CN1992578A - 过采样接收机的自适应接收技术 - Google Patents

过采样接收机的自适应接收技术 Download PDF

Info

Publication number
CN1992578A
CN1992578A CNA2006100642456A CN200610064245A CN1992578A CN 1992578 A CN1992578 A CN 1992578A CN A2006100642456 A CNA2006100642456 A CN A2006100642456A CN 200610064245 A CN200610064245 A CN 200610064245A CN 1992578 A CN1992578 A CN 1992578A
Authority
CN
China
Prior art keywords
symbol
sample
sample sequence
sampling
sample flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006100642456A
Other languages
English (en)
Inventor
A·J·埃格利特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Genesis Microchip Inc
Original Assignee
Genesis Microchip Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genesis Microchip Inc filed Critical Genesis Microchip Inc
Publication of CN1992578A publication Critical patent/CN1992578A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/06Receivers
    • H04B1/10Means associated with receiver for limiting or suppressing noise or interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03012Arrangements for removing intersymbol interference operating in the time domain
    • H04L25/03019Arrangements for removing intersymbol interference operating in the time domain adaptive, i.e. capable of adjustment during data reception
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/01Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/37Decoding methods or techniques, not specific to the particular type of coding provided for in groups H03M13/03 - H03M13/35
    • H03M13/39Sequence estimation, i.e. using statistical methods for the reconstruction of the original codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0212Channel estimation of impulse response
    • H04L25/0216Channel estimation of impulse response with estimation of channel length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0054Detection of the synchronisation error by features other than the received signal transition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/02Speed or phase control by the received code signals, the signals containing no special synchronisation information
    • H04L7/033Speed or phase control by the received code signals, the signals containing no special synchronisation information using the transitions of the received signal to control the phase of the synchronising-signal-generating means, e.g. using a phase-locked loop
    • H04L7/0337Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals
    • H04L7/0338Selecting between two or more discretely delayed clocks or selecting between two or more discretely delayed received code signals the correction of the phase error being performed by a feed forward loop

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Theoretical Computer Science (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Radio Transmission System (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

一种过采样序列检测器,控制取样数据并跟踪取样数据的检测可靠性。该检测器单独为不同采样相位分析样本序列,从而选取一个最可靠检测的样本序列。对于不同采样相位,检测器***一些后置和前置信息,以便改进简单的逐个符号的检测。过采样信息用于进一步改进检测性能。

Description

过采样接收机的自适应接收技术
技术领域
本发明一般地涉及在数字传输链路上的数据接收,尤其涉及当存在确定性和非确定性的抖动时提供健壮和自适应的操作的数字接收机。
背景技术
高速数字通信代表了一项日益重要的技术。越来越多的模拟通信链路被高速串行链路所取代,高速串行链路为终端用户提供了可靠性、链路质量(例如,低比特错误率(BER))、使用简易性和低成本。
例如,现代计算机显示器和高清晰电视(HDTV)显示器通常采用高速串行链路,其基于数字视频接口(DVI)和高清晰多媒体接口(HDMI)的工业标准。这种链路的聚合数据率一般在吉比特/每秒的范围。例如,DVI链路波特率接近5G波特,而许多商家通过不凡的容限来提供超过该限制的产品。
另一个例子是用于在计算机***连接存储装置的串行高级技术附件(ATA)接口。这个申请同样需要大约2G比特/每秒及以上的数据率。
还有另外的例子就是高速局域网(LAN)应用,例如千兆以太网(比如1000Base-T),及10-Gigabit以太网(10GBASE-T)标准。
这些下面的链路和类似例子有着许多共同的要求。它们需要高速操作,容忍实质确定性和/或非确定性数据抖动的能力,容忍实质频率偏移和/或频率调制(FM)的能力,良好有效的BER,用小的水平眼图张开度(例如0.4单位间隔(UI)的最短可辩时间间隔配置并非罕见)操作的能力,高的跟踪带宽,快速相位获取和良好的跟踪范围,等等。
用于这种高速串行链路的接收机的普遍实现是基于接收数据过采样组合所谓‘相位选取’来选择‘好’样本流。普通DVI链路的实现使用了采样因子L=3,以及数据采样的完成通常不要任何相位跟踪。一旦过采样数据流可用,相位选取器利用某类型相位跟踪方法(例如转换相位均值)保留L个样本中的一个样本,从而选出最佳样本。
虽然该技术相当简单且执行廉价,但其受许多问题的影响。例如,如今采用的一些线路码有着非常宽频率的频谱(即,差的游程长度(d,k)-约束)。该问题对于DVI/HDMI链路尤其严重,DVI/HDMI链路可以运行1到14个符号。为了稳定性和健壮性,相位选取器必须采用相当狭窄的跟踪带宽来操作。上述方法的不足是不能跟踪存在于过采样数据中的确定性抖动。窄跟踪带宽同样限制了固定速度(即,相位获取时间),导致很差的瞬态特性以及有时使得取样范围变窄。
相位选取方法的基本问题是在检测过程中不能使用所有可用过采样数据。普通相位选取器的实现简单地为每个符号丢弃L-1个样本,只保留L个接收样本中的一个。因此,该过采样数据只用于相位跟踪,而不用于数据检测。从而,相位选取器丢弃了许多承载着解码符号的有用信息的数据样本。在普通的DVI/HDMI的实现方法中,接收机的大约2/3有用信息被简单地丢弃。
如果数据率适中以及眼图张开度适当,比如当链路采用短的高质量屏蔽双绞线(STP)电缆时,上述相位选取方法所造成的损失是可以容忍的,并实现一个廉价的接收机实现。但是,一旦数据率增大和/或采用较长或较低质量的电缆,例如非屏蔽双绞线(UTP)电缆,则有效最短可辩时间间隔变得更小以及接收机性能开始迅速下降。
例如,类似的传统相平均相位选取器需要大于2个采样间隔的眼图张开度,以便可靠地检测数据符号。在使用L=3个样本的普通实现的情况下,这意味着最短可辩时间间隔应至少为0.7UI,才能避免由于相位选取导致的数据错误。上述限制在低速和/或短传输距离内是可以接受的,但在较高数据率时则变成代价很高以及通常要求良好的均衡和预加重技术,该技术相对昂贵。
另外,许多传统相位选取方法在高速和/或高过采样因子下难以实现,因为它们一般没有提供并行处理样本的简易方法。从接收机实现的立场上看,通常需要使接收机复杂度线性取决于采样因子,从而提供更窄的眼图配置。许多现有的相位选取方法没有显示出上述复杂度的线性增长,而代替的是随着过采样因子平方地增长或甚至更多。
本领域公知的可选择的接收机,也就是所谓‘多数表决’过采样接收机代表。该项技术在过去已被广泛应用于低速链路以及提供一些数据的线性和/或非线性滤波,通常改进链路的健壮性和BER,可提供良好的有效眼图张开度,比如0.9UI或更宽的眼图张开度。这样的接收机同样可廉价实现,这也是它们在过去普及的一个重要原因。但是,一旦眼图张开度开始收缩,如同当今高速串行链路般普遍,‘多数表决’接收机的性能将很快变得不如人意。此外,一般这种接收机难以处理高频率偏移和频率调制的数据流,以及高的非确定性抖动的数据流。
相对于传统‘模拟’时钟和数据恢复(也就是CDR)技术,数字域中的数据检测和/或相位跟踪的优点在于在不同制作处理之间的可移植性、简易设计和低成本。另外,许多对模拟操作不可用的非线性检测和/或滤波方法通常在数字域里可廉价实现。此外,即使传统模拟CDR通常提供良好的相位跟踪性能,但是它本身很少能改进数据检测;大多数模拟CDR有一个简单的采样器用于数据检测,其中只需要每个符号取一个样本。因此,如果实质上由于高确定性抖动引起的眼图闭合度导致模拟CDR的性能将变得不尽人意。
一般而言,如果每个符号都在眼图张开度最高点被检测到(即采样),最佳接收机操作性能是可以达到的。然而,这种采样点是很难找到的,通常也是不可能找到的。为了确定‘最佳’采样点,接收机通常参照数据转换作为指导。但是,这种数据转换在符号边界处一般会出错。它们的位置受以下因素的影响:确定性抖动(由之前符号历史确定的符号间干扰(ISI)造成),传输***各类组件里的噪声引入的非确定性抖动(比如时钟发生器相位噪声,采样器对信号不精确的限幅导致的振幅和时间偏移,增加和倍增的信道噪声等等),串扰引起的抖动以及通常存在于这种链路中的频率偏移和频率调制。另外,链路通常还会遭受非线性失真,进一步使接收变得复杂。
因为转换的位置不可以提供当前符号的最佳取样点的可靠信息,所以接收机尝试滤波通过观察转换而导出的采样相位信息,以便达到某可接受的采样相位。例如,许多现有实现都应用具有低通转换特征的线性滤波器或者可抑制噪声的某些非线性滤波器(比如,中值滤波器)。但是,通过该方法获得的采样相位位置对于逐个符号来说通常不是最佳的。这是因为它难以从纯非确定性相位噪声和频率偏移里分离出确定性的组成部分(比如ISI和串扰)。非确定性相位噪声应当被滤波掉(即被抑制掉),而确定性部分以及频率偏移应当被跟踪,以便提供良好的接收机性能。滤波方法通常达不到这点,因此,整体检测性能受损。
还有其他尝试改进该性能的公知方法,例如基于Viterbi算法(VA)及其变型的序列检测方法,以及反馈检测方案和判定反馈均衡(DFE)。这些方法非常有用并解决了ISI和其他确定性部分,从而改进了整体性能和使采样相位跟踪任务简化(自此它只需要处理非确定性部分以及频率偏移)。然而,基于序列检测的方法实现起来通常很复杂和昂贵,一般需要多比特采样(即模拟-数字转换(ADC))和在逐个符号基础上进行大量计算。一旦数据率开始达到吉比特/每秒的范围,序列检测器很快就变得不可行了。即使在低速率,基于VD(Viterbi解码)和DFE的接收机实现起来也非常昂贵。
因此,需要的是一个简单且有效的方法来构造一个数据接收机以进行过采样数据接收,而不再遭受传统相位选取器、‘多数表决’和模拟CDR接收机的问题。
发明内容
一种采样序列检测器所执行的方法,通过跟踪采样数据的检测可靠性来操作采样数据。检测器为不同的采样相位进行单独分析样本序列,然后选取检测最可靠的样本序列。对于不同采样相位,检测器***一些在后和在前信息,以便改进简单的逐个符号的检测。另外,采样信息被进一步用来改进检测性能。
在另一个实施例中,公开了一种用于在数字传输链路上接收数据的装置,其中该装置包含接收机,用于接收用于表示过采样符号序列而生成的样本序列,从第一和第二样本流中检测第一和第二符号,以及评估信道响应长度。
而在另一个实施例中,公开了一种用于在数字传输链路上接收数据的装置,该装置包含接收机,用于接收用于表示过采样符号序列而生成的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流,从第一和第二样本流中检测第一和第二符号,以及检查第一样本流中的第一同步数据域和第二样本流中的第二同步数据域,以便评估第一和第二符号的第一和第二检测可靠性。
在又一个实施例中,公开了一种用于在数字传输链路上接收数据的装置,该装置包含接收机,用于接收用于表示过采样符号序列的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流,从第一和第二样本流中检测第一和第二符号,其中该检测根据将一个或多个检测模式Patterni关联到一个或多个标记Flagi的动态更新表来进行,其中Flagi具有表示与Patterni关联的符号宽度与用于产生样本序列的过采样速率L之差的值,以及调整一个或多个均衡器的参数,以便减少标记值。
一种计算机可读介质,包含记录在介质上的计算机可执行指令,用于使计算机***的处理器能够处理通过数字传输链路输入的数据,该计算机可执行指令包括接收用于表示过采样符号序列而生成的样本序列,从第一和第二样本流中检测第一和第二符号,以及评估信道响应长度。
一种计算机可读介质,包含记录在介质上的计算机可执行指令,用于使计算机***的处理器能够处理通过数字传输链路输入的数据,该计算机可执行指令包括接收用于表示过采样符号序列而生成的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流,从第一和第二样本流中检测第一和第二符号,其中该检测根据将一个或多个检测模式Patterni关联到一个或多个标记Flagi的动态更新表来进行,其中Flagi具有表示与Patterni关联的符号宽度与用于产生样本序列的过采样速率L之差的值,以及调整一个或多个均衡器的参数,以便减少标记值。
附图说明
在附图中是通过举例而不是限制的方式来阐述本发明,其中相同的参考数字表示类似的元素,其中:
附图1是一个高层框图,依照本发明其中一个实施例,阐述了一种用于在数字传输链路上接收数据的方法和***。
附图2是一个流程图,依照本发明其中一个实施例,阐述了一种用于在数字传输链路上接收数据的方法。
附图3是一个高层框图,依照本发明其中一个实施例,阐述了数据检测器。
附图4是一个框图,依照本发明的一个实施例,阐述了模式分析器。
附图5是一个框图,依照本发明的一个实施例,阐述了模式分析器元件。
附图6是一个框图,依照本发明的一个实施例,阐述了弹性缓冲器。
附图7是一个框图,依照本发明的一个实施例,阐述了流转换开关。
附图8是一个框图,依照本发明的一个实施例,阐述了弹性缓冲器控制器。
附图9是一个框图,阐述了一个用于实现本发明一个实施例的典型计算机***。
具体实施方式
现参照本发明的一特定实施例做详细说明,本发明的例子都在附图中作了说明。本发明将依照某特定实施例来描述,但要理解的是这并非为了将本发明限于该描述实施例。相反,是为了覆盖所有包含在如随后的权利要求所定义的本发明的精神和范围之内的选择,修改,和等价替换。
当过采样数据在数字传输链路上发送时,需要采用数字接收机,其在已有确定性和非确定性抖动中提供健壮性操作。由于ISI,即使过采样数据是以超过每比特一个样本的频率重复(例如,具有典型采样因子L=3的3次),比特值b虽然可能达不到接收机的优选重复样本序列bbb,但是可以包含不等于b的样本序列值。例如,比特值0可以依照抖动清楚地达到000,或者达到001,100,101,或者任何其他组合。因此,有挑战地是要从大量没有清楚表明某符号的样本中推断出该符号。
如上所述,一种显而易见的方法就是使用样本的多数表决。不幸地是,在许多情况下,这并不起作用,因为它假定知道样本传输流的符号分界线,这本身是难以确定和跟踪的。另一种方法通过检查转换并在某些场合下通过执行跟踪回路来跟踪信号的相位。但是,相位跟踪辨别不出由影响理想采样位置(关于符号分界线的采样时钟的位置)的非确定性抖动而引起并因此应当被跟踪的相位变化,和由信道存储器引起且不影响理想采样位置并因此不需要跟踪的相位变化。对相位跟踪的变型涉及基于由于ISI的分界线变换是一个高速过程并在高于跟踪回路带宽的速率下发生的观察,来通过修改跟踪回路的带宽而减少跟踪回路对信道中的变化的敏感性。虽然当处理低频率不稳定性,例如关于发生器频率的问题或无线链路多普勒效应时,该方法非常有效,但是由限幅器和锁相环(PLL)引起的电缆串扰和高频抖动限制了相位***的性能。因此,需要改进接收机的性能。
附图1是一个高层框图,依照本发明的一个实施例阐述了一种用于在数字传输链路上接收数据的方法和***。发射机51在信道52上发和采样数据。过采样序列检测器100(在下文中也称作“接收机”)接收被传输信号并对其解码。检测器100基于跟踪采样数据的检测可靠性,而不是跟踪数据的最佳采样相位。为了阐述的简明,但并非为限制,公开的一个或多个典型实施例中,包含一条采用二进位字母表的链路,其中每个符号假定为两个值中的一个,比如+1和-1,或0和1。因此,公开的一个或多个实施例在一比特每样本的速率下操作,并且过采样因子保持很低,在许多情况下可以在2和4个样本之间。但是,这些对于所公开的实施例不是必要条件,而本发明可以相等地应用于有更复杂(非二进制)字母表的链路中,并且包括多于一比特的信息以及更高的采样因子的样本可以被类似地处理。
通过例子而并非限制,这里所示的检测器100的操作采用过采样因子L=3和采用单比特采样。与传统序列检测器不同,该检测器100为不同采样相位(额定相位偏移为
Figure A20061006424500121
UI)单独地分析样本序列,然后选取一个最可靠的检测样本序列。对于不同的样本相位,检测器100***一些前置和后置信息(也就是前指针和后指针数据)以便改进简单的逐个符号上的检测。另外,过采样信息被用于进一步改进检测性能。这和传统“相位选取器”形成对比,一旦采样相位被确定,传统“相位选取器”通常丢弃采样数据。
在检测性能方面,本发明在计算上有效率,并因此可以成功应用于远超过传统序列检测器当前所能做到的数据率和/或成本约束。
检测性能可以通过将本发明的一个或多个实施例和转换驱动相位跟踪(模拟或数字)联合而得以进一步改进。例如,相位噪声和频率偏移可以通过一个跟踪回路来降低,同时ISI和大的“相位突变”可以通过本发明的一个或多个实施例来解决。事实上,缓慢的相位变化以及非确定性相位噪声通过窄带宽反馈环路来跟踪,同时本发明的过采样检测器100处理剩余相位偏差(例如ISI)。
附图2是一个流程图,依照本发明的一个实施例来阐述用于数字传输链路的数据接收的方法。从12处解码第一符号开始,该方法可以由以下步骤来说明:
●对于每个采样相位(来自总共L个相位并在14处从第一相位开始),在16上,在观察窗W上检查样本。该观察窗典型地包括对应于当前符号的L个样本,以及一些来自之前和在后符号的样本。例如,对于一个过采样因子L=3的***,典型的观察窗W可包括5或6个样本。在W=5的示例情况中,除了来自符号的L=3个样本之外,还可使用一个前置样本和一个后置样本。在W=6的示例情况中,除了来自当前符号的L=3个样本之外,还可使用两个后置样本和一个前置样本,对于L和W的其他值也类似。
●接下拉在18,使用上述选择的样本为每个可能采样相位执行对当前符号值的检测。前置和后置样本,以及对样本流的过去判定和/或检测器100输出流可用于改进检测性能,如下所述。
●在20,对每个采样相位评估检测的可靠性(也就是,评定结果的不确定性)。
●在22,选择具有最高检测可靠性的采样流(也就是具有最低的判定不确定性)。如下所述,一个或多个线性和/或非线性滤波器可以控制选择过程以便避免不必要的流转换。做为选择,如果某特定实施例需要的话,则可采用无滤波的逐符号转换。
●在36,如果在32上确定转换过程越过符号分界线,调整36弹性缓冲器。一般而言,如果新旧相位之差的绝对值大于 UI,则越过符号分界线。例如,对于过采样因子L=3,当0→2或2→0转换发生时,便出现上述越过。对于较大的采样因子L=5,以下转换的任何一个都会导致符号下降或重复:0→4,1→4,0→3,4→0,4→1,和3→0,因为在这些情况下新旧相位之差为3或4,也就是大于
Figure A20061006424500132
UI(在该情况中是2.5)。下面描述弹性缓冲器。做为选择,可以为每个采样流调整当前符号指示器以便解决分越过界线。
●在38,为流里的剩余符号重复上述步骤。
上述步骤在下面将详细描述。
本发明的方法假定采样相位是正确的并尝试推测当前符号的值以及评估推测的可靠性。相当普遍的是,每个可能的采样相位将产生相同的符号值。例如,如果符号流包含长期运转的符号,这些符号都有相同值(比如值都为1),并且检测器100在该运转的中间,则采样相位没有意义,因为被检测到的值将都会是1,而与相位无关。此外,这样的推测是非常可靠的,也就是,与该推测关联的不稳定性为零。虽然这是一个无足轻重的例子,但是它确实说明检测器100并非一直需要知道采样相位以便正确地检测符号值的事实。
作为另一个包含相位变量检测结果的例子序列,考虑以下例子(该例子中L=3和W=5):
相位0:000.111.101.111.000,解码为01010(参见下面)。
解码数据:--0-----0-----1-----0---
相位1:001.111.011.110.0,同样解码为01010。
相位2:011.110.111.100.0,解码为1010x(也就是,提前1个符号)。
在以上例子中,能够做出正确的检测结果而不用考虑所选择的采样相位,因为被检测数据的三个流在所示的四个符号中都是一样的。
但是,在以上例子中,检测可靠性随不同相位而不同。例如,相位0数据可以可靠地被解码,因为全部符号都有可表示一个可能符号值的样本模式。除了相位0的一个符号以外的全部符号已清楚定义符号分界线。样本模式1.101.1可以清楚地解码,因为1的两个邻近符号通过一个单个0样本来分离开。这对应于有相对高的ISI的情况,而高ISI会导致一个相当浅的零峰值,从而产生符号并使其变窄。因此,对应于相位0的序列被可靠地解码并有为0的累积“检测量度”,以指明低不稳定性水平。该想法是将判定量度(下文同样简称为量度)分配给符号序列以便指示它们的不稳定性水平,并当解码符号来自新引入的样本序列时使用这些结果量度。
相反,对相位1和相位2的流推测数据的可靠性低于相位0流。一些样本模式可能看起来混乱和含糊,并且即使序列可以毫不含糊地检测出,该检测也可能在与相位抖动和/或数据的频率调制结合的严重ISI存在时出错。因此,相位1和相位2流的量度被设置为高于相位0流的,从而指示相位1和相位2流的检测过程不确定性增加阿(或可靠降低)。例如,相位1和相位2流都被给予一个为2的量度,区别于相位0流的0量度。
通过说明而并非限制,以下部分说明为接收机的一个示例实施例而提出的检测模式的一些例子。
L=3和W=5的实例数据检测模式
在其它实施例中,检测器100的两个实施例将在这里描述:一个实施例使用先前检测的值(也就是一个为先前符号所判定的值),和一个实施例不使用上述预先检测值。先前值被用于降低当前符号检测的不稳定性的方案在这里称作判定反馈检测,或DF方案。这种方案在具有昂贵附加硬件费用的某些情况下改进了检测的可靠性(也就是降低BER)。
下面表格呈现的是为DF检测器提议的检测模式。请注意,为了保存空间(这里和在真正的硬件里),只明确提供表格的前一半。将样本比特和已检测值倒置便成为后一半。可以采用其它压缩方案以便更简洁地表示表格数据。
模式  先前值     量度     相位     值     模式数目
 0 000 00 000 00 000 10 000 10 001 00 001 00 001 10 001 10 010 00 010 00 010 10 010 10 011 00 011 00 011 10 011 10 100 10 100 10 100 10 100 10 101 00 101 00 101 10 101 10 110 00 110 00 110 10 110 10 111 00 111 00 111 10 111 1  01010101010101010101010101010101     00000011001110110011111100110000     0000-1-1110000-11-1111000000111-10000     00001100110010101100111011101111     0/631/622/613/604/595/586/577/568/559/5410/5311/5212/5113/5014/4915/4816/4717/4618/4519/4420/4321/4222/4123/4024/3925/3826/3727/3628/3529/3430/3331/32
                               表1
在表1中,注意只有4个模式00110,00111,01011和01101(十六制中的06,07,0B和0D)依赖于DF值(如在“先前值”一列所示)。因此,可以总结出,在这种模式的检测质量合理降级的情况下可实现简易非DF检测器。
流选择
一旦为每个流的当前符号计算出量度,就可以做出流选择。典型地,可以采用某类型滤波(比如有限脉冲响应(FIR),无限脉冲响应(IIR)或非线性)以便保持一些所需要量的相位相干性及防止检测流之间的迅速转换,因为这种转换可能降低检测的可靠性。
如果在决定转换为另一个流之前考虑指定长度的过去检测历史,则检测器100可以做得更精确。这是因为一些独立的处理例如ISI、相位抖动、频率调制和/或时钟频率偏移、或如之前所述的影响符号分界线的其他处理。一些处理例如抖动,和到一定程度ISI,可在逐个符号的基础上使得短相位相干,也就是具有高变化率。每个流的格式解码器处理这种短期移动。
其他处理,例如频率偏移或频率调制,一般有更加长的相位相干周期,从而不适合用模式检测器单独处理。在这种情况下,执行流转换,从而完成(间接地)采样相位跟踪。
在一个DVI/HDMI应用实施例中,滤波器可以简单地实现为在每流基础上做出的移动平均值(也就是1-D个滤波器中的L个),其后紧随非线性阈值。这防止流转换,除非当前流的量度和侯选流的量度之间的差异在随应用而定的规定阈值之上。
在一个实施例中,选中具有最小量度的侯选流。但是,同样可能采用其它策略。
在符号值最终选定之前,侯选流的一些调整必须在弹性缓冲器的帮助下完成,如下所述。
流转换以及弹性缓冲器的作用
如果在新侯选流的选择过程中,当前流和所提议的流之间的相位差大于
Figure A20061006424500171
(也就是大于半个UI相位突变),则检测过程越过符号分界线。除非检测器100进行额外步骤,不然可能因为一个符号的重复或丢弃(由相位突变方向所决定)而导致错误的检测。
例如,当使用接近UI起点的流(例如过采样因子L=3的***中的相位0流)和选择UI终端的流(例如这种情况下的相位2流)时,符号分界线可能被越过,并且除非进行必要步骤,在被检测的流中的一个符号可能丢失(也就是丢弃)。
相反地,如果相位在相反方向移动UI的一半或更多(例如,在上述例子中,从相位2流到相位0流),该符号可能被采样两次,从而导致被检测流中的符号重复。
上述问题的一个可能解决方法包括,在实现流选择之前增加弹性缓冲器(EB)或者,一般更多,增加可变的符号延迟。在向前相位移动的情况下(例如,上述例子中从相位0流到相位2流)弹性缓冲器的长度(也就是延迟的数量)减少了一个符号。相反地,在相位延缓的情况下,(例如,上述例子中的从相位2流到相位0流),弹性缓冲器的长度增加了一个符号。
注意抽象的弹性缓冲器(和可变延迟)用于上面的讨论中,只是为了说明概念,而并非用来限制。在实际实现中,可以采用各种方法。例如,可以使用基于多路复用器和普通共享寄存器的并行实现,所述寄存器保存若干相对于数据值的符号。但是,以下描述继续采用弹性缓冲器的概念,而要理解的是,实际接收机可以采用任何一种用于于充分缓冲和/或延迟数据的操作。
定时是这样的,以使得解码器在当前符号检测过后计算量度并作出转换判定。此刻,任意地,弹性缓冲器的长度也调整了。但是,在下一个符号间隔期间选择新的侯选流。换句话说,相位转换过程可被可视化为如同在符号检测中间出现,也就是在之前的符号被检测完之后并在处理下一个符号之前出现。其他实现也是可能的。例如,对于当前符号转换可在进行时完成,而没有任何延迟。但是,这种方法可能增加硬件的复杂度,而在许多实际情况中并没有显著改进检测质量。
在接收机操作的不定周期期间,比如在启动或当建立一个新的链路连接时,弹性缓冲器可以达到调整限制。在这种情况下,该缓冲器(也就是延迟量)可能必须得强制回到中心位置,导致可能的数据丢失。这种重回中心位置防止了错误传播现象,该现象的起因是弹性缓冲器对调整限制的反弹以及由于在越过符号分界线的情况下不能补偿重复或丢失的符号所引起的的多种错误。
这种重回中心位置处理通过检测弹性缓冲器的长度的降低到零以下(也就是负延迟请求)或弹性缓冲器的长度增加到超过最大长度限制。在这两种情况下,缓冲长度(也就是延迟)设置为一个预定义值。该值可以是固定或可选地适应性调整。
在一个简单的实施中,弹性缓冲器的长度指示为EBlength,则可以使用固定的中心值
Figure A20061006424500191
例如,对于7个符号的EBlength,中心值可以设为3个符号。
可选择地,更多详细阐述的实施例可以跟踪到弹性缓冲器溢出的倾向并使它回到中心位置,以便提供更多空间以在最可能越过分界线的方向缓冲。例如,如果出现瞬时正频率偏移并且接收机采样器落在进来数据的相位后面,则采样相位很可能在前面并潜在地撞到零延迟限制。在这种情况下,该缓冲器可以重回中心到最大延迟的
Figure A20061006424500192
处,以便减少重新达到限制和导致数据错误的可能性。
整体结构
现在将描述本数据检测方法和***的一个典型实施例的结构。附图3是一个高层框图,依照本发明的一个实施例来说明数据检测器100。数据检测器100包括模式分析器110、量度滤波器130,流转换开关140、弹性缓冲器120和侯选流选择器150。
进入的L次过采样数据101馈送到模式分析器110。在该块,在每相位的基础上分析进入的数据模式,以及连同量度产生L个侯选流值。另外,该块可以产生边信息152的额外流,比如采样相位估算、均衡量度的质量等等。本讨论限于数值(V)流111和量度(M)流112。
量度滤波器130进一步处理所有L个每相位量度流,在下文也称作“原始量度”以便抑制量度值的短期不稳定性和开发量度的固有相干性。检测器100一般试图跟随在侯选流的质量变化中的稳定趋势,而不在每符号基础上选择流。这是因为量度估算对于流中的每个符号不一定都可靠,以及在每个符号的基础上(也就是在符号速率上)跟踪它们的尝试可能导致出错和/或不必要的流转换。量度滤波器130模块完成了这些目标并在很大程度上确定了整个检测器100的跟踪动态。
一旦滤波掉量度流(下文中也称作“蒸煮”量度),L个蒸煮量度131被送到流转换开关块140,它决定选择哪个流。流转换开关块140还控制弹性缓冲器120的长度以便在符号越过分界线的情况下调整缓冲延迟。侯选流选择数据通过“相位选择”信号142来传送,并且弹性缓冲器120延迟值通过“符号选择”信号141来传送。
弹性缓冲器块120通过流转换开关140规定的量来延迟侯选流。L个侯选流延迟相同数目的符号间隔。在实际硬件实现中,弹性缓冲器块120可以作为一在侯选流和用于选择适当中断的多路复用器阵列之间共享的多中断移位寄存器来实现。其它实现也是可以的,比如每个流的可变长度的移位寄存器。
延迟的侯选流适用于侯选流选择器(CSS)150,该选择器保留L个流中的一个并丢弃剩余的数据。所保留的流表示检测器100的输出数据流151。本发明的一个重要和有利的方面是在整个检测器100拓扑中不需要反馈环路。这有利地推动了高度并行检测器100的实现和使得该技术适用于超高速操作,比如吉比特/每秒的数据率及更高的。
模式分析器
附图4是一个方框图,依照本发明的一个实施例说明了模式分析器110。输入的数据样本201传送到具有指定延迟的移位寄存器210。该移位寄存器210足够长来保存LSR样本,其中:
                    LSR=2L+NLB+NLA-1
并且其中L是过采样因子,NLA是模式分析所需要的前置(LA)样本的数目,NLB是后置(LB)样本的数目,以及LSR是移位寄存器210的最小长度(以样本为单位)。
例如,在3x过采样和5个样本模式分析的示例情况下(也就是一个LA和一个LB样本,不包括判定反馈(DF)样本),移位寄存器210并行产生7个样本。但是,采用移位寄存器210的特定典型实施例使得操作更容易理解,同时其它实施也是可行的。例如,有多路复用器的并行寄存器可以用来推动数据的并行处理(这在高数据率中可能是必需的),以及用来降低复杂度和/或电源消耗。
样本211从移位寄存器210传送至模式分析器元件220,230,……240的阵列。为了简明,附图4中是示出了前两个和最后一个模式分析器元件。每个模式分析器元件220......240在每个符号基础上观察展示给它适当样本集合,并估算最可能的检测值及估算量度和其他边信息(如果需要的话)。因此,L对侯选值及其量度分别在信道202和203上传送出去。
模式分析器元件
附图5是一个方框图,依照本发明的一个实施例来说明模式分析器元件。在信道301上从模式分析器110接收到总数为LPA=NLB+L+NLA的输入样本集合,并用作为到查找表(LUT)310的输入。另外,从寄存器320接收预先判定的值321。在每个符号基础上更新寄存器320,也就是每个检测周期一次。
查找表310产生值“V”312、量度“M”331、以及关于相位、均衡等等的额外边信息313。可以采用只读存储器(ROM)或随机逻辑来实现查找表310。侯选值“V”312存储在寄存器320里,在下一个符号的处理期间会用到。
弹性缓冲器
附图6是一个方框图,依照本发明的一个实施例来说明弹性缓冲器120。在线路401上总共接收到L个侯选流,然后以每符号为基础转移到L个移位寄存器410,420...430的阵列。在延迟信号402的控制下,通过对应总共的L个多路复用器440,450...460来选择每个移位寄存器410,420...430的合适中断。多路复用器440,450...460的输出441,451...461包括经由信号405适当延迟和发出的L个侯选流的集合。弹性缓冲器120的其他实现方式也是可行的,比如在采用适当多路复用器的L个流之间共享的并行负载寄存器,或其他这种实现方式。
流转换开关
附图7是一个方框图,依照本发明的一个实施例来说明流转换开关140。在线路501上从量度滤波器130接收适当滤波(蒸煮)的量度Min。将该蒸煮量度发送到L路比较器510,它将输入量度在每个符号的基础上进行比较以及判断其中哪个侯选流L当前具有最大的正确可能性。在这个实施例里,量度越低,关于侯选值的估算正确的可能性就越高。因此,在这种情况下,比较器510可以决定有最低蒸煮量度的流。上述流的号码在信道511上发送到开关滤波器520。
开关滤波器(SF)520执行线性和/或非线性滤波,以便避免对于量度的小短期变化而转换侯选流。这一般改进了***操作。该滤波算法依赖于操作环境。类似固定或适应性阈值的简单非线性方案在许多情况(比如DVI/HDMI实施方式)下都很有效。例如,仅当当前采用的流和所提议的流之间的量度差别大于与实现有关的规定值时,便可完成流转换。
当前所确定的侯选流选择器“相位-选择”随之在线路521上发送到侯选流选择器块150。另外,相位-选择信号也发送到弹性缓冲器控制器(EBC)530。该弹性缓冲器控制器530观察已选侯选流的变化,以及如果该选择在任何方向上越过符号边界线,则调整弹性缓冲器延迟。当前必要的延迟量在线路531上发送到弹性缓冲器120。
弹性缓冲器控制器
附图8是一个方框图,依照本发明的一个实施例来说明弹性缓冲器控制器530。从开关滤波器520接收所提议的侯选流号码“相位”601,并在寄存器610延迟了一个符号,并且通过减法电路620和绝对值电路630来决定当前和先前流号码之差。
选择器差异的绝对值在线路631上发送到两路比较器640,由它判断上述差异是否大于
Figure A20061006424500221
也就是大于符号间隔的一半。如果是,则在线路641标记出边界线越过情况,并用与门660和670来调整延迟累加器680中的值。
延迟调整的方向通过两路比较器650来确定,比较器650确定采样是否领先还是落后于输入数据。在越过边界线的情况下,延迟累加器680的值根据比较器650的比较结果增加或减少。重回中心位置逻辑690检查超出范围的延迟值并在超出时重新设置延迟累加器680的值。重回中心位置的处理参见上面的讨论。
自适应技术和适应数据的提取
尽管上面描述的检测器的实施例包括输入的过采样数据流的跟踪数据检测可靠性并提供实现自适应接收机的方法,但还有进一步要执行的步骤以便通过在数据检测过程中使用可用信息和调整接收机和/或传输机参数来进一步改进整体的链路性能,来扩展这种检测器的适应性行为。
在它们的操作过程中,上述检测器的实施例分析数据样本模式和尝试估算(也就是推测)数据流,以及估算所推测数据值的可靠性。有可能以估算关于数据流的附加信息这种方式来扩展检测器。实例包括估算数据样本的样本相位,以及使用已滤波的估算来调整样本的静态相位偏移,以便使偏移最小化。因此,数据检测可靠性可以通过降低一个或多个样本模式中不确定的量来得以改进。因为静态相位偏移的变化速率一般较低,所以可例如通过使用简单硬件或部分或甚至全部软件来有效地跟踪和消除该相位偏移。这种方式只是表示了用于过采样接收机的自适应技术的一个例子。
除了上述例子之外,信息的其他部分可以通过检测器在其模式分析相位期间提取。在一个实施例中,检测器可以通过分析最小和/或平均符号宽度(根据每个符号的样本数目)来构成信道响应长度的评估。例如,检测大量窄符号(也就是包括少于L个样本的符号,其中L代表过采样因子)可以指示信道响应没有被正确均衡。在这种情况下,检测器可以使用该信息来以如下方式改变一个或多个均衡器参数,使得在检测器输入处减少窄符号数量。即使检测器可能不一定要能够推断不均衡的符号,也就是推断信道响应是被过均衡还是均衡不够,均衡曲线通常有良好定义的最小值,该值可以通过在两个方向做小的调整和确定整体均衡在哪个方向改进来达到。
在另一个实施例中,检测器可以努力使整体数据接收性能最佳化。例如,只要检测器可以可靠地估算数据值,也就是该值可接受的高概率是正确的,则均衡可以换来干扰数量的减少。换句话说,即使窄符号的数目很大(指ISI的真实数量),当非确定性抖动和/或频率偏移较小时,甚至不均衡存在时检测器也可以以可接受的可靠性来检测数据。不是例如通过调整均衡器的响应零位置来改善更高频率上的均衡器增益以便减小信道响应长度,而是接收机避免噪声增强和保持长的信道响应。在这种情况下,目标是整体接收机性能的最佳化,而并非是分离部件(比如均衡器)的最佳化。
在另一个实施例中,检测器可以建立符号长度的柱状图,并利用它从由其它诸如频率偏移和/或非确定相位抖动的因素引起的窄信号中区别出由不均衡引起的窄信号。此外,因为估算的数据值对于检测器已知,从而它可用于后指针符号的检测(也就是用于检测反馈结构),所以可以实施各种数据辅助的自适应方法。作为一个例子,在一个实施例中,检测器可以在一个或多个侯选流中检查一个或多个同步数据域(比如DVI或HDMI实现中的往返间隔)以及,一旦被检测到,在各个侯选流中使用这种同步信息来单独估算值推测的可靠性。注意这是可能的,因为被传输的数据模式对于检测器是已知的,从而可通过观察非法编码和/或无效同步模式来使得检测器能简单地发现错误推测。
在其他实现中,检测器可采用基于侯选流的更多信息量度的技术。单比特量度典型地用于非自适应接收机操作中,而多比特量度可用于自适应检测器中,使得数据检测可靠性的估算更精确,并将用于选定信道(或全部侯选信道)的累积量度的最小化用作为自适应标准。
一个自适应判定反馈检测器例子
为了说明一些所提议的自适应技术,现将描述一个典型判定反馈数据检测器。如上所述,在检测器的实施例中,分析表格(如表1)可以用来提供数据值和量度。这种表格足够建立如上所述的简易自适应检测器,自适应标准是选定侯选流的最小滤波量度值(在某一观察窗上,例如30个符号)。检测器可进一步尝试调整信道均衡和/或阻抗匹配以便获得最小的累加量度。然而,虽然这种方案可能对于某些应用已足够好地工作,但是更多详细阐述的方法提供更好的结果。
例如,在一个实施例中,除量度和数据值之外,模式分析器表格可提供相位信息以及窄信号指示符。跟先前一样,请注意,为了保存这里的空间以及硬件的空间,只明确提供下列表的前一半。通过颠倒模式比特和检测值便可快速生成表格的后一半。
 模式  先前值     量度     相位     值     标记     模式数目
 0 000 00 000 00 000 10 000 10 001 00 001 00 001 10 001 10 010 00 010 00 010 10 010 10 011 00 011 00 011 10 011 10 100 10 100 10 100 10 100 10 101 00 101 00 101 10 101 10 110 00 110 00 110 10 110 10 111 00 111 00 111 10 111 1  01010101010101010101010101010101     00000011001110110011111100110000     0000-1-1110000-11-1111000000111-10000     00001100110010101100111011101111     00002200222211002222222211220000     0/631/622/613/604/595/586/577/568/559/5410/5311/5212/5113/5014/4915/4816/4717/4618/4519/4420/4321/4222/4123/4024/3925/3826/3727/3628/3529/3430/3331/32
           表2-自适应DF检测器模式(L=3,W=5)
在表2中,标记了窄信号。如果符号有2个样本那么宽,标记值设置为1(例如,参见模式0 1100);如果符号只有1个样本那么宽,标记值变为2(例如,参见模式0 0010)。一般来说,标记值设置如下:
              Flag=L-SymbolWidth
适应性接收机将来自选定流(或来自全部侯选流)的滤波标记用作自适应标准。可选择地,可调整均衡器,直到滤波标记值变成最小。这种条件对应于在数据检测器输入处良好的水平眼图张开度,并因此指示良好的均衡。
相位列可以用于自适当地补偿样本中的相位偏移。例如,滤波相位值(如移动均值)可以用于在样本的时钟机制中驱动延迟线,以便在[0...Ts/L]范围内相对恢复时钟来调整采样相位。优选地,将来自选定侯选流的信息用于自适应地调整采样延迟,直到滤波相位值尽可能接近零。这种情形可能代表着最理想的采样,一种可通过减小来自选定流的量度值来进一步证实的情形。
附图9说明了一个用于实施本发明的一个实施例的典型计算机***300。计算机***300包括一个或多个中央处理单元(CPU)301、随机访问存储器(RAM)302、只读存储器(ROM)303、一个或多个***设备305、和主储存装置306和307。正如本领域熟知的一样,ROM向CPU301单方向转移数据和指令,而RAM以双向方式转移数据和指令。CPU301一般可包括任意数量处理器。主储存装置306和307可包括任何相配的计算机可读介质。次储存介质308,是一个典型的海量存储装置,也是以双向耦合到CPU301并提供附加的数据储存容量。海量存储装置308是计算机可读介质,可用于储存程序,包括计算机代码、数据等等。典型地,海量存储装置308是储存介质,类似硬盘或磁带,一般比主储存装置306和307慢。海量存储储存装置308可以采用以下形式:磁性或纸带读卡机或其他熟知的装置。将会理解,保留在海量存储装置308里的信息可以在适当的情况下,以标准格式合并作为RAM302的一部分,以作为虚拟存储器。
CPU301还耦合到一个或多个输入/输出装置309,包括以下装置,但不限于,比如视频监测器、跟踪球、鼠标、键盘、麦克风、触摸显示器、转换器读卡器磁带或纸带读卡机、写字板、笔、语音或手写识别器,或其他熟知的输入装置,比如当然,其他计算器。最后,CPU301通过一个如在304概括所示的网络连接耦合到通信链路或计算机或电信网络304,比如数字传输链路、互连网、或内联网。通过那样的通信链路,预计CPU301可在实现上面所述的过采样数据接收和/或传输步骤的过程中,在链路上接收到来自网络的信息,或通过链路输出信息到网络。这种信息,通常被表示为由利用CPU301所执行的指令序列,可以例如以包含在载波中的计算机数据信号的形式来从网络中接收和传输到网络。上面所述的装置和材料是计算机硬件和软件领域中熟练的技术人员所熟知的。计算机***300接收一个或多个采样数据流并进行处理,以便对传输符号进行解码并实现上面所述的接收、检测和/或其他处理步骤。执行这种接收、检测和/或其他处理步骤的计算机指令可存储在RAM302、ROM303、主储存装置306和307、和/或任何其他计算机可读介质里。
前面所述的本发明实施例作为说明和描述。它们不是将发明限于上面所述。其它按照上面技术的变更和实施例也是可能的,并且本发明的范围不限于上面详细的描述,而是以下的权利要求。

Claims (21)

1.一种用于在数字传输链路上接收数据的方法,包括:
接收为表示过采样符号序列而生成的样本序列;
从第一和第二样本流中检测第一和第二符号;以及
估算信道响应长度。
2.根据权利要求1所述的方法,其中估算包括跟踪最小符号宽度或平均符号宽度,其中符号宽度以每符号的样本数目来表示。
3.根据权利要求2所述的方法,进一步包括:
当包含少于L个样本(窄符号)的符号的数目超出一个阈值时,调整均衡器,从而减少窄符号的数量。
4.根据权利要求3所述的方法,其中调整包括将均衡参数向上调整和将均衡参数向下调整,以便确定均衡在哪个方向改进。
5.一种用于在数字传输链路上接收数据的方法,包括:
接收为表示过采样符号序列而生成的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流;
从第一和第二样本流中检测第一和第二符号;以及
检查第一样本流中的第一同步数据域和第二样本流中的第二同步数据域,以便估算第一和第二符号的第一和第二检测可靠性。
6.根据权利要求5所述的方法,其中第一和第二同步数据域包括DVI回程间隔或HDMI回程间隔。
7.一种用于在数字传输链路上接收数据的方法,包括:
接收为表示过采样符号序列而生成的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流;
从第一和第二样本流中检测第一和第二符号,其中该检测根据将一个或多个检测模式Patterni关联到一个或多个标记Flagi的动态更新表来进行,其中Flagi具有表示与Patterni关联的符号宽度与用于产生样本序列的过采样速率L之差的值;以及
调整一个或多个均衡器参数以便减少标记值。
8.一种用于在数字传输链路上接收数据的装置,包括:
接收机,用于:
(a)接收为表示过采样符号序列而生成的样本序列;
(b)从第一和第二样本流中检测第一和第二符号;以及
(c)估算信道响应长度。
9.根据权利要求8所述的装置,其中估算包括跟踪最小符号宽度或平均符号宽度,其中符号宽度以每符号的样本数目来表示。
10.根据权利要求9所述的装置,接收机进一步用于:
(d)当包含少于L个样本(窄符号)的符号的数目超出一个阈值时,调整均衡器,从而减少窄符号的数量。
11.根据权利要求10所述的装置,其中调整包括将均衡参数向上调整和将均衡参数向下调整,以便确定均衡在哪个方向改进。
12.一种用于在数字传输链路上接收数据的装置,包括:
接收机,用于:
(a)接收为表示过采样符号序列而生成的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流;
(b)从第一和第二样本流中检测第一和第二符号;以及
(c)检查第一样本流中的第一同步数据域和第二样本流中的第二同步数据域,以便估算第一和第二符号的第一和第二检测可靠性。
13.根据权利要求12所述的装置,其中第一和第二同步数据域包括DVI回程间隔或HDMI回程间隔。
14.一种用于在数字传输链路上接收数据的装置,包括:
接收机,用于:
(a)接收为表示过采样符号序列而生成的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流;
(b)从第一和第二样本流中检测第一和第二符号,其中该检测根据将一个或多个检测模式Patterni关联到一个或多个标记Flagi的动态更新表来进行,其中Flagi具有表示与Patterni关联的符号宽度与用于产生样本序列的过采样速率L之差的值;以及
(c)调整一个或多个均衡器参数以便减少标记值。
15.一种计算机可读介质,上面记录有计算机可执行指令,用于使计算机***的处理器能够处理通过数字传输链路输入的数据,该计算机可执行指令包括:
接收为表示过采样符号序列而生成的样本序列;
从第一和第二样本流中检测第一和第二符号;以及
估算信道响应长度。
16.根据权利要求15所述的计算机可读介质,其中估算包括跟踪最小符号宽度或平均符号宽度,其中符号宽度以每符号的样本数目来表示。
17.根据权利要求16所述的计算机可读介质,该计算机可执行指令进一步包括:
当包含少于L个样本(窄符号)的符号的数目超出一个阈值时,调整均衡器,从而减少窄符号的数量。
18.根据权利要求17所述的计算机可读介质,其中调整包括将均衡参数向上调整和将均衡参数向下调整,以便确定均衡在哪个方向改进。
19.一种计算机可读介质,上面记录有计算机可执行指令,用于使计算机***的处理器能够处理通过数字传输链路输入的数据,该计算机可执行指令包括:
接收为表示过采样符号序列而生成的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流;
从第一和第二样本流中检测第一和第二符号;以及
检查第一样本流中的第一同步数据域和第二样本流中的第二同步数据域,以便估算第一和第二符号的第一和第二检测可靠性。
20.根据权利要求19所述的计算机可读介质,其中第一和第二同步数据域包括DVI回程间隔或HDMI回程间隔。
21.一种计算机可读介质,上面记录有计算机可执行指令,用于使计算机***的处理器能够处理通过数字传输链路输入的数据,该计算机可执行指令包括:
接收为表示过采样符号序列而生成的样本序列,该样本序列包括依照样本序列第一和第二相位的第一和第二样本流;
从第一和第二样本流中检测第一和第二符号,其中该检测根据将一个或多个检测模式Patterni关联到一个或多个标记Flagi的动态更新表来进行,其中Flagi具有表示与Patterni关联的符号宽度与用于产生样本序列的过采样速率L之差的值;以及
调整一个或多个均衡器参数以便减少标记值。
CNA2006100642456A 2005-09-28 2006-09-27 过采样接收机的自适应接收技术 Pending CN1992578A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/238,629 US7801257B2 (en) 2005-09-28 2005-09-28 Adaptive reception techniques for over-sampled receivers
US11/238629 2005-09-28

Publications (1)

Publication Number Publication Date
CN1992578A true CN1992578A (zh) 2007-07-04

Family

ID=37432235

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006100642456A Pending CN1992578A (zh) 2005-09-28 2006-09-27 过采样接收机的自适应接收技术

Country Status (7)

Country Link
US (1) US7801257B2 (zh)
EP (3) EP1950906A1 (zh)
JP (1) JP2007110702A (zh)
KR (1) KR20070035970A (zh)
CN (1) CN1992578A (zh)
SG (2) SG141436A1 (zh)
TW (1) TW200746729A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118241A (zh) * 2009-12-30 2011-07-06 凌阳科技股份有限公司 基于信道容量大小的采样相位选择***
CN104052504A (zh) * 2013-03-15 2014-09-17 万亿广场有限公司 低功率无电流模式逻辑的发射机结构
CN105099651A (zh) * 2014-05-07 2015-11-25 德克萨斯仪器股份有限公司 补偿传输位间隔和接收器采样间隔之间的相对变化的通信接收
CN105577581A (zh) * 2014-10-17 2016-05-11 联芯科技有限公司 接收机的符号检测方法和装置
CN114697168A (zh) * 2022-06-01 2022-07-01 南京沁恒微电子股份有限公司 百兆以太网数字基带信号处理方法及信号处理模块

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4179418B2 (ja) * 2005-07-13 2008-11-12 京セラ株式会社 無線受信装置
US8570881B2 (en) * 2006-03-28 2013-10-29 Advanced Micro Devices, Inc. Transmitter voltage and receiver time margining
US7983368B2 (en) * 2006-12-11 2011-07-19 International Business Machines Corporation Systems and arrangements for clock and data recovery in communications
ES2300221B1 (es) * 2007-02-23 2009-08-25 Fundacion Cetena Sistema de comunicacion para canales de transmision cableados.
US8243752B2 (en) * 2007-04-04 2012-08-14 Marvell World Trade Ltd. Long-reach ethernet for 1000BASE-T and 10GBASE-T
JP2008301337A (ja) * 2007-06-01 2008-12-11 Nec Electronics Corp 入出力回路
WO2009010891A1 (en) * 2007-07-17 2009-01-22 Nxp B.V. A method and a device for data sample clock reconstruction
US8184760B2 (en) * 2008-09-02 2012-05-22 Taiwan Semiconductor Manufacturing Company, Ltd. Adaptive elastic buffer for communications
US8947373B2 (en) * 2009-10-20 2015-02-03 Cypress Semiconductor Corporation Method and apparatus for reducing coupled noise influence in touch screen controllers
WO2011050113A1 (en) * 2009-10-20 2011-04-28 Cypress Semiconductor Corporation Method and apparatus for reducing coupled noise influence in touch screen controllers.
US9323385B2 (en) 2011-04-05 2016-04-26 Parade Technologies, Ltd. Noise detection for a capacitance sensing panel
US9288087B2 (en) 2011-10-20 2016-03-15 Samsung Electronics Co., Ltd. Data receiver circuit and method of adaptively controlling equalization coefficients using the same
TWI484333B (zh) * 2012-07-12 2015-05-11 Phison Electronics Corp 彈性緩衝器模組及傳輸介面之彈性緩衝方法
US8817867B1 (en) 2013-03-12 2014-08-26 Lsi Corporation Adaptive continuous time linear equalizer
EP3145143B1 (en) 2015-09-15 2019-03-20 Nxp B.V. Differential detector
CN105608537A (zh) * 2015-12-25 2016-05-25 内蒙古蒙牛乳业(集团)股份有限公司 用于样品检验流程的管理方法和***
US10594892B2 (en) 2017-05-18 2020-03-17 Analog Devices Global High speed serial link for video interfaces
US11330450B2 (en) * 2018-09-28 2022-05-10 Nokia Technologies Oy Associating and storing data from radio network and spatiotemporal sensors

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2804201A1 (de) 1978-02-01 1979-08-02 Troendle Karlheinz Verfahren zur kompensation des systematischen phasenjitters bei digitaler uebertragung (phasenjiitterkompensation)
US4320345A (en) * 1980-04-28 1982-03-16 Sangamo Weston, Inc. Adaptive differential PSK demodulator
US4926472A (en) 1988-11-10 1990-05-15 National Semiconductor Corporation Reduction of signal processing requirements in a 2B1Q-code echo canceller or equalizer
US6335954B1 (en) * 1996-12-27 2002-01-01 Ericsson Inc. Method and apparatus for joint synchronization of multiple receive channels
US6272193B1 (en) * 1999-09-27 2001-08-07 Genesis Microchip Corp. Receiver to recover data encoded in a serial communication channel
US7031382B2 (en) * 2000-10-24 2006-04-18 Harris Corporation Non-linear equalizer system and method
KR100402906B1 (ko) * 2001-02-08 2003-10-22 (주)아이앤씨테크놀로지 직교주파수분할다중방식에서의 주파수 오프셋 동기화 장치및 방법
US20030043947A1 (en) * 2001-05-17 2003-03-06 Ephi Zehavi GFSK receiver
JP3754635B2 (ja) * 2001-07-17 2006-03-15 Necディスプレイソリューションズ株式会社 ディスプレイモニタ用入力チャンネル切替制御装置およびディスプレイモニタの入力チャンネル切替制御方法
KR100634193B1 (ko) 2001-10-26 2006-10-16 인터내셔널 비지네스 머신즈 코포레이션 천이 검출, 검증 및 기억 회로
KR100435494B1 (ko) * 2001-11-21 2004-06-09 한국전자통신연구원 디지털 통신에서의 동기 수행 시스템 및 그 방법
CN100364229C (zh) * 2002-04-26 2008-01-23 汤姆森特许公司 用于适配天线特性的、具有电可调整响应的调谐器输入滤波器
JP2003333110A (ja) * 2002-05-17 2003-11-21 Mitsubishi Electric Corp シリアルデータ受信回路
EP1355443A1 (en) 2002-08-02 2003-10-22 Agilent Technologies Inc. a Delaware Corporation Oversampling bit stream recovery
US7349498B2 (en) * 2002-10-07 2008-03-25 International Business Machines Corporation Method and system for data and edge detection with correlation tables
US7292665B2 (en) 2004-12-16 2007-11-06 Genesis Microchip Inc. Method and apparatus for reception of data over digital transmission link

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102118241A (zh) * 2009-12-30 2011-07-06 凌阳科技股份有限公司 基于信道容量大小的采样相位选择***
CN104052504A (zh) * 2013-03-15 2014-09-17 万亿广场有限公司 低功率无电流模式逻辑的发射机结构
US9419736B2 (en) 2013-03-15 2016-08-16 Gigoptix-Terasquare Korea Co., Ltd. Low-power CML-less transmitter architecture
CN104052504B (zh) * 2013-03-15 2017-01-18 吉高迅-万亿广场韩国有限公司 低功率无电流模式逻辑的发射机结构
CN105099651A (zh) * 2014-05-07 2015-11-25 德克萨斯仪器股份有限公司 补偿传输位间隔和接收器采样间隔之间的相对变化的通信接收
CN105099651B (zh) * 2014-05-07 2020-10-02 德克萨斯仪器股份有限公司 处理传输位的方法和设备
CN105577581A (zh) * 2014-10-17 2016-05-11 联芯科技有限公司 接收机的符号检测方法和装置
CN114697168A (zh) * 2022-06-01 2022-07-01 南京沁恒微电子股份有限公司 百兆以太网数字基带信号处理方法及信号处理模块

Also Published As

Publication number Publication date
US20070071153A1 (en) 2007-03-29
US7801257B2 (en) 2010-09-21
SG141436A1 (en) 2008-04-28
EP1947797A1 (en) 2008-07-23
EP1770898A1 (en) 2007-04-04
TW200746729A (en) 2007-12-16
JP2007110702A (ja) 2007-04-26
SG131075A1 (en) 2007-04-26
KR20070035970A (ko) 2007-04-02
EP1950906A1 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
CN1992578A (zh) 过采样接收机的自适应接收技术
KR102529936B1 (ko) 작동 중의 샘플러 오프셋 캘리브레이션
TWI407723B (zh) 接收資料的方法、設備、電腦可讀取媒體及確保資料的信號完整度的方法
CN114553261B (zh) 用于生成判定反馈均衡补偿误码计数的方法
US8050317B2 (en) Receiver with equalizer and method of operation
US9231803B2 (en) Data receiver, data communication system, and data communication method
US20150036732A1 (en) Edge based partial response equalization
US8120395B2 (en) Use of data decisions for temporal placement of samplers
US10721106B1 (en) Adaptive continuous time linear equalization and channel bandwidth control
US7522687B2 (en) Clock and data recovery system and method for clock and data recovery based on a forward error correction
CN113728552B (zh) 无时钟恢复情况下的可变增益放大器与采样器偏移校准
US8194727B2 (en) Equalizer characteristics optimizing method and transmission system
WO2018160603A1 (en) Method for measuring and correcting multiwire skew
WO2004045078A2 (en) High-speed analog-to-digital conversion with improved robustness to timing uncertainty
JP2015115850A (ja) データ受信装置およびデータ送受信システム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20070704