Luft wird von dem Absperrorgan 1 in die Umgebung abgeleitet. Der Wärmeaustauscher 4 wird weder gekühlt noch beheizt. Das Messgerät 5 ist oder wird auf die Messung vorbereitet. Fig. 1 shows the normal operating condition: The exhaled air from the subject is derived from the shut-off device 1 in the surroundings. The heat exchanger 4 is neither cooled nor heated. The measuring device 5 is or is being prepared for the measurement.

Fig. 2 zeigt den Betriebszustand, in dem die Atemluft des Probanden über das Absperrorgan 1 und das mit Mg(ClO4)2 gefüllte Röhrchen 6 dem mit flüssigem Stickstoff gekühlten Wärmeaustauscher 4 zugeführt wird und anschließend die Apparatur über das Absperrorgan 3 verläßt. In dieser Phase wird der Atemluft das gesamte Kohlendioxid durch Sublimation entzogen. Fig. 2 shows the operating state in which the test person's breathing air is supplied via the shut-off device 1 and the tube 6 filled with Mg (ClO 4 ) 2 to the heat exchanger 4 cooled with liquid nitrogen and then leaves the apparatus via the shut-off device 3 . In this phase, all of the carbon dioxide is extracted from the breathing air by sublimation.

Fig. 3 zeigt den Betriebszustand, in welchem dem Wärmeaustauscher 4 über das Absperrorgan 2, das mit Natronkalk gefüllte Röhrchen 7 und das mit Mg(ClO4)2 beschickte Röhrchen 8 Umgebungsluft zugeführt wird. In dieser Phase wird der Wärmeaustauscher 4 auf Umgebungstemperatur erwärmt, so dass sich das vorher aus der Atemluft des Probanden ausgefrorene Kohlendioxid dem Luftstrom beimischt und über das Absperrorgan 3 in das NDIR-Gerät gelangt, in welchem das 13CO2/12CO2- Verhältnis gemessen wird. In diesem Betriebszustand werden Strömungsgeschwindigkeit der angesaugten Umgebungsluft und dem Wärmeaustauscher 4 zugeführter Wärmestrom so aufeinander abgestimmt, dass in der Küvette bzw. in den Küvetten des NDIR-Geräts eine der normalen Atemluft ähnliche Gaszusammensetzung resultiert, wie sie auch beim Kalibrieren des Geräts herrscht. Fig. 3 shows the operation state in which the heat exchanger 4 via the shut-off device 2, which is filled with soda lime tube 7 and charged with Mg (ClO 4) 2 8 tubes ambient air is fed. In this phase, the heat exchanger 4 is heated to ambient temperature, then that previously from the breathing air of the subject being frozen carbon dioxide to the air flow is admixed and passes through the obturator 3 in the NDIR apparatus in which the 13 CO 2/12 CO 2 - ratio is measured. In this operating state, the flow rate of the ambient air drawn in and the heat flow supplied to the heat exchanger 4 are coordinated with one another in such a way that a gas composition similar to that of normal breathing air results in the cuvette or in the cuvettes of the NDIR device, as is also the case when calibrating the device.

Claims (13)

1. Verfahren zur Messung von 13CO2/12CO2-Verhältnissen in Atemgasen intubierter, mit Atemgasen mit gegenüber der atmosphärischen Luft erhöhtem Sauerstoffgehalt versorgter Probanden mittels der nichtdispersiven Infrarotspektroskopie, dadurch gekennzeichnet, dass das in der Atemluft enthaltene Kohlendioxid durch Kühlung, durch Sorption oder durch eine Kombination von Kühlung und Sorption aus der ausgeatmeten Luft abgeschieden und anschließend verdampft, desublimiert bzw. desorbiert und einem Gas beigemischt wird, dessen Zusammensetzung etwa derjenigen normaler Atemluft entspricht.1. A method for measurement of 13 CO 2/12 CO 2 ratios in respiratory gases intubated with respiratory gases with respect to the atmospheric air, increased oxygen content-supplied test person by means of non-dispersive infrared spectroscopy, characterized in that the carbon dioxide contained in exhaled air by cooling, by sorption or separated from the exhaled air by a combination of cooling and sorption and then evaporated, desublimated or desorbed and mixed with a gas whose composition corresponds approximately to that of normal breathing air. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abscheidung des Kohlendioxids aus der Atemluft durch Kühlung mittels Peltierelementen bewirkt wird.2. The method according to claim 1, characterized in that the deposition of the Carbon dioxide from the breathing air is caused by cooling using Peltier elements. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abscheidung des Kohlendioxids aus der Atemluft durch Kühlung mittels eines Kältemittels bewirkt wird.3. The method according to claim 1, characterized in that the deposition of the Carbon dioxide from the air we breathe is caused by cooling with a refrigerant. 4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Kältemittel flüssige Luft oder flüssiger Stickstoffs ist.4. The method according to claim 3, characterized in that the refrigerant is liquid Air or liquid nitrogen. 5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abscheidung des Kohlendioxids aus der Atemluft durch Kühlung mittels einer Kältemaschine bewirkt wird.5. The method according to claim 1, characterized in that the deposition of the Carbon dioxide from the breathing air caused by cooling with a refrigerator becomes. 6. Verfahren nach Anspruch 5. dadurch gekennzeichnet, dass die Kältemaschine eine Stirling-Gaskältemaschine ist.6. The method according to claim 5, characterized in that the refrigerator is a Stirling gas refrigerator is. 7. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abscheidung des Kohlendioxids aus der Atemluft durch Absorption mittels einer Flüssigkeit bewirkt wird.7. The method according to claim 1, characterized in that the deposition of the Carbon dioxide from the breathing air caused by absorption by a liquid becomes. 8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Flüssigkeit Natronlauge ist und die anschließende Wiederfreisetzung des Kohlendioxids durch Zusatz einer starken Säure bewirkt wird.8. The method according to claim 7, characterized in that the liquid Sodium hydroxide solution and the subsequent re-release of the carbon dioxide Addition of a strong acid is caused. 9. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Flüssigkeit der emporströmenden Atemluft entgegenfließt.9. The method according to claim 7, characterized in that the liquid of the upward flowing breathing air flows. 10. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abscheidung des Kohlendioxids aus der Atemluft durch Adsorption an einer Festkörperoberfläche bewirkt wird. 10. The method according to claim 1, characterized in that the deposition of the Carbon dioxide from the air we breathe through adsorption on a solid surface is effected.   11. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Abscheidung des Kohlendioxids aus der Atemluft durch eine Kombination von Kühlung und Adsorption an einer Festkörperoberfläche bewirkt wird.11. The method according to claim 1, characterized in that the deposition of the Breathing air carbon dioxide through a combination of cooling and adsorption is effected on a solid surface. 12. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass das Adsorptionsmittel Aluminiumoxid ist.12. The method according to claim 10, characterized in that the adsorbent Is alumina. 13. Verfahren nach einem der Ansprüche 2, 3, 4, 5, 6, 11 oder 12, dadurch gekennzeichnet, dass zur Kühlung Aggregate benutzt werden, die in vielen Krankenhäusern und Arztpraxen zur Erzeugung von Sauerstoff aus der Umgebungsluft bzw. zur Aufbewahrung von flüssigem Sauerstoff ohnehin vorhanden sind.13. The method according to any one of claims 2, 3, 4, 5, 6, 11 or 12, characterized characterized in that units are used for cooling, which in many Hospitals and medical practices for the generation of oxygen from the ambient air or to store liquid oxygen anyway.
DE10125415A 2001-05-25 2001-05-25 Apparatus for the measurement of respiratory gases converts exhaled air into the correct composition of breathing air using a non-dispersive infra red spectroscope Withdrawn DE10125415A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE10125415A DE10125415A1 (en) 2001-05-25 2001-05-25 Apparatus for the measurement of respiratory gases converts exhaled air into the correct composition of breathing air using a non-dispersive infra red spectroscope
PCT/DE2002/001907 WO2002095397A1 (en) 2001-05-25 2002-05-25 Method for measuring the 13co2/12co2 ratio in the respiratory air of intubated test persons
DE10292249.7T DE10292249B4 (en) 2001-05-25 2002-05-25 Method for measuring the 13CO2 / 12CO2 ratio in the respiratory air of intubated subjects

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE10125415A DE10125415A1 (en) 2001-05-25 2001-05-25 Apparatus for the measurement of respiratory gases converts exhaled air into the correct composition of breathing air using a non-dispersive infra red spectroscope

Publications (1)

Publication Number Publication Date
DE10125415A1 true DE10125415A1 (en) 2002-11-28

Family

ID=7686037

Family Applications (2)

Application Number Title Priority Date Filing Date
DE10125415A Withdrawn DE10125415A1 (en) 2001-05-25 2001-05-25 Apparatus for the measurement of respiratory gases converts exhaled air into the correct composition of breathing air using a non-dispersive infra red spectroscope
DE10292249.7T Expired - Lifetime DE10292249B4 (en) 2001-05-25 2002-05-25 Method for measuring the 13CO2 / 12CO2 ratio in the respiratory air of intubated subjects

Family Applications After (1)

Application Number Title Priority Date Filing Date
DE10292249.7T Expired - Lifetime DE10292249B4 (en) 2001-05-25 2002-05-25 Method for measuring the 13CO2 / 12CO2 ratio in the respiratory air of intubated subjects

Country Status (2)

Country Link
DE (2) DE10125415A1 (en)
WO (1) WO2002095397A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037623A1 (en) * 2004-08-02 2006-03-16 Spectro Analytical Instruments Gmbh & Co. Kg Apparatus and method for the spectroscopic determination of carbon
ITMI20081259A1 (en) * 2008-07-10 2010-01-11 Snam Progetti ON-LINE SAMPLING DEVICE AND METHOD FOR ANALYSIS OF AIR-VOLATILE COMPOUND EMISSIONS

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009009583A1 (en) * 2009-02-19 2010-08-26 Abb Ag Method and device for carrying out analyzes of respiratory gas samples

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD137323A1 (en) * 1978-06-23 1979-08-29 Klaus Wetzel METHOD FOR DETERMINING THE RELATIVE C-13 CONTENT OF THE BREATHING AIR
US4298347A (en) * 1980-02-25 1981-11-03 Kor Incorporated 13 CO2 Breath test
DE3643804A1 (en) * 1986-12-20 1988-06-30 Draegerwerk Ag METHOD AND ARRANGEMENT FOR DETERMINING AT LEAST ONE COMPONENT OF A TEST GAS
CH679886A5 (en) * 1989-09-04 1992-04-30 Topic Ag
JP3838671B2 (en) * 1993-10-25 2006-10-25 アークレイ株式会社 Breath collection device
CN100416259C (en) * 1995-10-09 2008-09-03 大塚制药株式会社 Spectroscopic method and its instrument for detecting isotope gas
US5747809A (en) * 1996-06-11 1998-05-05 Sri International NDIR apparatus and method for measuring isotopic ratios in gaseous samples
DE19755471A1 (en) * 1997-12-03 1999-06-17 Ufz Leipzighalle Gmbh Device for examining respiratory diseases and diagnostic means

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004037623A1 (en) * 2004-08-02 2006-03-16 Spectro Analytical Instruments Gmbh & Co. Kg Apparatus and method for the spectroscopic determination of carbon
US7227636B2 (en) 2004-08-02 2007-06-05 Spectro Analytical Instruments Gmbh & Co. Kg Apparatus and method for the spectroscopic determination of carbon
ITMI20081259A1 (en) * 2008-07-10 2010-01-11 Snam Progetti ON-LINE SAMPLING DEVICE AND METHOD FOR ANALYSIS OF AIR-VOLATILE COMPOUND EMISSIONS
WO2010004404A1 (en) * 2008-07-10 2010-01-14 Saipem S.P.A On line sampling device and method to analyse volatile compounds emissions

Also Published As

Publication number Publication date
DE10292249B4 (en) 2015-10-29
WO2002095397A1 (en) 2002-11-28
DE10292249D2 (en) 2004-04-29

Similar Documents

Publication Publication Date Title
EP0491000B1 (en) Process and device for preparing a gas mixture for analysis, and application of the process
US5479815A (en) Method and apparatus for measuring volatiles released from food products
EP2299901B1 (en) Portable pneumotachograph for measuring components of an expiration volume
DE4411533C1 (en) Anaesthesia apparatus
Morita et al. Accumulation of methane, acetone, and nitrogen in the inspired gas during closed-circuit anesthesia
DE2344796A1 (en) METHOD AND DEVICE FOR ACQUISITION AND ANALYZING OF GAS SAMPLES
EP0759169A1 (en) Process and device for collecting expired breath condensate
EP1028796A2 (en) Method and device for recovering gases
DE2207509A1 (en) Process and device for generating neon and helium from air
DE10292249B4 (en) Method for measuring the 13CO2 / 12CO2 ratio in the respiratory air of intubated subjects
DE10210292A1 (en) Artificial respiratory system based on thermal radiation with Co¶2¶ absorbent and canister for use therein
DE102004015406A1 (en) Method and device for administration of xenon to patients
EP1036322B1 (en) Device for investigating respiratory tract diseases and diagnostic agents
DE60104431T2 (en) ABSORPTION COMPOSITIONS FOR CARBON DIOXIDE
DE19718924A1 (en) Apparatus to recover component fractions from exhaled air
Kain Higher oxides of nitrogen in anaesthetic gas circuits
EP0226107A1 (en) Method of producing a working atmosphere for treating at cryogenic temperatures persons suffering from rheumatism, and a complete body treatment system for carrying out the method
Lee et al. Toxicokinetics of human exposure to methyl tertiary-butyl ether (MTBE) following short-term controlled exposures
DE19841388C2 (en) Method and device for producing super pure air
DE19548348C1 (en) Method for determining the isotope ratio of a gas
DE19612289A1 (en) Method and device for reducing risks in inhaled NO therapy
Roberts et al. A multipatient mass spectrometer based system for the measurement of metabolic gas exchange in artificially ventilated intensive care patients
DE102019007645A1 (en) Device and method for hose-free and mask-free respiratory gas and metabolic analysis and respiratory gas and metabolic analyzer
DE19749963A1 (en) Recovery of anesthetic gas
DE4308940A1 (en) Process and apparatus for separating and recovering inhalation anaesthetics from a mixture of these substances with nitrous oxide (laughing gas)

Legal Events

Date Code Title Description
8143 Withdrawn due to claiming internal priority