CN207398068U - 一种制备铜铟镓硒化合物的装置 - Google Patents

一种制备铜铟镓硒化合物的装置 Download PDF

Info

Publication number
CN207398068U
CN207398068U CN201721463168.1U CN201721463168U CN207398068U CN 207398068 U CN207398068 U CN 207398068U CN 201721463168 U CN201721463168 U CN 201721463168U CN 207398068 U CN207398068 U CN 207398068U
Authority
CN
China
Prior art keywords
temperature
indium
gallium
quartz ampoule
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201721463168.1U
Other languages
English (en)
Inventor
陈腾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongyi Technology Co.,Ltd.
Original Assignee
Beijing Hina Film Power Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to CN201721463168.1U priority Critical patent/CN207398068U/zh
Application filed by Beijing Hina Film Power Technology Co Ltd filed Critical Beijing Hina Film Power Technology Co Ltd
Publication of CN207398068U publication Critical patent/CN207398068U/zh
Application granted granted Critical
Priority to EP18195753.1A priority patent/EP3480857A1/en
Priority to PCT/CN2018/107005 priority patent/WO2019085679A1/zh
Priority to US16/139,111 priority patent/US20190136345A1/en
Priority to CA3018689A priority patent/CA3018689A1/en
Priority to JP2018003730U priority patent/JP3219221U/ja
Priority to KR2020180004447U priority patent/KR20190001161U/ko
Priority to AU2018101483A priority patent/AU2018101483A4/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B19/00Selenium; Tellurium; Compounds thereof
    • C01B19/002Compounds containing, besides selenium or tellurium, more than one other element, with -O- and -OH not being considered as anions
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0053Details of the reactor
    • B01J19/0073Sealings
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/46Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for heating the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0322Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIBIIICVI chalcopyrite compounds, e.g. Cu In Se2, Cu Ga Se2, Cu In Ga Se2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00277Apparatus
    • B01J2219/00279Features relating to reactor vessels
    • B01J2219/00331Details of the reactor vessels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00274Sequential or parallel reactions; Apparatus and devices for combinatorial chemistry or for making arrays; Chemical library technology
    • B01J2219/00583Features relative to the processes being carried out
    • B01J2219/00594Gas-phase processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/0445PV modules or arrays of single PV cells including thin film solar cells, e.g. single thin film a-Si, CIS or CdTe solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本实用新型公开一种制备铜铟镓硒化合物的装置,所述装置包括L型石英管(1),高温合成区(3)、低温蒸发区(2),加热装置(5),封泡(4),其中:所述高温合成区(3)和低温蒸发区(2)分别设置在L型石英管(1)的两端;所述加热装置(5)间隔设置在L型石英管(1)的周围,用于对L型石英管(1)加热,并形成梯度温度;所述L型石英管一端封闭,另一端开放并设置有缩口,通过封泡(4)进行密封。利用本实用新型的装置制备的铜铟镓硒合金工艺流程简单,成分均匀,易于控制。

Description

一种制备铜铟镓硒化合物的装置
技术领域
本发明涉及一种合金制备反应装置,具体涉及一种制备铜铟镓硒化合物的装置。
背景技术
众所周知,CIGS薄膜电池是最具潜力的一种薄膜太阳能电池, 目前产业上制备CIGS的主流方法为共蒸发法和磁控溅射法,基于前两种方法的高真空性,无论从设备还是工艺角度,成本都比较高,因此,类似印刷等非真空低成本制备CIGS的技术被业界不断推动。
当前非真空印刷CIGS涂布浆料或胶体的制备主要有两种方法,第一,采用化学合成方法制备CIGS纳米材料并进一步调制成浆料,但是化学合成CIGS纯度低,制备的CIGS薄膜少子寿命低,因此目前采用该种吸收层的电池效率比较低;第二,采用四种单质粉末或几种二三元化合物粉末调配涂布原材料,这种浆料在成膜进一步反应形成四元化合物时反应难于控制,不充分的反应会造成组分失配,同时,较高的反应温度也易于造成硒组分的大量流失,从而制备的CIGS薄膜质量差。
另外,制备渐变带隙的CIGS薄膜有利于提高薄膜光吸收层的转化效率,而当前印刷制备CIGS薄膜局限于CIGS材料的制备方法,多为单一固定组分CIGS,不利于高效电池的制备。
发明内容
针对上述问题,本发明提供一种能够精准控制CIGS合金成分的铜铟镓硒化合物的制备装置。
为达到上述目的,本发明提供一种制备铜铟镓硒化合物的装置,所述装置包括L型石英管(1),高温合成区(3)、低温蒸发区(2),加热装置(5),封泡(4),其中:
所述高温合成区(3)和低温蒸发区(2)分别设置在L型石英管(1)的两端;
所述加热装置(5)间隔设置在L型石英管(1)的周围,用于对L型石英管(1)加热,并形成梯度温度;
所述L型石英管一端封闭,另一端开放并设置有缩口,通过封泡(4)进行密封。
进一步地,所述高温合成区(3)和低温蒸发区(2)均为石英舟。
进一步地,所述高温合成区(3)和低温蒸发区(2)均为坩埚。
进一步地,所述高温合成区(3)和低温蒸发区(2)均为凹坑,所述凹坑设置在L型石英管(1)上。
进一步地,所述高温合成区(3)位于L型石英管(1)的长边的一端,所述低温蒸发区(2)位于L型石英管(1)的短边的一端。
进一步地,所述L型石英管(1)的长边长度为1100-1600mm,短边长度为400-700mm,L型石英管(1)的直径为60-80mm,所述封泡长度为200mm,直径为50mm。
进一步地,加热装置(5)为电加热线圈,其环绕在L型石英管(1)外表面,并且间隔设置。
进一步地,所述缩口在L型石英管(1)的长边的一端,所述封泡(4)与缩口匹配能够将开口密封。
进一步地,所述石英舟直径为66mm,长为300mm的半管。
通过L型管的设置和温度梯度的设置,避免了Se蒸汽的沉降在管臂上,保证了Se和CuInGa的充分化合反应,由于油墨的铜铟镓硒含量可控,实现了制作不同铟镓比的铜铟镓硒化合物的,制备出的化合物更加均匀,更加可控。
附图说明
图1是本发明制备铜铟镓硒化合物的装置示意图。
图2是本发明实施例4中涂布完第一层油墨后的示意图;
图3为本发明实施例4中第一层油墨烘干后的示意图;
图4是本发明实施例4中涂布完第二层油墨后的示意图;
图5是本发明实施例4中退火后形成铜铟镓硒光吸收层薄膜的示意图。
具体实施方式
下面结合说明书附图对本发明做进一步的描述。
以下,仅为本发明的较佳实施例,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应该以权利要求所界定的保护范围为准。
实施例1
为一种制备铜铟镓硒化合物的装置,所述装置包括L型石英管(1),高温合成区(3)、低温蒸发区(2),加热装置(5),封泡(4),其中:所述高温合成区(3)和低温蒸发区(2)分别设置在L型石英管(1)的两端;所述加热装置(5)间隔设置在L型石英管(1)的周围,用于对L型石英管(1)加热,并形成梯度温度;所述L型石英管一端封闭,另一端开放并设置有缩口,通过封泡(4)进行密封。
所述高温合成区(3)和低温蒸发区(2)均为石英舟。
所述高温合成区(3)位于L型石英管(1)的长边的一端,所述低温蒸发区(2)位于L型石英管(1)的短边的一端。
所述L型石英管(1)的长边长度为1500mm,短边长度为500mm,L型石英管(1)的直径为75mm,所述封泡长度为200mm,直径为50mm。
加热装置(5)为电加热线圈,其环绕在L型石英管(1)外表面,并且间隔设置。
所述缩口在L型石英管(1)的长边的一端,所述封泡(4)与缩口匹配能够将开口密封。
所述石英舟直径为66mm,长为300mm的半管。
所述电加热线圈对应石英舟半管位置的长度为300mm,两个对应石英舟位置的电加热线圈之间间隔设置长度为200mm的电加热线圈,电加热线圈之间的间隔为100mm。
本实施例提供利用上述装置制备铜铟镓硒化合物的制备方法,步骤如下:
S1提供一真空容器,真空容器包括间隔设置的高温合成区1和低温蒸发区2;
S2将铜、铟、镓单质放置在高温合成区1,将硒单质放置在低温蒸发区2;
S3将高温合成区1的铜、铟、镓加热至熔融状态,将低温蒸发区2的硒加热至气态状态;低温蒸发区2的硒开始转变为气态的时间不早于铜铟镓熔融的时间;
S4将高温合成区1和低温蒸发区2保温;
S5将高温合成区1温度降至不低于铜铟镓硒合金的熔融温度并进行保温,然后将高温合成区1和低温蒸发区2降温至100℃以下;
在上述步骤中,始终保持低温蒸发区2与高温合成区1之间存在正向温度梯度。
在S1中,提供一种容器,该容器可以为石英管、陶瓷管等采用耐高温材质制备的具有一定刚性的容器。将真空容器中具有一定间隔的部分分别作为高温合成区1和低温蒸发区2。当物料放入上述的容器中后,将容器内的气压抽至10-1Pa或者以下就成为真空容器。真空容器内的气压可以为10-1Pa、10-2Pa、10-3Pa或者10-4Pa。
在S2中,使用纯度大于5N的Cu、In、Ga和Se单质为原材料,各单质质量按照组分CuIn0.7Ga0.3Se2.05去称配,将Se单质置于L型石英管短端的石英舟内,将Cu、In、Ga单质置于L型石英管长端的石英舟内,将石英管抽真空至10-2Pa以下封管放入电热炉中,盛有Se单质的石英舟对应炉中低温蒸发区2,盛有CuInGa单质的石英舟对应高温合成区1。当然,也可以不采用石英舟盛放物料而采用其他耐高温的容器盛放,例如采用坩埚盛放物料。如果在容器的高温合成区1和低温蒸发区2具有凹坑,可以不采用其他容器盛放物料,直接将物料置于凹坑内。
上述铜铟镓硒化合物的成分并不对本发明的制备的铜铟镓硒化合物的成分形成限定,例如,还可以制备以下组分的铜铟镓硒化合物CuIn0.85Ga0.15Se2.05,CuIn0.9Ga0.1Se2,CuIn0.8Ga0.2Se2,CuIn0.75Ga0.25Se2;在上述铜铟镓硒化合物的制备过程中,称量时应当按照铟和镓的摩尔分数之和应当与铜的摩尔分数基本相等进行计算,而硒的摩尔分数应当大于铜的摩尔分数的两倍进行计算;例如硒的摩尔分数可以为铜的2.1倍、2.2倍、2.3倍、2.4倍或者2.5倍。采用过量的硒放置在低温蒸发区2,这样,在整个反应过程中,由于硒是过量的,能够始终保持在硒蒸汽的氛围中进行反应。
在S3中,调整高温合成区和低温合成区之间的温控功率,形成从低温到高温的线性温度梯度区间。高温合成区1设定85min-90min升温至1100℃-1150℃,当高温合成区1启动升温55min-60min时,高温合成区1的温度升至700℃-750℃,此时启动低温蒸发区2升温,设定55min-60min升温至550℃-600℃。
在S4中,待低温蒸发区2达到最高温度后保持6h。保温时间可以根据物料的数量、反应类型等条件进行计算。
在S5中,将高温合成区设定为15min降温至950-1000℃,再保持1.5h-2h,之后关闭所有温区加热装置随炉冷却至100℃以下,在高温合成区1端石英舟内得到CIGS四元化合物,合成的CIGS化合物组分为CuIn0.7Ga0.3Se2
为了保证硒蒸汽在输运过程中不会凝结在石英管的内壁上,需要保证有低温蒸发区2道高温合成区1之间具有正向的温度梯度,为了保证蒸汽输运速率的稳定性,最好控制整个石英管的低温蒸发区2到高温合成区1之间具有线性的温度梯度。
本实施例的铜铟镓硒化合物制备方法中,首先将铜铟镓加热至熔融状态,使铜铟镓首先开始反应,然后将硒加热升华为气态,使真空容器中形成硒氛围,从而将铜铟镓进行硒化。为了使铜铟镓在硒化过程中能够均匀硒化,本发明需要保证铜铟镓的熔融时间不晚于硒开始升华的时间。另外,为了保证硒蒸汽的能够以稳定的速率向高温合成区1输送,需要保证低温蒸发区2向高温合成区1始终具有一个正向的温度梯度。
实施例2
本实施例提供一种制备CIGS油墨的方法,包括以下步骤:
S1将上述实施例1制备的铜铟镓硒化合物研磨成粉末状;
S2向所述粉末中加入溶剂、粘结剂和分散剂并搅拌均匀形成;
S3将混合物经过加热蒸发或静置挥发,除去溶剂形成浆料。
在S1中,可以使用氧化锆行星球磨机将实施例1制备的CIGS化合物研磨成纳米粉末,当然,粉碎CIGS化合物的方法并不限于氧化锆行星球磨机,也可以采用其他方式,只要能够将CIGS粉碎成纳米粉末即可。
在S2中,将铜铟镓硒化合物粉末与溶剂、粘结剂以及分散剂进行混合;将上述的混合物进行搅拌超声形成均匀的混合物。溶剂可以采用乙醇、甲醇或者两者的混合物;粘结剂采用乙基纤维素、纤维素衍生物或者两者的混合物;分散剂采用萜品醇、特丁醇或者两者的混合物。
在S3中,用旋转蒸发仪蒸发掉上述预调浆料中的无水乙醇能够得到CIGS的印刷浆料。在超声搅拌过程中,乙基纤维素、纤维素衍生物或者两者的混合物溶于萜品醇、特丁醇或者两者的混合物中形成液态的粘合相,而无水乙醇则用来将粘合相的粘度调节至合适的范围,便于铜铟镓硒合金的均匀分布,分布完成后,将其中的无水乙醇蒸发掉,最终铜铟镓硒合金的粉末均匀的悬浮于上述的液态物中,形成铜铟镓硒油墨。
蒸发掉无水乙醇的方法是采用旋转蒸发仪进行蒸发,该方式并不对本发明中蒸发乙醇的方法形成限制,例如,还可以采用降压蒸发的方法去除无水乙醇,或者对混合物进行加热蒸发掉其中的无水乙醇,甚至可以将混合物置于室温下待无水乙醇自然蒸发。
实施例3
本实施例提供一种制备铜铟镓硒光吸收层的制备方法,将实施例3制备的铜铟镓硒油墨利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上进行浆料的涂布,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度150℃-250℃,烘干时间3min-5min,退火温度450℃-550℃,退火时间10min-15min,最终得到具有CIGS薄膜吸收层。
在本实施例中,实施例3制备的油墨在镀Mo的钠钙玻璃或者不锈钢衬底上,然后对浆料进行烘干,烘干过程中能够将液态的粘合相蒸发掉或者分解掉,而铜铟镓硒粉末则会留在衬底上,然后将铜铟镓硒粉末进行退火,退火的过程中,铜铟镓硒粉末会生长形成铜铟镓硒的光吸收层,制备油墨采用的是铜铟镓硒合金,因此,在退火过程中不需要将其加热到铜铟镓硒的反应温度,只需要加热到退火温度使粉末生长成膜。
由于本发明的铜铟镓硒合金的制备方法在制备过程中能够精准的控制铜铟镓硒合金的成分,因此,采用本实施例的铜铟镓硒光吸收层的制备方法制备的薄膜同样可以控制光吸收层的成分,从而能够控制光吸收层的带隙宽度。
实施例4
如图2-5所示,本实施例提供一种铜铟镓硒光吸收层的制备方法,利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上先进行浆料一的涂布,如图2所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料一的衬底转移进入烧结炉进行浆料烘干,烘干温度150℃-250℃,烘干时间2min-3min,如图3所示。选用浆料二在附着有烘干的浆料一的衬底上进行二次印刷,如图4所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料二的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度150℃-250℃,烘干时间3min-5min,退火温度450℃-550℃,退火时间10min-15min,最终得到具有双带隙的CIGS薄膜吸收层, 如图5所示。
在本实施例中,浆料一是将实施例2中制备的铜铟镓硒合金按照实施例3的制备方法制备的浆料,浆料二是将实施例1中制备的铜铟镓硒合金按照实施例3的制备方法制备的浆料。
当然,上述浆料中采用的浆料并不对本实施例的浆料选用形成限定,并且,上述的浆料印刷次数也不能对本发明的浆料印刷次数形成限定。
例如,还可以采用CuIn0.9Ga0.1Se2,CuIn0.8Ga0.2Se2,CuIn0.75Ga0.25Se2等成分的铜铟镓硒合金制备的浆料进行三次或者三次以上的印刷,但是,在印刷过程中要始终注意,相邻两层油墨中靠近向阳面的一层油墨的铟镓含量比值低于远离向阳面的一层油墨的铟镓含量比值;这样,能够保证渐进带隙的光吸收层由向阳面向背阳面的带隙逐渐变窄,从而,长波长的光能够通过前一吸收层而被后一吸收层吸收。这样,各个波长的光被由向阳面向背阳面排列的各吸收层逐层吸收,能够提高光吸收率。
实施例5
首先制备铜铟镓硒化合物,步骤如下:
S1提供一真空容器,真空容器包括间隔设置的高温合成区1和低温蒸发区2;
S2将铜、铟、镓单质放置在高温合成区1,将硒单质放置在低温蒸发区2;
S3将高温合成区1的铜、铟、镓加热至熔融状态,将低温蒸发区2的硒加热至气态状态;低温蒸发区2的硒开始转变为气态的时间不早于铜铟镓熔融的时间;
S4将高温合成区1和低温蒸发区2保温;
S5将高温合成区1温度降至不低于铜铟镓硒合金的熔融温度并进行保温,然后将高温合成区1和低温蒸发区2降温至100℃以下;
在上述步骤中,始终保持低温蒸发区2与高温合成区1之间存在正向温度梯度。
S1,提供一真空容器,所述真空容器为L型石英管,真空容器包括高温合成区和低温蒸发区,将真空容器中具有一定间隔的部分分别作为高温合成区1和低温蒸发区2,所述L型石英管的两端分别为高温合成区和低温蒸发区,高温合成区放置盛有铜铟硒单质的石英舟,在低温蒸发区放置盛有硒单质的石英舟;
S2,使用纯度大于5N的Cu、In、Ga和Se单质为原材料,各单质质量按照组分CuIn0.8Ga0.2Se2.05去称配,将Se单质置于L型石英管短端的石英舟内,将Cu、In、Ga单质置于L型石英管长端的石英舟内,将石英管抽真空至10-3Pa以下封管放入电热炉中,盛有Se单质的石英舟对应炉中低温蒸发区2,盛有CuInGa单质的石英舟对应高温合成区1。
在S3中,调整高温合成区和低温合成区之间的温控功率,形成从低温到高温的线性温度梯度区间。高温合成区1设定88min升温至1125℃,当高温合成区1启动升温55min时,高温合成区1的温度升至725℃,此时启动低温蒸发区2升温,设定56min升温至575℃。
在S4中,待低温蒸发区2达到575℃后,将高温合成区温度和低温蒸发区温度保持6h。在S5中,将高温合成区设定为15min降温至960℃,再保持2h,之后关闭所有温区加热装置随炉冷却至100℃以下,在高温合成区1端石英舟内得到CIGS四元化合物,合成的CIGS化合物组分为CuIn0.8Ga0.2Se2
为了保证硒蒸汽在输运过程中不会凝结在石英管的内壁上,需要保证有低温蒸发区2道高温合成区1之间具有正向的温度梯度,为了保证蒸汽输运速率的稳定性,最好控制整个石英管的低温蒸发区2到高温合成区1之间具有线性的温度梯度。
接着利用上述CIGS四元化合物制备CIGS油墨,包括以下步骤:
S1,用氧化锆行星球磨机将制备的CIGS化合物研磨成纳米粉末。
S2,将铜铟镓硒化合物粉末与溶剂、粘结剂以及分散剂进行混合;将上述的混合物进行搅拌超声形成均匀的混合物。溶剂为乙醇;粘结剂为乙基纤维素;分散剂为萜品醇。
S3,用旋转蒸发仪蒸发掉上述预调浆料中的无水乙醇能够得到CIGS的印刷浆料。在超声搅拌过程中,乙基纤维素溶于萜品醇中形成液态的粘合相,而无水乙醇则用来将粘合相的粘度调节至合适的范围,便于铜铟镓硒合金的均匀分布,分布完成后,将其中的无水乙醇蒸发掉,最终铜铟镓硒合金的粉末均匀的悬浮于上述的液态物中,形成铜铟镓硒油墨。
利用上述制备得到的铜铟镓硒油墨制备铜铟镓硒光吸收层的制备方法,将制备的铜铟镓硒油墨利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上进行浆料的涂布,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度180℃,烘干时间4min,退火温度500℃,退火时间13min,最终得到具有CIGS薄膜吸收层。
另一种利用上述铜铟镓硒油墨的制备铜铟镓硒光吸收层的方法,利用丝网印刷在镀Mo的钠钙玻璃或者不锈钢衬底上先进行浆料一的涂布,如图2所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料一的衬底转移进入烧结炉进行浆料烘干,烘干温度160℃,烘干时间3min,如图3所示。选用浆料二在附着有烘干的浆料一的衬底上进行二次印刷,如图4所示,涂布方式可根据薄膜电池整体工艺要求进行间断涂布或者连续涂布。将涂布浆料二的衬底转移进入连续烧结炉进行浆料烘干和退火,烘干温度200℃,烘干时间4min,退火温度525℃,退火时间13min,最终得到具有双带隙的CIGS薄膜吸收层, 如图5所示。
由于本发明的铜铟镓硒合金制备方法在制备过程中能够精准的控制铜铟镓硒合金的成分,因此,在制备渐进带隙的光吸收层时,能够控制各个吸收层的铜铟镓硒的成分,也就能够控制各个吸收层的带隙宽度,从而,使印刷的方法制备渐进带隙的光吸收层能够实现。
以上实施例仅用于对本发明进行具体说明,其并不对本发明的保护范围起到任何限定作用,本发明的保护范围由权利要求确定。根据本领域的公知技术和本发明所公开的技术方案,可以推导或联想出许多变型方案,所有这些变型方案,也应认为是本发明的保护范围。

Claims (9)

1.一种制备铜铟镓硒化合物的装置,其特征在于:所述装置包括L型石英管(1),高温合成区(3)、低温蒸发区(2),加热装置(5),封泡(4),其中:
所述高温合成区(3)和低温蒸发区(2)分别设置在L型石英管(1)的两端;
所述加热装置(5)间隔设置在L型石英管(1)的周围,用于对L型石英管(1)加热,并形成梯度温度;
所述L型石英管一端封闭,另一端开放并设置有缩口,通过封泡(4)进行密封。
2.如权利要求1所述的制备铜铟镓硒化合物的装置,其特征在于,所述高温合成区(3)和低温蒸发区(2)均为石英舟。
3.如权利要求1所述的制备铜铟镓硒化合物的装置,其特征在于,所述高温合成区(3)和低温蒸发区(2)均为坩埚。
4.如权利要求1所述的制备铜铟镓硒化合物的装置,其特征在于,所述高温合成区(3)和低温蒸发区(2)均为凹坑,所述凹坑设置在L型石英管(1)上。
5.如权利要求1-4之一所述的制备铜铟镓硒化合物的装置,其特征在于,所述高温合成区(3)位于L型石英管(1)的长边的一端,所述低温蒸发区(2)位于L型石英管(1)的短边的一端。
6.如权利要求5所述的制备铜铟镓硒化合物的装置,其特征在于,所述L型石英管(1)的长边长度为1100-1600mm,短边长度为400-700mm,L型石英管(1)的直径为60-80mm,所述封泡长度为200mm,直径为50mm。
7.如权利要求1-4之一所述的制备铜铟镓硒化合物的装置,其特征在于,加热装置(5)为电加热线圈,其环绕在L型石英管(1)外表面,并且间隔设置。
8.如权利要求1-4、6之一所述的制备铜铟镓硒化合物的装置,其特征在于,所述缩口在L型石英管(1)的长边的一端,所述封泡(4)与缩口匹配能够将开口密封。
9.如权利要求2所述的制备铜铟镓硒化合物的装置,其特征在于,所述石英舟直径为66mm,长为300mm的半管。
CN201721463168.1U 2017-11-06 2017-11-06 一种制备铜铟镓硒化合物的装置 Active CN207398068U (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN201721463168.1U CN207398068U (zh) 2017-11-06 2017-11-06 一种制备铜铟镓硒化合物的装置
EP18195753.1A EP3480857A1 (en) 2017-11-06 2018-09-20 Device for preparing multi-element alloy compound
PCT/CN2018/107005 WO2019085679A1 (zh) 2017-11-06 2018-09-21 一种制备多元合金化合物的装置
US16/139,111 US20190136345A1 (en) 2017-11-06 2018-09-24 Device for preparing multi-element alloy compound
CA3018689A CA3018689A1 (en) 2017-11-06 2018-09-26 Device for preparing multi-element alloy compound
JP2018003730U JP3219221U (ja) 2017-11-06 2018-09-26 多元合金化合物の製造装置
KR2020180004447U KR20190001161U (ko) 2017-11-06 2018-09-27 다성분 합금 화합물을 제조하는 장치
AU2018101483A AU2018101483A4 (en) 2017-11-06 2018-10-04 Device for preparing multi-element alloy compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201721463168.1U CN207398068U (zh) 2017-11-06 2017-11-06 一种制备铜铟镓硒化合物的装置

Publications (1)

Publication Number Publication Date
CN207398068U true CN207398068U (zh) 2018-05-22

Family

ID=62324882

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201721463168.1U Active CN207398068U (zh) 2017-11-06 2017-11-06 一种制备铜铟镓硒化合物的装置

Country Status (8)

Country Link
US (1) US20190136345A1 (zh)
EP (1) EP3480857A1 (zh)
JP (1) JP3219221U (zh)
KR (1) KR20190001161U (zh)
CN (1) CN207398068U (zh)
AU (1) AU2018101483A4 (zh)
CA (1) CA3018689A1 (zh)
WO (1) WO2019085679A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085679A1 (zh) * 2017-11-06 2019-05-09 北京铂阳顶荣光伏科技有限公司 一种制备多元合金化合物的装置
WO2019085678A1 (zh) * 2017-11-06 2019-05-09 北京铂阳顶荣光伏科技有限公司 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法
CN112680781A (zh) * 2020-12-09 2021-04-20 清远先导材料有限公司 碲化镉晶体生长装置及其生长方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818636A (en) * 1981-12-30 1989-04-04 Stauffer Chemical Company Films of catenated phosphorus materials, their preparation and use, and semiconductor and other devices employing them
JPS59113180A (ja) * 1982-12-21 1984-06-29 Fuji Electric Co Ltd 蒸着装置
JP3026504B2 (ja) * 1990-10-09 2000-03-27 東京エレクトロン株式会社 トラップ装置
US7582506B2 (en) * 2005-03-15 2009-09-01 Solopower, Inc. Precursor containing copper indium and gallium for selenide (sulfide) compound formation
CN102071329B (zh) * 2010-11-25 2012-04-25 清远先导材料有限公司 一种铜铟镓硒合金的制备方法
CN103088301B (zh) * 2013-01-17 2015-07-01 中国科学院过程工程研究所 一种铜铟镓硒薄膜的硒化处理装置、方法及铜铟镓硒薄膜器件
CN103255367B (zh) * 2013-04-28 2015-07-29 柳州百韧特先进材料有限公司 太阳能电池cigs吸收层靶材的制备方法
CN108039392A (zh) * 2017-11-06 2018-05-15 北京汉能薄膜发电技术有限公司 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
CN207398068U (zh) * 2017-11-06 2018-05-22 北京汉能薄膜发电技术有限公司 一种制备铜铟镓硒化合物的装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019085679A1 (zh) * 2017-11-06 2019-05-09 北京铂阳顶荣光伏科技有限公司 一种制备多元合金化合物的装置
WO2019085678A1 (zh) * 2017-11-06 2019-05-09 北京铂阳顶荣光伏科技有限公司 多元合金化合物及其油墨、薄膜吸收层和它们的制备方法
CN112680781A (zh) * 2020-12-09 2021-04-20 清远先导材料有限公司 碲化镉晶体生长装置及其生长方法
CN112680781B (zh) * 2020-12-09 2023-10-03 清远先导材料有限公司 碲化镉晶体生长装置及其生长方法

Also Published As

Publication number Publication date
US20190136345A1 (en) 2019-05-09
JP3219221U (ja) 2018-12-06
CA3018689A1 (en) 2019-05-06
EP3480857A1 (en) 2019-05-08
WO2019085679A1 (zh) 2019-05-09
KR20190001161U (ko) 2019-05-15
AU2018101483A4 (en) 2018-11-08

Similar Documents

Publication Publication Date Title
CN108039392A (zh) 铜铟镓硒化合物、油墨及其薄膜吸收层制备方法
CN207398068U (zh) 一种制备铜铟镓硒化合物的装置
US20190311889A1 (en) Synthesis of high-purity bulk copper indium gallium selenide materials
US9196768B2 (en) Method and apparatus for depositing copper—indium—gallium selenide (CuInGaSe2-CIGS) thin films and other materials on a substrate
US8323408B2 (en) Methods and apparatus to provide group VIA materials to reactors for group IBIIIAVIA film formation
CN102712996A (zh) 溅射靶、化合物半导体薄膜、具有化合物半导体薄膜的太阳能电池以及化合物半导体薄膜的制造方法
CN109652762A (zh) 一种锑硫硒合金薄膜的制备方法
Sun et al. High-sulfur Cu2ZnSn (S, Se) 4 films by sulfurizing as-deposited CZTSe film: The evolutions of phase, crystallinity and S/(S+ Se) ratio
Chen et al. Low-temperature growth of Na doped CIGS films on flexible polymer substrates by pulsed laser ablation from a Na containing target
Long et al. Mechanistic aspects of preheating effects of precursors on characteristics of Cu2ZnSnS4 (CZTS) thin films and solar cells
Atasoy et al. Cu (In, Ga)(Se, Te) 2 films formed on metal foil substrates by a two-stage process employing electrodeposition and evaporation
US20140256082A1 (en) Method and apparatus for the formation of copper-indiumgallium selenide thin films using three dimensional selective rf and microwave rapid thermal processing
JP2011091228A (ja) 光導変換半導体層の製造方法
US20190301050A1 (en) Single-Crystal Production Equipment and Single-Crystal Production Method
CN210956716U (zh) 一种持续提供活性硒的装置
CN104505462A (zh) 一种有机金属卤化物薄膜及其制备方法与应用
CN105742385B (zh) 一种铜铁锌锡硫微米单晶颗粒及其制备方法和在制备太阳能电池方面的应用
CN109402573B (zh) 一种大尺寸基板蒸镀装置及利用该蒸镀装置制备CdTe太阳能镀膜的方法
CN105118878B (zh) Cigs的锑化合物掺杂方法
CN105803392B (zh) 一种Na掺杂Cu2ZnSn(S1-xSex)4薄膜的制备方法
CN218842321U (zh) 一种用于多阶段硒化硫化制备铜铟镓硒硫薄膜的装置
Ma et al. Effect of aluminum incorporation on the microstructure and electrical properties of Cu (InGaAl) Se2 targets
CN101698931B (zh) 一种制备超晶格热电薄膜材料的双闪蒸法装置
Chang et al. CuInSe2 coatings prepared using solvothermal-synthesized CuInSe2 particles
Forbes et al. Rf sputtering of high-quality Cu/In precursor layers and conversion to CuInS 2 using elemental sulfidization processes

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180724

Address after: 100176 Beijing Daxing District Beijing economic and Technological Development Zone Rongchang East Street 7 hospital 6 Building 3001 room.

Patentee after: BEIJING BOYANG DINGRONG PHOTOVOLTAIC TECHNOLOGY CO., LTD.

Address before: No. 0-A, Chaoyang District, Beijing, Beijing

Patentee before: Beijing hina film Power Technology Co. Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20190505

Address after: 224051 Nanyang Town Sanjian Neighborhood Committee Group II (Hanneng Industrial Park) 4,5 blocks in Tinghu District, Yancheng City, Jiangsu Province

Patentee after: Jiangsu Yancheng Grabao Equipment Technology Co., Ltd.

Address before: 100176 Beijing Daxing District Beijing economic and Technological Development Zone Rongchang East Street 7 hospital 6 Building 3001 room.

Patentee before: BEIJING BOYANG DINGRONG PHOTOVOLTAIC TECHNOLOGY CO., LTD.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210422

Address after: 518054 Room 201, building a, No.1 Qianwan 1st Road, Haishen Hong Kong cooperation zone, Shenzhen City, Guangdong Province

Patentee after: Hongyi Technology Co.,Ltd.

Address before: 224051 Nanyang Town Sanjian Neighborhood Committee Group II (Hanneng Industrial Park) 4,5 blocks in Tinghu District, Yancheng City, Jiangsu Province

Patentee before: Jiangsu Yancheng Grabao Equipment Technology Co.,Ltd.