CN210665328U - 高温超声疲劳原位测试仪器 - Google Patents

高温超声疲劳原位测试仪器 Download PDF

Info

Publication number
CN210665328U
CN210665328U CN201921515680.5U CN201921515680U CN210665328U CN 210665328 U CN210665328 U CN 210665328U CN 201921515680 U CN201921515680 U CN 201921515680U CN 210665328 U CN210665328 U CN 210665328U
Authority
CN
China
Prior art keywords
module
loading
temperature
ultrasonic
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN201921515680.5U
Other languages
English (en)
Inventor
赵宏伟
赵久成
周水龙
李文博
靖旭
张世忠
徐利霞
赵大庆
赵甄章
方宇明
李世超
孟凡越
王赵鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201921515680.5U priority Critical patent/CN210665328U/zh
Application granted granted Critical
Publication of CN210665328U publication Critical patent/CN210665328U/zh
Withdrawn - After Issue legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本实用新型涉及一种高温超声疲劳原位测试仪器,属于精密科学仪器领域。仪器由整体框架模块、机械加载模块、高温加载模块和原位监测模块组成,整体框架模块用于对各功能模块精确定位,同时提供稳定支撑和有效隔振;机械加载模块用于对被测试样两端同步施加静态拉伸/压缩载荷,依据测试需要施加超声疲劳载荷,并可实现轴向的精确转位;高温加载模块用于对被测试样施加高温载荷;原位监测模块用于对被测试样的表面变形损伤与内部损伤缺陷实施并行原位监测。可实现对被测试样缺陷信息由内而外、由表及里的同步表征及三维重构。具有载荷环境复杂、测试精度高、同时能动态监测材料力学行为与变形损伤机制的特点。

Description

高温超声疲劳原位测试仪器
技术领域
本实用新型涉及精密科学仪器领域,特别涉及一种高温超声疲劳原位测试仪器。在真空或惰性气体氛围下实现被测材料试样的高温加载,同时可实现对被测试样缺陷信息由内而外、由表及里的同步表征及三维重构。为航空航天、装备制造等领域材料在高温、超声载荷作用下的疲劳性能及变形损伤机制研究提供了一种可靠手段。
背景技术
结合原位监测手段,开展力热耦合疲劳测试是获取材料在高温下的服役性能、探究其疲劳性能演化规律的重要手段。在航空航天、装备制造等领域,一些关键结构材料如航空发动机涡轮叶片、汽车发动机活塞等常在高温、高频的工况下服役,疲劳失效时有发生,对国家造成了严重的经济损失。如何实现高温温度场及高频机械载荷的高精度加载,模拟材料接近实际服役工况,并结合原位监测装置开展材料接近实际服役工况下的原位监测,是评估材料高温疲劳性能和服役安全性的关键。
万能试验机、超声疲劳试验机、低频疲劳试验机、集成马弗炉的疲劳试验机等是目前市面上比较常见的材料试验机,这些试验机结构简单、功能单一,难以构建真空或惰性气体氛围,无法实现对被测试样高温温度场及高频机械载荷的高精度加载,并且由于缺乏原位监测装置,在试验过程中也难以开展对被测试样的原位监测。受制于现有材料测试装置,现有的测试方法也相对单一,难以实现对航空、航天及汽车等关键领域材料在高温、超声疲劳作用下疲劳性能及变形损伤机制的研究。
随着光学显微成像技术、红外热成像技术、X射线晶体衍射技术等在材料微观力学性能测试领域的广泛应用,基于多种原位监测手段并行监测的原位力学测试技术在关键领域材料高温疲劳性能及变形损伤机制研究中的作用愈发突出。如:采用CT扫描成像技术和光学显微成像技术同步表征,可直观获取被测试样内部三维形貌及表面微区形貌;采用CT扫描成像技术和红外热成像技术同步表征,可直观获取被测试样内部损伤的三维形貌及试样标距段全局温度分布信息。
综上所述,面向国家航空航天、装备制造等领域关键结构材料的重大测试需求,结合现有的原位监测技术,研制一种高温超声疲劳原位测试仪器是十分必要的。
发明内容
本实用新型的目的在于提供一种高温超声疲劳原位测试仪器,弥补现有测试技术的不足。本实用新型仪器采用液压伺服驱动技术、电伺服驱动技术、压电超声驱动技术,并结合电阻丝辐射加热技术,可构建真空或惰性气体氛围,实现对被测试样在高温环境下的超声疲劳测试。同时,采用高景深显微成像装置、红外热成像装置、CT扫描装置,可实现对被测试样缺陷信息由内而外、由表及里的同步表征及三维重构;面向国家航空航天、装备制造等领域关键结构材料的重大测试需求,为其在高温、超声疲劳作用下疲劳性能及变形损伤机制的研究提供了可靠手段。
本实用新型的上述目的通过以下技术方案实现:
高温超声疲劳原位测试仪器,包括整体框架模块1、机械加载模块2、原位监测模块3、高温加载模块4,整体框架模块1采用四立柱式结构,实现对机械加载模块2、原位监测模块3、高温加载模块4的牢固支撑,机械加载模块2分别通过商业化电机驱动组件40的支撑外壳、上液压缸43的连接法兰与整体框架模块1中的上支撑板9、安装平台5刚性连接,实现对被测试样的两端同步施加静态拉伸/压缩载荷,原位监测模块3分别通过固定底板67、固定座60、导轨座61和安装架58与整体框架模块1中的安装平台5、CT固定板Ⅱ14、立柱连接块8、CT固定板Ⅰ7刚性连接,实现对被测试样缺陷信息进行由内而外、由表及里的同步表征及三维重构;高温加载模块4通过“L”型支座75与整体框架模块1的安装平台5刚性连接,并通过上、下动密封波纹管71、77与机械加载模块2中的上、下超声探头上33、35连接,构建真空或惰性气体氛围以隔绝氧气,实现对被测试样的高温加载。
所述的机械加载模块2包含液压加载子模块15、超声加载子模块16和试样转位子模块17,超声加载子模块16实现对被测试样的超声疲劳加载,液压加载子模块15分别通过上、下活塞杆46、47与试样转位子模块17的胀紧套Ⅱ41及超声加载子模块16的胀紧套Ⅰ38刚性连接;试样转位子模块17通过胀紧套Ⅲ42与超声加载子模块16的中间连接杆27刚性连接,在一次测试试验中,同时实现对被测试样进行双端同步静态拉伸载荷加载、超声疲劳载荷加载与轴向精确转位。
所述的超声加载子模块16中的上、下高温连杆23、22的尺寸超声***匹配,在20kHz下达到纵振;上、下高温连杆23、22中开有对称分布的“H”型冷却流道,且冷却流道的出/入口均设置在其振动位移节点,以减小冷却水管对上、下高温连杆23、22振动的干扰。
所述的原位监测模块3包含三维红外热成像子模块51、高景深显微成像子模块52、CT扫描成像子模块53,所述三维红外热成像子模块51的两个红外热成像装置69均放置在“H”型安装板62上,实现对被测试样标距段全局温度信息的三维重构;所述高景深显微成像子模块52是:高景深显微成像装置65固定在显微镜安装板64上,显微镜安装板64固定在显微镜三自由度定位平台66上,在显微镜三自由度定位平台66的驱动下,高景深显微成像装置65相对被测试样的轴向及径向位置进行快速、精确调整,实现对被测试样标距中心微区表面形貌、缺陷的随动监测;所述CT扫描成像子模块53是:CT主机55固定在支撑板59上,支撑板59固定在CT三自由度定位平台54上,CT三自由度定位平台54固定在固定座60上,高分辨率接收板56固定在接收板Z向定位平台57上,接收板Z向定位平台57固定在安装架58上,在CT三自由度定位平台54的驱动下,CT主机55相对被测试样的轴向及径向位置进行快速、精确调整;在接收板Z向定位平台57的驱动下,高分辨率接收板56相对被测试样的轴向进行快速、精确调整,CT主机55与高分辨率接收板56配合使用,实现对被测试样标距段的逐层扫描、成像。
所述的“H”型安装板62与滑块组件Ⅰ68连接,滑块组件Ⅰ68与导轨组件Ⅰ63配合,导轨组件Ⅰ63与导轨座61刚性连接,“H”型安装板62上加工有螺纹孔,导轨座61的相应位置加工有盲孔,“H”型安装板62沿着导轨组件Ⅰ63上下移动,并通过螺栓实现与导轨座61的固定。
所述的高温加载模块4中,气体弹簧组件82与上动密封波纹管71的法兰刚性连接,限制波纹管的轴向转动自由度,防止波纹管受扭破坏。
所述的高温加载模块4中,旋转密封组件Ⅰ、Ⅱ87、91包含密封圈Ⅰ94、密封圈组件95、密封圈Ⅱ96、密封轴套97、密封法兰98,密封圈组件95嵌入上超声探头33轴肩的密封槽内,密封圈Ⅰ94嵌入密封法兰98的密封槽内,密封圈Ⅱ96嵌入上动密封波纹管71法兰上的密封槽内,旋转密封组件Ⅰ、Ⅱ87、91与上、下超声探头33、35配合,实现旋转密封。
所述的高温加载模块4中,内嵌式石英观测窗组件89为独立的模块,通过螺栓固定在真空腔72外壁上;内嵌式石英观测窗组件89由内外两层石英玻璃组成,内外两层石英玻璃间有间隙,通入循环冷却水实现冷却,外层石英玻璃的底部紧靠加热炉78的炉壁,内层石英玻璃内径大于高景深显微成像装置65的镜头外径,试验时高景深显微成像装置65的镜头探入内嵌式石英观测窗组件89中,以满足其显微成像距离要求。
所述的高温加载模块4中,腔体支撑座74焊接在真空腔72侧壁上,并通过螺栓与滑块组件Ⅱ86刚性连接,滑块组件Ⅱ86与导轨组件Ⅱ79配合,导轨组件Ⅱ79通过螺栓与“L”型支座75刚性连接,“L”型支座75与安装平台5刚性连接,当进行常温试验时,真空腔72沿着导轨移动,为试验人员提供充足的操作空间。
本实用新型的有益效果在于:
1、采用多因素耦合模块化设计思路。本仪器由整体框架模块、机械加载模块、原位监测模块、高温加载模块组成,其中机械加载模块包含液压加载子模块、超声加载子模块和试样转位子模块,原位监测模块包含三维红外热成像子模块、高景深显微成像子模块、CT扫描成像子模块。使设备标准化、模块化,便于维护保养。
2、可有效防止被测试样的表面氧化。可利用机械泵(外部装置)配合分子泵(外部装置)两级抽真空的方式抽取真空腔内的空气(氧气)或向真空腔内持续通入惰性气体排除空气(氧气),构建真空或惰性气体氛围,防止被测试样表面氧化。
3、可真实模拟材料实际服役工况。本实用新型采用液压伺服驱动技术、电伺服驱动技术、压电超声驱动技术、电阻丝辐射加热技术,可实现对被测试样高温温度场及高频机械载荷的高精度加载,真实模拟航空、航天及汽车等关键领域材料的实际服役工况。
4、可实现试样内部损伤信息的并行原位监测。本实用新型集成高景深显微成像装置、红外热成像装置、CT扫描装置,可实现对被测试样缺陷信息由内而外、由表及里的同步表征及三维重构,为航空、航天及汽车等关键领域材料在高温、超声疲劳作用下的疲劳性能及变形损伤机制研究提供了一种可靠手段。
附图说明
此处所说明的附图用来提供对本实用新型的进一步理解,构成本申请的一部分,本实用新型的示意性实例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。
图1为本实用新型的整体外观结构示意图;
图2为本实用新型的整体框架模块的结构示意图;
图3为本实用新型的机械加载模块的结构示意图;
图4为本实用新型的超声加载子模块的结构示意图;
图5为本实用新型的试样转位子模块的结构示意图;
图 6为本实用新型的液压加载子模块的结构示意图;
图 7为本实用新型的原位监测模块的结构示意图;
图8为本实用新型的CT扫描成像子模块的结构示意图;
图9为本实用新型的三维红外热成像子模块、高景深显微成像子模块的结构示意图;
图10为本实用新型的高温加载模块的主视图;
图11为本实用新型的高温加载模块的后视图;
图12为本实用新型的测温组件的结构示意图;
图13为本实用新型的旋转密封组件的结构示意图;
图14为本实用新型的超声加载子模块振动位移与应力的分布图;
图15为本实用新型的高温连杆振动位移与应力的分布图;
图16为本实用新型的并行原位监测原理图;
图17为本实用新型的内嵌式石英观测窗组件的结构示意图;
图18为本实用新型的载荷加载、原位测试原理图;
图19为沙漏型超声试样的结构示意图。
图中:1、整体框架模块;2、机械加载模块;3、原位监测模块;4、高温加载模块; 5、安装平台;6、立柱固定套筒;7、CT固定板Ⅰ;8、立柱连接块;9、上支撑板;10、锁紧螺钉;11、吊环螺钉;12、立柱;13、冷风***撑板;14、CT固定板Ⅱ;15、液压加载子模块;16、超声加载子模块;17、试样转位子模块;18、中间连接板;19、下连接器固定板Ⅰ;20、下螺母;21、下超声连接器;22、下高温连杆;23、上高温连杆;24、上连接器固定板Ⅰ;25、上超声连接器;26、超声换能器;27、中间连接杆;28、力传感器;29、力传感器固定板;30、上传力杆;31、上连接器固定板Ⅱ;32、上螺母;33、上超声探头;34、超声试样;35、下超声探头;36、下连接器固定板Ⅱ;37、下传力杆;38、胀紧套Ⅰ;39、花键轴;40、商业化电机驱动组件;41、胀紧套Ⅱ;42、胀紧套Ⅲ;43、上液压缸;44、上蓄能器;45、上阀板组件;46、上活塞杆;47、下活塞杆;48、下阀板组件;49、下蓄能器;50、下液压缸;51、三维红外热成像子模块;52、高景深显微成像子模块;53、CT扫描成像子模块;54、CT三自由度定位平台;55、CT主机;56、高分辨率接收板;57、接收板Z向定位平台;58、安装架;59、支撑板;60、固定座;61、导轨座;62、“H”型安装板;63、导轨组件Ⅰ;64、显微镜安装板;65、高景深显微成像装置;66、显微镜三自由度定位平台;67、固定底板;68、滑块组件Ⅰ;69、红外热成像装置;70、制冷组件;71、上动密封波纹管;72、真空腔;73、左石英观测窗;74、腔体支撑座;75、“L”型支座;76、腔门锁紧器;77、下动密封波纹管;78、加热炉;79、导轨组件Ⅱ;80、前石英观测窗;81、真空压力表;82、气体弹簧组件;83、真空腔门;84、腔门把手;85、铰链;86、滑块组件Ⅱ;87、旋转密封组件Ⅰ;88、右石英观测窗;89、内嵌式石英观测窗组件;90、真空波纹管组件;91、旋转密封组件Ⅱ;92、红外测温计Ⅰ;93、红外测温计Ⅱ;94、密封圈Ⅰ;95、密封圈组件;96、密封圈Ⅱ;97、密封轴套;98、密封法兰。
具体实施方式
下面结合附图进一步说明本实用新型的详细内容及其具体实施方式。
参见图1至图19所示,本实用新型的高温超声疲劳原位测试仪器,仪器由整体框架模块、机械加载模块、高温加载模块和原位监测模块组成。其中:整体框架模块用于对各功能模块精确定位,同时提供稳定支撑和有效隔振;机械加载模块用于对被测试样两端同步施加静态拉伸/压缩载荷,依据测试需要施加超声疲劳载荷,并可实现轴向的精确转位;高温加载模块用于对被测试样施加高温载荷;原位监测模块用于对被测试样的表面变形损伤与内部损伤缺陷实施并行原位监测。本实用新型面向航空航天、装备制造等领域对关键材料力学性能测试保障方面的重大需求,具有载荷环境复杂、测试精度高、同时能动态监测材料力学行为与变形损伤机制的特点。
参见图1至图13所示,本实用新型的高温超声疲劳原位测试仪器,包括整体框架模块1、机械加载模块2、原位监测模块3、高温加载模块4,整体框架模块1采用四立柱式结构,用于实现对机械加载模块2、原位监测模块3、高温加载模块4的牢固支撑,并提供精确的安装定位及有效的隔振处理。机械加载模块2分别通过商业化电机驱动组件40的支撑外壳、上液压缸43的连接法兰与整体框架模块1中的上支撑板9、安装平台5刚性连接,用于实现对被测试样的两端同步施加静态拉伸/压缩载荷,依据测试需要施加超声疲劳载荷,并可实现轴向的精确转位。原位监测模块3分别通过固定底板67、固定座60、导轨座61和安装架58与整体框架模块1中的安装平台5、CT固定板Ⅱ14、立柱连接块8、CT固定板Ⅰ7刚性连接,用于实现对被测试样缺陷信息进行由内而外、由表及里的同步表征及三维重构;高温加载模块4通过“L”型支座75与整体框架模块1的安装平台5刚性连接,并通过上、下动密封波纹管71、77与机械加载模块2中的上、下超声探头上33、35连接,可构建真空或惰性气体氛围以隔绝氧气,实现对被测试样的高温加载。
参见图2所示,本实用新型的整体框架模块1包含安装平台5、立柱固定套筒6、CT固定板Ⅰ7、立柱连接块8、上支撑板9、锁紧螺钉10、吊环螺钉11、立柱12、冷风***撑板13、CT固定板Ⅱ14等,安装平台5通过地脚螺钉固定在地面,立柱12下端与立柱固定套筒6过盈配合,立柱12上端通过锁紧螺钉10与上支撑板9刚性连接,CT固定板Ⅰ7、冷风***撑板13、CT固定板Ⅱ14通过立柱连接块8与立柱12刚性连接,吊环螺钉11与上支撑板9刚性连接,用于实现对其余各模块的牢固支撑,并提供精确的安装定位及有效的隔振处理。
参见图3所示,本实用新型所述的机械加载模块2包含液压加载子模块15、超声加载子模块16和试样转位子模块17,液压加载子模块15分别通过上、下活塞杆46、47与试样转位子模块17的胀紧套Ⅱ41及超声加载子模块16的胀紧套Ⅰ38刚性连接;试样转位子模块17通过胀紧套Ⅲ42与超声加载子模块16的中间连接杆27刚性连接,在一次测试试验中,可同时实现对被测试样进行双端同步静态拉伸载荷加载、超声疲劳载荷加载与轴向精确转位。
参见图4所示,本实用新型的超声加载子模块16用于实现对被测试样的超声疲劳加载,由中间连接板18、下连接器固定板Ⅰ19、下螺母20、下超声连接器21、下高温连杆22、上高温连杆23、上连接器固定板Ⅰ24、上超声连接器25、超声换能器26、中间连接杆27、力传感器28、力传感器固定板29、上传力杆30、上连接器固定板Ⅱ31、上螺母32、上超声探头33、超声试样34、下超声探头35、下连接器固定板Ⅱ36、下传力杆37、胀紧套Ⅰ38等组成,中间连接杆27与力传感器28刚性连接,力传感器28与力传感器固定板29刚性连接,力传感器固定板29与上传力杆30刚性连接,上传力杆30通过上连接器固定板Ⅱ31、上连接器固定板Ⅰ24、上螺母32与上超声连接器25刚性连接,胀紧套Ⅰ38与中间连接板18刚性连接,中间连接板18与下传力杆37刚性连接,下传力杆37通过下连接器固定板Ⅰ19、下连接器固定板Ⅱ36、下螺母20与下超声连接器21刚性连接,超声换能器26、上超声连接器25、上超声探头33、上高温连杆23、超声试样34、下高温连杆22、下超声探头35、下超声连接器21间均通过双头螺柱刚性连接,用于实现对被测试样的超声疲劳加载。
所述的超声加载子模块16中的上、下高温连杆23、22的尺寸经过特殊设计与仿真分析结合,以保证其能够与超声***匹配,在20 kHz下达到纵振;上、下高温连杆23、22中开有对称分布的“H”型冷却流道,且冷却流道的出/入口均设置在其振动位移节点,以减小冷却水管对上、下高温连杆23、22振动的干扰。
参见图5所示,本实用新型的试样转位子模块17由商业化电机驱动组件40、胀紧套Ⅱ41、胀紧套Ⅲ42等组成,其中商业化电机驱动组件40中,与胀紧套Ⅱ41、胀紧套Ⅲ42相连的轴为花键轴39,在试验过程中,液压加载子模块15能够驱动花键轴39进行直线运动,试样转位子模块17能够驱动花键轴39进行旋转运动,从而同时实现对被测试样的静态拉伸加载及精确轴向转位。
参见图6所示,本实用新型的液压加载子模块15由上液压缸43、上蓄能器44、上阀板组件45、上活塞杆46、下活塞杆47、下阀板组件48、下蓄能器49、下液压缸50等组成,上蓄能器44安装在上阀板组件45上,上阀板组件45通过螺栓与上液压缸43刚性连接;下蓄能器49安装在下阀板组件48上,下阀板组件48通过螺栓与下液压缸50刚性连接,用于实现对被测试样的双端静态拉伸/压缩载荷同步加载。
参见图7所示,本实用新型的原位监测模块3分别通过固定底板67、固定座60、导轨座61和安装架58与整体框架模块1中的安装平台5、CT固定板Ⅱ14、立柱连接块8、CT固定板Ⅰ7刚性连接,用于实现对被测试样缺陷信息进行由内而外、由表及里的同步表征及三维重构。
参见图8、图9所示,本实用新型所述的原位监测模块3包含三维红外热成像子模块51、高景深显微成像子模块52、CT扫描成像子模块53,其中三维红外热成像子模块51用于实现对被测试样标距段温度信息的三维重构,包含导轨座61、“H”型安装板62、导轨组件Ⅰ63、滑块组件Ⅰ68、红外热成像装置69等,两个红外热成像装置69均放置在“H”型安装板62上,并且二者呈一定角度,以实现对被测试样标距段全局温度信息的三维重构;所述高景深显微成像子模块52用于实现对被测试样表面缺陷信息显微观测,包含显微镜安装板64、高景深显微成像装置65、显微镜三自由度定位平台66、固定底板67等,高景深显微成像装置65通过螺栓固定在显微镜安装板64上,显微镜安装板64通过螺栓固定在显微镜三自由度定位平台66上,在显微镜三自由度定位平台66的驱动下,高景深显微成像装置65可以相对被测试样的轴向及径向位置进行快速、精确调整,实现对被测试样标距中心微区表面形貌、缺陷的随动监测;所述CT扫描成像子模块53用于实现对被测试样标距段全局缺陷信息三维重构,包含CT三自由度定位平台54、CT主机55、高分辨率接收板56、接收板Z向定位平台57、安装架58、支撑板59、固定座60等,CT主机55通过螺栓固定在支撑板59上,支撑板59通过螺栓固定在CT三自由度定位平台54上,CT三自由度定位平台54通过螺栓固定在固定座60上,高分辨率接收板56通过螺栓固定在接收板Z向定位平台57上,接收板Z向定位平台57通过螺栓固定在安装架58上,在CT三自由度定位平台54的驱动下,CT主机55可以相对被测试样的轴向及径向位置进行快速、精确调整;在接收板Z向定位平台57的驱动下,高分辨率接收板56可以相对被测试样的轴向进行快速、精确调整,CT主机55与高分辨率接收板56配合使用,实现对被测试样标距段的逐层扫描、成像。
所述的“H”型安装板62通过螺栓与滑块组件Ⅰ68连接,滑块组件Ⅰ68与导轨组件Ⅰ63配合,导轨组件Ⅰ63通过螺栓与导轨座61刚性连接,“H”型安装板62上加工有螺纹孔,导轨座61的相应位置加工有盲孔,“H”型安装板62可沿着导轨组件Ⅰ63上下移动,并通过螺栓实现与导轨座61的固定。
参见图10至图12所示,本实用新型高温加载模块4由制冷组件70、上动密封波纹管71、真空腔72、左石英观测窗73、腔体支撑座74、“L”型支座75、腔门锁紧器76、下动密封波纹管77、加热炉78、导轨组件Ⅱ79、前石英观测窗80、真空压力表81、气体弹簧组件82、真空腔门83、腔门把手84、铰链85、滑块组件Ⅱ86、旋转密封组件Ⅰ87、右石英观测窗88、内嵌式石英观测窗组件89、真空波纹管组件90、旋转密封组件Ⅱ91、红外测温计Ⅰ92、红外测温计Ⅱ93等组成,可构建真空或惰性气体氛围以隔绝氧气,用于实现对被测试样最高1200℃的高温加载。制冷组件70通过螺钉与冷风***撑板13刚性连接;左石英观测窗73、前石英观测窗80、右石英观测窗88通过螺钉与真空腔72外壁刚性连接;腔门锁紧器76、腔门把手84通过螺钉与真空腔72外壁刚性连接;铰链85分别与真空腔72、真空腔门83通过螺钉刚性连接;真空波纹管组件90通过螺钉与真空腔72上壁的法兰口刚性连接。
所述的高温加载模块4中,气体弹簧组件82通过螺栓与上动密封波纹管71的法兰刚性连接,用于限制波纹管的轴向转动自由度,防止波纹管受扭破坏。
参见图13所示,本实用新型的所述的高温加载模块4中,旋转密封组件Ⅰ、Ⅱ87、91包含密封圈Ⅰ94、密封圈组件95、密封圈Ⅱ96、密封轴套97、密封法兰98等,密封圈组件95嵌入上超声探头33轴肩的密封槽内,密封圈Ⅰ94嵌入密封法兰98的密封槽内,密封圈Ⅱ96嵌入上动密封波纹管71法兰上的密封槽内,旋转密封组件Ⅰ、Ⅱ87、91与上、下超声探头33、35配合,实现旋转密封。
所述的高温加载模块4中,内嵌式石英观测窗组件89为独立的模块,通过螺栓固定在真空腔72外壁上,便于拆卸;内嵌式石英观测窗组件89由内外两层石英玻璃组成,内外两层石英玻璃间有间隙,用于通入循环冷却水实现冷却,外层石英玻璃的底部紧靠加热炉78的炉壁,内层石英玻璃内径略大于高景深显微成像装置65的镜头外径,试验时高景深显微成像装置65的镜头可以探入内嵌式石英观测窗组件89中,以满足其显微成像距离要求。
所述的高温加载模块4中,腔体支撑座74焊接在真空腔72侧壁上,并通过螺栓与滑块组件Ⅱ86刚性连接,滑块组件Ⅱ86与导轨组件Ⅱ79配合,导轨组件Ⅱ79通过螺栓与“L”型支座75刚性连接,“L”型支座75通过螺栓与安装平台5刚性连接,当进行常温试验时,真空腔72可沿着导轨移动,为试验人员提供充足的操作空间。
参见图1至图17所示,本实用新型在实际使用时,进行高温超声疲劳原位测试试验的具体操作步骤如下:
步骤一、超声试样34的装夹:将“H”型安装板62沿着导轨组件Ⅰ63移动至上极限位置,并用螺栓固定,此步骤是为了避免真空腔门83开合时与三维红外热成像子模块51发生干涉;打开真空腔门83,将超声试样34通过双头螺柱与上、下高温连杆23、22刚性连接;
步骤二、超声试样34的高温加载:利用机械泵(外部装置)配合分子泵(外部装置)两级抽真空的方式抽取真空腔72内的空气(氧气)以构建真空环境,或向真空腔72内持续通入惰性气体排除真空腔72内空气(氧气),构建惰性气体氛围;温度控制器向加热炉78内的电阻丝通入不同大小的电压使其发热,并通过热辐射的方式实现超声试样34不同温度的高温加载;红外测温计Ⅰ、Ⅱ92、93实时监测超声试样34标距段的温度,并反馈至温度控制器,形成闭环控制;
步骤三、超声试样34的静态拉伸/压缩载荷加载:超声试样34的静态拉伸/压缩载荷加载由机械加载模块2来实现,上、下高压油驱动活塞杆46、47相向运动,将动力传递给超声加载子模块16,带动上、下高温连杆23、22相向运动,实现对超声试样34的静态拉伸/压缩载荷加载;
步骤四、超声试样34的超声疲劳载荷加载:超声试样34的超声疲劳载荷加载由超声加载子模块16来实现,超声换能器26输出的微弱机械振动经上超声连接器25、上超声探头33的两极放大后,依次传递给上高温连杆23、超声试样34、下高温连杆22、下超声探头35、超声连接器21,激励这些零件对在20 kHz形成稳定的共振,实现超声试样34的超声疲劳载荷加载;
步骤五、超声试样34的轴向转位:超声试样34的轴向转位由试样转位子模块17来实现,商业化电机驱动组件40中伺服电机输出的动力,经减速器传递给花键轴39,带动超声加载子模块16旋转,实现超声试样34的轴向转位;
步骤六、超声试样34的并行原位监测:超声试样34的并行原位监测由原位监测模块3来实现,在三维红外热成像子模块51中,两个红外热成像装置69均放置在“H”型安装板62上,并且二者呈一定角度,实现对被测试样标距段温度信息的三维重构;在高景深显微成像子模块52中,显微镜三自由度定位平台66的驱动高景深显微成像装置65相对被测试样的轴向及径向位置进行快速、精确调整,实现对被测试样标距中心微区表面形貌、缺陷的随动监测;在CT扫描成像子模块53中,CT三自由度定位平台54的驱动CT主机55对被测试样标距段进行逐层扫描、成像,实现对被测试样标距段全局缺陷信息三维重构;三维红外热成像子模块51、高景深显微成像子模块52、CT扫描成像子模块53可同时使用,或两两组合使用,或单个使用,实现试验过程中对超声试样34的动态原位监测。
参见图14至图19所示,本实用新型的原位监测相关公式如下:
CT扫描成像原理公式
Figure DEST_PATH_DEST_PATH_IMAGE002A
式中,
Figure DEST_PATH_687420DEST_PATH_IMAGE004
为穿过被测试样后的射线强度,
Figure DEST_PATH_135719DEST_PATH_IMAGE006
为射线入射强度,
Figure DEST_PATH_321981DEST_PATH_IMAGE008
为射线衰减系数,
Figure DEST_PATH_248348DEST_PATH_IMAGE010
为射线穿过的被测试样厚度。
以上所述仅为本实用新型的优选实例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡对本实用新型所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (9)

1.一种高温超声疲劳原位测试仪器,其特征在于:包括整体框架模块(1)、机械加载模块(2)、原位监测模块(3)、高温加载模块(4),整体框架模块(1)采用四立柱式结构,实现对机械加载模块(2)、原位监测模块(3)、高温加载模块(4)的牢固支撑,机械加载模块(2)分别通过商业化电机驱动组件(40)的支撑外壳、上液压缸(43)的连接法兰与整体框架模块(1)中的上支撑板(9)、安装平台(5)刚性连接,实现对被测试样的两端同步施加静态拉伸/压缩载荷,原位监测模块(3)分别通过固定底板(67)、固定座(60)、导轨座(61)和安装架(58)与整体框架模块(1)中的安装平台(5)、CT固定板Ⅱ(14)、立柱连接块(8)、CT固定板Ⅰ(7)刚性连接,实现对被测试样缺陷信息进行由内而外、由表及里的同步表征及三维重构;高温加载模块(4)通过“L”型支座(75)与整体框架模块(1)的安装平台(5)刚性连接,并通过上、下动密封波纹管(71、77)与机械加载模块(2)中的上、下超声探头上(33、35)连接,构建真空或惰性气体氛围以隔绝氧气,实现对被测试样的高温加载。
2.根据权利要求1所述的高温超声疲劳原位测试仪器,其特征在于:所述的机械加载模块(2)包含液压加载子模块(15)、超声加载子模块(16)和试样转位子模块(17),超声加载子模块(16)实现对被测试样的超声疲劳加载,液压加载子模块(15)分别通过上、下活塞杆(46、47)与试样转位子模块(17)的胀紧套Ⅱ(41)及超声加载子模块(16)的胀紧套Ⅰ(38)刚性连接;试样转位子模块(17)通过胀紧套Ⅲ(42)与超声加载子模块(16)的中间连接杆(27)刚性连接,在一次测试试验中,同时实现对被测试样进行双端同步静态拉伸载荷加载、超声疲劳载荷加载与轴向精确转位。
3.根据权利要求2所述的高温超声疲劳原位测试仪器,其特征在于:所述的超声加载子模块(16)中的上、下高温连杆(23、22)的尺寸超声***匹配,在20 kHz下达到纵振;上、下高温连杆(23、22)中开有对称分布的“H”型冷却流道,且冷却流道的出/入口均设置在其振动位移节点,以减小冷却水管对上、下高温连杆(23、22)振动的干扰。
4.根据权利要求1所述的高温超声疲劳原位测试仪器,其特征在于:所述的原位监测模块(3)包含三维红外热成像子模块(51)、高景深显微成像子模块(52)、CT扫描成像子模块(53),所述三维红外热成像子模块(51)的两个红外热成像装置(69)均放置在“H”型安装板(62)上,实现对被测试样标距段全局温度信息的三维重构;所述高景深显微成像子模块(52)是:高景深显微成像装置(65)固定在显微镜安装板(64)上,显微镜安装板(64)固定在显微镜三自由度定位平台(66)上,在显微镜三自由度定位平台(66)的驱动下,高景深显微成像装置(65)相对被测试样的轴向及径向位置进行快速、精确调整,实现对被测试样标距中心微区表面形貌、缺陷的随动监测;所述CT扫描成像子模块(53)是:CT主机(55)固定在支撑板(59)上,支撑板(59)固定在CT三自由度定位平台(54)上,CT三自由度定位平台(54)固定在固定座(60)上,高分辨率接收板(56)固定在接收板Z向定位平台(57)上,接收板Z向定位平台(57)固定在安装架(58)上,在CT三自由度定位平台(54)的驱动下,CT主机(55)相对被测试样的轴向及径向位置进行快速、精确调整;在接收板Z向定位平台(57)的驱动下,高分辨率接收板(56)相对被测试样的轴向进行快速、精确调整,CT主机(55)与高分辨率接收板(56)配合使用,实现对被测试样标距段的逐层扫描、成像。
5.根据权利要求4所述的高温超声疲劳原位测试仪器,其特征在于:所述的“H”型安装板(62)与滑块组件Ⅰ(68)连接,滑块组件Ⅰ(68)与导轨组件Ⅰ(63)配合,导轨组件Ⅰ(63)与导轨座(61)刚性连接,“H”型安装板(62)上加工有螺纹孔,导轨座(61)的相应位置加工有盲孔,“H”型安装板(62)沿着导轨组件Ⅰ(63)上下移动,并通过螺栓实现与导轨座(61)的固定。
6.根据权利要求1所述的高温超声疲劳原位测试仪器,其特征在于:所述的高温加载模块(4)中,气体弹簧组件(82)与上动密封波纹管(71)的法兰刚性连接,限制波纹管的轴向转动自由度,防止波纹管受扭破坏。
7.根据权利要求1所述的高温超声疲劳原位测试仪器,其特征在于:所述的高温加载模块(4)中,旋转密封组件Ⅰ、Ⅱ(87、91)包含密封圈Ⅰ(94)、密封圈组件(95)、密封圈Ⅱ(96)、密封轴套(97)、密封法兰(98),密封圈组件(95)嵌入上超声探头(33)轴肩的密封槽内,密封圈Ⅰ(94)嵌入密封法兰(98)的密封槽内,密封圈Ⅱ(96)嵌入上动密封波纹管(71)法兰上的密封槽内,旋转密封组件Ⅰ、Ⅱ(87、91)与上、下超声探头(33、35)配合,实现旋转密封。
8.根据权利要求1所述的高温超声疲劳原位测试仪器,其特征在于:所述的高温加载模块(4)中,内嵌式石英观测窗组件(89)为独立的模块,通过螺栓固定在真空腔(72)外壁上;内嵌式石英观测窗组件(89)由内外两层石英玻璃组成,内外两层石英玻璃间有间隙,通入循环冷却水实现冷却,外层石英玻璃的底部紧靠加热炉(78)的炉壁,内层石英玻璃内径大于高景深显微成像装置(65)的镜头外径,试验时高景深显微成像装置(65)的镜头探入内嵌式石英观测窗组件(89)中,以满足其显微成像距离要求。
9.根据权利要求1所述的高温超声疲劳原位测试仪器,其特征在于:所述的高温加载模块(4)中,腔体支撑座(74)焊接在真空腔(72)侧壁上,并通过螺栓与滑块组件Ⅱ(86)刚性连接,滑块组件Ⅱ(86)与导轨组件Ⅱ(79)配合,导轨组件Ⅱ(79)通过螺栓与“L”型支座(75)刚性连接,“L”型支座(75)与安装平台(5)刚性连接,当进行常温试验时,真空腔(72)沿着导轨移动,为试验人员提供充足的操作空间。
CN201921515680.5U 2019-09-12 2019-09-12 高温超声疲劳原位测试仪器 Withdrawn - After Issue CN210665328U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201921515680.5U CN210665328U (zh) 2019-09-12 2019-09-12 高温超声疲劳原位测试仪器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201921515680.5U CN210665328U (zh) 2019-09-12 2019-09-12 高温超声疲劳原位测试仪器

Publications (1)

Publication Number Publication Date
CN210665328U true CN210665328U (zh) 2020-06-02

Family

ID=70839493

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201921515680.5U Withdrawn - After Issue CN210665328U (zh) 2019-09-12 2019-09-12 高温超声疲劳原位测试仪器

Country Status (1)

Country Link
CN (1) CN210665328U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110441163A (zh) * 2019-09-12 2019-11-12 吉林大学 高温超声疲劳原位测试仪器及测试方法
CN113790975A (zh) * 2021-09-14 2021-12-14 吉林大学 超声变幅杆组件、超声疲劳加载测试装置及测试方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110441163A (zh) * 2019-09-12 2019-11-12 吉林大学 高温超声疲劳原位测试仪器及测试方法
CN113790975A (zh) * 2021-09-14 2021-12-14 吉林大学 超声变幅杆组件、超声疲劳加载测试装置及测试方法

Similar Documents

Publication Publication Date Title
CN110441163B (zh) 高温超声疲劳原位测试仪器及测试方法
US11635359B2 (en) Instrument and method for mechanical properties in situ testing of materials under high temperature and complex mechanical loads
CN110715862B (zh) 拉扭复合-力热耦合工况下材料力学性能测试仪器与方法
WO2021092970A1 (zh) 低温大温变关节轴承测试平台及测量与观测方法
CN107607390B (zh) 变温拉扭复合载荷材料力学性能原位测试装置及方法
CN108507882B (zh) 用于中子散射分析的材料力学性能原位测试仪器
CN110793773B (zh) 低温大温变关节轴承测试平台
CN210665328U (zh) 高温超声疲劳原位测试仪器
CN110044722B (zh) 超高温高频材料力学性能测试仪器及方法
CN110749441B (zh) 低温大温变关节轴承测试平台及运动与载荷模拟***
CN111896258B (zh) 一种超低温真空密封结构及全陶瓷滚动轴承性能测试装置
CN211668975U (zh) 拉扭复合-力热耦合工况下材料力学性能测试仪器
CN111948065A (zh) 基于实验室x射线源的高温在位加载ct测试***及其方法
CN112525723B (zh) 冻土拉剪试验仪
CN110726555B (zh) 低温大温变关节轴承测试平台及关节轴承的测量方法
CN102269675B (zh) 一种流体压力提供第三向应力的双向拉伸试验装置及其应用
CN112051167B (zh) 高/低温复杂氛围环境加载装置
CN210221717U (zh) 超高温高频材料力学性能测试仪器
CN112326472B (zh) 一种高温环境疲劳试验装置
CN113281158A (zh) 一种适用于x射线显微镜的原位力学研究***
CN115078118A (zh) 基于同步辐射和中子的材料高温拉伸和疲劳试验机及方法
CN210347362U (zh) 补偿器恒压疲劳试验机
CN207396193U (zh) 一种气动热-力耦合环境下材料高温力学性能测试设备
CN110793772B (zh) 低温大温变关节轴承测试平台及关节轴承的观测方法
CN115219533A (zh) 一种多功能的多场耦合x射线原位测试装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20200602

Effective date of abandoning: 20211208

AV01 Patent right actively abandoned

Granted publication date: 20200602

Effective date of abandoning: 20211208

AV01 Patent right actively abandoned
AV01 Patent right actively abandoned