CN209312439U - 一种具有超低功耗和高写裕度的12t tfet sram单元电路 - Google Patents

一种具有超低功耗和高写裕度的12t tfet sram单元电路 Download PDF

Info

Publication number
CN209312439U
CN209312439U CN201822069491.1U CN201822069491U CN209312439U CN 209312439 U CN209312439 U CN 209312439U CN 201822069491 U CN201822069491 U CN 201822069491U CN 209312439 U CN209312439 U CN 209312439U
Authority
CN
China
Prior art keywords
transistor
ntfet
ptfet
tfet
grid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201822069491.1U
Other languages
English (en)
Inventor
卢文娟
董兰志
彭春雨
吴秀龙
蔺智挺
陈军宁
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui University
Original Assignee
Anhui University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui University filed Critical Anhui University
Priority to CN201822069491.1U priority Critical patent/CN209312439U/zh
Application granted granted Critical
Publication of CN209312439U publication Critical patent/CN209312439U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Static Random-Access Memory (AREA)

Abstract

本实用新型公开了一种具有超低功耗和高写裕度的12T TFET SRAM单元电路,其利用TFET相比于MOSFET具有更小的亚阈值摆幅和更高的开关比等特性,不仅解决了传统MOSFET SRAM单元结构的静态功耗大的问题,在相同的工作电压下如0.3V到0.6V时,其静态功耗与其他TFET SRAM单元结构相比,其静态功耗至少降低了4个数量级,而且提高了TFET SRAM单元的写裕度和稳定性;即消除了TFET做SRAM传输管时出现的正偏漏电流问题,降低了单元的静态功耗,提高了单元的稳定性和写能力。

Description

一种具有超低功耗和高写裕度的12T TFET SRAM单元电路
技术领域
本实用新型涉及集成电路设计领域,尤其涉及一种超低功耗、高写裕度的12TTFET SRAM单元电路。
背景技术
随着移动电子产品的发展,人们对集成电路低功耗的需求变得越来越迫切。近年来, MOSFET(金属-氧化物半导体场效应晶体)已成为数字集成电路和模拟集成电路的重要组成部分。然而,随着集成电路技术节点的发展,MOSFET在超低功耗电路中的一些缺点使其难以获得满意的结果。因为随着MOSFET尺寸的减小,由于MOSFET的短沟道效应导致其在亚阈值电压下的关闭能力减弱,使得电路的静态漏电流和静态功耗增加。此外,MOSFET在室温下的亚阈值摆幅理论上难以小于60mv/decade。在微处理器中,静态随机存取存储器(SRAM)占用芯片面积的50%以上,并消耗了处理器的大部分静态功耗。
虽然目前已经广泛提出了许多用于在亚阈值电压下降低SRAM的静态功耗的方法。然而,由于MOSFET的上述缺点,在亚阈值工作电压下进一步降低SRAM静态功耗仍然是十分有限的。相比于MOSFET,TFET(Tunneling Field-Effect Transistor)由于具有更低的亚阈值摆幅和更高的开关比使得TFET替代MOSFET具有广阔的前景。但是TFET的单向传导(unidirectional conduction)特性限制了TFET在SRAM中的应用,尤其是其作为SRAM的传输管时。因为SRAM要求传输管双向导通。单向传导特性即给TFET施加反偏和正偏电压时,电流传输特性不一样。当给TFET施加正偏电压时,其总会出现不受栅压控制的正偏电流,这使得TFET做SRAM传输管时,在保持状态下传输管可能总会出现正偏漏电流,从而增大电路的静态功耗。
如图1所示,为传统的6管SRAM单元结构,由于TFET(AL、AR)结构的非对称性,使得TFET做SRAM传输管时可能存在三种结构(图1右侧部分,其中的箭头代表源极端),即两个TFET传输管源极分别外接到位线BL和BLB上(图1(a))记为OA-6T、两个TFET传输管源极分别内接到存储点Q和QB上(图1(b))以及两个TFET传输管源极分别一个内接存储点另一个外接位线(图1(c))。目前有论文和实验表明,由于TFET的单向传导特性,导致传统结构的6TTFET SRAM单元难以同时达到理想的读、写和保持功能。OA-6T结构具有很好的写能力,但是读能力非常差,甚至无法进行读操作。
图2所示的读写分离方式的8T TFET SRAM(记为DP-8T)结构和图3所示的Schmitt-Trigger结构的10T TFET SRAM(记为ST-10T)结构虽然解决了OA-6T结构读能力弱的问题,但是由于TFET做SRAM传输管在保持等状态时所产生的正偏漏电流会造成其静态功耗较大。
实用新型内容
本实用新型的目的是提供一种具有超低功耗和高写裕度的12T TFET SRAM(记为Pro-12T)单元电路,既提高了TFET SRAM的读、写和保持能力,又消除了TFET做 SRAM传输管时出现的正偏漏电流问题,降低了SRAM单元的静态功耗,提高了SRAM单元的稳定性。
本实用新型的目的是通过以下技术方案实现的:
一种具有超低功耗和高写裕度的12T TFET SRAM单元电路,包括:八个NTFET晶体管和四个PTFET晶体管;八个NTFET晶体管依次记为N1~N8,四个PTFET晶体管依次记为P1~P4;其中:
VDD和NTFET晶体管N1的漏极电连接,同时VDD也与PTFET晶体管P1及PTFET晶体管P2的源极电连接;
PTFET晶体管P1的漏极,与NTFET晶体管N3的漏极、PTFET晶体管P2的栅极、 NTFET晶体管N4及NTFET晶体管N8的栅极电连接;
PTFET晶体管P2的漏极,与PTFET晶体管P3及PTFET晶体管P4的漏极、以及 NTFET晶体管N4及NTFET晶体管N5的漏极电连接;
PTFET晶体管P3的源极,与PTFET晶体管P4的源极、PTFET晶体管P1的栅极、 NTFET晶体管N2的源极、以及NTFET晶体管N3的栅极电连接;
NTFET晶体管N1的源极与NTFET晶体管N2的漏极电连接;
NTFET晶体管N5的源极与NTFET晶体管N6的漏极电连接;
NTFET晶体管N7的源极与NTFET晶体管N8的漏极电连接;
NTFET晶体管N3、NTFET晶体管N4、NTFET晶体管N6及NTFET晶体管N8的源极与GND电连接。
由上述本实用新型提供的技术方案可以看出,本实用新型利用TFET相比于MOSFET具有更小的亚阈值摆幅和更高的开关比等特性,不仅解决了传统MOSFET SRAM单元结构的静态功耗大的问题,而且解决了其他TFET SRAM单元由于TFET的单向导通特性所出现的正偏漏电流造成的静态功耗大的问题。在相同的工作电压下如0.3V到0.6V时,其静态功耗与其他的TFET SRAM单元结构相比,其静态功耗至少降低了4个数量级,而且提高了TFET SRAM单元的写裕度和稳定性;即消除了TFET做SRAM传输管时出现的正偏漏电流问题,降低了SRAM单元的静态功耗,提高了单元的稳定性和写能力。
附图说明
为了更清楚地说明本实用新型实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本实用新型的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他附图。
图1为背景技术提供的传统6T SRAM单元电路原理图及其TFET传输管的三种配置方式的结构示意图;
图2为背景技术提供的传统DP-8T单元电路的结构示意图;
图3为背景技术提供的传统ST-10T单元电路的结构示意图;
图4为本实用新型实施例所提供的超低功耗、高写裕度的Pro-12T单元电路的原理图;
图5为本实用新型实施例所提供的Pro-12T单元电路的写裕度与其他单元的写裕度比较数据图;
图6为本实用新型实施例所提供的Pro-12T单元电路的保持裕度与其他单元的保持裕度比较数据图;
图7为本实用新型实施例所提供的Pro-12T单元电路的静态功耗与其他单元的静态功耗比较数据图。
具体实施方式
下面结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型的保护范围。
传统的SRAM存储器单元电路所用的基本器件为MOSFET,本实用新型提出的Pro-12T单元电路所用的基本器件为隧穿场效应晶体管(TFET)。TFET做SRAM传输管在保持状态时由于其正偏电压造成的正偏漏电流会增大SRAM的静态功耗。同时由于TFET的单向传导特性使得其不适合做SRAM的传输管,因为这会导致传统的6管SRAM结构难以同时取得良好的读写能力,传统的6T SRAM要求传输管具有双向导通能力。本实用新型提供的一种具有超低功耗和高写裕度的Pro-12T单元电路,既提高了TFET SRAM的读、写和保持能力,又消除了TFET做SRAM传输管时出现的正偏漏电流问题,降低了SRAM 单元的静态功耗,提高了单元的稳定性。
如图4所述,其主要包括:八个NTFET晶体管和四个PTFET晶体管;八个NTFET晶体管依次记为N1~N8,四个PTFET晶体管依次记为P1~P4;其中:
PTFET晶体管P1与NTFET晶体管N3、PTFET晶体管P2与NTFET晶体管N4构成了两个反相器;这两个反相器与PTFET晶体管P3与P4构成了锁存电路,PTFET晶体管P3与 P4用于写操作时打断锁存器结构,能够达到当单元进行写操作时提高单元写能力的目的;NTFET晶体管N7与N8构成读写分离用作读操作部分的电路,采用这种结构能够提高 SRAM单元的读能力和速度;NTFET晶体管N1、N2、N5与N6用于消除TFET作为SRAM 传输管时出现的正偏电压造成正偏漏电流问题的传输管结构。
整个单元电路的结构如下:
VDD和NTFET晶体管N1的漏极电连接,同时VDD也与PTFET晶体管P1及PTFET晶体管P2的源极电连接;
PTFET晶体管P1的漏极,与NTFET晶体管N3的漏极、PTFET晶体管P2的栅极、 NTFET晶体管N4及NTFET晶体管N8的栅极电连接;
PTFET晶体管P2的漏极,与PTFET晶体管P3及PTFET晶体管P4的漏极、以及 NTFET晶体管N4及NTFET晶体管N5的漏极电连接;
PTFET晶体管P3的源极,与PTFET晶体管P4的源极、PTFET晶体管P1的栅极、 NTFET晶体管N2的源极、以及NTFET晶体管N3的栅极电连接;
NTFET晶体管N1的源极与NTFET晶体管N2的漏极电连接;
NTFET晶体管N5的源极与NTFET晶体管N6的漏极电连接;
NTFET晶体管N7的源极与NTFET晶体管N8的漏极电连接;
NTFET晶体管N3、NTFET晶体管N4、NTFET晶体管N6及NTFET晶体管N8的源极与GND电连接。
此外,位线WL与NTFET晶体管N1即NTFET晶体管N6的栅极、以及PTFET晶体管P4 的栅极电连接;位线WLA连接NTFET晶体管N2的栅极以及PTFET晶体管P3的栅极;位线WLB连接NTFET晶体管N5的栅极;读字线WR连接NTFET晶体管N7的栅极;读位线 RBL连接NTFET晶体管N7的漏极。
在本实用新型实施例所提供的超低功耗、高写裕度的Pro-12T单元电路原理如下:在保持状态下,WL与WLA和WLB为低电平,NTFET晶体管N1、N2、N5及N6处于关闭状态,PTFET晶体管P3和P4开启。从而使由P1、P2、N3、N4、P3、P4构成的锁存器处于锁存状态,保证了单元在保持状态下的稳定性。同时本实用新型所用的传输管结构能够有效的消除TFET作SRAM传输管时所造成的正偏漏电流等问题,因为此时传输管 NTFET晶体管N1、N2、N5、N6不会出现正偏电压。写操作:假设单元将进行写“0”操作,此时WL与WLA置为高电平,同时WLB保持原状态即低电平;此时,NTFET晶体管 N1与N2打开,PTFET晶体管P3与P4关闭,由于PTFET晶体管P3与P4关闭使得锁存器的锁存状态被打断,VDD通过NTFET晶体管N1与N2给Q2点充电,使得Q2点电压迅速升高为高电平,造成由PTFET晶体管P1和NTFET晶体管N3组成的反相器翻转为“0”,Q点翻转后会反馈给由PTFET晶体管P2和NTFET晶体管N4组成的反相器使得QB翻转,从而极大的提高了SRAM单元的写能力和写裕度。当完成写操作后,WL,WLA置为低电平, PTFET晶体管P3、P4打开,两个反相器恢复锁存状态,保证了单元的稳定性。当单元进行写“1”操作时,这里假设Q为“0”,QB为“1”,写“1”操作时将WL,WLB置为高电平,WLA保持原状态“0”,传输管NTFET晶体管N5、N6开启,QB通过N5、N6放电为低电平,同时由于WLA为低电平,故此时PTFET晶体管P3是开启的,Q2通过PTFET 晶体管P3与NTFET晶体管N5、N6放电至低电平,使得P1、N3组成的反相器翻转为“1”从而完成写“1”操作。读操作:假设单元存储点Q存储的数据为“1”,当单元进行读操作时,首先将RBL预充为高电平,WL、WLA、WLB保持原状态0,将待读单元所在的读位线WR置为高电平;由于Q点电压为“1”,故NTFET晶体管N8开启,同时由于WR为高电平,故NTFET晶体管N7也处于开启状态,RBL通过N7、N8放电至低电平,SRAM阵列中的灵敏放大器检测到RBL电平的变化实现对SRAM单元存储数据的读取。
为了更加清晰地展现出本实用新型所提供的技术方案及所产生的技术效果,下面结合图1至图7,将本实用新型实施例所提供的Pro-12T单元电路的性能,与其他TFET SRAM单元进行对比;其具体内容如下:
(1)如图5所示,展示了四种TFET SRAM单元的写入噪声容限的比较。写噪声容限(记为WSNM)从VTC曲线获得。根据实验仿真结果,从图中可以看出,本实用新型提供的 Pr0-12T单元电路(即空心圆所代表的曲线)具有比其他几种单元结构更大的写裕度。这是因为本实用新型所提出的结构在进行写操作时,采用了将锁存器打破的方式,提高了写能力,同时不影响其他单元的保持状态。由于OA-6T结构和DP-8T的用来进行写操作部分的电路结构相同,故他们具有相同的写裕度。
(2)如图6所示,展示了四种TFET SRAM单元的保持静态噪声容限(记为 HSNM)。根据实验仿真结果,本实用新型提供的Pro-12T单元电路具有很强的保持稳定性。当驱动电压大于0.6V时,OA-6T单元的保持静态噪声容限会逐渐减小。这是因为其两个传输晶体管的正向偏置漏电流非常大,这严重影响了OA-6T结构的稳定性。DP-8T 结构和ST-10T结构具有与OA-6T相同的问题,即其传输晶体管的由于存在正向偏置漏电流并且在大工作电压下漏电流非常大,从而严重影响了存储单元在保持状态下的稳定性。因为本实用新型提供的Pro-12T单元电路的存取晶体管在保持状态下不会出现正向偏置漏电流问题,故不会引起存储点Q和QB的电压波动,所以即使在大电压工作条件下,相比于其他单元仍具有较大的保持噪声容限。
(3)如图7所示,图7展示了处于保持状态的四种类型单元的静态功耗。根据实验仿真结果可知随着工作电压的上升,由于在保持状态下,存取晶体管的正向偏置电压逐渐增加,因此SRAM单元的静态功耗在不消除正向偏置电压的情况下单元的静态功耗呈数量级的增加,如OA-6T、DP-8T和ST-10T。然而,本实用新型提供的Pro-12T单元电路消除了TFET正向偏置现象,并且传输管晶体管中没有正偏漏电流,因此,随着驱动电压的增加,即使在0.9V时,存储单元的静态功耗也不会增加太多。与OA-6T单元相比,本文提出的单元结构在0.3V工作电压下静态功耗至少降低了4个数量级,在0.6V工作电压下静态功耗至少降低6个数量级。
由于本实用新型提供的Pro-12T单元电路具有不对称特性,当单元保持“0”或保持“1”时静态功耗不同。这是因为在单元保持在“0”的保持状态下,QB为“1”,QB的静态漏电流具有两个电荷泄漏放电路径。一个电荷泄漏放电路径通过NTFET晶体管N4到地,另一个路径通过NTFET晶体管N5和N6到地。当单元保持“1”时,QB为“0”,高电平节点Q的电荷泄漏放电仅通过NTFET晶体管N3的一条路径到地。故单元在保持“0”状态时的静态功耗比单元在保持“1”状态时的静态功耗大。
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型披露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应该以权利要求书的保护范围为准。

Claims (2)

1.一种具有超低功耗和高写裕度的12T TFET SRAM单元电路,其特征在于,包括:八个NTFET晶体管和四个PTFET晶体管;八个NTFET晶体管依次记为N1~N8,四个PTFET晶体管依次记为P1~P4;其中:
VDD和NTFET晶体管N1的漏极电连接,同时VDD也与PTFET晶体管P1及PTFET晶体管P2的源极电连接;
PTFET晶体管P1的漏极,与NTFET晶体管N3的漏极、PTFET晶体管P2的栅极、NTFET晶体管N4及NTFET晶体管N8的栅极电连接;
PTFET晶体管P2的漏极,与PTFET晶体管P3及PTFET晶体管P4的漏极、以及NTFET晶体管N4及NTFET晶体管N5的漏极电连接;
PTFET晶体管P3的源极,与PTFET晶体管P4的源极、PTFET晶体管P1的栅极、NTFET晶体管N2的源极、以及NTFET晶体管N3的栅极电连接;
NTFET晶体管N1的源极与NTFET晶体管N2的漏极电连接;
NTFET晶体管N5的源极与NTFET晶体管N6的漏极电连接;
NTFET晶体管N7的源极与NTFET晶体管N8的漏极电连接;
NTFET晶体管N3、NTFET晶体管N4、NTFET晶体管N6及NTFET晶体管N8的源极与GND电连接。
2.根据权利要求1所述的一种具有超低功耗和高写裕度的12T TFET SRAM单元电路,其特征在于,位线WL与NTFET晶体管N1即NTFET晶体管N6的栅极、以及PTFET晶体管P4的栅极电连接;位线WLA连接NTFET晶体管N2的栅极以及PTFET晶体管P3的栅极;位线WLB连接NTFET晶体管N5的栅极;读字线WR连接NTFET晶体管N7的栅极;读位线RBL连接NTFET晶体管N7的漏极。
CN201822069491.1U 2018-12-10 2018-12-10 一种具有超低功耗和高写裕度的12t tfet sram单元电路 Active CN209312439U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201822069491.1U CN209312439U (zh) 2018-12-10 2018-12-10 一种具有超低功耗和高写裕度的12t tfet sram单元电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201822069491.1U CN209312439U (zh) 2018-12-10 2018-12-10 一种具有超低功耗和高写裕度的12t tfet sram单元电路

Publications (1)

Publication Number Publication Date
CN209312439U true CN209312439U (zh) 2019-08-27

Family

ID=67676336

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201822069491.1U Active CN209312439U (zh) 2018-12-10 2018-12-10 一种具有超低功耗和高写裕度的12t tfet sram单元电路

Country Status (1)

Country Link
CN (1) CN209312439U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109658960A (zh) * 2018-12-10 2019-04-19 安徽大学 一种具有超低功耗和高写裕度的12t tfet sram单元电路
CN110675905A (zh) * 2019-08-29 2020-01-10 安徽大学 一种具有高稳定性的12t tfet sram单元电路结构

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109658960A (zh) * 2018-12-10 2019-04-19 安徽大学 一种具有超低功耗和高写裕度的12t tfet sram单元电路
CN109658960B (zh) * 2018-12-10 2024-03-15 安徽大学 一种具有超低功耗和高写裕度的12t tfet sram单元电路
CN110675905A (zh) * 2019-08-29 2020-01-10 安徽大学 一种具有高稳定性的12t tfet sram单元电路结构

Similar Documents

Publication Publication Date Title
CN109658960A (zh) 一种具有超低功耗和高写裕度的12t tfet sram单元电路
CN110767251B (zh) 一种低功耗和高写裕度的11t tfet sram单元电路结构
Gopal et al. 8T SRAM cell design for dynamic and leakage power reduction
US10079056B2 (en) SRAM memory bit cell comprising n-TFET and p-TFET
CN103578529B (zh) 一种根据写数据改变电源供电的亚阈值存储单元
CN209312439U (zh) 一种具有超低功耗和高写裕度的12t tfet sram单元电路
CN110379448B (zh) 具有高写裕度的9t tfet与mosfet器件混合型sram单元电路
CN110189780A (zh) 一种隧穿场效应晶体管静态随机存储器单元的电路结构
Sachan et al. Low power multi threshold 7T SRAM cell
CN112687308A (zh) 低功耗静态随机存储器单元以及存储器
Aradhya et al. Memory design and verification of SRAM-based energy efficient ternary content addressable memory
CN209880162U (zh) 一种具有低功耗和写增强的混合10t tfet-mosfet sram单元电路
CN110232941A (zh) 一种具有低功耗和写增强的混合10t tfet-mosfet sram单元电路
CN110379449B (zh) 一种具有高写裕度的10t tfet与mosfet器件混合型sram单元电路
CN112509622A (zh) 一种具有低功耗和高写裕度的10t tfet sram单元电路
CN107393584B (zh) 一种基于FinFET器件的全摆幅单端读存储单元
Upadhyay et al. A low power 9T SRAM cell design for both active and passive mode
Kumar et al. A low power feedback cutting 8T SRAM cell for improved stability
CN110675905A (zh) 一种具有高稳定性的12t tfet sram单元电路结构
CN112309459B (zh) 一种mosfet-tfet混合型的8t sram单元电路
Yadav et al. Design and Analysis of FinFET based 10T SRAM Cell for Low Power Applications
CN113628650B (zh) 静态随机存取存储器单元结构及静态随机存取存储器
Aura et al. Design of High-Speed Dual Port 8T SRAM Cell with Simultaneous and Parallel READ-WRITE Feature
TWI838913B (zh) 靜態隨機存取記憶體位元單元
CN115985366A (zh) 具有高写噪声容限的mosfet-tfet混合型11t-sram单元电路、模块

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant