CN205539232U - 一种开关电源用指示电路 - Google Patents

一种开关电源用指示电路 Download PDF

Info

Publication number
CN205539232U
CN205539232U CN201620058754.7U CN201620058754U CN205539232U CN 205539232 U CN205539232 U CN 205539232U CN 201620058754 U CN201620058754 U CN 201620058754U CN 205539232 U CN205539232 U CN 205539232U
Authority
CN
China
Prior art keywords
terminal
network
side winding
inductance
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201620058754.7U
Other languages
English (en)
Inventor
王保均
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mornsun Guangzhou Science and Technology Ltd
Original Assignee
Mornsun Guangzhou Science and Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mornsun Guangzhou Science and Technology Ltd filed Critical Mornsun Guangzhou Science and Technology Ltd
Priority to CN201620058754.7U priority Critical patent/CN205539232U/zh
Application granted granted Critical
Publication of CN205539232U publication Critical patent/CN205539232U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Rectifiers (AREA)

Abstract

一种开关电源用指示电路,二极管LED和电阻R串联后与电容C并联,并联后再与二极管D同向串联,串联后和电感L并联形成指示电路,指示电路的阴极为1端子,指示电路的阳极为2端子,断开反激式开关电源中整流桥与滤波电解电容之间的充电回路,***指示电路,当滤波电解电容正常时,主功率级的激磁电流基本上不出现在电感L中,LED不发光;当电解电容的ESR上升较大时,主功率级的激磁电流出现在L中,且开关电源中开关管关断时,流过L的激磁电流无法突变,经过二极管D续流,经电容C滤波后驱动LED发光,LED可以是光耦的发光器,这样来提醒使用者:滤波电容的ESR已上升,开关电源已存在失效的风险,避免损失的扩大,具有成本低、实施容易的特点。

Description

一种开关电源用指示电路
技术领域
本实用新型涉及指示电路,特别涉及开关电源中电解电容寿命接近结束时的指示电路。
背景技术
目前,开关电源应用很广,对于输入功率在75W以下,对功率因数(PF,Power Factor,也称功率因素)不作要求的场合,反激式(Fly-back)开关电源具有迷人的优势:电路拓扑简单,输入电压范围宽。反激式开关电源由于元件少,电路的可靠性相对就高,所以应用很广。很多文献也称为反激开关电源、反激电源,日本和中国台湾地区又称返驰式变换器。常见的拓扑如图1所示,该图原型来自张兴柱博士所著的书号为ISBN978-7-5083-9015-4的《开关电源功率变换器拓扑与设计》第60页。由整流桥101、滤波电路200、以及基本反激拓扑单元电路300组成,300简称为主功率级,实用的电路在整流桥前还加有压敏电阻、NTC热敏电阻、EMI(Electromagnetic Interference)等保护电路,以确保反激电源的电磁兼容性达到使用要求。
滤波电路200一般由电解电容CL等构成。随着工业领域中智能化***的推广,小功率反激电源向各个领域渗透,而其不足之处也随之体现出来,因为使用了电解电容CL,而该电解电容的特性也因此限制了图1反激电源的用途,电解电容在高温和低温下的寿命一直是业界难题,众所周知,电容CL经常为400V耐压的电解电容,而耐压大于250V的电解电容,其低温一般只能工作到-25℃。即在-40℃的环境下,如东北三省、新疆、以及高纬度的国家与地区,小功率反激电源的使用变得棘手,当然,可以使用如CBB薄膜电容来滤波,但体积过大,且成本过高。
电解电容单位体积的电容量非常大,所以在包括反激电源的开关电源中,特别是交流输入的领域,目前仍是低成本的解决方案,在各种电源中应用极多,如各种手机充电器、笔记本电脑适配器、各种彩电的电源、台式电脑电源、空调的待机电源等,都要用到开关电源,同时也使用了电解电容。
电解电容在反激式开关电源中作为输入整流滤波电容使用时,其纹波电流是:充电为低频脉动直流电流,放电为高频纹波电流放电,高频纹波电流来源于主功率级的激磁电流。
设计一台开关电源时,经常面临电解电容CL的寿命问题,而它的寿命一般由耐压、等效串联电阻(ESR,是Equivalent Series Resistance的缩写)、纹波电流(Ripple current)、损耗角(tgδ)等因素所决定,特别是最大纹波电流,又称为最大允许纹波电流,即额定纹波 电流(IRAC),其定义为:在最高工作温度条件下电容器最大所能承受的交流纹波电流有效值。并且指定的纹波电流为标准频率(一般为100Hz-120Hz)的正弦波绝对值。
在实际使用中,很多反激电源达不到使用寿命,其主因就是滤波用的电解电容提前失效,很多要求较高的场合,采用了冗余设计,使用两个开关电源互为备份,坏了一个,还可以正常工作,成本高,仍然不知道开关电源是什么时间失效。
即使在其它的应用场合,如带有PFC功能的大功率开关电源,先由BOOST电路升至380V,对电解电容充电,得到较为平滑的直流电,再对双管正激或LLC变换器供电,同样,对该电解电容的失效并不能提前知道。
常见的非冗余设计场合,一旦开关电源失效,将会引起很多连带失效,从而使得损失被扩大,据统计,开关电源失效,97%以上是由滤波的电解电容先行失效引起的。
现有的使用电解电容的开关电源,尚不能对电解电容的失效进行有效的预先告知。
实用新型内容
有鉴于此,本实用新型提供一种指示电路,在开关电源中滤波电解电容失效前,提供指示,实现在开关电源失效前,更换滤波用的电解电容,或更换开关电源,从而让***正常工作。
本实用新型提供的一种指示电路的方案一,包括第一端子、第二端子、第一电感、第一发光二极管,第一发光二极管和第一电感并联,第一发光二极管的阴极和第一电感的连接点形成第一端子,第一发光二极管的阳极和第一电感的连接点形成第二端子。
优选地,本实用新型提供的一种指示电路的方案二,还包括第一二极管,其连接关系为:第一二极管和第一发光二极管同向串联并形成第一网络,第一网络和第一电感并联,第一网络的阴极和第一电感的连接点形成第一端子,第一网络的阳极和第一电感的连接点形成第二端子。
优选地,本实用新型提供的一种指示电路的方案三,还包括第一电阻,其连接关系为:第一二极管、第一发光二极管和第一电阻同向串联并形成第二网络,第二网络和第一电感并联,第二网络的阴极和第一电感的连接点形成第一端子,第二网络的阳极和第一电感的连接点形成第二端子。
优选地,本实用新型提供的一种指示电路的方案四,还包括第一电容,其连接关系为:第一发光二极管和第一电阻串联后与第一电容并联,并联后形成的第三网络再与第一二极管同向串联,并形成第四网络,第四网络和第一电感并联,第四网络的阴极和第一电感的连接点形成第一端子,第四网络的阳极和第一电感的连接点形成第二端子。
以上的技术方案中,指示灯即第一发光二极管和充电回路没有隔离,本实用新型还提供的一种指示电路的方案五,实现了隔离功能,包括第一端子、第二端子、第一变压器、第一发光二极管,第一变压器至少包括一个原边绕组和一个副边绕组,第一发光二极管和第一变压器的副边绕组并联,且与第一发光二极管的阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为第一端子,原边绕组的另一端子作为第二端子。
优选地,本实用新型提供的一种指示电路的方案六,还包括第一二极管,其连接关系为:第一二极管和第一发光二极管同向串联并形成第一网络,第一网络和第一变压器的副边绕组并联,且与阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为第一端子,原边绕组的另一端子作为第二端子。
优选地,本实用新型提供的一种指示电路的方案七,还包括第一电阻,其连接关系为:第一二极管、第一发光二极管和第一电阻同向串联并形成第二网络,第二网络和第一变压器的副边绕组并联,且与第二网络的阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为第一端子,原边绕组的另一端子作为第二端子。
优选地,本实用新型提供的一种指示电路的方案八,还包括第一电容,其连接关系为:
第一发光二极管和第一电阻串联后与第一电容并联,并联后形成的第三网络再与第一二极管同向串联,并形成第四网络,第四网络和第一变压器的副边绕组并联,且与第四网络的阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为第一端子,原边绕组的另一端子作为第二端子。
优选地,上述的方案一、方案二、方案三、方案四,其特征是:第一电感为电路板上的一段导线。
优选地,上述的方案五、方案六、方案七、方案八,其特征是:第一变压器的原边绕组为电路板上的一段导线。
优选地,上述的方案一、方案二、方案三、方案四、方案五、方案六、方案七、方案八,其特征是:第一发光二极管为光耦中的发光器,即光耦中的发光二极管。
优选地,上述的所有方案中,其特征是:还包括第二电阻,第一发光二极管两端并联第二电阻。
本实用新型还提供应用上述方案一、方案二、方案三、方案四、方案五、方案六、方案七、方案八,及优选方案的使用方法,其使用方法为:断开反激电源中整流桥与滤波电解电容之间的充电回路,***所述的指示电路,确保充电的低频脉动直流电流从第一端子流入所述的指示电路,从第二端子流出;同时应确保反激电源的主功率级的激磁电流不直接经过所述的指示电路。
工作原理将结合实施例,进行详细的阐述。
本实用新型的有益效果为:
成本极低,***损耗低,对原开关电源的效率几乎没有影响,接线简单、体积小、使用方便;另外,还具有现有技术没有的优点:当电解电容失效前,该指示灯发光二极管发光或光耦中的发光二极管有电流流过,光耦输出一个隔离的信号以提示使用者或电路。
附图说明
图1为现有文献中反激开关电源常见的拓扑;
图2-1为本实用新型方案一对应的第一实施例原理图;
图2-2为本实用新型方案二对应的第二实施例原理图;
图2-3为本实用新型方案二对应的第二实施例另一种实施方法的原理图;
图2-4为本实用新型方案三对应的第三实施例原理图;
图2-5为本实用新型方案四对应的第四实施例原理图;
图2-6为本实用新型方案四对应的第四实施例另一种实施方法的原理图;
图3-1为本实用新型方案五对应的第五实施例原理图;
图3-2为本实用新型方案六对应的第六实施例原理图;
图3-3为本实用新型方案六对应的第六实施例另一种实施方法的原理图;
图3-4为本实用新型方案七对应的第七实施例原理图;
图3-5为本实用新型方案八对应的第八实施例原理图;
图3-6为本实用新型方案八对应的第八实施例另一种实施方法的原理图;
图4为第一实施例应用到25W反激电源中的原理简图;
图5为反激电源中整流桥对电解电容产生的充电电流的路径示意图;
图6为反激电源主功率级中开关管驱动电压与激磁电流时序图;
图7为整流桥不导通时激磁电流iM的路径示意图;
图8为整流桥内二极管导通时,主功率级的激磁电流相关的等效电路图;
图9为电解电容的ESR上升后,整流桥内二极管导通时主功率级的激磁电流相关的等效电路图
图10为电解电容的ESR上升后,开关管V截止的瞬间电感L对外续流电流路径示意图;
图11为技术方案中使用方法之一的电路图;
图12为技术方案中使用方法之二的电路图;
图13为实现了隔离功能的方案五对应的第五实施例的工作原理示意图。
具体实施方式
第一实施例
请见图2-1,对应方案一,包括第一端子1、第二端子2、第一电感L、第一发光二极管LED,第一发光二极管LED和第一电感L并联,第一发光二极管LED的阴极和电感L的连接点形成第一端子1,第一发光二极管LED的阳极和电感L的连接点形成第二端子2。
发光二极管LED采用Φ3mm红色高亮的,为了方便,发光二极管简称为发光管,型号为3AR2UD,电感采用4.7uH的工字型电感,其使用方法为:断开25W反激电源中整流桥与滤波电解电容之间的充电回路,***所述的指示电路第一实施例,确保充电的低频脉动直流电流,是从第一端子1流入所述的指示电路,从第二端子2流出;同时确保反激电源的主功率级的激磁电流不直接经过所述的指示电路。
25W反激电源的滤波用电解电容为47uF/400V,为国产优质电容,整流桥为四只1N4007组成,工作频率为65KHz,在220VAC输入下,满载最大占空比为0.24。
当第一实施例焊入反激电源后,实测各方面的指标,均和之前的相同,特别是变换效率,没有出现可以观察到的下降,且发光管LED不发光。
为了验证本实用新型是可以工作的,实用新型人采用了首创的方法来测试第一实施例:
由于失效的电解电容难以觅得,在上述的滤波用电解电容中,串入可调电阻,来模拟性能已经下降的电解电容,可调电阻的在这里的可调范围是0-39Ω,当把可调电阻的阻值调到5Ω时,相当于47uF/400V的电解电容的ESR从良品时的0.5Ω左右已上升至5.5Ω,电解电容的性能已接近不能使用的边缘。
此时,图2-1中的发光管LED发光,且工作电流的平均值实测为0.9mA。通过选取不同感量的电感L,初步调节指示的灵敏度,电感L的感量小,灵敏度低;电感L的感量大,灵敏度高。由于发光管在发光时,存在1.6V至2.2V的正向压降,完全可以在发光管LED两端并联电阻来调节灵敏度,如本例中,若并联1.6K的电阻,那么,1mA以下的电流在并联的电阻两端产生的电压在1.6V以下,这时发光管LED不发光。
注:白光发光管的导通压降为3.0V左右,红色的与绿色的也不同,而光耦内部的发光器导通压降为1.1V左右。
那么,电解电容在性能下降后,发光管LED能发光,说明LED的电流是从LED阳极流向阴极的,即在图2-1中,存在一个电流从端子2经过发光管LED流向了端子1。
注:在本申请以前,本领域的技术人员认为电解电容的ESR上升至失效边缘时,仍有滤波作用,不可能存在这样流向的电流产生,忽视了主功率开关管V由导通变为截止的瞬间电感L中的续流电流可以在ESR上产生电压降这一很隐蔽的因素,本实用新型人利用这一电压降驱动了LED发光管作为指示灯。而本领域的技术人员在本申请之前要实现本实用新型的目 的,必须采用复杂的在线检测电路才能实现,而这样的技术方案引入开关电源后必然导致产品效率下降、体积增大以及成本提高等缺陷。
上述的这个电流从什么地方来,下面介绍本申请实用新型人首次提出的工作原理:
参见图4,图4为第一实施例按本实用新型技术方案中的方法应用到25W反激电源中的原理简图,其中CL为滤波用电解电容。
当电解电容CL正常时,整流桥101中的四只二极管,只有当输入的交流电接近顶峰时才同时导通两只二极管,对电解电容CL补充电能,这种整流方式在授权公告号CN102594175B的背景技术中有说明,特别是第0010段中介绍很详细。
整流桥101产生的充电电流的路径见图5,交流输入端的一端经过整流桥101的一端,至整流桥101的输出+,至指示电路的第一端子,从指示电路的第二端子流出,至滤波用电解电容CL的正极,从电解电容CL的负极流出,至整流桥101的输出-,从整流桥101的另一端子流出,至交流输入端的另一端。
这个过程中,充电电流的频率为市电的2倍,为100Hz或120Hz,电感L为4.7uH,感抗为2πfL,仅为3.5mΩ,发光管LED处于反偏,不发光。
当电解电容CL正常时,如上述的47uF/400V的电解电容,其在65KHz下的ESR为0.5Ω,即开关管V正常工作时,主功率级的激磁电流iM如图6所示,其中,Ugs为开关管V的栅极与源极的驱动电压,激磁电流iM的路径见图7。
即当整流桥101不导通时,电解电容CL对主功率级的放电电流完全等于主功率级的激磁电流iM
当整流桥101导通时,电解电容CL在65KHz下的容抗为1/(2πfC),计算出来为52mΩ,远小于其ESR,在65KHz下,ESR起主要作用;电感L在65KHz下的感抗为1.9Ω。
当输入的交流电接近顶峰时,整流桥101内部两只二极管导通,其动态内阻中两只串联,约为1.1Ω,加上反激电源中交流输入回路中的NTC的热态内阻,本例中,NTC的热态内阻约为1.8Ω,交流电的内阻一般取1Ω,那么,对于65KHz的高频放电电流来说,从电感L看过去的总阻抗RALL约为1.9+1.1+1.8+1=5.8Ω,实际上会比这个要大,因为这只是估算,复合阻抗的计算很复杂,特别是图6示出的波形不是正弦波,其基波是正弦波,其谐波频率都比65KHz要高,所以这里只是估算。
其等效电路见图8所示,当整流桥101导通时,即输入的交流电接近顶峰时,整流桥101内部两只二极管导通时,这时主功率级的激磁电流iM由两个地方提供,一个是电解电容CL对主功率级的放电电流iCL,另一个是交流电经过电感L供给,这时记作iR,从图8可以计算出,iCL=11.6iR,且12.6iR=iM,即iR=0.08iM
25W反激电源工作频率为65KHz,在220VAC输入下,满载最大占空比为0.24。那么主功率级的激磁电流iM如在开关管V导通时的平均值约为408mA,峰值约为816mA,那么,电感L在整流桥101导通时,也存在一个激磁电流,峰值为0.08×816=65.3mA,峰值出现的时间点在图6的t1或t2时刻,即开关管V由导通变为截止的瞬间前夕,由于电感中的电流不能突变,电感L中的这个65.3mA会继续向前流动,电解电容CL的ESR在理想情况下为零,那么,电解电容CL会吸收这个电流,电解电容因为吸收了电流,其端电压会上升,变化的电压可以用公式算出:
由电感和电容的储能公式,且能从电感完全转移到电容,可知:0.5LI2=0.5CV2
0.5LiR 2=0.5C(V1 2-V2 2)
计算结果为:大约变化为0.71uV。可以理解为第二端子2的电压比第一端子1高0.71uV,这时,电解电容CL对这个电流起作用的主要是其ESR,即65.3mA电流在ESR上形成的压降为
U=IR=65.3mA×0.5Ω=0.0326V
可以理解为第二端子2的电压比第一端子1高0.0326V,这是电感对外续流特性所决定的,这个电压不足以引起发光二极管LED的正向导通,LED仍不发光。
从图5、图6、图7可以看出,若电路板设计正确,电解电容CL对主功率级的放电电流只有很小一部分经过电感L,在进行工作原理分析时,和现有的教材相类似,这种情况下可以理解为,电解电容CL对主功率级的放电电流不经过电感L,这样有利于理解工作原理。
当电解电容CL的ESR从良品时的0.5Ω左右已上升至5.5Ω,即电解电容CL已接近失效边缘。当整流桥101导通时,其等效电路见图9所示,当整流桥101导通时,即输入的交流电接近顶峰时,整流桥101内部两只二极管导通时,这时主功率级的激磁电流iM由两个地方提供,一个是电解电容CL对主功率级的放电电流iCL,另一个是交流电经过电感L供给,这时记作iR,从图9可以计算出,iCL=1.054iR,且iR=0.486iM
同样的条件下,电感L在整流桥101导通时,也存在一个激磁电流,峰值为0.486×816=397mA,峰值出现的时间点在图6的t1或t2时刻,即开关管V由导通变为截止前的瞬间,由于电感中的电流不能突变,电感L中的这个397mA会继续向前流动,电解电容CL的ESR已上升至5.5Ω,397mA电流在ESR上形成的压降为
U=IR=397mA×5.5Ω=2.18V
可以理解为第二端子2的电压比第一端子1高2.18V,这是电感对外续流特性所决定的,这个电压足以引起发光管LED的正向导通,LED发光,如图10所示,电感L的续流电流一部 分流过发光管LED,图中以续流电流2示出,另一部分仍对电解电容CL充电,图中以续流电流1示出。
本实用新型的工作原理不算复杂,若认真看完上述的工作原理分析,不难理解,是利用流过电感的电流不能突变,当电解电容的ESR上升时,电感L中获得的激磁电流成倍上升,上例中,从65.3mA上升至397mA,是原来的六倍,这时,电感L中的激磁电流在ESR上产生的变化的电压大于发光管的正向发光电压,出现续流电流2,驱动发光管LED发光,来提醒使用者:该电解电容CL的ESR已上升至关注点,以便使用者决定下一步的措施。
由于整流桥导通时间占交流电半个周期10mS的时间少,本例中,整流桥导通时间才0.93mS,所以,实测出来流过发光管LED电流的平均值实测为0.9mA。使用高亮度的发光管仍然很醒目。
此时,电解电容仍能工作,但由于主功率级的激磁电流在ESR上存在较大发热量,本例中为0.22W,该电解电容已处于高发热量下,已在加速衰老中,一般情况下,会在几十小时至几百小时中,ESR快速上升,从而导致发热更巨大,引起发热进一步加大,直至失效,容量丧失,从而引起如开关管炸毁等一系列失效。
可见,第一实施例可以实现实用新型目的。
见图4,在开关电源上电瞬间,交流电很大机会是处于高压状态,而不是过零状态,由于电解电容CL的端电压为零,且端电压不能突变,而电感L中的电流为零,且电流不能突变,这时,上电瞬间,交流电的瞬时值经整流桥后,会大部份加到发光管LED两端,从而反向击穿发光管LED,发光管LED的耐压标称值一般只有5V至10V左右,实测在35V左右,少数厂家可以做到170V左右,但仍无法承受交流电的峰值,第二实施例就是解决这一问题的。
第二实施例
请见图2-2,对应方案二,在第一实施例的基础上,还包括第一二极管D,其连接关系为:第一二极管D和第一发光二极管LED同向串联并形成第一网络,第一网络和第一电感L并联,第一网络的阴极和电感的连接点形成第一端子1,第一网络的阳极和电感L的连接点形成第二端子2。
以下先针对本申请中出现的或相关的名词给予解释:
两端子网络:指一个或由两个及以上的元器件互联形成的具有两个端子的电路结构。
两端子网络的阳极、阴极:具有单向导电性能的两端子网络,阳极电压比阴极高时,能产生电流;阴极电压比阳极高时,不能产生电流。本申请中的第一网络、第二网络、第四网络均具有单向导电性能。
同向串联:二个及以上的两端子网络串联,其中至少有两个两端子网络具有单向导电性能,且各两端子网络串联后仍具有单向导电性能。本申请中的各两端子网络位置可以排列组合,实施例和附图没有一一列举,各种排列组合均属于本申请的保护范围。
本实施例的同向串联:二极管具有单向导电特性,指其中一只的阴极和另一只的阳级连接,这样,串联后的两端子网络,仍具有单向导电性能,只是导通压降为原来的两只之和,这种串联,两个二极管互换位置,仍具有单向导电性能。耐压却是两只二极管耐压之和。图2-3示出了串联的另一种方式。
第一二极管D选用耐压超过交流电的峰值的二极管,考虑正向导通是工作在开关电源的高频下,可选用快恢复整流二极管,如1N4007,耐压为1000V;或SF106,耐压为400V。串入以后,第一二极管D起到保护作用,原来的交流电的瞬时值经整流桥后大部份加到发光管LED两端引发发光管LED反向击穿将不再存在。
把第二实施例装入开关电源中,如图11所示,和第一实施例的图4相似。指示电路的1脚就是第一端子,指示电路的2脚就是第二端子,工作原理同第一实施例,同样实现实用新型目的。
图12是另一种实施方式,同样实现实用新型目的。图11和图12都满足使用方法:断开反激电源中整流桥与滤波电解电容之间的充电回路,***所述的指示电路,确保充电的低频脉动直流电流,是从第一端子流入所述的指示电路,从第二端子流出;同时应确保反激电源的主功率级的激磁电流不直接经过所述的指示电路。
当开关电源功率比较大时,或工作电压比较低时,主功率级的激磁电流较大,这时,图10中,续流路径2的电流可能过大,而常见发光管以及光耦中的发光器的最大承受电流一般都在50mA左右,容易损坏,第三实施例就是解决这一问题的。
第三实施例
请见图2-4,对应方案三,在第二实施例的基础上,还包括第一电阻R,其连接关系为:第一二极管D、第一发光二极管LED和第一电阻R同向串联并形成第二网络,第二网络和第一电感L并联,第二网络的阴极和电感L的连接点形成第一端子1,第二网络的阳极和电感的连接点形成第二端子2。
三个器件串联,仍要实现单向导电特性,串联的方式按排列组合的方法有6种,这里不一一示出。
第三实施例装入开关电源中,如图11或图12所示,和第一实施例的图4相似。指示电路的1脚就是第一端子,指示电路的2脚就是第二端子,工作原理同第一实施例,同样实现实用新型目的。
由于存在限流电阻R,当开并电源功率比较大时,或工作电压比较低时,主功率级的激磁电流较大,这时,图10中,续流路径2的电流可能过大,若没有限流电阻R,常见发光管以及光耦中的发光器的最大承受电流一般都在50mA左右,容易损坏,第三实施例中的限流电阻R就是解决这一问题的。
由于整流桥仅在输入的交流电接近顶峰时才同时导通其中的两只二极管,这也就决定了发光管LED的电流不是直流电,而是以一定低频周期重复的高频电流,低频周期为交流电整流以后的频率,为交流电频率的二倍,高频电流本身的周期为开关电源的工作频率。那么,当把发光管LED换成光耦中的发光器时,光耦的输出电流也是周期性出现,不是一个稳定的信号,这会给后续的电路造成麻烦。第四实施例示出了解决方案。
第四实施例
请见图2-5,对应方案四,在第三实施例的基础上,还包括第一电容C,其连接关系为:
第一发光二极管LED和第一电阻R串联后与第一电容C并联,并联后形成的第三网络再与第一二极管D同向串联,并形成第四网络,第四网络和第一电感L并联,第四网络的阴极和电感L的连接点形成第一端子1,第四网络的阳极和电感L的连接点形成第二端子2。
第三网络为:发光管LED和电阻R串联后与电容C并联,由于电容是隔直流,通交流,那么,第三网络在直流下,仍有单向导电的特征,直流电流能流出的一端为阴极,直流电流能流入或流进的一端为阳极。这样,就好理解第三网络再与二极管D同向串联,即要保证串联后仍具有单向导电性能。
第四实施例共有四种接法,均可实现实用新型目的,图2-6示出了另一种第三网络再与二极管D同向串联的电路;第一发光二极管LED和第一电阻R串联也有两种方法。这里不一一示出。
第四实施例装入开关电源中,如图11或图12所示,和第一实施例的图4相似。指示电路的1脚就是第一端子,指示电路的2脚就是第二端子,工作原理大体同第一实施例,续流电流的路径2产生的电流,先经电容滤波,再经过限流电阻R给LED供电,这样LED获得平滑的直流电,发光管LED可以稳定地发光,没有闪烁感,若LED走线较长时,走线就不会引起高频电流向空间辐射,从而也改善了开关电源的辐射骚扰度,降低了EMI。
当把发光管LED换成光耦中的发光器时,光耦的输出电流也是稳定的信号,不会给后续的电路造成麻烦,当光耦的输出端的集电极接上拉电阻时,当电解电容CL接近不能使用的边缘时,光耦的输出端的集电极可以输出低电平;当光耦的输出端的发射极接下拉电阻时,当电解电容CL接近不能使用的边缘时,光耦的输出端的发射极可以输出高电平;通知后续的智能电路作出动作,如发出报警,或自动切换到另一路开关电源,或显示在屏幕上,还可以根 据光耦的输出端输出电流的大小,给出开关电源失效的时长,从而提醒使用者进一步优先选择最佳的解决方案。
或保留发光管LED,在滤波电容C的两端再并联一个第五网络,第五网络由第二电阻和光耦中的发光器LED2串联组成,这样,即可实现光提醒,也可实现高或低电平输出。
可见,第四实施例同样实现实用新型目的。
由于一段导线也存在电感量,所以第一电感L为电路板上的一段导线,也是可以正常工作的,当然,在设计电路板时,可以让这段导线在电路板按电感的方式布线,增加感量,同样实现实用新型目的。
第一至第四实施例,若发光管LED使用光耦的发光器,那么,指示电路本身借助光耦的电气隔离功能,可以实现电气隔离功能。若直接使用发光管LED灯,由于LED灯经常装在面板上,图4以及图11、图12的用法,LED灯是带电的,无法和交流电隔离,而使用者存在接触LED灯的风险,这将产生安规方面的隐患。
所以,本实用新型的以下四个实施例实现了使用LED灯的电气隔离功能。
第五实施例
请见图3-1,对应方案五,实现了LED灯与交流电的隔离功能,包括第一端子1、第二端子2、第一变压器B、第一发光二极管LED,第一变压器B至少包括一个原边绕组和一个副边绕组,第一发光二极管LED和第一变压器B的副边绕组并联,且与第一发光二极管LED的阴极相连的副边绕组端子作为同名端,图3-1中有黑点的那端作为同名端的标记,原边绕组对应的同名端作为第一端子1,原边绕组的另一端子作为第二端子2。
原边绕组和副边绕组在各种文献中,只会出现在变压器上,本申请技术方案中只有一只相同功能的变压器,故没有限定的情况下,均指第一变压器B的绕组。
第五实施例的指示电路装入开关电源中,如图11或图12所示,指示电路的1脚就是第一端子,指示电路的2脚就是第二端子。第五实施例是第一实施例的隔离版本,工作原理略不同。
其工作原理略复杂,整流桥101产生的充电电流的路径和图5示出的类似,电感L为变压器的原边绕组,由于充电电流为低频电流,变化较缓慢,变压器B在使用时为高频变压器,甚至就是电流互感器,其原边绕组感量较低,原边绕组以下简称为原边。充电电流在变压器B的原边上产生的压降很小,不到4.9mV,这个电压经变压器B感应到副边绕组后与匝比有关,若匝比为1:10,则副边绕组感应电压远不到49mV,这是因为,变压器B在使用时为高频变压器,在低频段时,其漏感大,初始磁导率也很低,传输效率极低。且有同名端标记的那端为正,那么发光管LED反偏,不发光,副边绕组感应电压太低,发光管LED也不会被击穿。
主功率级的激磁电流iM也如图6所示,电解电容CL对主功率级的放电电流只有很小一部分经过变压器B,变压器B副边绕组感应电压远不到发光管LED的正向导通电压,发光管LED不发光。
当电解电容CL的ESR从良品时的0.5Ω左右已上升至5.5Ω,即电解电容CL已接近失效边缘。变压器B原边的电感量仍为4.7uH,那么,同样的条件下,变压器B原边在整流桥101导通时,也存在一个激磁电流,峰值为0.486×816=397mA,峰值出现的时间点在图6的t1或t2时刻,即开关管V由导通变为截止前的瞬间,由于电感中的电流不能突变,变压器B原边电感中的这个397mA会继续向前流动,电解电容CL的ESR已上升至5.5Ω,397mA电流在ESR上形成的压降为
U=IR=397mA×5.5Ω=2.18V
参见图13,第二端子2的电压比第一端子1高2.18V,那么,同样,变压器B副边绕组感应电压也是有同名端标记的感应电压要低,即发光管LED的阳极电压比阴极电压要高,变压器B的匝比哪怕低至1:1,发光管LED因变压器B副边绕组感应电压为正向而发光。形成图13中续流路径2所示的电流。
使用变压器B隔离的第五实施例的工作原理的另一种理解方式:开关管V由导通变为截止的瞬间,由于电感中的电流不能突变,变压器B原边电感中的这个已达到峰值的电流会继续向前流动,电解电容CL的ESR已上升,已不能良好吸收变压器B原边电感的激磁电流,这个电流是从同名端流向异名端的,变压器B这时作为储能电感在运行,这个电流中不能被吸收的那部分,会从副边绕组中,从绕组的内部从同名端流向异名端的,形成图13中续流路径2所示的电流,这与反激电源的工作原理相似,这个电流驱动发光管LED发光。
第五实施例,即图3-1的指示电路,按技术方案中的要求装入图11或图12都是可以正常工作的。
第五实施例实现了和交流电隔离的同时,同样实现了实用新型目的。在开关电源上电瞬间,由于交流电很大机会是处于高压状态,而不是过零状态,由于电解电容CL的端电压为零,且端电压不能突变,而变压器B原边电感中的电流为零,且电流不能突变,这时,上电瞬间,交流电的瞬时值经整流桥后,会大部份加在变压器B原边两端,副边感应电压反向击穿发光管LED,第六实施例就是解决这一问题的。
第六实施例
请见图3-2,对应方案六,在第五实施例的基础上,还包括第一二极管D,其连接关系为:第一二极管D和第一发光二极管LED同向串联并形成第一网络,第一网络和第一变压器B的 副边绕组并联,且与阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为第一端子1,原边绕组的另一端子作为第二端子2。
图3-3示出了同向串联的另一种方式。
第六实施例是第二实施例的隔离版本,防反向击穿的工作原理在第二实施例中有介绍,这里不再讲解,第六实施例同样实现实用新型目的。第六实施例,即图3-2或图3-3的指示电路,按技术方案中的要求装入图11或图12都是可以正常工作的。同样,由于没有限流电阻,容易损坏发光管或光耦中的发光器。第七实施例就是解决这一问题的。
第七实施例
请见图3-4,对应方案七,在第六实施例的基础上,还包括第一电阻R,其连接关系为:第一二极管D和第一发光二极管LED和第一电阻R同向串联并形成第二网络,第二网络和第一变压器B的副边绕组并联,且与第二网络的阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为第一端子2,原边绕组的另一端子作为第二端子2。
第七实施例是第三实施例的隔离版本,三个器件串联,仍要实现单向导电特性,串联的方式按排列组合的方法有6种,这里不一一示出。按技术方案中的要求装入图11或图12都是可以正常工作的。
同第三实施例最后所述的原因,当把发光管LED换成光耦中的发光器时,光耦的输出电流也是周期性出现,不是一个稳定的信号,这会给后续的电路造成麻烦。第八实施例示出了解决方案。
第八实施例
请见图3-5,对应方案八,在第七实施例的基础上,还包括第一电容C,其连接关系为:
第一发光二极管LED和第一电阻R串联后与第一电容C并联,并联后形成的第三网络再与第一二极管D同向串联,并形成第四网络,第四网络和第一变压器B的副边绕组并联,且与第四网络的阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为第一端子1,原边绕组的另一端子作为第二端子2。
第八实施例是第四实施例的隔离版本,滤波的工作原理相同,第八实施例共有四种接法,均可实现实用新型目的,图3-6示出了另一种第三网络再与二极管D同向串联的电路;第一发光二极管LED和第一电阻R串联也有两种方法。这里不一一示出。
第八实施例装入开关电源中,如图11或图12所示,同样实现实用新型目的。
第五至第八实施例,直接使用发光管LED灯,装在面板上,LED灯是不带电的,和交流电实现了隔离,满足安规方面的要求。
变压器B可以是一个电流互感器,原边一匝实测也是可以工作的,这样来降低电流互感器的成本。较低成本的方案是,电路板上的一条导线,两边开孔,卡上EI或CC型磁芯,磁芯上包括一个已绕好的副边绕组,这样来直接实现变压器B的功能。
第一实施例至第八实施例中,若整流桥的输出正与负之间并联一只高频电容,那么,整流桥在不导通时,电感L或变压器B在电解电容CL的ESR上升后,都参与激磁,改善了本实用新型的电路性能。
以上仅是本实用新型的优选实施方式,应当指出的是,上述优选实施方式不应视为对本实用新型的限制。对于本技术领域的普通技术人员来说,在不脱离本实用新型的精神和范围内,还可以做出若干改进和润饰,如在第一二极管中也串入电阻,这些改进和润饰也应视为本实用新型的保护范围,这里不再用实施例赘述,本实用新型的保护范围应当以权利要求所限定的范围为准。

Claims (12)

1.一种开关电源用指示电路,其特征是:包括第一端子、第二端子、第一电感、第一发光二极管,所述的第一发光二极管和所述的第一电感并联,所述的第一发光二极管的阴极和所述的第一电感的连接点形成所述的第一端子,所述的第一发光二极管的阳极和所述的第一电感的连接点形成所述的第二端子。
2.根据权利要求1所述的开关电源用指示电路,其特征是:还包括第一二极管,其连接关系为:所述的第一二极管和所述的第一发光二极管同向串联并形成第一网络,所述的第一网络和所述的第一电感并联,所述的第一网络的阴极和所述的第一电感的连接点形成所述的第一端子,所述的第一网络的阳极和所述的第一电感的连接点形成所述的第二端子。
3.根据权利要求2所述的开关电源用指示电路,其特征是:还包括第一电阻,其连接关系为:所述的第一二极管、所述的第一发光二极管和所述的第一电阻同向串联并形成第二网络,所述的第二网络和所述的第一电感并联,所述的第二网络的阴极和所述的第一电感的连接点形成所述的第一端子,所述的第二网络的阳极和所述的第一电感的连接点形成所述的第二端子。
4.根据权利要求3所述的开关电源用指示电路,其特征是:还包括第一电容,其连接关系为:所述的第一发光二极管和所述的第一电阻串联后与所述的第一电容并联,并联后形成的第三网络再与所述的第一二极管同向串联,并形成第四网络,所述的第四网络和所述的第一电感并联,所述的第四网络的阴极和所述的第一电感的连接点形成所述的第一端子,所述的第四网络的阳极和所述的第一电感的连接点形成所述的第二端子。
5.根据权利要求1至4中任一项所述的开关电源用指示电路,其特征是:所述的第一电感为电路板上的一段导线。
6.一种开关电源用指示电路,其特征是:包括第一端子、第二端子、第一变压器、第一发光二极管,所述的第一变压器至少包括一个原边绕组和一个副边绕组,所述的第一发光二极管和所述的第一变压器的副边绕组并联,且与所述的第一发光二极管的阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为所述的第一端子,原边绕组的另一端子作为所述的第二端子。
7.根据权利要求6所述的开关电源用指示电路,其特征是:还包括第一二极管,其连接关系为:所述的第一二极管和所述的第一发光二极管同向串联并形成第一网络,所述的第一网络和所述的第一变压器的副边绕组并联,且与阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为所述的第一端子,原边绕组的另一端子作为所述的第二端子。
8.根据权利要求7所述的开关电源用指示电路,其特征是:还包括第一电阻,其连接关系为:所述的第一二极管、所述的第一发光二极管和所述的第一电阻同向串联并形成第二网络,所述的第二网络和所述的第一变压器的副边绕组并联,且与所述的第二网络的阴极相连的副边 绕组端子作为同名端,原边绕组对应的同名端作为所述的第一端子,原边绕组的另一端子作为所述的第二端子。
9.根据权利要求8所述的开关电源用指示电路,其特征是:还包括第一电容,其连接关系为:所述的第一发光二极管和所述的第一电阻串联后与所述的第一电容并联,并联后形成的第三网络再与所述的第一二极管同向串联,并形成第四网络,所述的第四网络和所述的第一变压器的副边绕组并联,且与所述的第四网络的阴极相连的副边绕组端子作为同名端,原边绕组对应的同名端作为所述的第一端子,原边绕组的另一端子作为所述的第二端子。
10.根据权利要求6至9中任一项所述的开关电源用指示电路,其特征是:其特征是:所述的第一变压器的原边绕组为电路板上的一段导线。
11.根据权利要求1或6任一项所述的开关电源用指示电路,其特征是:所述的第一发光二极管为光耦中的发光器。
12.根据权利要求1或6任一项所述的开关电源用指示电路,其特征是:还包括第二电阻,所述的第一发光二极管两端并联所述的第二电阻。
CN201620058754.7U 2016-01-21 2016-01-21 一种开关电源用指示电路 Active CN205539232U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201620058754.7U CN205539232U (zh) 2016-01-21 2016-01-21 一种开关电源用指示电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201620058754.7U CN205539232U (zh) 2016-01-21 2016-01-21 一种开关电源用指示电路

Publications (1)

Publication Number Publication Date
CN205539232U true CN205539232U (zh) 2016-08-31

Family

ID=56767086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201620058754.7U Active CN205539232U (zh) 2016-01-21 2016-01-21 一种开关电源用指示电路

Country Status (1)

Country Link
CN (1) CN205539232U (zh)

Similar Documents

Publication Publication Date Title
CN105527524B (zh) 一种开关电源用指示电路及其使用方法
CN105577003B (zh) 一种带有源功率因数校正的开关电源
CN105491728B (zh) 一种直接滤波式开关电源
US20100270942A1 (en) Apparatus and methods of operation of passive led lighting equipment
CN105242737B (zh) 一种纹波电流产生方法与电路
CN106208759B (zh) 一种带有源功率因数校正的开关电源
CN105676936B (zh) 一种纹波电流产生电路
WO2015103641A1 (en) Valley-fill power factor correction circuit with active conduction angle control
CN104578844A (zh) 一种开关电源电路
CN105792421A (zh) 一种无桥式led驱动电源
CN205491305U (zh) 一种直接滤波式开关电源
CN105302217B (zh) 一种纹波电流产生方法与电路
CN105676937A (zh) 一种纹波电流产生电路
CN202696960U (zh) 新型led灯驱动电源
CN106093665B (zh) 一种开关电源用指示电路及其使用方法
CN110221645A (zh) 一种纹波电流产生电路
CN106208646B (zh) 一种直接滤波式开关电源
CN205490207U (zh) 一种带有源功率因数校正的开关电源
CN205539232U (zh) 一种开关电源用指示电路
CN203368858U (zh) 一种基于ssl2108的降压式可调光led驱动***
CN204707314U (zh) 一种球泡灯的交流led驱动电路
CN203136274U (zh) 高功率因数的ap3770芯片的led驱动电源电路
CN201821561U (zh) 一种冷阴极管用电子镇流器一拖十电路
CN105050261A (zh) 纯固态新hid灯电子镇流器的数控方法及电路
CN203136273U (zh) 高功率因数的ap3970p的led驱动电源电路

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant