CN201502898U - 一种利用室温液态金属导热的大功率led光源 - Google Patents

一种利用室温液态金属导热的大功率led光源 Download PDF

Info

Publication number
CN201502898U
CN201502898U CN2009201925254U CN200920192525U CN201502898U CN 201502898 U CN201502898 U CN 201502898U CN 2009201925254 U CN2009201925254 U CN 2009201925254U CN 200920192525 U CN200920192525 U CN 200920192525U CN 201502898 U CN201502898 U CN 201502898U
Authority
CN
China
Prior art keywords
liquid metal
radiator
packaging
base plate
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN2009201925254U
Other languages
English (en)
Inventor
符建
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2009201925254U priority Critical patent/CN201502898U/zh
Application granted granted Critical
Publication of CN201502898U publication Critical patent/CN201502898U/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Led Device Packages (AREA)

Abstract

本实用新型公开了一种利用室温液态金属导热的大功率LED光源。它包括LED芯片、凹形封装基板、室温液态金属层、密封层、散热器、荧光胶层;LED芯片安装在凹形封装基板上,凹形封装基板上设有光学反射面,LED芯片上覆盖有荧光胶层,凹形封装基板安装在散热器上,凹形封装基板与散热器之间具有空隙,并由密封层密封,空隙内被室温液态金属层充满。这种方法利用室温液态金属高导热性有效解决大功率LED封装基板与散热器之间的接触热阻问题,实现更好的导热效果,将LED芯片产生的热量传输出来,保障LED芯片的结温保持在较低水平,从而提高大功率LED的运行可靠性和使用寿命。

Description

一种利用室温液态金属导热的大功率LED光源
技术领域
本实用新型涉及照明光源,尤其涉及一种利用室温液态金属导热的大功率LED光源。
背景技术
LED光源是新一代绿色照明光源,其耗电量只有普通白炽灯的十分之一,而寿命却长十倍以上。除此之外,LED光源还具有体积小、坚固耐用、色彩丰富等优点。为了满足更高光强的要求,LED光源通过提高单个芯片的输出功率或者采用LED阵列的方式来实现。在理想的情况下,匹配的光学材料和适当的封装结构能够充分发挥LED高效的发光性能,将大部分的电能转化为光。但是由于LED芯片面积非常小,因此大量的热量无法及时散去,因此导致LED工作时温度过高。温度过高对大功率LED光源的输出光强和色温性能有着非常大的影响,特别是LED芯片的PN结长期工作在高温状态,其光学性能会很快衰减,严重影响LED的使用寿命。这是LED封装中需要解决的关键问题。
从LED光源发热特性分析可知,LED封装基板与散热器之间的接触热阻严重影响LED的散热性能,特别当封装基板与散热器之间的表面不平整时,解决这一问题的方法在于利用导热硅胶或其他导热材料来填充在两个表面之间。但是这些材料导热系数非常小而且容易老化,影响器件的散热和长期稳定性。如何在低成本的前提下,采用更好的冷却方式,使LED光源工作在更低的温度上工作,获得更高的发光效率,更长的寿命,更高的可靠性,是本实用新型要解决的关键问题。
液体金属是一种在常温下(如摄氏100度以下)呈现为液态的金属,这种材料具有导热系数大,常温下具有流动性,能渗透到非常细微的空间中,能够用来减小两种不同材料间的接触热阻。200510108394.3公开了一种利用液态金属冷却集成芯片的方法,这种方法主要针对集成芯片散热,通过在两个热界面间加入液态金属减小热阻。本实用新型要解决的LED芯片散热问题与集成芯片散热不同的是,LED芯片必须要安装在特定结构的封装基板上,封装基板上设置有LED芯片的引出导线、光学反射装置以及荧光胶层的安装装置,封装基板与散热器之间的接触热阻是需要解决的主要问题。本实用新型充分利用LED封装基板的特性,改变封装基板和散热器之间接触面的形态,使两个接触面形成相互咬合的凹凸表面,大大增加了两者之间的接触面积,同时利用液态金属的渗透性和流动性将两个接触面之间的空隙充满液态金属,利用液态金属的高导热性改善封装基板和散热器之间散热,这种方法能够从根本上解决封装基板和散热器之间接触热阻过大的问题。
发明内容
本实用新型的目的是克服现有技术的不足,提供一种利用室温液态金属导热的大功率LED光源。
一种利用室温液态金属导热的大功率LED光源包括LED芯片、凹形封装基板、室温液态金属层、密封层、散热器、荧光胶层;LED芯片安装在凹形封装基板上,凹形封装基板上设有光学反射面,LED芯片上覆盖有荧光胶层,凹形封装基板安装在散热器上,凹形封装基板与散热器之间具有空隙,并由密封层密封,空隙内被室温液态金属层充满。
一种利用室温液态金属导热的大功率LED光源包括LED芯片、板形封装基板、室温液态金属层、密封层、散热器、荧光胶层;LED芯片安装在板形封装基板上,LED芯片上覆盖有荧光胶层,板形封装基板安装在散热器上,板形封装基板与散热器之间具有空隙,并由密封层密封,空隙内被室温液态金属层充满,板形封装基板与散热器之间设有凹凸结构。
一种利用室温液态金属导热的大功率LED光源包括LED芯片、碗形封装基板、室温液态金属层、密封层、散热器、荧光胶层;LED芯片安装在碗形封装基板上,碗形封装基板上设有光学反射面,LED芯片上覆盖有荧光胶层,碗形封装基板安装在散热器上,碗形封装基板与散热器之间具有空隙,并由密封层密封,空隙内被室温液态金属层充满,碗形封装基板与散热器之间设有凹凸结构。
所述的凹凸结构是截面为方形、梯形、三角形、圆形的条状或点状凸起物或凹陷面。
所述的室温液态金属层是一种在摄氏100度以下就呈现为液态的金属或合金,包括以下元素的至少一种:镓、铟、锌、锡、镁、铜或金。
所述的散热器是翅片形散热器或者热管散热器。
所述的密封层是由硅胶或者环氧树脂材料构成的薄层。
本实用新型充分利用LED封装基板的特性,改变封装基板和散热器之间接触面的形态,使两个接触面形成相互咬合的凹凸表面,大大增加了两者之间的接触面积,同时利用液态金属的渗透性和流动性将两个接触面之间的空隙充满液态金属,利用液态金属的高导热性改善封装基板和散热器之间散热,这种方法能够从根本上解决封装基板和散热器之间接触热阻过大的问题。这种方法的优点在于:室温液体金属是一种在摄氏100度以下就呈现为液态的金属,例如镓等,这些金属具有非常大的导热系数,是普通硅胶导热系数的几十倍到上百倍,将这种材料填充在封装基板和散热器之间,LED芯片产生的热量经过封装基板向散热器传导的热阻降极大减小,除此之外液态金属还会在空隙中产生对流传热,进一步增强了散热效果。这种方法所起到的效果相当于将封装基板和散热器完全融合在一起。这种融合不同于将封装基板和散热器之间的焊接或银胶绑定,可以有效避免两者之间因焊接和绑定带来的应力和变形问题。为了进一步增加封装基板和散热器之间的散热面积,在封装基板和散热器相接的两个表面设置许多凹凸结构,这些结构相互咬合在一起,中间的空隙充满室温液体金属,能实现更好的传热效果,将LED芯片产生的大量热量传输出来,保障LED芯片的结温保持在较低水平,从而提高了大功率LED的运行可靠性和使用寿命。
附图说明
图1是利用室温液态金属导热的大功率LED光源I型结构示意图;
图2是利用室温液态金属导热的大功率LED光源II型结构示意图;
图3是利用室温液态金属导热的大功率LED光源III型结构示意图;
图4是多芯片阵列的大功率LED光源示结构意图。
图5是具有圆台形凸起的封装基板示意图;
图中:LED芯片1、凹形封装基板2、室温液态金属层3、密封层4、散热器5、荧光胶层6、凹凸结构7、光学反射面8、板形封装基板9、碗形封装基板10、第一LED芯片11、第二LED芯片12、第三LED芯片13、第四LED芯片14、圆台形凸起15。
具体实施方式
下面结合附图详细说明本实用新型的具体实施方式。
如图1所示,利用室温液态金属导热的大功率LED光源包括LED芯片1、凹形封装基板2、室温液态金属层3、密封层4、散热器5、荧光胶层6;LED芯片1安装在凹形封装基板2上,凹形封装基板2上设有光学反射面8,LED芯片1上覆盖有荧光胶层6,凹形封装基板2安装在散热器5上,凹形封装基板2与散热器5之间具有空隙,并由密封层4密封,空隙内被室温液态金属层3充满。室温液态金属层3是一种在摄氏100度以下就呈现为液态的金属或合金,包括以下元素的至少一种:镓、铟、锌、锡、镁、铜或金。散热器5是翅片形散热器或者热管散热器。密封层4是由硅胶或者环氧树脂材料构成的薄层。
LED芯片1产生的光通过荧光胶层6发出,LED芯片1产生的绝大部分热量经过凹形封装基板2向散热器5传导。凹形封装基板2和散热器5一般采用的金属材质,导热系数较高。但是凹形封装基板2和散热器5之间依靠接触传热,由于加工精度的原因,两个面之间难以做到很好地接触,因此凹形封装基板2和散热器5之间的接触热阻非常大。为了减少接触热阻,在凹形封装基板2和散热器5之间添加一层液体金属层3。这种液态金属是一种在摄氏100度以下就呈现为液态的金属或合金,包括以下元素的至少一种:镓、铟、锌、锡、镁、铜或金。例如金属镓是一种在摄氏30度即可成为液体的金属,这种液态金属具有很大的导热系数以及很好的流动性和浸润性,能够完全渗入到凹形封装基板2和散热器5之间的空隙中。这样凹形封装基板2传导过来的热量通过液态金属层3传导到散热器5。这种液态金属具有非常大的导热系数,是普通硅胶导热系数的几十倍到上百倍,将这种材料填充在凹形封装基板2和散热器5之间,LED芯片1产生的热量经过凹形封装基板2向散热器5传导的热阻降极大减小,除此之外液态金属还会在空隙中产生对流传热,进一步增强了散热效果。这种方法所起到的效果相当于将凹形封装基板2和散热器5完全融合在一起。这种融合不同于将凹形封装基板2和散热器5之间的焊接或银胶绑定,可以有效避免两者之间因焊接和绑定带来的应力和变形问题。最后为了防止液体金属的氧化和流失,在液体金属层的四周设置有由硅胶或者环氧树脂材料构成的密封层4。
如图2所示,利用室温液态金属导热的大功率LED光源包括LED芯片1、板形封装基板9、室温液态金属层3、密封层4、散热器5、荧光胶层6;LED芯片1安装在板形封装基板9上,LED芯片1上覆盖有荧光胶层6,板形封装基板9安装在散热器5上,板形封装基板9与散热器5之间具有空隙,并由密封层4密封,空隙内被室温液态金属层3充满,板形封装基板9与散热器5之间设有凹凸结构7。凹凸结构7是截面为方形、梯形、三角形、圆形的条状或点状凸起物或凹陷面。室温液态金属层3是一种在摄氏100度以下就呈现为液态的金属或合金,包括以下元素的至少一种:镓、铟、锌、锡、镁、铜或金。散热器5是翅片形散热器或者热管散热器。密封层4是由硅胶或者环氧树脂材料构成的薄层。
这种结构采用的板形封装基板9上没有设置光学反射面8。与前面一种凹形封装基板2凸出部分埋入到散热器5中的设计不同,这种设计是直接将板形封装基板9安装在散热器5的上面。为了进一步增加板形封装基板9和散热器5之间的导热面积,在板形封装基板9和散热器5相接的两个表面设置凹凸结构7,这些结构相互咬合在一起使得板形封装基板9和散热器5具有更大的导热面积。在散热器5上设置相同的凹凸结构7与板形封装基板9的形状咬合匹配,然后通过液体金属层的填充凹凸结构7之间的空隙,通过液体金属实现导热,达到更好的导热效果。将LED芯片产生的大量热量传输出来,保障LED芯片的结温保持在较低水平,从而提高了大功率LED的运行可靠性和使用寿命。
如图3所示,利用室温液态金属导热的大功率LED光源包括LED芯片1、碗形封装基板10、室温液态金属层3、密封层4、散热器5、荧光胶层6;LED芯片1安装在碗形封装基板10上,碗形封装基板2上设有光学反射面8,LED芯片1上覆盖有荧光胶层6,碗形封装基板10安装在散热器5上,碗形封装基板10与散热器5之间具有空隙,并由密封层4密封,空隙内被室温液态金属层3充满,碗形封装基板10与散热器5之间设有凹凸结构7。凹凸结构7是截面为方形、梯形、三角形、圆形的条状或点状凸起物或凹陷面。室温液态金属层3是一种在摄氏100度以下就呈现为液态的金属或合金,包括以下元素的至少一种:镓、铟、锌、锡、镁、铜或金。散热器5是翅片形散热器或者热管散热器。密封层4是由硅胶或者环氧树脂材料构成的薄层。
图4给出了一种由LED芯片阵列构成的室温液态金属导热的大功率LED光源。由于单个LED芯片功率不高,因此要实现更大功率LED光源,需要将多个LED芯片排列成阵列来实现照明。这种阵列由LED芯片按照三角形、正方形或者圆形方式以一定间隔排列而成。而凹形封装基板2按照LED芯片的排列设置有安装芯片的结构,在凹形封装基板2背面形成了凸形的阵列,在散热器5上设置有相互咬合的凹形阵列。在整个凹形封装基板2和散热器5的接触面之间都由液体金属层3填充。图中显示出第一LED芯片11、第二LED芯片12、第三LED芯片13、第四LED芯片14安装在同一个封装基板上,而液体金属层3填充在凹形封装基板2和散热器5之间。图4显示的是利用图1结构实现的LED芯片阵列大功率LED光源,利用图2和图3结构也可以实现同样功能的LED芯片阵列大功率LED光源。
图5给出了一种具有圆台形凸起的封装基板。这种封装基板就是图4中所采用的凹形封装基板2,凹形封装基板2的下面有许多圆台形凸起15。

Claims (7)

1.一种利用室温液态金属导热的大功率LED光源,其特征在于包括LED芯片(1)、凹形封装基板(2)、室温液态金属层(3)、密封层(4)、散热器(5)、荧光胶层(6);LED芯片(1)安装在凹形封装基板(2)上,凹形封装基板(2)上设有光学反射面(8),LED芯片(1)上覆盖有荧光胶层(6),凹形封装基板(2)安装在散热器(5)上,凹形封装基板(2)与散热器(5)之间具有空隙,并由密封层(4)密封,空隙内被室温液态金属层(3)充满。
2.一种利用室温液态金属导热的大功率LED光源,其特征在于包括LED芯片(1)、板形封装基板(9)、室温液态金属层(3)、密封层(4)、散热器(5)、荧光胶层(6);LED芯片(1)安装在板形封装基板(9)上,LED芯片(1)上覆盖有荧光胶层(6),板形封装基板(9)安装在散热器(5)上,板形封装基板(9)与散热器(5)之间具有空隙,并由密封层(4)密封,空隙内被室温液态金属层(3)充满。
3.根据权利要求2所述的一种利用室温液态金属导热的大功率LED光源,其特征在于所述的板形封装基板(9)与散热器(5)之间设有凹凸结构(7)。
4.一种利用室温液态金属导热的大功率LED光源,其特征在于包括LED芯片(1)、碗形封装基板(10)、室温液态金属层(3)、密封层(4)、散热器(5)、荧光胶层(6);LED芯片(1)安装在碗形封装基板(10)上,碗形封装基板(2)上设有光学反射面(8),LED芯片(1)上覆盖有荧光胶层(6),碗形封装基板(10)安装在散热器(5)上,碗形封装基板(10)与散热器(5)之间具有空隙,并由密封层(4)密封,空隙内被室温液态金属层(3)充满。
5.根据权利要求4所述的一种利用室温液态金属导热的大功率LED光源,其特征在于所述的碗形封装基板(10)与散热器(5)之间设有凹凸结构(7)。
4.根据权利要求2或4所述的一种利用室温液态金属导热的大功率LED光源,其特征在于所述的凹凸结构(7)是截面为方形、梯形、三角形、圆形的条状或点状凸起物或凹陷面。
5.根据权利要求1、2或4所述的一种利用室温液态金属导热的大功率LED光源,其特征在于所述的室温液态金属层(3)是一种在摄氏100度以下就呈现为液态的金属或合金,包括以下元素的至少一种:镓、铟、锌、锡、镁、铜或金。
6.根据权利要求1、2或4所述的一种利用室温液态金属导热的大功率LED光源,其特征在于所述的散热器(5)是翅片形散热器或者热管散热器。
7.根据权利要求1、2或4所述的一种利用室温液态金属导热的大功率LED光源,其特征在于所述的密封层(4)是由硅胶或者环氧树脂材料构成的薄层。
CN2009201925254U 2009-08-27 2009-08-27 一种利用室温液态金属导热的大功率led光源 Expired - Lifetime CN201502898U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009201925254U CN201502898U (zh) 2009-08-27 2009-08-27 一种利用室温液态金属导热的大功率led光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009201925254U CN201502898U (zh) 2009-08-27 2009-08-27 一种利用室温液态金属导热的大功率led光源

Publications (1)

Publication Number Publication Date
CN201502898U true CN201502898U (zh) 2010-06-09

Family

ID=42453831

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009201925254U Expired - Lifetime CN201502898U (zh) 2009-08-27 2009-08-27 一种利用室温液态金属导热的大功率led光源

Country Status (1)

Country Link
CN (1) CN201502898U (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135248A (zh) * 2011-01-23 2011-07-27 符建 基于液态金属散热的螺纹连接结构的大功率led光源
CN103779490A (zh) * 2012-10-24 2014-05-07 乐利士实业股份有限公司 光电半导体装置及其制造方法
CN107575828A (zh) * 2017-11-01 2018-01-12 广东途猫科技有限公司 一种新能源材料导热散热的汽车大灯
CN108150978A (zh) * 2017-11-27 2018-06-12 安徽西马新能源技术有限公司 一种车载led散热组件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102135248A (zh) * 2011-01-23 2011-07-27 符建 基于液态金属散热的螺纹连接结构的大功率led光源
CN103779490A (zh) * 2012-10-24 2014-05-07 乐利士实业股份有限公司 光电半导体装置及其制造方法
CN107575828A (zh) * 2017-11-01 2018-01-12 广东途猫科技有限公司 一种新能源材料导热散热的汽车大灯
CN108150978A (zh) * 2017-11-27 2018-06-12 安徽西马新能源技术有限公司 一种车载led散热组件

Similar Documents

Publication Publication Date Title
CN101666433B (zh) 利用室温液态金属导热的大功率led光源
CN102135248A (zh) 基于液态金属散热的螺纹连接结构的大功率led光源
CN101846256A (zh) Led光源
CN100468609C (zh) 超导热管灯
CN101408302A (zh) 具良好散热性能的光源模组
CN203481273U (zh) 一种基于AlSiC复合基板的LED光源模块
CN101984510A (zh) 基于液态金属基底的软性连接的led装置
CN104896330A (zh) Led光源模组
CN201956388U (zh) 一种基于液态金属基底的软性连接的led装置
CN201502898U (zh) 一种利用室温液态金属导热的大功率led光源
CN201715304U (zh) 一种基于液态金属散热的螺纹连接结构的大功率led光源
CN102130111A (zh) 液体封装的大功率led装置以及led装置的封装方法
CN101872826B (zh) 基于液态金属散热的螺纹连接结构的大功率led光源
CN101694290A (zh) Led照明灯液体散热箱
CN201180947Y (zh) 发光二极管组合结构
CN202082649U (zh) 一种基于液态金属散热的螺纹连接结构的大功率led光源
CN102927476A (zh) 一种液体传热的led球形灯
CN202048545U (zh) 一种led光源导热散热结构
CN202013881U (zh) 垂直结构led芯片集成封装结构
CN204664934U (zh) 一种ledcob光引擎
CN201796962U (zh) 一种高导热低结温led光源模块
CN201757305U (zh) 一种led灯
CN102322584A (zh) 一种采用cob封装技术的超薄led面光源
CN201780997U (zh) 一种用于led芯片的散热结构
CN202018990U (zh) 一种大功率白光led光源封装结构

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20100609

Effective date of abandoning: 20090827