CN210692568U - 辐射探测探头及芯片 - Google Patents

辐射探测探头及芯片 Download PDF

Info

Publication number
CN210692568U
CN210692568U CN201922285736.9U CN201922285736U CN210692568U CN 210692568 U CN210692568 U CN 210692568U CN 201922285736 U CN201922285736 U CN 201922285736U CN 210692568 U CN210692568 U CN 210692568U
Authority
CN
China
Prior art keywords
radiation detection
unit
chip
current
detection probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201922285736.9U
Other languages
English (en)
Inventor
钟华强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou Lantaisheng Radiation Protection Technology Co ltd
Original Assignee
Guangzhou Lantaisheng Radiation Protection Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou Lantaisheng Radiation Protection Technology Co ltd filed Critical Guangzhou Lantaisheng Radiation Protection Technology Co ltd
Priority to CN201922285736.9U priority Critical patent/CN210692568U/zh
Application granted granted Critical
Publication of CN210692568U publication Critical patent/CN210692568U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Measurement Of Radiation (AREA)

Abstract

本实用新型涉及一种辐射探测探头及芯片,剂量率小于等于剂量限定值时,通过脉冲模式电路获取辐射探测探头的探测信号,其输出脉冲数与探测信号对应的X/γ光子数相同,通过外部处理器计算得到探测结果;而当剂量率大于剂量限定值,会超过脉冲模式电路计数率上限,此时采用电流模式电路,将测量到的电流转换为电压,通过外部处理器计算探测结果。基于此,在实现辐射探测设备的芯片化的同时,通过脉冲读出模式和电流读出模式协同工作,实现辐射探测芯片对X/γ辐射的宽量程探测。

Description

辐射探测探头及芯片
技术领域
本实用新型涉及辐射探测技术领域,特别是涉及一种辐射探测探头及芯片。
背景技术
辐射探测是一种通过辐射探测器观察特定对象的微观现象的技术手段。其中,辐射探测器是辐射探测的核心设备,其主要是利用粒子与物质的相互作用的原理,将核辐射和粒子的微观现象表征为可观察的宏观现象。传统的辐射探测器主要有气体电离探测器、半导体探测器和闪烁探测器三大类。
目前,随着核物理、实验物理等各领域的发展,对辐射探测器的性能需求也有了越来越高的要求。传统的辐射探测器由于辐射探测探头的技术限制,体积和重量较大,难以满足各领域的应用要求。
实用新型内容
基于此,有必要针对传统的辐射探测器由于辐射探测探头的技术限制,体积和重量较大,难以满足各领域的应用要求的缺陷,提供一种辐射探测探头及芯片。
一种辐射探测探头,包括第一电极、第二电极以及根据上述任一实施例的辐射探测探头的制备方法制备的碲锌镉晶体;
其中,第一电极设置在碲锌镉晶体一侧,并用于接入偏压;第二电极设置在碲锌镉晶体一侧,并用于接地。
上述的辐射探测探头,通过辐射探测探头的制备方法制备的碲锌镉晶体,配合第一电极和第二电极,所构成的辐射探测头的体积与性能达到平衡,有利于控制辐射探测探头的体积,便于各领域中辐射探测探头的应用。
在其中一个实施例中,第一电极与第二电极均为金属电极。
在其中一个实施例中,包括一个或多个平面结构或栅型结构的碲锌镉晶体。
一种辐射探测芯片,包括芯片外壳,以及设置在芯片外壳内的脉冲模式电路、电流模式电路和如上述任一实施例的辐射探测探头;
其中,所述脉冲模式电路包括前置放大单元和次级主放大单元;所述前置放大单元的输入端用于在所述辐射探测探头的剂量率小于等于剂量限定值时获取所述辐射探测探头的探测信号;所述前置放大单元的输出端用于通过所述次级主放大单元连接外部处理器;
其中,所述电流模式电路包括所述电流测量单元和所述电流转换单元;所述电流测量单元的输入端用于在所述辐射探测探头的剂量率大于剂量限定值时获取所述辐射探测探头的探测信号,所述电流测量单元的输出端用于通过所述电流转换单元连接外部处理器。
上述的辐射探测芯片,剂量率小于等于剂量限定值时,通过脉冲模式电路获取辐射探测探头的探测信号,其输出脉冲数与探测信号对应的X/γ光子数相同,外部处理器计算得到探测结果;而当剂量率大于剂量限定值,会超过脉冲模式电路计数率上限,此时采用电流模式电路,将测量到的电流转换为电压,通过外部处理器计算探测结果。基于此,在实现辐射探测设备的芯片化的同时,通过脉冲读出模式和电流读出模式协同工作,实现辐射探测芯片对X/γ辐射的宽量程探测。
在其中一个实施例中,所述脉冲模式电路还包括幅度甄别单元和单稳态触发单元;
所述前置放大单元的输出端用于依次通过所述次级主放大单元、幅度甄别单元和单稳态触发单元连接外部处理器。
在其中一个实施例中,还包括设置在芯片外壳内的内置处理器;
所述前置放大单元的输出端通过所述次级主放大单元连接所述内置处理器;所述电流测量单元的输出端通过所述电流转换单元连接内置处理器。
在其中一个实施例中,前置放大单元包括电荷灵敏放大器,次级主放大单元包括成形滤波电路。
在其中一个实施例中,幅度甄别单元包括甄别器或第一模数转换电路,单稳态触发单元包括单稳态触发电路。
在其中一个实施例中,电流测量单元包括跨阻放大器或电流采样电路;电流转换单元可选用第二模数转换电路。
在其中一个实施例中,还包括升压模块;
其中,升压模块用于接入芯片级电压,并对芯片级电压作升压处理,将升压后的芯片级电压为辐射探测探头提供偏压。
在其中一个实施例中,芯片外壳包括电磁屏蔽盒。
附图说明
图1为一实施方式的辐射探测探头结构示意图;
图2为一实施方式的辐射探测芯片电路模块结构示意图;
图3为一实施方式的脉冲模式电路图;
图4为一实施方式的前置放大单元设计电路图;
图5为一实施方式的次级主放大单元设计电路图;
图6为另一实施方式的辐射探测芯片电路模块结构示意图。
具体实施方式
为了更好地理解本实用新型的目的、技术方案以及技术效果,以下结合附图和实施例对本实用新型进行进一步的讲解说明。同时声明,以下所描述的实施例仅用于解释本实用新型,并不用于限定本实用新型。
本实用新型实施例提供一种辐射探测探头。
图1为一实施方式的辐射探测探头结构示意图,如图1所示,一实施方式的辐射探测探头包括第一电极100、第二电极101以及如上述任一实施例的辐射探测探头的制备方法制备的碲锌镉晶体102;
第一电极100设置在碲锌镉晶体102一侧,并用于接入偏压;第二电极101设置在碲锌镉晶体102一侧,并用于接地。
其中,第一电极100与第二电极101用于为碲锌镉晶体102形成偏压。碲锌镉晶体102用于检测高能粒子,尤其是γ射线。作为带电粒子的高能粒子在PN结内与碲锌镉晶体102的电子相互作用,很快地损失掉能量,并形成电子-空穴对。在PN结电场作用下,电子和空穴分别向两极漂移,于是在第一电极100与第二电极101间的输出回路中形成探测信号。
在其中一个实施例中,第一电极100与第二电极101均为金属电极。
在其中一个实施例中,第一电极100为薄片状电极,并设置在碲锌镉晶体102的表面。其中,碲锌镉晶体102的表面用于检测高能粒子。
在其中一个实施例中,第二电极101为薄片状电极,并设置在碲锌镉晶体102的背面。
在其中一个实施例中,第一电极100和第二电极101选用PIN针结构的金属电极,第一电极100和第二电极101可通过金线键合、载带焊和倒装焊等方式与碲锌镉晶体102连接。通过PIN针结构的金属电极与碲锌镉晶体102,以便于辐射探测探头的芯片化。
在其中一个实施例中,辐射探测探头包括一个或多个碲锌镉晶体102。其中,一个碲锌镉晶体102可以为平面结构或栅型结构。多个碲锌镉晶体102可呈阵列排布。应当理解的是,本实施例中给出辐射探测探头中碲锌镉晶体102的结构类型包括但不限于此。
在其中一个实施例中,碲锌镉晶体102的三维尺寸为10×10×1mm3
上述任一实施例的辐射探测探头,通过辐射探测探头的制备方法制备的碲锌镉晶体102,配合第一电极100和第二电极101,所构成的辐射探测头的体积与性能达到平衡,有利于控制辐射探测探头的体积,便于各领域中辐射探测探头的应用。
本实用新型实施例还提供一种辐射探测芯片。
图2为一实施方式的辐射探测芯片电路模块结构示意图,如图2所示,一实施方式的辐射探测芯片包括芯片外壳200,以及设置在芯片外壳200内的脉冲模式电路201、电流模式电路202和如上述任一实施例的辐射探测探头203;
其中,所述脉冲模式电路201包括前置放大单元300和次级主放大单元301;所述前置放大单元300的输入端用于在所述辐射探测探头203的剂量率小于等于剂量限定值时获取所述辐射探测探头203的探测信号;所述前置放大单元300的输出端用于通过所述次级主放大单元301连接外部处理器;
其中,所述电流模式电路202包括所述电流测量单元400和所述电流转换单元401;所述电流测量单元400的输入端用于在所述辐射探测探头203的剂量率大于剂量限定值时获取所述辐射探测探头203的探测信号,所述电流测量单元400的输出端用于通过所述电流转换单元401连接外部处理器。
其中,探测信号的电信号大小与剂量率呈正相关,剂量率包括电流值或电荷值。剂量限定值包括预设电流值或预设电荷值。在其中一个实施例中,辐射探测探头203直接输出的探测信号为电离电荷信号,探测信号并无雪崩放大过程,探测信号的电荷量通常为0.1fC~100fC量级,正比于电离辐射沉积能量。在剂量率小于等于剂量限定值时,通过脉冲模式电路201获取辐射探测探头203的探测信号,其输出脉冲数与探测信号对应的X/γ光子数相同,外部处理器计算得到探测结果;而当剂量率大于剂量限定值,会超过脉冲模式电路201计数率上限,此时采用电流模式电路202,将测量到的电流转换为电压,通过外部处理器计算探测结果。基于此,在实现辐射探测设备的芯片化的同时,通过脉冲读出模式和电流读出模式协同工作,实现辐射探测芯片对X/γ辐射的宽量程探测。
在其中一个实施例中,脉冲模式电路201可选用JFET与晶体管等分立器件组合电路、JFET与运放等组合电路或基于CMOS工艺的专用集成电路。作为一个较优的实施方式,脉冲模式电路201选用基于CMOS工艺的专用集成电路。图3为一实施方式的脉冲模式电路201图,如图3所示,在基于CMOS工艺的专用集成电路下,前置放大单元300包括电荷灵敏放大器500。电荷灵敏放大器500用于将电荷信号转换为电压信号,作为第一级放大,其噪声性能和频率特性对电路特性影响最大。次级主放大单元301包括成形滤波电路501。作为一个较优的实施方式,成形滤波电路501可选用带通滤波器,用于滤除无关频带的信号,提高输出信号的信噪比。在其中一个实施例中,幅度甄别单元302包括比较器502,通过比较器502输出数字信号。
作为一个较优的实施方式,为获得低噪声、低功耗和合适的增益带宽等,在电路图设计阶段可根据理论计算及仿真结果,选择合适的制程,逐步调整各晶体管的宽长比等参数。由于在集成电路内部实现高阻值电阻较为困难,可通过设计泄放电路泄放掉基于CMOS工艺的专用集成电路中各反馈电容上积累的电荷。
在其中一个实施例中,图4为一实施方式的前置放大单元设计电路图,如图4所示,一实施方式的前置放大单元300具有获得低噪声、低功耗和合适的增益带宽等有益效果。
在其中一个实施例中,图5为一实施方式的次级主放大单元设计电路图,如图5所示,一实施方式的次级主放大单元301可有效地提高次级主放大单元301的输出信号的信噪比。
在其中一个实施例中,图6为另一实施方式的辐射探测芯片电路模块结构示意图,如图6所示,脉冲模式电路201还包括幅度甄别单元302和单稳态触发单元303;
所述前置放大单元300的输出端用于依次通过所述次级主放大单元301、幅度甄别单元302和单稳态触发单元303连接外部处理器。
在其中一个实施例中,如图6所示,辐射探测芯片还包括设置在芯片外壳200内的内置处理器204;
所述前置放大单元300的输出端通过所述次级主放大单元301连接所述内置处理器;所述电流测量单元400的输出端通过所述电流转换单元401连接内置处理器204。
其中,辐射探测芯片还可通过内置处理器204,替换外部处理器,实现辐射探测芯片的探测结果自计算,提高辐射探测芯片的通用性。
在其中一个实施例中,幅度甄别单元302可选用甄别器或第一模数转换电路,并在甄别器或第一模数转换电路后级配置电压比较电路,以输出LVCMOS数字信号至单稳态触发单元303。
在其中一个实施例中,单稳态触发单元303可选用单稳态触发电路。单稳态触发单元303接收幅度甄别单元302输出的数字信号,将幅度甄别单元302输出的数字信号转换为脉冲信号,并将脉冲信号给到外部或内置处理器,以便于外部或内置处理器通过脉冲信号计算辐射探测结果。
在其中一个实施例中,电流测量单元400可选用跨阻放大器或电流采样电路,用于将辐射探测探头203中的电流信号转换为电压输出,作为一个较优的实施方式,在电流测量单元400的后级还配置有滤波电路,以滤除电流测量单元400的电压输出中的高频噪声。
在其中一个实施例中,电流转换单元401可选用第二模数转换电路,用于将电流测量单元400的电压输出转换为数字信号,以便于外部或内置处理器通过该数字信号计算辐射探测结果。
在其中一个实施例中,如图6所示,又一实施方式的辐射探测芯片还包括升压模块600;
其中,升压模块600用于接入芯片级电压,并对芯片级电压作升压处理,将升压后的芯片级电压为辐射探测探头203提供偏压。
在其中一个实施例中,升压模块600可选用变压器线圈或升压芯片。作为一个较优的实施方式,升压模块600选用升压芯片。
在其中一个实施例中,芯片外壳200选用电磁屏蔽盒,设置在芯片外壳200内的各电路成分布式布置,以提高电磁兼容性能。
作为一个较优的实施方式,芯片外壳200内设置有芯片基板,脉冲模式电路201、电流模式电路202、内置处理器204和辐射探测探头203均固定在芯片基板上,脉冲模式电路201、电流模式电路202、处理器和辐射探测探头203间的电气连接通过金线键合或倒装焊实现。
在其中一个实施例中,还通过塑料封装或陶瓷封装对辐射探测芯片进行封装。
在其中一个实施例中,内置处理器204选用单片机或DSP处理器。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种辐射探测探头,其特征在于,包括第一电极、第二电极以及碲锌镉晶体;
其中,所述第一电极设置在所述碲锌镉晶体一侧,并用于接入偏压;所述第二电极设置在所述碲锌镉晶体一侧,并用于接地。
2.根据权利要求1所述的辐射探测探头,其特征在于,包括一个或多个平面结构或栅型结构的碲锌镉晶体。
3.一种辐射探测芯片,其特征在于,包括芯片外壳,以及设置在芯片外壳内的脉冲模式电路、电流模式电路和如权利要求1或2所述的辐射探测探头;
其中,所述脉冲模式电路包括前置放大单元和次级主放大单元;所述前置放大单元的输入端用于在所述辐射探测探头的剂量率小于等于剂量限定值时获取所述辐射探测探头的探测信号;所述前置放大单元的输出端用于通过所述次级主放大单元连接外部处理器;
其中,所述电流模式电路包括所述电流测量单元和所述电流转换单元;所述电流测量单元的输入端用于在所述辐射探测探头的剂量率大于剂量限定值时获取所述辐射探测探头的探测信号,所述电流测量单元的输出端用于通过所述电流转换单元连接外部处理器。
4.根据权利要求3所述的辐射探测芯片,其特征在于,所述脉冲模式电路还包括幅度甄别单元和单稳态触发单元;
所述前置放大单元的输出端用于依次通过所述次级主放大单元、幅度甄别单元和单稳态触发单元连接外部处理器。
5.根据权利要求3所述的辐射探测芯片,其特征在于,还包括设置在芯片外壳内的内置处理器;
所述前置放大单元的输出端通过所述次级主放大单元连接所述内置处理器;所述电流测量单元的输出端通过所述电流转换单元连接内置处理器。
6.根据权利要求3所述的辐射探测芯片,其特征在于,所述前置放大单元包括电荷灵敏放大器,所述次级主放大单元包括成形滤波电路。
7.根据权利要求4所述的辐射探测芯片,其特征在于,所述幅度甄别单元包括甄别器或第一模数转换电路,所述单稳态触发单元包括单稳态触发电路。
8.根据权利要求3所述的辐射探测芯片,其特征在于,所述电流测量单元包括跨阻放大器或电流采样电路;所述电流转换单元可选用第二模数转换电路。
9.根据权利要求3至8任意一项所述的辐射探测芯片,其特征在于,还包括升压模块;
其中,所述升压模块用于接入芯片级电压,并对所述芯片级电压作升压处理,将升压后的所述芯片级电压为所述辐射探测探头提供偏压。
10.根据权利要求3至8任意一项所述的辐射探测芯片,其特征在于,所述芯片外壳包括电磁屏蔽盒。
CN201922285736.9U 2019-12-18 2019-12-18 辐射探测探头及芯片 Active CN210692568U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201922285736.9U CN210692568U (zh) 2019-12-18 2019-12-18 辐射探测探头及芯片

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201922285736.9U CN210692568U (zh) 2019-12-18 2019-12-18 辐射探测探头及芯片

Publications (1)

Publication Number Publication Date
CN210692568U true CN210692568U (zh) 2020-06-05

Family

ID=70897756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201922285736.9U Active CN210692568U (zh) 2019-12-18 2019-12-18 辐射探测探头及芯片

Country Status (1)

Country Link
CN (1) CN210692568U (zh)

Similar Documents

Publication Publication Date Title
CN113009542A (zh) 辐射探测装置及芯片
CN105549064A (zh) 一种基于Si-PIN探测器阵列的高分辨率X射线能谱仪
US7652242B2 (en) Device for processing and digitizing an energy spectrum of an electromagnetic radiation
CN204392193U (zh) 一种中子探测器的放大电路
CN211554325U (zh) 辐射探测装置及芯片
Fiorini et al. Silicon drift detectors for readout of scintillators in gamma-ray spectroscopy
CN107490585B (zh) 一种消除温度对Si-PIN探测器ɑ能谱峰漂移影响的方法及装置
CN110854242B (zh) 辐射探测探头及其制备方法、辐射探测芯片
CN113189635A (zh) 单极性核辐射探测器及其前置放大电路
CN210692568U (zh) 辐射探测探头及芯片
CN109743025A (zh) 一种基于电荷分配网络的宽输入电荷灵敏放大器
CN211318765U (zh) 中子探测探头及中子探测芯片
Bueno et al. The performance of low-cost commercial photodiodes for charged particle and X-ray spectrometry
CN211603563U (zh) 阵列式光电探测装置
Lingren et al. Cadmium-zinc-telluride, multiple-electrode detectors achieve good energy resolution with high sensitivity at room-temperature
CN110967725B (zh) 中子探测探头及中子探测芯片
CN107607983B (zh) 辐射射线检测仪及其制备方法
Bertuccio et al. Electronic Noise in Semiconductor-based Radiation Detection Systems: a comprehensive analysis with a unified approach
CN112054087B (zh) 一种石墨烯半导体辐射探测器件及其制备方法
CN110869810B (zh) X射线和伽玛射线光电二极管
Shao et al. Experimental determination of gamma-ray discrimination in pillar-structured thermal neutron detectors under high gamma-ray flux
Bellinger et al. Characteristics of the large-area stacked microstructured semiconductor neutron detector
WO2019072319A1 (en) METHOD FOR DETERMINING THE TYPE OF IONIZING RADIATION USING A SEMICONDUCTOR DIODE AND CIRCUIT FOR EXECUTING THIS METHOD
Chatzakis et al. Improved detection of fast neutrons with solid-state electronics
Hu et al. Development of a novel high-performance readout circuit for α and β energy spectrum measurement

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant