CN1964204A - 一种增强专用物理控制信道的译码优化方法及装置 - Google Patents

一种增强专用物理控制信道的译码优化方法及装置 Download PDF

Info

Publication number
CN1964204A
CN1964204A CNA2006101387445A CN200610138744A CN1964204A CN 1964204 A CN1964204 A CN 1964204A CN A2006101387445 A CNA2006101387445 A CN A2006101387445A CN 200610138744 A CN200610138744 A CN 200610138744A CN 1964204 A CN1964204 A CN 1964204A
Authority
CN
China
Prior art keywords
decoding
maximum
control channel
physical control
dedicated physical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006101387445A
Other languages
English (en)
Other versions
CN1964204B (zh
Inventor
徐昌平
代富贵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huawei Technologies Co Ltd
Original Assignee
Huawei Technologies Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co Ltd filed Critical Huawei Technologies Co Ltd
Priority to CN200610138744A priority Critical patent/CN1964204B/zh
Publication of CN1964204A publication Critical patent/CN1964204A/zh
Application granted granted Critical
Publication of CN1964204B publication Critical patent/CN1964204B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compression, Expansion, Code Conversion, And Decoders (AREA)

Abstract

本发明提供了一种增强专用物理控制信道的译码优化方法,包括以下步骤:根据扩频因子集和最大打孔因子获取增强传输格式合并指示的最大理论值;根据增强传输格式合并指示的最大理论值确定译码输出向量;根据译码输出向量获取增强专用物理控制信道的译码结果。本发明还提供了一种增强专用物理控制信道的译码优化装置。本发明根据SF集和PLmax获得E-TFCI的最大理论值,并根据最大E-TFCI确定E-DPCCH译码范围,从而实现提高E-DPCCH信道的译码速度。

Description

一种增强专用物理控制信道的译码优化方法及装置
技术领域
本发明涉及无线通信中的译码技术,尤其涉及一种增强专用物理控制信道的译码优化方法及装置。
背景技术
WCDMA(Wideband Code Division Multiple Access,宽带码分多址接入)R6(版本6)版本引入HSUPA(High Speed Downlink Packet Access,高速上行分组接入)技术,在上行增加了E-DPCCH(Energy ofDedicated Physical Control Channel,增强专用物理控制信道)和E-DPDCH(Energy of Dedicated Physical Data Channel,增强专用物理数据信道)。HSUPA是一种增强型3G传输技术,其目的是提高***上行能力,为了实现HSUPA的传输,用户设备必须在E-DPCCH上将相关的传输格式指示信息E-TFCI(Energy of Transport Format Combination Indicator,传输格式合并指示)传输到基站,以便基站进行正确的数据接收。
E-DPCCH携带的控制信息包括:重传序列号(RSN):xrsn,1、xrsn,2;E-TFCI信息:xtfci,1、xtfci,2、...、xtfci,7;Happy比特:xh,1。
E-DPCCH的编码流程如图1所示,E-TFCI信息xtfci,1、xtfci,2、...、xtfci,7;重传序列号xrsn,1、xrsn,2和Happy比特xh,1通过复用器复用在一起,组成10bit的E-DPCCH输出序列:x1,x2,...,x10,复用规则如下:
xk=xh,1          k=1
xk=xrsn,4-k      k=2,3
xk=xtfci,11-k    k=4,5,...,10
上述输出序列经过信道编码器进行编码,E-DPCCH的信道编码方法与R99协议中的TFCI编码方式相同,采用2阶Reed-Muller编码的子码。编码针对E-DPCCH复用的输出序列x1,x2,...,x10,编码如公式(1)所示:
z i = Σ n = 0 9 ( x n + 1 × M i , n ) mod 2 - - - ( 1 )
其中,i=0,1,...,29。编码后的结果为z0,z1,......,z29,所述编码结果经过物理信道映射,获得E-DPCCH最终编码结果。
E-DPCCH在NodeB侧的译码可以完全借鉴TFCI译码方法,常用的译码方法为:设E-DPCCH软信息S0,S1,...,S29构成30维的输入向量A,B为(N,30)的Hadamard(哈达玛)矩阵,A*B为N维的输出向量C,在N维向量C中寻找最大值,其位置就是E-DPCCH的译码结果。
根据E-DPCCH的编码流程,E-DPCCH复用后的10比特输出序列的最大取值为1024,输出向量C的维数N就为1024。
NodeB每次进行E-DPCCH译码时,至少需要进行1024*30=30720次乘加运算,运算量巨大。而在实际应用中,一般业务N取值比较小,比如典型的384K业务,N取值范围为280-288(E-TFCI为35,Table Index为1),N值比较大的业务,出现的概率比较小,而且用户数比较少,使用固定的输出序列的最大值进行译码会造成资源浪费、译码速度较慢。
发明内容
本发明要解决的问题是提供一种增强专用物理控制信道的译码优化方法及装置,以解决现有技术中利用固定输出序列最大值译码造成的译码速度慢及资源浪费的缺陷。
为实现本发明的目的,本发明提供一种增强专用物理控制信道的译码优化方法的实施例,包括以下步骤:
根据扩频因子集和最大打孔因子获取增强传输格式合并指示的最大理论值;
根据所述增强传输格式合并指示的最大理论值确定译码输出向量;
根据所述译码输出向量获取增强专用物理控制信道的译码结果。
本发明还提供了一种增强专用物理控制信道的译码优化装置的实施例,包括:增强传输格式合并指示最大理论值获取单元、译码输出向量生成单元和获取译码结果单元;
所述增强传输格式合并指示最大理论值获取单元,用于获取增强传输格式合并指示的最大理论值;
所述译码输出向量生成单元,用于确定译码输出向量;
所述获取译码结果单元,用于获取增强专用物理控制信道的译码结果。
与现有技术相比,本发明具有以下优点:
本发明根据SF(Spreading Factor,扩频因子)集和PLmax(PuncturingLimit,最大打子因子)获得E-TFCI的最大理论值,并根据最大E-TFCI确定E-DPCCH译码范围,进而确定译码过程中的N维向量C的N的取值,不再象以前那样固定为1024。比如E-DPCCH信道的10bit信息的最大值为31,那么N就取32,进行一次E-DPCCH译码只需要进行32*30=960次乘加运算,运算量大大降低,从而实现提高E-DPCCH信道的译码速度。
附图说明
图1是现有技术中E-DPCCH的编码流程图;
图2是本发明一种增强专用物理控制信道的译码优化方法的实施例流程图;
图3是本发明一种增强专用物理控制信道的译码优化装置实施例结构图。
具体实施方式
本发明增强专用物理控制信道的译码优化方法的第一实施例如图2所示,包括以下步骤:
步骤s201,根据扩频因子集和最大打孔因子获取增强传输格式合并指示的最大理论值。当建立E-DCH(Enhanced Dedicated Transport Channel,增强专用信道)链路时,根据高层配置的SF集和最大打子因子计算E-TFCI的最大理论值,这样就确定了E-DPCCH信道的10bit信息的高7bit的最大范围,E-DPCCH信道的10bit信息的最大值也就随之确定。
其中,获取增强传输格式合并指示的最大理论值具体包括:从扩频因子集中选取最小扩频因子;根据最小扩频因子获得物理信道传输速率:物理信道传输速率=(码片速率*传输时间间隔)/最小扩频因子;最大打孔因子对应的编码后的比特数=物理信道传输速率/最大打孔因子对应的打孔率;根据物理信道传输速率及最大打孔因子获得最大打孔因子对应的编码后的比特数;根据编码后的比特数获得最大理论值:在索引表中查找,获得第n个索引值,使得第n个索引值对应的Turbo编码后的比特数<=最大打孔因子对应的编码后的比特数<第n+1个索引值的Turbo编码后的比特数,则n为最大理论值。
步骤s202,根据增强传输格式合并指示的最大理论值确定译码输出向量。译码输入向量乘以哈达玛矩阵获得译码输出向量,其中,根据最大理论值确定哈达玛矩阵的行数、根据译码输入向量确定哈达玛矩阵的列数。根据最大理论值确定哈达玛矩阵的行数具体包括:2m-1<最大理论值<=2m,其中m为自然数,则2m为哈达玛矩阵的行数,也即译码输出向量的维数。
步骤s203,根据译码输出向量获取增强专用物理控制信道的译码结果。首先查找译码输出向量的最大值,然后,根据译码输出向量的最大值的行数获得对应增强专用物理控制信道的译码结果,例如,译码输出向量的最大值的位置在第5行,其二进制译码结果为00000101;译码输出向量的最大值的位置在第8行,其二进制译码结果为00001000。
下面利用具体参数对本发明增强专用物理控制信道的译码优化方法的第二实施例进行详细说明。
假设:SF集={SF_256,SF_128,SF_64},最大的打孔因子PLmax=1,采用10ms TTIE-DCH Transport Block Size Table 0。
根据SF集可以知道最小SF为64,当传输时间间隔为10ms、码片速率为3.84Mbps时,对应物理信道传输速率=3.84Mbps*10ms(TTI)/64(SF)=600bit。
SF集中的最小SF决定了当前链路的物理信道能承载的最大速率,如果超过了600bit/s,不可能建立链路,高层在配置SF集时,相应配置的E-TFCI肯定不会造成这个结果的,如果出现该结果,则为非法情况。
E-TFCI对应的编码后的比特要在物理信道上传输前需要进行速率匹配,速率匹配有两种方式,一种是重复,一种就是打孔,如果需要传输的比特数大于物理信道实际能传输的比特数,则要打孔(打掉一部分比特),反之,就重复(把某些比特重复几次传输)。如果物理信道能传输的比特数确定后(SF集的最小SF),则可能的最大E-TFCI是在采用打孔方式打掉尽量多的比特(即打孔率PL尽量小,PLmax指打掉最大比特数,其值最小)的情况下出现,因为,如果打孔率PLmax不是最小,即打掉很少比特,或者不打掉比特,很小的E-TFCI对应的编码后的比特数就超过物理信道的承载能力。因此,在计算理论上的E-TFCI最大值时,假定这些E-ETFCI对应的编码后的比特数按最大打孔情况下(PL最小),能在物理信道上传输。
最大打孔因子的编码后的比特数为:600bit/0.44(PLmax=1对应打孔率为44%)=1364bit左右。其中,最大打孔因子Plmax为:0,1,2,...,15,对应的最大打孔率从40%到100%,步长为4%;最大打孔率为打孔之后剩余比特数占打孔前总比特数的百分比。
表1:10ms TTI E-DCH Transport Block Size Table 0
    TBIndex     TB Size(bits)     TBIndex     TB Size(bits)     TBIndex     TB Size(bits)     TBIndex     TBSize(bits)     TBIndex     TBSize(bits)
    01234567891011121314151617181920212223     18120124130135141147153159166172180187195203211220229239249259270281293     303132333435363738394041424344454647484950515253     389405422440458477497517539561584608634660687716745776809842877913951991     606162636465666768697071727374757677787980818283     131613711428148715491613168017491822189719762058214322322325242125212626273528482966308932173350     90919293949596979899100101102103104105106107108109110111112113     4452463648285029523754545680591561616416668269597247754778608186852588789246962910028104441087711328     120121122123124125126127     1505115675163251700117706184401920420000
    242526272829     305317331344359374     545556575859     103210741119116512141264     848586878889     348936343784394141054275     114115116117118119  117971228612795133251387714453
通过查表1得到:
TB Index=32时,TB size=422bit,TC编码后的比特数为:1350bit
TB Index=33时,TB size=440bit,TC编码后的比特数为:1404bit
其中,TC编码为turbo编码方式的简称,编码后的比特数为=(编码前比特数+24bit(CRC比特数))*3+12,如果编码前为422,编码后为:(422+24)*3+12=1350;如果编码前为440,编码后为:(440+24)*3+12=1404;E-TFCI越大,TC编码后的比特数就越多。
上述TB Index就是E-TFCI的值,可以看出E-TFCI超过32后,比特数超过了物理信道传输速率,因此E-TFCI的最大理论值为32。E-TFCI为32时,编码后的比特数按最大打孔情况下(PL最小),能在物理信道上传输。而E-TFCI为33时,编码后的比特数按最大打孔情况下(PL最小),不能在物理信道上传输(超过物理信道的承载能力),就说明最大E-TFCI为32。如果实际不采用最大打孔率,则对应的E-TFCI会更小,因此,上面得到的就是最大理论值。
本发明一种增强专用物理控制信道的译码优化装置的实施例如图3所示,包括:增强传输格式合并指示最大理论值获取单元100、译码输出向量生成单元200和获取译码结果单元300。增强传输格式合并指示最大理论值获取单元100用于获取增强传输格式合并指示的最大理论值;译码输出向量生成单元200用于确定译码输出向量;获取译码结果单元300用于获取增强专用物理控制信道的译码结果。
其中增强传输格式合并指示最大理论值获取单元100进一步包括:物理信道传输速率计算子单元102、扩频因子集存储子单元103、最大打孔因子列表子单元101、最大打孔因子对应的编码后比特数计算子单元104和最大理论值计算子单元105。物理信道传输速率计算子单元102用于根据扩频因子集存储子单元103中的最小扩频因子及码片速率、传输时间间隔计算物理信道传输速率;最大打孔因子对应的编码后比特数计算子单元104用于根据物理信道传输速率及最大打孔因子列表子单元101中的对应打孔率获得编码后的比特数;最大理论值计算子单元105用于根据编码后的比特数查表获得最大理论值。
译码输出向量生成单元200进一步包括:哈达玛矩阵行数生成子单元201、译码输入向量接收子单元202、哈达玛矩阵生成子单元203和乘法子单元204。哈达玛矩阵行数生成子单元201用于根据最大理论值确定哈达玛矩阵行数;译码输入向量接收子单元202用于接收译码输入向量,并将接收向量维数作为给哈达玛矩阵的列数;哈达玛矩阵生成子单元203用于根据哈达玛矩阵列数和行数生成哈达玛矩阵;乘法子单元204用于将哈达玛矩阵与译码输入向量做乘法运算,获得译码输出向量。
获取译码结果单元300进一步包括:获取译码输出向量最大值子单元301和译码结果生成子单元302。获取译码输出向量最大值子单元301用于在译码输出向量中查找最大值;译码结果生成子单元302用于根据最大值的行数获得对应增强专用物理控制信道的译码结果。
以上公开的仅为本发明的具体实施例,但是,本发明并非局限于此,任何本领域的技术人员能思之的变化都应落入本发明的保护范围。

Claims (12)

1、一种增强专用物理控制信道的译码优化方法,其特征在于,包括以下步骤:
根据扩频因子集和最大打孔因子获取增强传输格式合并指示的最大理论值;
根据所述增强传输格式合并指示的最大理论值确定译码输出向量;
根据所述译码输出向量获取增强专用物理控制信道的译码结果。
2、如权利要求1所述增强专用物理控制信道的译码优化方法,其特征在于,所述获取增强传输格式合并指示的最大理论值具体包括:
从所述扩频因子集中选取最小扩频因子;
根据所述最小扩频因子获得物理信道传输速率;
根据所述物理信道传输速率及所述最大打孔因子获得所述最大打孔因子对应的编码后的比特数;
根据所述编码后的比特数获得所述最大理论值。
3、如权利要求2所述增强专用物理控制信道的译码优化方法,其特征在于,所述物理信道传输速率=(码片速率*传输时间间隔)/所述最小扩频因子。
4、如权利要求2所述增强专用物理控制信道的译码优化方法,其特征在于,所述最大打孔因子对应的编码后的比特数=所述物理信道传输速率/所述最大打孔因子对应的打孔率。
5、如权利要求2所述增强专用物理控制信道的译码优化方法,其特征在于,所述获得所述最大理论值具体包括:
在索引表中查找,获得第n个索引值,使得
第n个索引值对应的Turbo编码后的比特数<=最大打孔因子对应的编码后的比特数<第n+1个索引值对应的Turbo编码后的比特数,则所述n为所述最大理论值。
6、如权利要求1所述增强专用物理控制信道的译码优化方法,其特征在于,根据所述最大理论值确定译码输出向量具体包括:
所述译码输入向量乘以哈达玛矩阵获得译码输出向量,其中,根据所述最大理论值确定哈达玛矩阵的行数、根据译码输入向量确定所述哈达玛矩阵的列数。
7、如权利要求6所述增强专用物理控制信道的译码优化方法,其特征在于,根据所述最大理论值确定哈达玛矩阵的行数具体包括:
2m-1<最大理论值<=2m,其中m为自然数,
则2m为哈达玛矩阵的行数。
8、如权利要求1所述增强专用物理控制信道的译码优化方法,其特征在于,所述采用所述译码输出向量获取增强专用物理控制信道的译码结果具体包括:
查找所述译码输出向量的最大值;
根据所述译码输出向量的最大值的行数获得对应增强专用物理控制信道的译码结果。
9、一种增强专用物理控制信道的译码优化装置,其特征在于,包括:增强传输格式合并指示最大理论值获取单元、译码输出向量生成单元和获取译码结果单元;
所述增强传输格式合并指示最大理论值获取单元,用于获取增强传输格式合并指示的最大理论值;
所述译码输出向量生成单元,用于确定译码输出向量;
所述获取译码结果单元,用于获取增强专用物理控制信道的译码结果。
10、如权利要求9所述增强专用物理控制信道的译码优化装置,其特征在于,所述增强传输格式合并指示最大理论值获取单元进一步包括:物理信道传输速率计算子单元、扩频因子集存储子单元、最大打孔因子列表子单元、最大打孔因子对应的编码后比特数计算子单元和最大理论值计算子单元;
所述物理信道传输速率计算子单元,用于根据所述扩频因子集存储子单元中的最小扩频因子及码片速率、传输时间间隔计算物理信道传输速率;
所述最大打孔因子对应的编码后比特数计算子单元,用于根据所述物理信道传输速率及所述最大打孔因子列表子单元中的对应打孔率获得所述编码后的比特数;
所述最大理论值计算子单元,用于根据所述编码后的比特数查表获得所述最大理论值。
11、如权利要求10所述增强专用物理控制信道的译码优化装置,其特征在于,所述译码输出向量生成单元进一步包括:哈达玛矩阵行数生成子单元、译码输入向量接收子单元、哈达玛矩阵生成子单元和乘法子单元;
所述哈达玛矩阵行数生成子单元,用于根据所述最大理论值确定哈达玛矩阵行数;
所述译码输入向量接收子单元,用于接收译码输入向量,并将所述接收向量维数作为给所述哈达玛矩阵的列数;
所述哈达玛矩阵生成子单元,用于根据所述哈达玛矩阵列数和行数生成哈达玛矩阵;
所述乘法子单元,用于将所述哈达玛矩阵与所述译码输入向量做乘法运算,获得译码输出向量。
12、如权利要求9或10所述增强专用物理控制信道的译码优化装置,其特征在于,所述获取译码结果单元进一步包括:获取译码输出向量最大值子单元和译码结果生成子单元;
所述获取译码输出向量最大值子单元,用于在所述译码输出向量中查找最大值;
所述译码结果生成子单元,用于根据所述最大值的行数获得对应增强专用物理控制信道的译码结果。
CN200610138744A 2006-11-15 2006-11-15 一种增强专用物理控制信道的译码优化方法及装置 Expired - Fee Related CN1964204B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200610138744A CN1964204B (zh) 2006-11-15 2006-11-15 一种增强专用物理控制信道的译码优化方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200610138744A CN1964204B (zh) 2006-11-15 2006-11-15 一种增强专用物理控制信道的译码优化方法及装置

Publications (2)

Publication Number Publication Date
CN1964204A true CN1964204A (zh) 2007-05-16
CN1964204B CN1964204B (zh) 2010-05-12

Family

ID=38083132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200610138744A Expired - Fee Related CN1964204B (zh) 2006-11-15 2006-11-15 一种增强专用物理控制信道的译码优化方法及装置

Country Status (1)

Country Link
CN (1) CN1964204B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299626B (zh) * 2008-06-23 2013-06-05 中兴通讯股份有限公司 控制信道自适应发射的方法和装置
CN101753264B (zh) * 2008-12-18 2013-06-12 华为技术有限公司 用于评价打孔图案性能的门限值的获取方法和装置
CN101296008B (zh) * 2008-06-23 2013-08-07 中兴通讯股份有限公司 控制信道自适应发射的方法和装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1508993A (zh) * 2002-12-17 2004-06-30 华为技术有限公司 一种wcdma***中用于多用户接收的信道编码方法
KR100678182B1 (ko) * 2003-08-20 2007-02-02 삼성전자주식회사 비동기 광대역 부호분할 다중접속 시스템에서 상향링크 패킷 데이터 서비스 방법 및 장치

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101299626B (zh) * 2008-06-23 2013-06-05 中兴通讯股份有限公司 控制信道自适应发射的方法和装置
CN101296008B (zh) * 2008-06-23 2013-08-07 中兴通讯股份有限公司 控制信道自适应发射的方法和装置
CN101753264B (zh) * 2008-12-18 2013-06-12 华为技术有限公司 用于评价打孔图案性能的门限值的获取方法和装置

Also Published As

Publication number Publication date
CN1964204B (zh) 2010-05-12

Similar Documents

Publication Publication Date Title
CN100474790C (zh) 用于对通信***中传输的数据进行有效处理的方法及装置
CN101902313B (zh) 基于pusch传输的上行控制信息的编码方法及***
JP3454815B1 (ja) 符号分割多元接続移動通信システムのためのチャンネル符号化/復号化装置及び方法
EP1195934A3 (en) Apparatus and method for coding/decoding TFCI bits in an asynchronous CDMA communication system
CN101087181B (zh) 一种解交织和解速率匹配的方法
CN106877973A (zh) 极化码处理的方法及通信设备
CN1764098B (zh) 通信***中收缩编码码元的方法和装置
CN110690941B (zh) Polar码的速率匹配方法及装置
JP2001285253A (ja) 複合チャネル内に含まれた少なくとも2つのトランスポートチャネルをマッチングするための方法、その用途、マッチング装置および基地局
JP5440887B2 (ja) 可変レートブロック符号によるブロック符号化のための制御チャネル符号器およびその操作方法
CN107800510A (zh) 极化Polar码编码的方法及装置
JP3860123B2 (ja) 符号分割多重接続移動通信システムにおける符号化及び復号化装置及び方法
CN109450591A (zh) 一种编码方法和装置
EP1266459B1 (en) Encoding apparatus and method in cdma communication system
CN1964204B (zh) 一种增强专用物理控制信道的译码优化方法及装置
JP3782995B2 (ja) 符号分割多重接続移動通信システムでの符号化/復号化装置及び方法
CN101483441A (zh) 通信***中添加循环冗余校验的设备
EP2117150A1 (en) Method and apparatus for bit mapping enhanced-dedicated physical control channel (E-DPCCH) Information in UMTS wireless communication system
CN107733554A (zh) 极化码的速率匹配方法和装置
CN100423467C (zh) 用于降低每个软比特的比特数的方法和装置及其***
CN103731242B (zh) 用于在通信***中传送和接收数据块的方法和装置
CN101488823A (zh) Reed-Muller译码方法及使用该方法的译码器
CN100527647C (zh) 传输格式组合指示器解码电路及其解码方法
CN104184541B (zh) 一种lte下行解速率匹配方法及装置
CN100474796C (zh) 进行译码处理的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100512

Termination date: 20211115

CF01 Termination of patent right due to non-payment of annual fee