CN207423696U - 便携式变温原位拉压测试装置 - Google Patents

便携式变温原位拉压测试装置 Download PDF

Info

Publication number
CN207423696U
CN207423696U CN201721337619.7U CN201721337619U CN207423696U CN 207423696 U CN207423696 U CN 207423696U CN 201721337619 U CN201721337619 U CN 201721337619U CN 207423696 U CN207423696 U CN 207423696U
Authority
CN
China
Prior art keywords
precision
clamp body
unit
displacement sensor
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721337619.7U
Other languages
English (en)
Inventor
张建海
赵宏伟
张世忠
王岩
国磊
徐博达
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jilin University
Original Assignee
Jilin University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jilin University filed Critical Jilin University
Priority to CN201721337619.7U priority Critical patent/CN207423696U/zh
Application granted granted Critical
Publication of CN207423696U publication Critical patent/CN207423696U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

本实用新型涉及一种便携式变温原位拉压测试装置,属于材料力学性能测试领域。精密拉伸/压缩载荷驱动单元与测试平台基座连接,精密旋转加载驱动单元与夹具体Ⅰ、Ⅱ相连,变形信号检测及控制单元由位移传感器通过位移传感器支撑座与基座架连接,夹持单元由夹具体Ⅰ、Ⅱ与精密移动平台刚性连接,与精密旋转驱动单元中的同步带轮Ⅰ、Ⅱ套接,温度加载单元固定在基座架上。结构紧凑、精巧,方便组装与拆卸,整机质量轻、测量精度高、实时数据采集,可在被测试件旋转过程中进行实时观察,如对材料的裂纹萌生、裂纹扩展和材料的失效断裂过程等进行原位监测,进而对材料在可变温度复杂载荷模式加载作用下的微观力学行为、内部变形损伤机制进行深入研究。

Description

便携式变温原位拉压测试装置
技术领域
本实用新型涉及材料力学性能测试技术领域,特别涉及一种便携式变温原位拉压测试装置,能在变温复杂载荷情况下对材料微观力学性能进行原位观测,可对材料的微观变形、损伤过程进行原位观测。
背景技术
随着中子衍射技术、扫描电子显微成像技术等在材料微观力学性能测试领域的广泛应用,材料保障技术对材料的力学性能测试提出了更高更深层次的要求,而将材料的力学性能的测试与材料内部结构的变化建立联系是当今材料领域研究的重要课题,其主要体现为材料在物理场与复杂载荷加载下的力学性能的测定、材料测试过程中显微结构表征以及无损检测技术的应用等方面。
在材料力学需要测试的各项力学性能参数中,弹性模量、屈服极限、强度极限、伸长率和切变模量等参数是测试的主要对象,一般来说,对材料的力学性能的测试有拉伸/压缩法、弯曲法、扭转法、鼓膜法和纳米压痕法等,其中原位拉伸/压缩测试方法能较为全面的体现出材料的力学性能,它可以通过实时的应力—应变曲线比较直观的分析出材料的弹性模量、断裂极限等力学性能,而在原位拉伸试验中拉伸速率、应变速率及温度等参数的控制对材料变形损伤状况影响也十分显著。
在近些年,伴随着工程材料领域理论知识与实际应用需求的增加,国内在实现复杂物理场下试件的原位测量的相关领域处于起步阶段,针对此类的加载设备也非常的少,并且,由于在实际生产过程中材料使用条件的复杂性,受单载荷拉伸作用的理想加载情况少之又少,而载荷场耦合热场的加载条件等在实际生产、生活中较为常见,在这样的趋势下,我们设计了变温复杂载荷下原位测试的装置对材料力学的性能测试进行研究。
发明内容
本实用新型的目的在于提供一种便携式变温原位拉压测试装置,解决了现有技术存在的上述问题。本实用新型设计了具有整体试件绕自转轴旋转的功能并可以在试件旋转时实现测量的装置,并且本实用新型装置结构紧凑、精巧,可安装于中子衍射仪、X射线电子计算机断层扫描等观测平台上进行原位力学测试。重点强调了在可变温度复杂载荷下原位测试装置对试件的观测,通过在高温复杂载荷情况下对旋转试件的原位观测更有利于深入研究揭示材料在外力作用下的变形损伤规律,并对其可靠性预测和寿命评估具有重要的意义。
本实用新型的上述目的通过以下技术方案实现:
便携式变温原位拉压测试装置,能在高温环境中对材料在复杂载荷下的力学行为、宏观-微观内部损伤分布进行测试,包括精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、夹持单元、温度加载单元,所述精密拉伸/压缩载荷驱动单元通过电机法兰架30、滚珠丝杠轴承座27与测试平台基座螺栓连接,所述精密旋转加载驱动单元通过同步带Ⅰ、Ⅱ21、22与夹具体Ⅰ、Ⅱ9、13相连,所述变形信号检测及控制单元由位移传感器4通过位移传感器支撑座3与基座架2螺栓固定连接,所述夹持单元由夹具体Ⅰ、Ⅱ9、13与精密移动平台7刚性连接,通过同步带Ⅰ、Ⅱ21、22与精密旋转驱动单元中的同步带轮Ⅰ、Ⅱ20、23套接,所述温度加载单元由卤素灯11或电阻丝32进行加载固定在基座架2上。
所述的精密拉伸/压缩载荷驱动单元是:精密直流伺服电机31与传动单元相连接,传动单元由蜗轮28、蜗杆29、减速机构及精密滚珠丝杠26构成,精密直流伺服电机31通过脉冲换向方式输出角位移及可控扭矩,通过与精密直流伺服电机31相连接的传动单元将精密直流伺服电机31提供的旋转运动转换成精密直线运动,精密直流伺服电机31与精密滚珠丝杠26分别通过精密伺服电机法兰架30及滚珠丝杠轴承座27与测试平台基座进行螺栓连接。
所述的减速机构是:蜗轮蜗杆减速器与精密直流伺服电机31同轴安装,并通过精密伺服电机法兰30与下方的基座盖1连接,蜗杆29通过其上的螺钉与精密直流伺服电机31的输出轴套接,蜗轮28与精密滚珠丝杠26由楔键连接、定位,精密滚珠丝杠26通过滚珠丝杠轴承座27与上方的基座盖1连接,精密滚珠丝杠的导向通过导轨Ⅰ、Ⅱ5、14及导轨滑块Ⅰ、Ⅱ6、15实现,基座架2设有两组平行凹槽,导轨Ⅰ、Ⅱ5、14的直线定位通过两组平行凹槽实现。
所述的精密旋转加载驱动单元是:微型电机Ⅰ、Ⅱ18、25通过同步带Ⅰ、Ⅱ21、22与Ⅰ、Ⅱ夹具体9、13相连接,在单侧中,通过控制微型电机Ⅰ、18来控制旋转运动的速度,同步带轮Ⅰ、Ⅱ20、23刚性固定在夹具体Ⅱ13上,由轴肩定位,微型电机法兰支架Ⅰ、Ⅱ19、24通过螺栓连接固定在精密移动平台7上,通过微型电机Ⅰ18的精密旋转带动同步带21Ⅰ进行旋转,使与同步带Ⅰ21另一端相连的夹具体Ⅱ13进行旋转,使夹具Ⅱ13与试件12进行绕自转轴旋转。
所述的变形信号检测及控制单元是:位移传感器4的基体部分安装在位移传感器支撑座3中,并通过位移传感器紧固螺钉对其进行紧固,位移传感器4前端的可伸缩探头与位移传感器支承座3在测试过程中始终保持弹性接触状态,且位移传感器支撑座3固定在基座架2上,由螺栓进行连接,即位移传感器4所检测到的实际位移为精密滚珠丝杠26与精密移动平台7之间的相对位移;拉压力传感器16分别与基座架2及轴承盖17通过螺纹方式刚性连接,且基座架2末端设有凹面对拉压力传感器16进行面定位,通过精密移动平台7的相对移动使拉压力传感器16受到拉压作用,通过加载载荷变形的模拟信号和编码器的标定位移数字信号的采集来实现单一加载方向的信号检测。
所述的夹持单元是:夹具体Ⅰ、Ⅱ9、13通过夹持端的通孔实现其轴向定位,试件12与夹具体Ⅰ、Ⅱ9、13刚性接触,夹具体压板通过螺栓连接方式与夹具体Ⅰ、Ⅱ9、13连接,夹具体Ⅰ、Ⅱ9、13与轴端盖8连接实现其定位,并通过夹具体Ⅰ、Ⅱ9、13的冷凝口进行水循环,对高温加载情况下的试件12、夹具体Ⅰ、Ⅱ9、13进行降温。
所述的温度加载单元是:由电阻丝32或卤素灯11进行高温加载;所述电阻丝32刚性固定在基座架2上进行加载,并将冷凝管与基座架2连为一体;所述卤素灯11采用两个相同的进行前后照射,卤素灯11固定在灯罩10上,灯罩10通过螺栓连接方式与基座架2固定。
所述的试件12与夹具体Ⅰ、Ⅱ9、13一起进行旋转,在旋转中观察材料的力学性能的变化。
本实用新型的有益效果在于:
1、与现有单一载荷拉伸/压缩力学性能测试相比,本实用新型可模拟现实生活中发生的多种复杂载荷下的力学性能测试,另外,本实用新型还可实现在高温加载情况下的原位测试,相比一般的原位测试装置,本实用新型的观测是在被测试件旋转情况下,精密的对试件进行原位观测,能对试件的微观结构进行更精准的分析,而对拉伸和压缩单一载荷加载模式的解析,还能够就材料在高温加载模式作用下的微观力学性能及变形损伤机制做出准确评价。
2、本实用新型的复杂载荷原位测试装置中,试件自身可旋转,在进行原位测试时,可使试件在自身旋转过程中进行全方位观测,观测更精准。
3、本实用新型所述的加载及传动单元各单向载荷施加速率可控,施加方式独立,施加顺序可控。因此就基于此种加载方式,可实现拉伸压缩模式下对试件单一载荷方向进行夹持、等速拉伸压缩模式、试件自旋转拉伸压缩模式以及试件旋转依次加载模式等多种形式的力学测试。
4、本实用新型可为各类复合材料的结构设计、装备制造、寿命预测和可靠性评估提供新的方法,对研究工作具有十分重要的科学意义和很高的经济效益。
附图说明
此处所说明的附图用来提供对本实用新型的进一步理解,构成本申请的一部分,本实用新型的示意性实例及其说明用于解释本实用新型,并不构成对本实用新型的不当限定。
图1为本实用新型与X射线CT原位测试结合的结构示意图;
图2为本实用新型的的主视示意图;
图3为本实用新型的结构示意图(电阻丝加载);
图4为本实用新型的结构示意图(卤素灯加载);
图5为本实用新型的左视示意图。
图中:1、基座盖;2、基座架;3、位移传感器支撑座;4、位移传感器;5、导轨Ⅰ;6、导轨滑块Ⅰ;7、精密移动平台;8、轴端盖;9、夹具体Ⅰ;10、灯罩;11、卤素灯;12、试件;13、夹具体Ⅱ;14、导轨Ⅱ;15、导轨滑块Ⅱ;16、拉压力传感器;17、轴承盖;18、微型电机Ⅰ;19、微型电机法兰支架Ⅰ;20、同步带轮Ⅰ;21、同步带Ⅰ;22、同步带Ⅱ;23、同步带轮Ⅱ;24、微型电机法兰支架Ⅱ;25、微型电机Ⅱ;26、精密滚珠丝杠;27、滚珠丝杠轴承座;28、蜗轮;29、蜗杆;30、精密伺服电机法兰架;31、精密直流伺服电机;32、电阻丝。
具体实施方式
下面结合附图进一步说明本实用新型的详细内容及其具体实施方式。
参见图1至图5所示,本实用新型的便携式变温原位拉压测试装置,能在高温环境中对材料在复杂载荷下的力学行为、宏观-微观内部损伤分布等进行有效测试,包括精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、夹持单元、温度加载单元,所述的精密拉伸/压缩载荷驱动单元通过电机法兰架30、滚珠丝杠轴承座27与测试平台基座进行螺栓连接,所述的精密旋转加载驱动单元通过同步带Ⅰ、Ⅱ21、22与夹具体Ⅰ、Ⅱ9、13相连,所述的变形信号检测及控制单元由位移传感器4通过位移传感器支撑座3与基座架2进行螺栓固定连接,所述的夹持单元由夹具体Ⅰ、Ⅱ9、13与精密移动平台7刚性连接通过同步带Ⅰ、Ⅱ21、22与精密旋转驱动单元中的同步带轮Ⅰ、Ⅱ20、23套接,所述的温度加载单元由卤素灯11或电阻丝32进行加载固定在基座架2上。所测试平台基座由基座架2和基座盖1构成。
所述的精密拉伸/压缩载荷驱动单元是:精密直流伺服电机31与传动单元相连接,传动单元由蜗轮28、蜗杆29、减速机构及精密滚珠丝杠26构成,精密直流伺服电机31通过脉冲换向方式输出角位移及可控扭矩,通过与精密直流伺服电机31相连接的传动单元将精密直流伺服电机31提供的旋转运动转换成精密直线运动,精密直流伺服电机31与精密滚珠丝杠26分别通过精密伺服电机法兰架30及滚珠丝杠轴承座27与测试平台基座进行螺栓连接。
所述的减速机构是:蜗轮蜗杆减速器与精密直流伺服电机31同轴安装,并通过精密伺服电机法兰30与下方的基座盖1连接,蜗杆29通过其上的螺钉与精密直流伺服电机31的输出轴套接,蜗轮28与精密滚珠丝杠26由楔键连接、定位,精密滚珠丝杠26通过滚珠丝杠轴承座27与上方的基座盖1连接,精密滚珠丝杠的导向通过导轨Ⅰ、Ⅱ5、14及导轨滑块Ⅰ、Ⅱ6、15实现,基座架2设有两组平行凹槽,导轨Ⅰ、Ⅱ5、14的直线定位通过两组平行凹槽实现。
所述的精密旋转加载驱动单元是:驱动加载是由微型电机Ⅰ、Ⅱ18、25输出的精密旋转运动通过同步带Ⅰ、Ⅱ21、22与Ⅰ、Ⅱ夹具体9、13相连接,在单侧中,通过控制微型电机Ⅰ、18来控制旋转运动的速度,同步带轮Ⅰ、Ⅱ20、23刚性固定在夹具体Ⅱ13上,由轴肩定位,微型电机法兰支架Ⅰ、Ⅱ19、24通过螺栓连接固定在精密移动平台7上,通过微型电机Ⅰ18的精密旋转带动同步带21Ⅰ进行旋转,使与同步带Ⅰ21另一端相连的夹具体Ⅱ13进行旋转,使夹具Ⅱ13与试件12进行绕自转轴旋转。
所述的变形信号检测及控制单元是:位移传感器4的基体部分安装在位移传感器支撑座3中,并通过位移传感器紧固螺钉对其进行紧固,以达到定位效果,位移传感器4前端的可伸缩探头与位移传感器支承座3在测试过程中始终保持弹性接触状态,且位移传感器支撑座3固定在基座架2上,由螺栓进行连接,即位移传感器4所检测到的实际位移为精密滚珠丝杠26与精密移动平台7之间的相对位移;拉压力传感器16分别与基座架2及轴承盖17通过螺纹方式刚性连接,且基座架2末端设有凹面对拉压力传感器16进行面定位,通过精密移动平台7的相对移动使拉压力传感器16受到拉压作用,因此,可通过加载载荷变形的模拟信号和编码器的标定位移数字信号的采集来实现单一加载方向的信号检测。
所述的夹持单元是:夹具体Ⅰ、Ⅱ9、13通过夹持端的通孔实现其轴向定位,试件12与夹具体Ⅰ、Ⅱ9、13刚性接触,夹具体压板通过螺栓连接方式与夹具体Ⅰ、Ⅱ9、13连接,夹具体Ⅰ、Ⅱ9、13与轴端盖8连接实现其定位,并通过夹具体Ⅰ、Ⅱ9、13的冷凝口进行水循环,对高温加载情况下的试件12、夹具体Ⅰ、Ⅱ9、13等进行降温。
所述的温度加载单元是:由电阻丝32或卤素灯11进行高温加载;以电阻丝32加热为例,所述电阻丝32刚性固定在基座架2上进行加载,并将冷凝管与基座架2连为一体,加热温度最高可达700℃,使试件受热均匀;以卤素灯11加热为例,为使试件受热均匀,所述卤素灯11采用两个相同的进行前后照射,卤素灯11固定在灯罩10上,灯罩10通过螺栓连接方式与基座架2固定,本高温加载单元可根据实际情况来确定由电阻丝或卤素灯进行高温加载。
所述的试件12与夹具体Ⅰ、Ⅱ9、13等一起进行旋转,在旋转中观察材料的力学性能的变化。
实施例:
参见图1至图5所示,本实用新型的便携式变温原位拉压测试装置,是一种可以与X射线电子计算机断层扫描(XCT)等兼容使用的高温复杂载荷下便携式原位测试装置,可以专业地模拟高温复杂载荷情况并对材料的力学性能进行测试,更直观的展现出在不同温度场下材料的微观力学性能,本实用新型是外观为立式、内部试件可旋转的装置,可以对试件进行高温条件下的拉伸/压缩试验,本实用新型由精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、夹持单元、高温加载单元等组成,本实用新型可以通过低速的加载方式实现载荷的精密施加,另外本实用新型结合目前X射线CT、衍射仪、扫描电镜等观测平台结构及试验研究情况,设计了具有整体试件绕自转轴旋转的功能并在试件旋转时可以进行观测的原位测试装置,测试装置具有整机质量轻、测量精度高、实时数据采集等特点,可在被测试件旋转过程中进行实时观察,如对材料的裂纹萌生、裂纹扩展和材料的失效断裂过程等进行原位监测,进而对材料在可变温度复杂载荷模式加载作用下的微观力学行为、内部变形损伤机制进行深入研究,该测试装置结构紧凑、精巧,方便组装与拆卸。变温复杂载荷下原位拉压测试装置包括精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、试件夹持单元及温度加载单元。
本实用新型所述的精密旋转加载驱动单元,以单侧为例,其驱动加载是由:微型电机Ⅰ18输出的精密旋转运动通过同步带Ⅰ21与夹具轴相连接,通过控制微型电机Ⅰ18来控制精密旋转运动的速度,微型电机法兰支架Ⅰ19通过螺栓连接固定在精密移动平台7上,通过微型电机18Ⅰ的精密旋转带动同步带Ⅰ21进行旋转,使与同步带Ⅰ21另一端相连的夹具体Ⅱ13进行旋转,使夹具Ⅱ13与试件12进行绕自转轴旋转,两侧旋转加载驱动单元选用同种型号同样大小的微型电机Ⅰ18,使试件12均匀旋转,旋转更稳定。
本实用新型所述的变形信号检测及控制单元,位移传感器4的基体部分安装在位移传感器支撑座3中,并通过位移传感器紧固螺钉对其进行紧固,以达到定位效果,其前端可伸缩探头与位移传感器支承座3在测试过程中始终保持弹性接触,且位移传感器支撑座3固定在基座架2上,由螺栓进行连接,即位移传感器4所检测到的实际位移为精密滚珠丝杠26与精密移动平台7之间的相对位移;拉压力传感器16分别与基座架2及轴承盖17通过螺纹方式刚性连接,且基座架2下层的末端设计有凹面对拉压力传感器16进行面定位,通过精密移动平台7的相对移动使拉压力传感器16受到拉压作用。
本实用新型所述温度加载单元有两种方式,第一种由电阻丝32进行高温加载,第二种由卤素灯11进行高温加载;以电阻丝32加热为例,电阻丝32刚性固定在基座架2上进行加载,并将冷凝管与基座架2连为一体,加热温度最高可达700℃,使试件受热均匀;以卤素灯11加热为例,为使试件受热均匀,采用两个卤素灯11前后进行照射,并将卤素灯11固定在灯罩10上,灯罩10通过螺栓连接方式与基座架2进行连接固定,本温度加载单元可根据具体的实际情况来确定由电阻丝32或卤素灯11进行高温加载。
本实用新型所述的便携式变温原位拉压测试装置,与扫描电子显微镜、中子衍射仪、X射线电子计算机断层扫描及光学显微成像组件等具有良好的结构兼容性。
在测试的整个过程中,被测试件表面的裂纹萌生、扩展及变形损伤情况由高放大倍率的扫描电子显微镜成像***进行动态监测,并可同时记录图像,结合调试软件亦可实时获取表征材料力学性能的工程应力应变曲线及抗弯强度、抗拉强度等重要力学参数。
以上所述仅为本实用新型的优选实例而已,并不用于限制本实用新型,对于本领域的技术人员来说,本实用新型可以有各种更改和变化。凡对本实用新型所作的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。

Claims (8)

1.一种便携式变温原位拉压测试装置,其特征在于:在高温环境中对材料在复杂载荷下的力学行为、宏观-微观内部损伤分布进行测试,包括精密拉伸/压缩载荷驱动单元、精密旋转加载驱动单元、变形信号检测及控制单元、夹持单元、温度加载单元,所述精密拉伸/压缩载荷驱动单元通过精密伺服电机法兰架(30)、滚珠丝杠轴承座(27)与测试平台基座螺栓连接,所述精密旋转加载驱动单元通过同步带Ⅰ、Ⅱ(21、22)与夹具体Ⅰ、Ⅱ(9、13)相连,所述变形信号检测及控制单元由位移传感器(4)通过位移传感器支撑座(3)与基座架(2)螺栓固定连接,所述夹持单元由夹具体Ⅰ、Ⅱ(9、13)与精密移动平台(7)刚性连接,通过同步带Ⅰ、Ⅱ(21、22)与精密旋转驱动单元中的同步带轮Ⅰ、Ⅱ(20、23)套接,所述温度加载单元固定在基座架(2)上。
2.根据权利要求1所述的便携式变温原位拉压测试装置,其特征在于:所述的精密拉伸/压缩载荷驱动单元是:精密直流伺服电机(31)与传动单元相连接,传动单元由蜗轮(28)、蜗杆(29)、减速机构及精密滚珠丝杠(26)构成,精密直流伺服电机(31)通过脉冲换向方式输出角位移及可控扭矩,通过与精密直流伺服电机(31)相连接的传动单元将精密直流伺服电机(31)提供的旋转运动转换成精密直线运动,精密直流伺服电机(31)与精密滚珠丝杠(26)分别通过精密伺服电机法兰架(30)及滚珠丝杠轴承座(27)与测试平台基座进行螺栓连接。
3.根据权利要求2所述的便携式变温原位拉压测试装置,其特征在于:所述的减速机构是:蜗轮蜗杆减速器与精密直流伺服电机(31)同轴安装,并通过精密伺服电机法兰架(30)与下方的基座盖(1)连接,蜗杆(29)通过其上的螺钉与精密直流伺服电机(31)的输出轴套接,蜗轮(28)与精密滚珠丝杠(26)由楔键连接、定位,精密滚珠丝杠(26)通过滚珠丝杠轴承座(27)与上方的基座盖(1)连接,精密滚珠丝杠的导向通过导轨Ⅰ、Ⅱ(5、14)及导轨滑块Ⅰ、Ⅱ(6、15)实现,基座架(2)设有两组平行凹槽,导轨Ⅰ、Ⅱ(5、14)的直线定位通过两组平行凹槽实现。
4.根据权利要求1所述的便携式变温原位拉压测试装置,其特征在于:所述的精密旋转加载驱动单元是:微型电机Ⅰ、Ⅱ(18、25)通过同步带Ⅰ、Ⅱ(21、22)与夹具体Ⅰ、Ⅱ(9、13)相连接,在单侧中,通过控制微型电机Ⅰ(18)来控制旋转运动的速度,同步带轮Ⅰ、Ⅱ(20、23)刚性固定在夹具体Ⅱ(13)上,由轴肩定位,微型电机法兰支架Ⅰ、Ⅱ(19、24)通过螺栓连接固定在精密移动平台(7)上,通过微型电机Ⅰ(18)的精密旋转带动同步带Ⅰ(21)进行旋转,使与同步带Ⅰ(21)另一端相连的夹具体Ⅱ(13)进行旋转,使夹具体Ⅱ(13)与试件(12)进行绕自转轴旋转。
5.根据权利要求1所述的便携式变温原位拉压测试装置,其特征在于:所述的变形信号检测及控制单元是:位移传感器(4)的基体部分安装在位移传感器支撑座(3)中,并通过位移传感器紧固螺钉对其进行紧固,位移传感器(4)前端的可伸缩探头与位移传感器支撑座(3)在测试过程中始终保持弹性接触状态,且位移传感器支撑座(3)固定在基座架(2)上,由螺栓进行连接,即位移传感器(4)所检测到的实际位移为精密滚珠丝杠(26)与精密移动平台(7)之间的相对位移;拉压力传感器(16)分别与基座架(2)及轴承盖(17)通过螺纹方式刚性连接,且基座架(2)末端设有凹面对拉压力传感器(16)进行面定位,通过精密移动平台(7)的相对移动使拉压力传感器(16)受到拉压作用,通过加载载荷变形的模拟信号和编码器的标定位移数字信号的采集来实现单一加载方向的信号检测。
6.根据权利要求1所述的便携式变温原位拉压测试装置,其特征在于:所述的夹持单元是:夹具体Ⅰ、Ⅱ(9、13)通过夹持端的通孔实现其轴向定位,试件(12)与夹具体Ⅰ、Ⅱ(9、13)刚性接触,夹具体压板通过螺栓连接方式与夹具体Ⅰ、Ⅱ(9、13)连接,夹具体Ⅰ、Ⅱ(9、13)与轴端盖(8)连接实现其定位,并通过夹具体Ⅰ、Ⅱ(9、13)的冷凝口进行水循环,对高温加载情况下的试件(12)、夹具体Ⅰ、Ⅱ(9、13)进行降温。
7.根据权利要求1所述的便携式变温原位拉压测试装置,其特征在于:所述的温度加载单元是:由电阻丝(32)或卤素灯(11)进行高温加载;所述电阻丝(32)刚性固定在基座架(2)上进行加载,并将冷凝管与基座架(2)连为一体;所述卤素灯(11)采用两个相同的进行前后照射,卤素灯(11)固定在灯罩(10)上,灯罩(10)通过螺栓连接方式与基座架(2)固定。
8.根据权利要求4或6所述的便携式变温原位拉压测试装置,其特征在于:所述的试件(12)与夹具体Ⅰ、Ⅱ(9、13)一起进行旋转,在旋转中观察材料的力学性能的变化。
CN201721337619.7U 2017-10-18 2017-10-18 便携式变温原位拉压测试装置 Active CN207423696U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201721337619.7U CN207423696U (zh) 2017-10-18 2017-10-18 便携式变温原位拉压测试装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721337619.7U CN207423696U (zh) 2017-10-18 2017-10-18 便携式变温原位拉压测试装置

Publications (1)

Publication Number Publication Date
CN207423696U true CN207423696U (zh) 2018-05-29

Family

ID=62311619

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721337619.7U Active CN207423696U (zh) 2017-10-18 2017-10-18 便携式变温原位拉压测试装置

Country Status (1)

Country Link
CN (1) CN207423696U (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607410A (zh) * 2017-10-18 2018-01-19 吉林大学 便携式变温原位拉压测试装置
CN109752234A (zh) * 2019-02-27 2019-05-14 河北工业大学 一种拉伸方向实时对中的岩石类材料双轴拉压试验装置
CN110441163A (zh) * 2019-09-12 2019-11-12 吉林大学 高温超声疲劳原位测试仪器及测试方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107607410A (zh) * 2017-10-18 2018-01-19 吉林大学 便携式变温原位拉压测试装置
CN109752234A (zh) * 2019-02-27 2019-05-14 河北工业大学 一种拉伸方向实时对中的岩石类材料双轴拉压试验装置
CN110441163A (zh) * 2019-09-12 2019-11-12 吉林大学 高温超声疲劳原位测试仪器及测试方法

Similar Documents

Publication Publication Date Title
CN107607410A (zh) 便携式变温原位拉压测试装置
CN207423696U (zh) 便携式变温原位拉压测试装置
CN107607390B (zh) 变温拉扭复合载荷材料力学性能原位测试装置及方法
WO2017107362A1 (zh) 复合载荷模式力电热磁耦合材料性能原位测试仪器与方法
CN105842080B (zh) 一种感应加热模式下复合载荷材料力学测试***
CN108507882B (zh) 用于中子散射分析的材料力学性能原位测试仪器
CN102384875B (zh) 显微镜下拉压弯复合载荷模式材料力学性能测试装置
CN105973694A (zh) 拉伸-四点弯曲预载荷下纳米压痕测试装置
CN105758728A (zh) 变温复合载荷原位力学测试平台
CN206696086U (zh) 变温条件下偏心载荷拉弯原位测试装置
CN103487315A (zh) 一种材料力学性能测试装置
CN110044722B (zh) 超高温高频材料力学性能测试仪器及方法
CN111948050B (zh) 基于同步辐射ct的碳纤维/环氧树脂三维机织复合材料拉-拉疲劳损伤演化研究试验方法
CN102331370A (zh) 基于拉伸/压缩模式的扫描电镜下原位高频疲劳材料力学测试平台
CN110044752A (zh) 用于锥束ct成像的原位高/低温压痕测试装置
CN108444816B (zh) 一种岩体结构面循环剪切试验仪及试验方法
CN102269675B (zh) 一种流体压力提供第三向应力的双向拉伸试验装置及其应用
CN112903427A (zh) 一种对材料表面温升动态控制的力学试验***及方法
CN106383059A (zh) 原位扭转测试平台及其观测***
CN206300845U (zh) 一种黄土抗拉强度测试装置
CN206787902U (zh) 一种基于ebsd分析的原位力‑热耦合加载装置
CN202057549U (zh) 跨尺度微纳米级原位复合载荷力学性能测试平台
CN110426290B (zh) 一种线式拉伸扭转载荷与热场耦合原位力学性能测试仪
CN208171759U (zh) 用于中子散射分析的材料力学性能原位测试仪器
CN210005438U (zh) 原位拉曼拉伸测试装置

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant