CN207603578U - 基于模拟预失真的Ka频段GaN功放线性化器 - Google Patents

基于模拟预失真的Ka频段GaN功放线性化器 Download PDF

Info

Publication number
CN207603578U
CN207603578U CN201721827378.4U CN201721827378U CN207603578U CN 207603578 U CN207603578 U CN 207603578U CN 201721827378 U CN201721827378 U CN 201721827378U CN 207603578 U CN207603578 U CN 207603578U
Authority
CN
China
Prior art keywords
driving
power amplifier
amplifier
predistortion
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721827378.4U
Other languages
English (en)
Inventor
王崇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 54 Research Institute
Original Assignee
CETC 54 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 54 Research Institute filed Critical CETC 54 Research Institute
Priority to CN201721827378.4U priority Critical patent/CN207603578U/zh
Application granted granted Critical
Publication of CN207603578U publication Critical patent/CN207603578U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Amplifiers (AREA)

Abstract

本实用新型公开了基于模拟预失真的Ka频段GaN功放线性化器,它涉及通信领域中的功率放大器。它由衰减器、驱动放大器、预失真模块等组成。它通过预失真模块中的模拟预失真电路产生与功率放大器失真信号互逆的预失真信号,用来补偿功率放大器的失真信号。通过在预失真模块前后级联衰减器和驱动放大器调整进入功率放大器的功率,以在实际应用中可以直接级联在放大器前端实现对固态功率放大器的线性化功能。改善了传统闭环技术稳定度差,结构复杂,成本高的缺点。稳定性更高,带宽特性良好,可应对多载波信号调制的需要,并且调谐部位少,调试简单,结构简单易于集成和安装,成本低廉,特别适合在GaN固态功率放大器中应用。

Description

基于模拟预失真的Ka频段GaN功放线性化器
技术领域
本实用新型涉及通信领域中功率放大器的预失真技术,特别适用于改善Ka频段29GHz~31GHz的GaN固态功率放大器的非线性化失真问题。
背景技术
GaN作为第三代半导体材料,是高频、高压、高温和大功率应用的优良半导体材料,逐渐应用到功率放大器中。同时为了满足更高速率地传输大容量数据的需求,调制技术常采用正交频分复用技术OFDM 和正交幅度调制技术如16QAM、64QAM等,这类高效调制技术在实际应用中,多载波电压的幅度和相位往往会产生很高的峰均比,这会使得毫米波功率放大器进入饱和工作区,从而会产生强非线性,引起信号的失真和杂散指标的恶化,严重制约着毫米波无线通信***的性能,都对功率放大器的线性度提出了更高的要求。
实用新型内容
本实用新型的目的在于改善功率放大器本身存在的非线性和上述背景技术中带来的功率放大器的非线性失真,以提高功率放大器的效率。提供了一种基于模拟预失真的Ka频段GaN功放线性化器,本实用新型具有频段宽,带宽特性良好,稳定性更高,可应对多载波信号调制的需要,且调谐部位少,调试简单。结构简单易于集成和安装,成本低廉。
本实用新型的目的是这样实现的:基于模拟预失真的Ka频段GaN 功放线性化器,包括线性化器前级驱动和线性化器后级驱动,还包括预失真模块5,所述的线性化器前级驱动、预失真模块和线性化器后级驱动依次级联;
所述的预失真模块包括,输入隔直电容6和输出隔直电容8、微带线7、偏置电阻10、第一二极管12和第二二极管18、所述的输入隔直电容6和输出隔直电容8之间通过微带线7相连,第一二极管 12和第二二极管18都各自并联搭接至微带线7上,所述的偏置电阻 10通过偏置高阻线9搭接至微带线7上,偏置电阻10的搭接点位于第一二极管12和第二二极管18之间,偏置电阻10与偏置电压11 相连。
进一步的,还包括并联电容13,所述的并联电容13搭接至微带线7上。
进一步的,所述的线性化器前级驱动包括依次级联的第一波导微带过渡1、第一可调衰减器2、第一前驱动放大器3、第二前驱动放大器4,预失真模块的信号接收端口与第二前驱动放大器4的信号发送端口相连。
进一步的,线性化器后级驱动包括依次级联的第二可调衰减器 14、第一后驱动放大器15、第二后驱动放大器16、第二波导微带过渡17,预失真模块的信号发送端口与第二可调衰减器14信号接收端口的相连。
本实用新型与背景技术相比有如下优点:
1.本实用新型应用一种新的模拟预失真电路,使用尽量少的元器件组成开环链路,将两个肖特基二极管并联,通过改变偏置电压、偏置电阻,改变通过肖特基二极管的电流,调节二极管的非线性特性,得到不同补偿程度的线性化曲线,改善功率放大器的非线性失真。在 30GHz处,增益幅度补偿达到6.4dB,增益相位补偿达到28°。
2.本实用新型对传统的闭环预失真电路进行改进,采用开环技术,稳定性更高,带宽特性良好,可应对多载波信号调制的需要,改良了闭环预失真电路稳定度差,结构复杂,成本高的特点。
3.本实用新型结构紧凑,易于集成和安装。体积小,成本低,具有推广应用价值。
附图说明
图1是本实用新型的原理方框图。
图2是本实用新型预失真模块电路4的电原理图。
附图标记说明:第一波导微带过渡1、第一可调衰减器2、第一前驱动放大器3、第二前驱动放大器4、预失真模块5、输入隔直电容6、微带线7、输出隔直电容8、偏置高阻线9、偏置电阻10、偏置电压11、第一二极管12、并联电容13、第二可调衰减器14、第一后驱动放大器15、第二后驱动放大器16、第二波导微带过渡17、第二二极管18;
图中1和2皆代指模块的两个端口,A、B、C代指的信号输入。
具体实施方式
参照图1至图2,本实用新型由第一波导微带过渡1、第一可调衰减器2、第一前驱动放大器3、第二前驱动放大器4、预失真模块5、第二可调衰减器14、第一后驱动放大器15、第二后驱动放大器16、第二波导微带过渡17组成。图1是本实用新型实施例的原理方框图,实施例按图1连接线路。其中第一可调衰减器2、第一前驱动放大器 3、第二前驱动放大器4、第二可调衰减器14、第一后驱动放大器15、第二后驱动放大器16,调整输入信号功率至适于功率放大器的输入功率。第一波导微带过渡1采用标准波导WR28制作。第二可调衰减器14采用UMS公司MMIC衰减器芯片CHT4694,第一前驱动放大器3、第二前驱动放大器4与第一后驱动放大器15、第二后驱动放大器16 采用Agilent公司的宽带低功率芯片AMMC-5040。
如图所示,本实用新型核心电路预失真模块5基于模拟预失真的 Ka频段GaN功放线性化器,包括线性化器前级驱动和线性化器后级驱动,还包括预失真模块5,所述的线性化器前级驱动、预失真模块和线性化器后级驱动依次级联;
所述的线性化器前级驱动包括依次级联的第一波导微带过渡1、第一可调衰减器2、第一前驱动放大器3、第二前驱动放大器4,预失真模块的信号接收端口与第二前驱动放大器4的信号发送端口相连。线性化器后级驱动包括依次级联的第二可调衰减器14、第一后驱动放大器15、第二后驱动放大器16、第二波导微带过渡17,预失真模块的信号发送端口与第二可调衰减器14信号接收端口的相连。
所述的预失真模块包括,输入隔直电容6和输出隔直电容8、微带线7、偏置电阻10、第一二极管12、并联电容13和第二二极管18、所述的输入隔直电容6和输出隔直电容8之间通过微带线7相连,第一二极管12和第二二极管18都各自并联搭接至微带线7上,所述的偏置电阻10通过偏置高阻线9搭接至微带线7上,偏置电阻10的搭接点位于第一二极管12和第二二极管18之间,偏置电阻10与偏置电压11相连,所述的并联电容13搭接至微带线7上。
其中介质基板采用RT/Duroid5880制作,第一/第二二极管产生非线性失真信号,第一/第二二极管采用MA-COM公司的MA4E2037,采用共面波导集成在电路中。输入隔直电容6、和输出隔直电容8起隔直匹配作用。改变并联电容13的值会改变产生非线性信号的功率范围。通过调整微带线7的电长度可以改变非线性失真曲线的形状。偏置高阻线9可以防止射频信号耦合进入直流电源端。偏置电阻10、偏置电压11控制两个二极管的偏置电流,实施例偏置电阻10调试时可更换,偏置电压11采用3.5V,调试时可更改变。
本实用新型简要工作原理如下:信号通过波导微带过渡结构1 第一端口输入,从第二端口输出至可调衰减器2,可调衰减器2接输入端口A的外部参考基准源,将部信号功率衰减调节输出至前驱动放大器3;第一前驱动放大器3是低噪声放大器,同前第二驱动放大器 4,调整接收到信号的功率到合适的值,输出至预失真模块5;预失真模块5将接收到的信号,通过内部非线性电路,产生与固态功率放大器非线性失真特性互逆的非线性信号,输出至可调衰减器14;可调衰减器14通过对接受到的信号功率进行衰减调节,使功率范围调节到合适的范围,输出至第一后驱动放大器15和第二后驱动放大器16;第一后驱动放大器15和第二后驱动放大器16接收到的信号在线性化过程中产生了损耗,两个驱动放大器对损耗进行补偿,使功率达到功率放大器的功率输入范围,最后由波导微带过渡17输出。

Claims (4)

1.基于模拟预失真的Ka频段GaN功放线性化器,包括线性化器前级驱动和线性化器后级驱动,其特征在于:还包括预失真模块(5),所述的线性化器前级驱动、预失真模块和线性化器后级驱动依次级联;
所述的预失真模块包括,输入隔直电容(6)和输出隔直电容(8)、微带线(7)、偏置电阻(10)、第一二极管(12)和第二二极管(18)、所述的输入隔直电容(6)和输出隔直电容(8)之间通过微带线(7)相连,第一二极管(12)和第二二极管(18)都各自并联搭接至微带线(7)上,所述的偏置电阻(10)通过偏置高阻线(9)搭接至微带线(7)上,偏置电阻(10)的搭接点位于第一二极管(12)和第二二极管(18)之间,偏置电阻(10)与偏置电压(11)相连。
2.根据权利要求1所述的基于模拟预失真的Ka频段GaN功放线性化器,其特征在于:还包括并联电容(13),所述的并联电容(13)搭接至微带线(7)上。
3.根据权利要求1所述的基于模拟预失真的Ka频段GaN功放线性化器,其特征在于:所述的线性化器前级驱动包括依次级联的第一波导微带过渡(1)、第一可调衰减器(2)、第一前驱动放大器(3)、第二前驱动放大器(4),预失真模块的信号接收端口与第二前驱动放大器(4)的信号发送端口相连。
4.根据权利要求3所述的基于模拟预失真的Ka频段GaN功放线性化器,其特征在于:线性化器后级驱动包括依次级联的第二可调衰减器(14)、第一后驱动放大器(15)、第二后驱动放大器(16)、第二波导微带过渡(17),预失真模块的信号发送端口与第二可调衰减器(14)信号接收端口的相连。
CN201721827378.4U 2017-12-25 2017-12-25 基于模拟预失真的Ka频段GaN功放线性化器 Active CN207603578U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721827378.4U CN207603578U (zh) 2017-12-25 2017-12-25 基于模拟预失真的Ka频段GaN功放线性化器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721827378.4U CN207603578U (zh) 2017-12-25 2017-12-25 基于模拟预失真的Ka频段GaN功放线性化器

Publications (1)

Publication Number Publication Date
CN207603578U true CN207603578U (zh) 2018-07-10

Family

ID=62766530

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721827378.4U Active CN207603578U (zh) 2017-12-25 2017-12-25 基于模拟预失真的Ka频段GaN功放线性化器

Country Status (1)

Country Link
CN (1) CN207603578U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649896A (zh) * 2019-10-25 2020-01-03 电子科技大学 一种应用于无线通信的多带模拟预失真电路
CN110752162A (zh) * 2018-07-23 2020-02-04 西安电子科技大学 基于x波段氮化镓预失真集成电路及制作方法
CN111064438A (zh) * 2019-12-25 2020-04-24 北京普能微电子科技有限公司 模拟预失真电路、功率放大器及射频模块
CN112968675A (zh) * 2021-01-28 2021-06-15 重庆邮电大学 基于变容二极管加载复合左右手传输线的预失真多尔蒂功放

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110752162A (zh) * 2018-07-23 2020-02-04 西安电子科技大学 基于x波段氮化镓预失真集成电路及制作方法
CN110649896A (zh) * 2019-10-25 2020-01-03 电子科技大学 一种应用于无线通信的多带模拟预失真电路
CN110649896B (zh) * 2019-10-25 2023-06-27 电子科技大学 一种应用于无线通信的多带模拟预失真电路
CN111064438A (zh) * 2019-12-25 2020-04-24 北京普能微电子科技有限公司 模拟预失真电路、功率放大器及射频模块
CN111064438B (zh) * 2019-12-25 2023-12-08 北京普能微电子科技有限公司 模拟预失真电路、功率放大器及射频模块
CN112968675A (zh) * 2021-01-28 2021-06-15 重庆邮电大学 基于变容二极管加载复合左右手传输线的预失真多尔蒂功放

Similar Documents

Publication Publication Date Title
CN207603578U (zh) 基于模拟预失真的Ka频段GaN功放线性化器
Lavrador et al. The linearity-efficiency compromise
US8254854B2 (en) Pulsed load modulation amplifier and method
CN100555843C (zh) 基于模拟预失真的线性功率放大电路及方法
CN107517039B (zh) 毫米波GaN功放射频预失真线性化器
KR20150039240A (ko) 공통게이트 전압변조 선형화기를 이용한 포락선 추적 전력 송신기
CN107231131B (zh) 一种可增大功率回退范围的多赫尔蒂功率放大器
EP2067253B1 (en) Amplifier architecture for polar modulation
CN102710222B (zh) 一种行波管线性化信号调理驱动装置
CN105515539A (zh) 改善射频功率放大器线性度的方法、补偿电路及通信终端
US10122334B2 (en) High efficiency ultra-wideband amplifier
Martin et al. Inphasing signal component separation for an X-band outphasing power amplifier
Sano et al. A 40W GaN HEMT Doherty power amplifier with 48% efficiency for WiMAX applications
Viswanathan Efficiency enhancement of base station power amplifiers using Doherty technique
CN208572042U (zh) 一种星载小型化模拟预失真器
CN113630092B (zh) 一种反射式可调预失真器
Haskins Diode predistortion linearization for power amplifier RFICs in digital radios
CN109150118A (zh) 一种用于行波管功率放大器预失真的线性化器
CN113242023B (zh) 一种场效应管串联反射式肖特基二极管的模拟预失真器
Choi et al. 28.8 dBm, high efficiency, linear GaN power amplifier with in-phase power combining for IEEE 802.11 p applications
Agah et al. High-speed, high-efficiency millimeter-wave transmitters at 45 GHz in CMOS
Roychowdhury et al. 3.3-3.6 ghz phase exploited doherty power amplifier with parallel load combining network
Dalwadi et al. Efficient Doherty feed-forward linear power amplifier for CDMA 2000 base-station applications
CN206712750U (zh) 线性预失真电路
Sarbishaei Concurrent multi-band envelope tracking power amplifiers for emerging wireless communications

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant