CN1898324A - 具有改进的流变性和改进的无缺口冲击强度的聚合物共混物 - Google Patents

具有改进的流变性和改进的无缺口冲击强度的聚合物共混物 Download PDF

Info

Publication number
CN1898324A
CN1898324A CNA2004800382180A CN200480038218A CN1898324A CN 1898324 A CN1898324 A CN 1898324A CN A2004800382180 A CNA2004800382180 A CN A2004800382180A CN 200480038218 A CN200480038218 A CN 200480038218A CN 1898324 A CN1898324 A CN 1898324A
Authority
CN
China
Prior art keywords
blend
residue
mole
acid residue
aliphatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2004800382180A
Other languages
English (en)
Other versions
CN1898324B (zh
Inventor
W·R·哈尔
C·M·坦纳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novamont SpA
Original Assignee
Eastman Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/005,266 external-priority patent/US7368511B2/en
Priority claimed from US11/005,587 external-priority patent/US7160977B2/en
Application filed by Eastman Chemical Co filed Critical Eastman Chemical Co
Publication of CN1898324A publication Critical patent/CN1898324A/zh
Application granted granted Critical
Publication of CN1898324B publication Critical patent/CN1898324B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明涉及一种可生物降解的聚合物共混物,所述聚合物共混物包含:(A)约15%-约60%重量的至少一种玻璃化转变温度小于约0℃的柔性可生物降解的聚合物(A),(B)约85%-约40%重量的至少一种玻璃化转变温度大于约10℃的刚性可生物降解的聚合物(B);所述百分比基于所述聚合物共混物的总重量计算;其中采用ASTMD256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。在一个实施方案中,采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。

Description

具有改进的流变性和改进的无缺口冲击强度的聚合物共混物
                     发明领域
本发明主要涉及可生物降解的聚合物共混物。为了得到具有改进的流变性和无缺口依佐德冲击强度的共混物,优选本发明涉及两种生物聚合物的共混物,所述生物聚合物例如为可生物降解的聚酯和聚酯酰胺。所述可生物降解的聚合物共混物可适用于多种应用。
                     发明背景
可生物降解材料由通过微生物催化降解从聚合物尺寸降解为单体或短链(继而被微生物同化)从而降低强度的组分构成。在有氧环境中,这些单体或短链最终被氧化为CO2、H2O和新的细胞生物质。在缺氧环境中,这些单体或短链最终被氧化为CO2、H2O、乙酸酯、甲烷和细胞生物质。成功的生物降解要求必须在可生物降解材料和活性微生物种群或活性微生物种群所产生的酶之间建立直接的物理接触。可用于降解本发明的薄膜和共混物的活性微生物种群通常可从任何其进水(废水流)中富含纤维素物质的市政或工业废水处理厂得到。此外,成功的生物降解需要满足某些最低理化要求,如适宜的PH、温度、氧浓度、适当的营养物和水分含量。
应人们对生物聚合物的需求,大量新的生物聚合物已被开发出来,这些聚合物当丢弃在环境中时已显示出生物降解性。
当前已知的生物聚合物具有独特的性质和优缺点。例如,一些生物聚合物强度高但同时又非常硬和脆。这使得当需要柔性片或薄膜时,如用于制作需要良好的弯曲和折叠性的包裹物、袋子或其他包装材料时,这些聚合物难以胜任。对于其他生物聚合物(biopolymer),要从它们吹膜也是难以置信的。
另一方面,生物聚合物如PCL和某些当前市场上有售的脂族芳族聚酯其柔性较前面刚刚讨论过的较硬的生物聚合物要高许多倍,但是它们的熔点较低,以致于当刚加工和/或受热时趋于自粘。虽然很容易吹成膜,但由于被卷到卷轴上时它们趋于自粘,而出售和运到其他地方和公司通常需要卷到卷轴上,因此这样的膜难以大批量加工。为防止这类膜自粘(或“粘连”),通常需要加入二氧化硅或其他填料。正如前述吹塑薄膜实例所述,模塑、挤出和成型较厚的零件也特别困难。
挤出型材、挤坯吹塑制品和/或薄膜和片材的另一个重要的标准为温度稳定性。“温度稳定性”是即便在装运或存放过程中可能遇到的高温或低温下或较宽的温度范围内仍维持预期性质的能力。例如,若受热温度显著高于室温,许多较柔的生物聚合物则趋于***、变粘,从而削弱了维持其预期的包装性能的能力。其他聚合物在冷到显著低于冰点(即0℃)时可***、变脆。因此,单一的均聚物或共聚物其自身在较宽的温度范围内可能不具有足够的稳定性。
鉴于以上情况,本领域中一大进步为提供了具有改进的无缺口依佐德冲击强度的可生物降解的聚合物共混物,比起现有的生物聚合物,所述聚合物共混物易形成挤出型材或易挤坯吹塑,或者吹塑成薄膜或者挤出为薄膜和片材,这些制品在宽范围温度下具有提高的温度稳定性。
                     发明概述
本发明公开了具有改进的流变性和无缺口依佐德冲击强度的特定的可生物降解的聚合物共混物的组成范围。所述聚合物共混物可容易地形成挤出型材,挤坯吹塑或形成薄膜和片材,这些制品用于需要刚性、韧性和生物降解能力的各种应用。
在第一个实施方案中,本发明的聚合物共混物包含:
(A)约15%-约60%重量的至少一种玻璃化转变温度小于约0℃的柔性可生物降解的聚合物(A);和
(B)约85%-约40%重量的至少一种玻璃化转变温度大于约10℃的刚性可生物降解的聚合物(B);
所述百分比基于所述聚合物共混物的总重量计算;
其中采用ASTM D256,所述聚合物共混物在0℃和23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。在一个实施方案中,采用ASTMD256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
本发明的第二个实施方案提供了一种聚合物共混物,所述聚合物共混物包含:
(A)约15%-约60%重量的至少一种玻璃化转变温度小于约0℃的聚合物(A),其中所述聚合物(A)包含:
(1)二酸残基,所述二酸残基包含约1-65%摩尔的芳族二羧酸残基和99%-约35%摩尔的选自以下的非芳族二羧酸残基:包含约4-14个碳原子的脂族二羧酸残基和包含约5-15个碳原子的脂环族二羧酸残基;其中二酸残基的总摩尔百分数等于100%摩尔;和
(2)二醇残基,所述二醇残基选自一种或多种包含约2-8个碳原子的脂族二醇、包含约2-8个碳原子的聚亚烷基醚和包含约4-12个碳原子的脂环族二醇;其中二醇残基的总摩尔百分数等于100%摩尔;和
(B)约85%-约40%重量的至少一种聚合物(B),其中所述聚合物(B)为衍生自聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;
其中采用ASTM D256,所述聚合物共混物在0℃和23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。在一个实施方案中,采用ASTMD256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
本发明的第三个实施方案提供了一种聚合物共混物,所述聚合物共混物包含:
(A)约15%-约50%重量的至少一种玻璃化转变温度小于约0℃的聚合物(A),其中所述聚合物(A)主要由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基;和
(B)约85%-约50%重量的至少一种聚合物(B),其中所述聚合物(B)为衍生自聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;其中采用ASTM D256,所述聚合物共混物在0℃和23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。在一个实施方案中,采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
本发明的第四个实施方案提供了一种聚合物共混物,所述聚合物共混物包含:
(A)约25%-约50%重量的至少一种玻璃化转变温度小于约0℃的聚合物(A),其中所述聚合物(A)主要由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基;和
(B)约75%-约50%重量的至少一种聚合物(B),其中所述聚合物(B)为衍生自聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;其中采用ASTM D256,所述聚合物共混物在0℃和23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。在一个实施方案中,采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
本发明的第五个实施方案提供了一种聚合物共混物,所述聚合物共混物包含:
(A)约40%-约60%重量的至少一种玻璃化转变温度小于约0℃的聚合物(A),其中所述聚合物(A)主要由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基;和
(B)约60%-约40%重量的至少一种聚合物(B),其中所述聚合物(B)为衍生自聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;其中采用ASTM D256,所述聚合物共混物在0℃和23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。在一个实施方案中,采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
本发明的第六个实施方案提供了一种聚合物共混物,所述聚合物共混物包含:
(A)约40%-约50%重量的至少一种玻璃化转变温度小于约0℃的聚合物(A),其中所述聚合物(A)主要由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基;和
(B)约50%-约40%重量的至少一种聚合物(B),其中所述聚合物(B)为衍生自聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;其中采用ASTM D256,所述聚合物共混物在0℃和23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。在一个实施方案中,采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
对于所有的所述实施方案,所述聚合物共混物可包含占所述聚合物共混物总重量的约1%-约50%的可生物降解的添加剂。
比起现有的生物聚合物共混物,这些可生物降解的聚合物共混物具有改进的无缺口依佐德冲击强度,所述聚合物共混物易形成挤出型材或易挤坯吹塑形成制品,这些制品在宽范围温度下具有提高的温度稳定性。
发明详述
将至少一种具有较高硬度(刚性)的生物聚合物(下文中还称为“生物聚合物(B)”)与至少一种具有较高柔性的生物聚合物(A)(下文中还称为“生物聚合物(A)”)共混可实现本发明的上述改进。与单独的各聚合物组分相比,所述新型共混物具有改进的流变性和无缺口依佐德冲击强度。此外,所述共混物比常规的塑料优异,常规的塑料丢弃在环境中时不能降解。
除非另外说明,否则在说明书和权利要求书中使用的表示各组分的量、性质(例如分子量)、反应条件等的所有数值应理解为在所有的情况下用术语“约”修饰。因此,除非说明为相反的情况,否则在以下的说明书和附加的权利要求书中所述的数字参数为近似值,可根据本发明试图得到的所需性能而变。就最低限度而论,每个数值参数至少应依照所给有效数字并应用常规的四舍五入法来理解。此外,本说明书和权利要求中提到的范围旨在明确包括整个范围而非仅是边界点。例如,提到的0-10的范围旨在公开0和10之间的所有整数(如1、2、3、4等)、0和10之间的所有分数(如1.5、2.3、4.57、6.1113等)以及边界点0和10。此外,与化学取代基相关的范围,例如“C1-C5烃”具体是指C1和C5烃以及C2、C3和C4烃。
尽管阐明本发明范围的数值范围和参数是近似值,但具体实施例中提到的数值是尽可能准确的。但是,任何数值均必定内在地包含一定的因其各自的测量中存在的标准偏差引起的误差。
本文一个实施方案中所述的任何重量百分数可与其他实施方案结合使用。
如本文所述,本发明的聚合物共混物通常包含以下实施方案以及本文所述的其他实施方案:
(A)约15%-约60%重量的至少一种玻璃化转变温度小于约0℃的柔性可生物降解的聚合物(A);和
(B)约85%-约40%重量的至少一种玻璃化转变温度大于约10℃的刚性可生物降解的聚合物(B);
所述百分比基于所述聚合物共混物的总重量计算;
其中采用ASTM D256,所述聚合物共混物在0℃和23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。在一个实施方案中,采用ASTMD256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
应人们对生物聚合物的需要,开发了大量的当丢弃在环境中可生物降解的新型生物聚合物。其中某些为脂族-芳族共聚酯、聚酯酰胺、改性聚对苯二甲酸乙二醇酯、基于聚乳酸的聚合物、已知为聚羟基链烷酸酯(PHA)的聚合物(包括聚羟基丁酸酯(PHB)、聚羟基戊酸酯(PHV)和羟基丁酸酯-羟基戊酸酯共聚物(PHBV))和聚己内酯(PCL)。
本发明的聚合物共混物包含至少一种具有较高硬度的生物聚合物和至少一种具有较高柔性的生物聚合物。当以正确的比例共混在一起时,可从各聚合物中衍生有益的性能,而抵消或消除各聚合物如果分别用于模塑、挤出或形成多种应用的零件时的负面性能。将较刚性聚合物与较柔性聚合物以一定比例共混时,本发明者发现所述改进了共混物的流变性和无缺口依佐德冲击强度,使这些形式优于各聚合物单独使用时所预期的性能。因此证实了意想不到的协同效果的惊人结论。
通常其特征为“柔性”的生物聚合物(A)包括那些玻璃化转变温度小于约0℃的聚合物。在一个实施方案中,所述柔性生物聚合物(A)的玻璃化转变温度小于约-10℃。在本发明的其他实施方案中,所述柔性生物聚合物的玻璃化转变温度小于约-20℃,还更优选小于约-30℃。
柔软或柔性生物聚合物(A)的实例包括但不局限于各种脂族-芳族共聚酯(例如BASF的产品以及Eastman Chemical Company以前的产品)、包含具有至少5个碳原子的重复单元的各种脂族聚酯(例如聚羟基戊酸酯、羟基丁酸酯-羟基戊酸酯共聚物)和聚己内酯(例如DaicelChemical,Monsanto,Solvay和Union Carbide的产品)以及丁二酸酯基脂族聚合物(例如聚丁二酸丁二醇酯(PBS)、聚丁二酸己二酸丁二醇酯(PBSA)和聚丁二酸乙二醇酯(PES)(例如Showa High Polymer的产品))。
本文使用的术语“聚酯”包括“共聚酯”,应理解为是指由一种或多种双官能的羧酸与一种或多种双官能的羟基化合物缩聚反应制备的合成聚合物。通常所述多种双官能的羧酸为二羧酸,所述双官能的羟基化合物为二元醇,例如乙二醇和二醇。本文使用的术语“残基”是指通过相应单体的缩聚反应掺入聚合物或增塑剂的任何有机结构。本文使用的术语“重复单元”是指通过羰基氧基相连的具有二羧酸残基和二醇残基的有机结构。因此,所述二羧酸残基可衍生自二羧酸单体或其相关的酰卤、酯、盐、酸酐或其混合物。因此,本文使用的术语“二羧酸”包括用于缩聚反应与二醇一起形成高分子量聚酯的二羧酸和二羧酸的任何衍生物,包括其相关的酰卤、酯、半酯、盐、半盐、酸酐、混合酸酐或其混合物。
本发明的聚酯包含基本等摩尔比例的酸残基(100%摩尔)和二醇残基(100%摩尔),二者基本等摩尔比例地反应,使得重复单元的总摩尔数等于100%摩尔。因此,本公开所提供的摩尔百分比可基于酸残基的总摩尔数、二醇残基的总摩尔数或重复单元的总摩尔数计算。例如包含占总酸残基的30%摩尔的己二酸的共聚酯是指该共聚酯包含的己二酸残基占总计100%摩尔酸残基中的30%摩尔。因此,每100摩尔酸残基中有30摩尔己二酸残基。在另一个实例中,包含占总二醇残基的30%摩尔的1,6-己二醇的共聚酯是指该共聚酯包含的1,6-己二醇残基占总计100%摩尔二醇残基中的30%摩尔。因此,每100摩尔二醇残基中有30摩尔1,6-己二醇残基。
在本发明的一个实施方案中,本发明的聚合物共混物包含构成本发明组分(A)的脂族-芳族共聚酯(本文中称AAPE),包括那些描述于美国专利5,661,193、5,599,858、5,580,911和5,446,079的脂族-芳族共聚酯,这些专利所公开的内容通过引用结合到本文中来。
在一个实施方案中,可用于生产本发明的聚合物共混物的“柔性”聚合物包括BASF生产的脂族-芳族共聚酯,所售商品名为ECOFLEX。BASF生产的脂族-芳族共聚酯包括衍生自1,4-丁二醇、己二酸和对苯二甲酸二甲酯(DMT)的统计学共聚酯(statisticalcopolyester)。在某些情况下,使用二异氰酸酯作为链增长剂。
本发明的共聚酯组合物可包含一种或多种AAPE,所述AAPE可为包含二醇残基的直链、无规共聚酯或支链和/或链增长的共聚酯,所述二醇残基包括一种或多种取代或未取代的、直链或支链的选自以下的二醇:包含2-约8个碳原子的脂族二醇、包含2-8个碳原子的聚亚烷基醚二醇和包含约4-约12个碳原子的脂环族二醇。所述取代的二醇通常包括1-约4个独立选自卤素、C6-C10芳基和C1-C4烷氧基的取代基。可使用的二醇的实例包括但不局限于乙二醇、二甘醇、1,2-丙二醇、1,3-丙二醇、2,2-二甲基-1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、聚乙二醇、二甘醇、2,2,4-三甲基-1,6-己二醇、硫二甘醇、1,3-环己烷二甲醇、1,4-环己烷二甲醇、2,2,4,4-四甲基-1,3-环丁二醇、三甘醇和四甘醇。在一个实施方案中优选脂族二醇。在另一个实施方案中,更优选的二醇包括一种或多种选自以下的二醇:1,4-丁二醇、1,3-丙二醇、乙二醇、1,6-己二醇、二甘醇和1,4-环己烷二甲醇。在另一个实施方案中,优选(但并非必需)单独使用1,4-丁二醇、乙二醇和1,4-环己烷二甲醇或其组合。
所述AAPE还包含二酸残基,所述二酸残基包含占酸残基总摩尔数的约35%-约99%摩尔,优选约35%-约75%摩尔,更优选约35%-约65%摩尔,还更优选约40%-约60%摩尔的一种或多种取代或未取代的、直链或支链的选自以下的非芳族二羧酸的残基:包含2-约12个碳原子的脂族二羧酸和包含约5-约10个碳原子的脂环族二羧酸。所述取代的非芳族二羧酸通常包括1-约4个选自卤素、C6-C10芳基和C1-C4烷氧基的取代基。脂族和脂环族二羧酸的非限制性的实例有丙二酸、丁二酸、戊二酸、己二酸、庚二酸、壬二酸、癸二酸、富马酸、2,2-二甲基戊二酸、辛二酸、1,3-环戊烷二甲酸、1,4-环己烷二甲酸、1,3-环己烷二甲酸、二甘醇酸、衣康酸、马来酸和2,5-降冰片烷二甲酸。除了非芳族二羧酸,所述AAPE还包含占酸残基总摩尔数的约1%-约65%摩尔,优选约25-65%摩尔,更优选约35-65%摩尔,还更优选约60-40%摩尔的一种或多种取代或未取代的包含6-约10个碳原子的芳族二羧酸的残基。在使用取代的芳族二羧酸的情况下,通常包含1-约4个选自卤素、C6-C10芳基和C1-C4烷氧基的取代基。可用于本发明的AAPE的芳族二羧酸的非限制性的实例有对苯二甲酸、间苯二甲酸、5-磺基间苯二甲酸的盐和2,6-萘二甲酸。在另一个实施方案中,所述AAPE包含二醇残基和二酸残基,所述二醇残基包含一种或多种以下的残基:1,4-丁二醇、1,3-丙二醇、乙二醇、1,6-己二醇、二甘醇或1,4-环己烷二甲醇;所述二酸残基包含:(i)占酸残基总摩尔数的约35%-约99%摩尔,优选约35%-约75%摩尔,更优选约40-60%摩尔的一种或多种选自以下的非芳族二羧酸的残基:戊二酸、二甘醇酸、丁二酸、1,4-环己烷二甲酸和己二酸(优选戊二酸和己二酸,可单独使用或组合使用);(ii)占酸残基总摩尔数的约5%-约65%摩尔,优选约25-65%摩尔,更优选约35-65%摩尔,还更优选约40-60%摩尔的一种或多种选自对苯二甲酸和间苯二甲酸的芳族二羧酸的残基。更优选所述非芳族二羧酸可包括己二酸,所述芳族二羧酸可包括对苯二甲酸。在一个实施方案中,所述二醇包括约95%-约100%摩尔,优选100%摩尔的1,4-丁二醇。
在一个实施方案中,优选所述AAPE包含约25%-约65%摩尔,优选约35%-约65%摩尔,还更优选约40%-约60%摩尔的对苯二甲酸。还优选所述AAPE包含约75%-约35%摩尔,优选约65%-约35%摩尔,还更优选约60%-约40%摩尔的己二酸。
本发明的AAPE的其他优选组合物是从下述二醇和二羧酸(或其形成共聚酯的等价物,如二酯)以下述摩尔百分数(基于100%摩尔的二酸组分和100%摩尔的二醇组分计算)制得的那些:
(1)戊二酸(约30%-约75%)、对苯二甲酸(约25%-约70%)、1,4-丁二醇(约90-100%)和改性二醇(0%-约10%);
(2)丁二酸(约30%-约95%)、对苯二甲酸(约5%-约70%)、1,4-丁二醇(约90-100%)和改性二醇(0%-约10%);和
(3)己二酸(约30%-约75%)、对苯二甲酸(约25%-约70%)、1,4-丁二醇(约90-100%)和改性二醇(0%-约10%)。
在一个实施方案中,一种或多种改性二醇选自1,4-环己烷二甲醇、三甘醇、聚乙二醇和新戊二醇。某些AAPE可为直链、支链或扩链的共聚酯,包含约50%-约60%摩尔的己二酸残基、约40%-约50%摩尔的对苯二甲酸残基和至少95%摩尔的1,4-丁二醇残基。还更优选己二酸残基存在的量为约55%-约60%摩尔,对苯二甲酸残基存在的量为约40%-约45%摩尔,1,4-丁二醇残基存在的量为约95-100%摩尔。近来这样的组合物可从Eastman Chemical Company,Kingsport,TN以商品名Eastar Bio共聚酯购得。
此外,优选的AAPE的具体实例有戊二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,所述共聚物包含:(a)50%摩尔的戊二酸残基、50%摩尔的对苯二甲酸残基和100%摩尔的1,4-丁二醇残基,(b)60%摩尔的戊二酸残基、40%摩尔的对苯二甲酸残基和100%摩尔的1,4-丁二醇残基或(c)40%摩尔的戊二酸残基、60%摩尔的对苯二甲酸残基和100%摩尔的1,4-丁二醇残基;丁二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,所述共聚物包含:(a)85%摩尔的丁二酸残基、15%摩尔的对苯二甲酸残基和100%摩尔的1,4-丁二醇残基或(b)70%摩尔的丁二酸残基、30%摩尔的对苯二甲酸残基和100%摩尔的1,4-丁二醇残基;丁二酸乙二醇酯-对苯二甲酸乙二醇酯共聚物,所述共聚物包含:70%摩尔的丁二酸残基、30%摩尔的对苯二甲酸残基和100%摩尔的乙二醇残基;和己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,所述共聚物包含:(a)85%摩尔的己二酸残基、15%摩尔的对苯二甲酸残基和100%摩尔的1,4-丁二醇残基或(b)55%摩尔的己二酸残基、45%摩尔的对苯二甲酸残基和100%摩尔的1,4-丁二醇残基。
优选所述AAPE包含约10-约1,000个重复单元,优选约15-约600个重复单元。优选AAPE的特性粘度(在25℃的温度下用0.5g共聚酯在100ml苯酚/四氯乙烷(重量比60/40)中的溶液测得)为约0.4-约2.0dL/g,更优选约0.7-约1.4。
此外,优选“柔性”聚合物(A)占所述可生物降解的聚合物共混物重量的约15%-约60%,在其他实施方案中,优选所述刚性聚合物(B)占所述聚合物共混物总重量的约15%-约50%、约25%-约50%和40%-约59%。
任何生物聚合物(包括但不局限于AAPE)可任选包含支化剂的残基。在一个实施方案中,所述支化剂的重量百分比占所述AAPE总重量的约0%-约2重量(在本发明中“重量”是指“%重量”),优选约0.1%-约1%,最优选约0.1%-约0.5%。优选所述支化剂的重均分子量为约50-约5000,更优选为约92-约3000,官能度为约3-约6。例如所述支化剂可为具有3-6个羟基的多元醇、具有3或4个羧基(或形成酯的等价基团)的多元羧酸或共有3-6个羟基和羧基的羟基酸的酯残基。
可用作支化剂的有代表性的低分子量多元醇包括甘油、三羟甲基丙烷、三羟甲基乙烷、聚醚三醇、甘油、1,2,4-丁三醇、季戊四醇、1,2,6-己三醇、山梨醇、1,1,4,4-四(羟甲基)环己烷、异氰脲酸三(2-羟乙酯)和二季戊四醇。较高分子量多元醇(MW为400-3000)的具体支化剂的实例有衍生自具有2或3个碳原子的烯化氧(例如环氧乙烷和环氧丙烷)与多元醇引发剂的缩合反应的三醇。可用作支化剂的有代表性的多元羧酸包括1,2,3-苯三甲酸、偏苯三甲酸(1,2,4-苯三甲酸)及其酸酐、1,3,5-苯三甲酸、1,2,4,5-苯四酸及其酸酐、苯四甲酸、二苯甲酮四甲酸、1,1,2,2-乙烷四甲酸、1,1,2-乙烷三甲酸、1,3,5-戊烷三甲酸和1,2,3,4-环戊烷四甲酸。尽管所述酸可以酸的形式使用,但优选使用其低级烷基酯或其环状酸酐形式(在可形成环状酸酐的情况下)。作为支化剂的有代表性的羟基酸包括苹果酸、柠檬酸、酒石酸、3-羟基戊二酸、粘酸、三羟基戊二酸、4-羧基邻苯二甲酸酐、羟基间苯二甲酸和4-(β-羟乙基)邻苯二甲酸。这种羟基酸包含3个或多个羟基和羧基的组合。特别优选的支化剂包括1,2,4-苯三甲酸、1,3,5-苯三甲酸、季戊四醇、三羟甲基丙烷和1,2,4-丁三醇。
本发明的脂族-芳族聚酯还可包含一种或多种含离子的单体以增加其熔体粘度。优选所述含离子的单体选自磺基间苯二甲酸的盐或其衍生物。这类单体的一个典型的实例为钠代磺基间苯二甲酸或钠代磺基间苯二甲酸的二甲酯。优选所述含离子的单体的浓度为占酸残基总摩尔数的约0.3%-约5.0%摩尔,更优选为约0.3%-约2.0%摩尔。
本发明的支链AAPE的一个实例为包含100%摩尔的1,4-丁二醇残基、43%摩尔的对苯二甲酸残基和57%摩尔的己二酸残基和用约0.5%重量的季戊四醇支化的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物。这种AAPE可通过己二酸二甲酯、对苯二甲酸二甲酯、季戊四醇和1,4-丁二醇的酯交换反应和缩聚反应制备。所述AAPE可采用本领域任何常规的已知方法制备,例如在真空、100ppm的钛(开始时为四异丙醇钛形式)存在下,将各单体于190℃下加热1小时,于200℃下加热2小时,于210℃下加热1小时,随后于250℃下加热1.5小时来制备。
支链AAPE的另一个实例为包含100%摩尔的1,4-丁二醇残基、43%摩尔的对苯二甲酸残基和57%摩尔的己二酸残基和用0.3%重量的1,2,4,5-苯四酸二酐支化的己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物。使用挤出机,通过线形己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物与1,2,4,5-苯四酸二酐的活性挤出制备这种AAPE。
本发明的AAPE还可包含占所述组合物总重量的0%-约5%或者0.1-5%(在一个实施方案中)的一种或多种扩链剂。示例性的扩链剂为例如那些公开于U.S.5,817,721的二乙烯基醚或例如那些公开于U.S.6,303,677的二异氰酸酯。有代表性的二乙烯基醚有1,4-丁二醇二乙烯基醚、1,5-己二醇二乙烯基醚和1,4-环己烷二甲醇二乙烯基醚。
有代表性的二异氰酸酯有甲苯2,4-二异氰酸酯、甲苯2,6-二异氰酸酯、2,4′-二苯基甲烷二异氰酸酯、萘1,5-二异氰酸酯、二甲苯二异氰酸酯、六亚甲基二异氰酸酯、异佛尔酮二异氰酸酯和亚甲基二(2-异氰酸基环己烷)。优选的二异氰酸酯为六亚甲基二异氰酸酯。重量百分比优选为占所述AAPE总重量的约0.3%-约3.5%,最优选为约0.5%-约2.5%。原则上还可使用官能度不少于3、可包含异氰脲酸酯和/或联脲基的三官能的异氰酸酯化合物,或者用三异氰酸酯或多异氰酸酯部分代替二异氰酸酯化合物。
使用典型的缩聚反应条件,由合适的二羧酸、酯、酸酐或其盐,合适的二醇或二醇混合物以及任何支化剂容易地制备本发明的AAPE。可采用连续、半连续和间歇操作方式制备,并可使用多种反应器类型。合适的反应器类型的实例包括但不局限于搅拌釜、连续搅拌釜、淤浆式反应器、管状反应器、刮板式薄膜反应器、降膜式反应器或挤出反应器。本文使用的术语“连续”是指各反应物引入和产品回收以不间断的方式同时进行的方法。“连续的”与“间歇”法相反,是指基本连续或完全连续操作的方法。“连续的”并不排除在反应进行的过程中由于如开车、反应器维修或定期停车等原因而发生的正常中断。本文使用的术语“间歇”法是指将所有的反应物加至反应器中,随后按照预定的反应过程进行反应的方法,其间没有原料加入或移出反应器中。术语“半连续”是指部分反应物在反应开始时加入,剩余的反应物随着反应的进行连续加入的方法。或者半连续法还可包括类似于间歇法的方法,其中所有的反应物在反应开始时加入,不同之处在于随着反应的进行,一种或多种产物被连续移出。出于经济的原因和为了制备优异颜色的聚合物(在高温反应器中停留太长的时间共聚酯的外观会劣化),最好以连续法进行加工。
本发明的AAPE采用本领域技术人员已知(例如描述于U.S.2,012,267)的方法制备。这类反应通常在缩聚反应催化剂(例如烷氧基钛化合物、碱金属氢氧化物和乙醇化物、有机羧酸的盐、烷基锡化合物、金属氧化物等)存在下,在150-300℃下进行。催化剂的用量通常占各反应物总重量的10-1000ppm。
可使用常规的共聚酯聚合反应条件进行二醇和二羧酸的反应。例如,当采用酯交换反应(即以酯形式的二羧酸组分为原料)的方法制备共聚酯时,所述反应方法可包括两步。第一步,将二醇组分和二羧酸组分(例如对苯二甲酸二甲酯)在通常为约150-约250℃的高温、压力为约0.0-约414kPa(表压,60磅/英寸2,“psig”)下反应约0.5-约8小时。优选酯交换反应的温度为约180-约230℃,进行约1-约4小时,优选的压力范围为约103kPa(表压,15psig)-约276kPa(表压,40psig)。随后,将反应产物在更高的温度和降低的压力下加热,以形成消除二醇的AAPE,在这些反应条件下二醇易挥发并从体系中除去。第二步或缩聚步骤在较高真空下以及通常为约230-约350℃,优选为约250-约310℃,最优选为约260-约290℃的温度下进行约0.1-约6小时或者优选进行约0.2-约2小时,直至得到具有所需聚合度(通过特性粘度测定)的聚合物。缩聚步骤可在减压下进行,压力范围为约53kPa(400托)-约0.013kPa(0.1托)。在两步中使用搅拌或合适的条件,以保证足够的热交换和反应混合物的表面更新。通过合适的催化剂提高两步的反应速率,所述催化剂例如四氯化钛、二乙酸锰、氧化锑、二乙酸二丁基锡、氯化锌或其组合。还可使用类似于U.S.5,290,631所述的三步制备法,特别是当使用酸和酯的混合单体物料时更是可使用该方法。例如典型的脂族-芳族共聚酯-包含30%摩尔的对苯二甲酸残基的戊二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物-可如下制备:在真空、100ppm钛(开始时以四异丙醇钛形式)存在下,将戊二酸二甲酯、对苯二甲酸二甲酯和1,4-丁二醇首先于200℃下加热1小时,随后于245℃下加热0.9小时。
为了保证通过酯交换反应的二醇组分和二羧酸组分反应完全,有时需要每1摩尔二羧酸组分使用约1.05-约2.5摩尔二醇组分。但是,本领域普通技术人员明白,二醇组分与二羧酸组分的比率通常取决于发生反应的反应器的设计。
在通过直接酯化反应(即以酸形式的二羧酸组分为原料)制备共聚酯的情况下,通过二羧酸或二羧酸的混合物与二醇组分或二醇组分的混合物以及支化单体组分反应制备聚酯。反应进行的压力为约7kPa(表压,1psig)-约1379kPa(表压,200psig),优选小于689kPa(表压,100psig),制备平均聚合度为约1.4-约10的低分子量共聚酯产物。在直接酯化反应过程中使用的温度范围通常为约180-约280℃,更优选为约220-约270℃。随后该低分子量聚合物可通过缩聚反应聚合。目前BASF销售的商品名为ECOFLEX的聚合物的玻璃化转变温度为-33℃,熔点为105-115℃。
聚己内酯(PCL)也是一种可用于本发明的可生物降解的软脂族聚酯的聚合物(A),具有较低的熔点和非常低的玻璃化转变温度。该聚合物因为通过聚合ε-己内酯制备而得名。PCL的玻璃化转变温度为-60℃,熔点仅为60℃。因此,通过常规的技术(例如薄膜吹塑和吹塑)难以加工PCL和熔点低的其他类似脂族聚酯。由PCL制备的薄膜挤出时发粘,超过130℃时熔体强度低。同时,这种聚合物结晶缓慢导致性能在长时间后变化。将PCL与其他聚合物共混,改进了PCL的可加工性。一种常用的PCL为TONE(Union Carbide生产)。PCL的其他生产厂家包括Daicel Chemical,Ltd.和Solvay。
ε-己内酯为七元环化合物,其特征在于它的活性。通常在羰基处发生裂解。通常采用过氧化方法,由环己酮制备ε-己内酯。PCL为聚合ε-己内酯制备的聚酯。较高分子量的PCL可在各种催化剂的作用下制备,所述催化剂例如烷基铝,有机金属组合物例如Ia、IIa、IIb或IIIa族金属的烷基化物,格利雅试剂,II族金属二烷基化物,钙或其他金属的胺化物或烷基胺化物,碱土金属hexamoniates、碱性氧化物和乙腈的反应产物,三烷氧基铝,碱土金属铝氢化物或碱土金属硼氢化物,碱金属或碱土金属氢化物,或单独的碱金属。通常用脂族二醇(HO-R-OH)引发制备PCL,形成端基。
可用于制备本发明的聚合物共混物的另一种“柔性”脂族聚酯聚合物(A)为羟基丁酸酯-羟基戊酸酯共聚物(PHBV),使用微生物诱导发酵制备。一种这类PHBV共聚酯由Monsanto Company生产,玻璃化转变温度为约0℃,熔点为约170℃。
在制备PHBV的发酵法中,单一的细菌种将玉米和马铃薯原料转化为聚羟基丁酸酯和聚羟基戊酸酯组分的共聚物。处理原料,可改变两种聚合物链段的比例,以制备不同级别的材料。所有的级别均耐潮湿且可生物降解。PHBV的全球生产商为Monsanto,产品为BIOPOL和METABOLIX,含有各种级别的聚羟基链烷酸酯(PHA)。
另一类“柔性”脂族聚酯聚合物(A)基于以下的丁二酸酯重复单元,例如聚丁二酸丁二醇酯(PBS)、聚丁二酸己二酸丁二醇酯(PBSA)和聚丁二酸乙二醇酯(PES)。每一种这些丁二酸酯基脂族聚酯由ShowaHigh Polymer,Ltd.生产,所售商品名为BIONELLE.PBS(Bionolle 1001)的玻璃化转变温度为-30℃,熔点为114℃。PBSA(Bionolle 3001)的玻璃化转变温度为-35℃,熔点为95℃。PES(Biono1le 6000)的玻璃化转变温度为-4℃,熔点为102℃。
丁二酸酯基脂族聚酯的应用目标包括薄膜、片材、纤丝、发泡模塑产品和发泡膨胀产品。丁二酸酯基脂族聚酯可在堆肥、潮湿的土壤、具有活性淤泥的水和海水中生物降解。PBSA在堆肥环境中快速降解,因此类似于纤维素,而PBS降解不太快速,在生物降解方面类似于报纸。
根据制备具有高分子量和可用的物理性能的丁二酸酯脂族聚酯的受专利保护的两步法生产丁二酸基脂族聚酯。在第一步中,由二醇和脂族二羧酸制备低分子量羟基封端的脂族聚酯预聚物。该聚合反应由钛催化剂催化,例如钛酸四异丙酯、四异丙醇钛、二丁氧基二乙酰乙酰氧基钛或钛酸四丁酯。在第二步中,将二异氰酸酯(例如六亚甲基二异氰酸酯(HMDI))与聚酯预聚物反应制备高分子量的聚酯。某些生产商这样生产PBS,首先将1,4-丁二醇与丁二酸进行缩合反应形成预聚物,随后该预聚物与作为扩链剂的HMDI反应。
PBSA共聚物如下制备,首先将1,4-丁二醇、丁二酸和己二酸进行缩合反应形成预聚物,随后该预聚物与作为扩链剂的HMDI反应。PES均聚物如下制备,将乙二醇与丁二酸进行缩合反应,使用HMDI或二苯基甲烷二异氰酸酯作为扩链剂。
总的来说,具有主要为“刚性”或不太柔韧特征的那些生物聚合物(B)包括那些玻璃化转变温度大于约10℃的聚合物。所述硬生物聚合物(B)的玻璃化转变温度大于约20℃。在本发明的其他实施方案中,所述刚性生物聚合物(B)的玻璃化转变温度大于约30℃,最优选大于约40℃。
此外,通常“刚性”聚合物(B)比聚合物(A)更具结晶态。优选所述刚性聚合物(B)的含量占所述聚合物共混物总重量的约40%-约85%,在其他实施方案中,优选所述刚性聚合物(B)的含量占所述聚合物共混物总重量的约50%-约85%、约50%-约75%和50%-约60%。
所述刚性生物聚合物(B)的实例包括但不局限于以下物质:聚酯酰胺(例如Bayer的产品),改性聚对苯二甲酸乙二醇酯(PET)(例如DuPont的产品),基于聚乳酸(PLA)的生物聚合物(例如Cargill-DowPolymers和Dianippon Ink的产品),基于聚乳酸、聚乙醇酸、聚碳酸亚烷基酯的三元共聚物(例如PAC Polymers生产的聚碳酸乙二醇酯),聚羟基链烷酸酯(PHA),聚羟基丁酸酯(PHB),聚羟基戊酸酯(PHV),羟基丁酸酯-羟基戊酸酯共聚物(PHBV)。优选本发明范围内的生物聚合物(B)为合成的聚酯或聚酯酰胺。
在一个实施方案中,可用于制备本发明的聚合物共混物的刚性聚合物包括聚乳酸(PLA)。PLA为坚固的热塑性材料,可注塑、挤出、热成型或用作短纤维或熔喷纤维以制备非织造产品。这些乳酸聚合物(Mn=50,000-110,000)热塑性强,可制成在通常土壤细菌作用下可分解的可用的产品。PLA可能的应用包括包装纸涂层(食物和饮料硬纸盒)、快餐用泡沫塑料、微波容器和其他消费产品例如一次性尿布或工厂的废口袋。PLA可为均聚物,或者可与乙交酯、内酯或其他单体共聚。PLA基聚合物的一个特别吸引人的特性为它们衍生自可更新的农产品。
由于在工业规模中难以在一步中将乳酸直接聚合成高分子量的聚合物,大多数公司使用两步法。首先通过除去水将乳酸低聚为分子量小于3000的直链低聚物。随后将该低聚物解聚为丙交酯,丙交酯为由两个缩合的乳酸分子组成的环状二聚体。将该六元环纯化,经开环聚合制备分子量为50,000-110,000的聚乳酸。
由于乳酸具有不对称的碳原子,因此以几种异构体形式存在。最常见的商品乳酸包含等份的L-(+)-乳酸和D-(-)-乳酸,因此为非光学活性,不具有旋光性。该外消旋的混合物称为DL-乳酸。
通常聚乳酸的玻璃化转变温度为约59℃,熔点为约178℃。伸长率低且非常硬。
已知可用于本发明的聚合物共混物的另一种硬聚合物(B)为CPLA,CPLA为PLA的衍生物,由Dianippon Ink销售。销售有两种CPLA,分别称为“CPLArigid”和“CPLAflexible”,二者均为本文定义的“刚性”聚合物。“CPLA rigid”的玻璃化转变温度为60℃,而“CPLA flexible”的玻璃化转变温度为51℃。
Bayer Corporation生产聚酯酰胺,所售商品名为BAK。一种形式的BAK由己二酸、1,4-丁二醇和6-氨基己酸制备。BAK 1095是一种Mn为22,700、Mw为69,700并包含芳族组分的聚酯酰胺,熔点为125℃。BAK2195的熔点为175℃。尽管难以测定BAK 1095和BAK2195的玻璃化转变温度,由于将BAK与软聚合物共混可得到改进的性能,在这个意义上讲,BAK看起来像硬聚合物,因此本发明者认为BAK聚合物的玻璃化转变温度基本上至少为约10℃。
可用于本发明的聚合物共混物的另一种硬聚合物(B)包括各种改性聚对苯二甲酸乙二醇酯(PET)聚酯,由DuPont生产,所售商品名为BIOMAX。DuPont的改性PET聚合物更详述于U.S.5,053,482(Tietz)、U.S.5,097,004(Gallagher等)、U.S.5,097,005(Tietz)、U.S.5,171,308(Gallagher等)、U.S.5,219,646(Gallagher等)和U.S.5,295,985(Romesser等)。为了公开可用于制造本发明的聚合物共混物的合适的“刚性”聚合物,上述专利所公开的内容通过特别引用结合到本文中来。
总的来说,DuPont的改性PET聚合物可表征为包含对苯二甲酸酯和脂族组分的可选单元,所述脂族组分包含衍生自两种或多于两种不同二醇的两种或多于两种不同脂族单元的统计分布,所述二醇例如乙二醇、二甘醇、三甘醇(triethylene oxide)、支链和非支链的聚乙二醇和低级烷二醇以及上述二醇的衍生物。一部分脂族单元还可衍生自脂族二酸,例如己二酸。此外,对苯二甲酸酯重复单元中的少部分亚苯基被磺化,并用碱金属或碱土金属碱中和。所述改性PET聚合物的脂族部分和统计学上显著量的磺化对苯二甲酸酯单元显著影响所述BIOMAX聚合物的可生物降解性。
某些BIOMAX级别的聚合物的熔点为200-208℃,玻璃化转变温度为40-60℃。BIOMAX6926为一种该级别的聚合物。其为较坚固和硬的聚合物,当与较软的聚合物共混时,得到适于包裹的优异的片材和薄膜和其他包装材料。
Mitsui Chemicals,Inc.生产的三元共聚物包括衍生自缩合在一起的聚交酯、聚乙醇酸交酯和聚己内酯的单元。因此,该聚合物为脂族聚合物,可表征为PLA-PGA-PCL三元共聚物。该聚合物三种可得的级别为H100J、S100和T100。分析H100J级PLA-PGA-PCL三元共聚物的玻璃化转变温度为74℃,熔点为173℃。
PAC Polymers Inc.生产的聚碳酸乙二醇酯(PEC)的玻璃化转变温度为10-28℃。PEC为用于生产本发明的聚合物共混物的硬聚合物。
于25℃下,将0.5聚合物(A)和聚合物(B)试样加入100ml 60/40重量份的苯酚/四氯乙烷溶液中测定的特性粘度均为约0.2%-约3.0dl/g。
本发明还可包含0.25-10%重量的增容剂。虽然可使用本领域已知的任何增容剂,但本发明的一个实施方案使用与聚乳酸混溶的聚丙烯酸酯增容剂。在另一个实施方案中,所述增容剂包括甲基丙烯酸甲酯和/或甲基丙烯酸缩水甘油酯。
在本发明的范围内还包含各种天然聚合物及其衍生物,例如衍生自淀粉、纤维素、其他多糖和蛋白质的聚合物和衍生物。为了降低自粘附、降低成本和提高所述聚合物共混物的弹性模量(杨氏模量),可掺入无机填料,这也在本发明的范围内。此外,为了赋予所需的软化和拉伸性能,可使用各种增塑剂。
所述共聚酯组合物还可包含含磷阻燃剂,但存在阻燃剂对本发明不是关键的。所述阻燃剂可包括各种本领域公知的磷化合物,例如各种膦、亚磷酸酯、次亚膦酸酯、亚膦酸酯、次膦酸酯、膦酸酯、氧化膦和磷酸酯。
含磷阻燃剂的实例有磷酸三丁酯、磷酸三乙酯、磷酸三丁氧基乙酯、磷酸叔丁基苯酯二苯酯、磷酸2-乙基己酯二苯酯、磷酸乙酯二甲酯、磷酸异癸基酯二苯酯、磷酸三月桂基酯、磷酸三苯酯、磷酸三(甲苯酯)、磷酸三(二甲苯酯)、磷酸叔丁基苯酯二苯酯、间苯二酚双(二苯氧基磷酸酯)、磷酸三苄酯、磷酸苯酯乙酯、硫代磷酸三甲酯、硫代磷酸苯酯乙酯、甲基膦酸二甲酯、甲基膦酸二乙酯、戊基膦酸二乙酯、甲基膦酸二月桂基酯、甲基膦酸二苯酯、甲基膦酸二苄酯、甲苯基膦酸二苯酯、甲苯基膦酸二甲酯、甲基硫代膦酸二甲酯、二苯基次膦酸苯酯、二苯基次膦酸苄酯、二苯基次膦酸甲酯、三甲基氧化膦、三苯基氧化膦、三苄基氧化膦、4-甲基二苯基氧化膦、亚磷酸三乙酯、亚磷酸三丁酯、亚磷酸三月桂基酯、亚磷酸三苯酯、亚磷酸三苄酯、亚磷酸苯酯二乙酯、亚磷酸苯酯二甲酯、亚磷酸苄酯二甲酯、甲基亚膦酸二甲酯、戊基亚膦酸二乙酯、甲基亚膦酸二苯酯、甲基亚膦酸二苄酯、甲苯基亚膦酸二甲酯、二甲基次亚膦酸甲酯、二乙基次亚膦酸甲酯、二苯基次亚膦酸苯酯、二苯基次亚膦酸甲酯、二苯基次亚膦酸苄酯、三苯基膦、三苄基膦和甲基二苯基膦。
术语“含磷酸(phosphorous acid)”用于描述本发明用含磷阻燃剂,包括无机酸(例如磷酸)、具有直接碳-磷键的酸(例如膦酸和次膦酸)以及包含至少一个剩余的未酯化酸基的部分酯化的含磷酸(例如磷酸的单酯和二酯等)。可用于本发明的典型的含磷酸包括但不局限于磷酸二苄酯、磷酸二丁酯、磷酸二(2-乙基己酯)、磷酸二苯酯、磷酸甲酯·苯酯、磷酸苯酯·苄酯、己基膦酸、苯基膦酸、甲苯基膦酸、苄基膦酸、2-苯乙基膦酸、甲基·己基次膦酸、二苯基次膦酸、苯基·萘基次膦酸、二苄基次膦酸、甲基·苯基次膦酸、苯基亚膦酸、甲苯基亚膦酸、苄基亚膦酸、磷酸丁酯、磷酸2-乙基己酯、磷酸苯酯、磷酸甲苯酯、磷酸苄酯、亚磷酸苯酯、亚磷酸甲苯酯、亚磷酸苄酯、亚磷酸二苯酯、亚磷酸苯酯·苄酯、亚磷酸二苄酯、亚磷酸甲酯·苯酯、苯基膦酸苯酯、甲基膦酸甲苯酯、苄基膦酸乙酯、乙基亚膦酸甲酯、苯基亚膦酸甲酯和苯基亚膦酸苯酯。通常所述阻燃剂包括一种或多种磷酸的单酯、二酯或三酯。在另一个实施例中,所述阻燃剂包括间苯二酚双(二苯氧基磷酸酯),本文中简称为“RDP”。
加至所述聚合物共混物的阻燃剂的含量占所述共聚酯组合物总重量的约5%-约40%。其他实施方案的阻燃剂水平为约7%-约35%重量、约10%-约30%重量和约10%-约25%重量。在UL94燃烧试验中,本发明的阻燃剂共聚酯组合物通常达到V2或更高的级别。此外,在联邦机动车安全标准302(通常称为FMVSS 302)中,我们的阻燃剂共聚酯组合物通常的燃烧级别为0。
在本发明的聚合物共混物中还可包含氧化稳定剂,以防止在辊上熔融或半熔融材料加工过程中氧化降解。这类稳定剂包括酯(例如硫连二丙酸二硬脂酯或硫连二丙酸二月桂酯)、酚型稳定剂(例如IRGANOX1010(购自Ciba-Geigy AG)、ETHANOX330(购自EthylCorporation)和丁基化羟基甲苯)以及含磷稳定剂(例如Irgafos(购自Ciba-Geigy AG)和WESTON稳定剂(购自GE Specialty Chemicals))。这些稳定剂可单独使用或组合使用。
此外,所述聚合物共混物可按需包含染料、颜料和加工助剂,例如填料、消光剂、防结块剂、抗静电剂、发泡剂、短切纤维、玻璃、抗冲改性剂、炭黑、滑石、二氧化钛等。可加入着色剂(有时称为有机调色剂)以赋予所述共聚酯和最终用途产品所需中性色调和/或亮度。优选所述共聚酯组合物还可包含0%-约30%重量的一种或多种加工助剂以改变所述组合物的表面性能和/或提高流动性。加工助剂有代表性的实例有碳酸钙、滑石、粘土、二氧化钛、氯化铵、二氧化硅、氧化钙、硫酸钠和磷酸钙。在本发明的共聚酯组合物中加工助剂用量的其他实例为约5%-约25%重量和约10%-约20%重量。优选所述加工助剂也是生物降解促进剂,也就是说,加工助剂提高或加速在环境中的生物降解速率。在本发明中,已发现加工助剂还可用于改变堆肥环境的pH值,例如碳酸钙、氢氧化钙、氧化钙、氧化钡、氢氧化钡、硅酸钠、磷酸钙、氧化镁等还可加速生物降解过程。对于本发明,优选的加工助剂为碳酸钙。
采用ASTM D256,优选本发明的聚合物共混物在0℃和23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in,在另一个实施方案中,在23℃下测定的无缺口依佐德冲击强度至少为20ft-lbs/in。
本发明的聚合物(A)和(B)为可生物降解的,还可包含可生物降解的添加剂以提高在环境中的分解和可生物降解性。所述共聚酯组合物可包含约1%-约50%重量的可生物降解的添加剂。可生物降解的添加剂水平的其他实例为约5%-约25%重量和约10%-约20%重量。这类添加剂的一个作用为提高所述共聚酯组合物的可生物降解性和抵消因高浓度的各种添加剂引起的可生物降解性下降。
可用于本发明的共聚酯组合物的可生物降解的添加剂的有代表性的实例有微晶纤维素、聚乳酸、聚羟基丁酸酯、聚羟基戊酸酯、聚乙烯醇、热塑性淀粉或其他碳水化合物或其组合。优选所述可生物降解的添加剂为热塑性淀粉。热塑性淀粉为通过挤出热炼糊化以赋予无规晶体结构的淀粉。本文使用的“热塑性淀粉”是指包括如Bastioli,C.Degradable Polymers,1995,Chapman & Hall:London,第112-137页所述的“变性淀粉”以及“糊化淀粉”。“糊化”是指淀粉颗粒充分溶胀和破裂,在水中形成光滑的粘稠分散体。可采用任何已知的方法实现糊化,例如在水或含水溶液存在下于约60℃下加热。已知强碱促进该过程。热塑性淀粉可由任何以下物质制备:得自谷粒或根作物例如玉米、小麦、水稻、马铃薯和木薯淀粉的非改性淀粉;淀粉的直链淀粉组分和支链淀粉组分;改性淀粉产品,例如部分解聚的淀粉和衍生的淀粉;以及淀粉接枝共聚物。热塑性淀粉商品可购自National Starch Company。
所述共聚酯组合物的各种组分例如阻燃剂、脱模剂、其他加工助剂和有机调色剂可以间歇法、半连续法或连续法共混。小规模批次产品可在本领域技术人员公知的高强度混合装置(例如班伯里密炼机)中容易地制备,随后进行压延或其他热加工。各组分还可在合适的溶剂中溶液共混。所述熔融共混法包括在足以至少部分熔融所述共聚酯的温度下共混所述共聚酯、添加剂和任何其他非聚合的各组分。将该共混物冷却并造粒以备后用,或者可由该熔融共混物直接加工熔融共混,例如制成薄膜、片材或模塑制品。本文使用的术语“熔融”包括但不局限于仅软化所述AAPE。对于聚合物领域通常已知的熔融混合法参见“Mixing and Compounding of Polymers(混合和混配聚合物)”(I.Manas-Zloczower和Z.Tadmor编辑,Carl HanserVerlag出版,1994,New York,N.Y.)。当需要有色产品(例如片材、模塑制品或薄膜)时,可在二醇和二羧酸反应的过程中加入颜料或着色剂,或者颜料或着色剂可与预形成的共聚酯共混,从而加入共聚酯组合物中。一种优选的加入着色剂的方法为使用包含具有活性基团的热稳定的有机有色化合物的着色剂,使得所述着色剂共聚并掺入共聚酯中以改进色调。例如具有活性羟基和/或羧基的染料的着色剂(包括但不局限于蓝和红取代的蒽醌)可共聚至聚合物链中。当使用染料作为着色剂时,可在酯交换或直接酯化反应后将染料加至共聚酯反应过程中。
本发明的聚合物组合物包含增塑剂以及本文所述的聚合物。存在增塑剂以提高所得到的薄膜、片材或模塑制品的柔韧性和良好的机械性能。增塑剂也有助于降低聚酯的加工温度。通常所述增塑剂包括一个或多个芳环。优选的增塑剂可溶解于上述聚酯中,这可通过在等于或低于160℃下将5密耳(0.127mm)厚的聚酯薄膜溶解,产生透明的溶液来确认。更优选所述增塑剂溶解于所述聚酯中,这可通过在等于或低于150℃下将5密耳(0.127mm)厚的聚酯薄膜溶解,产生透明的溶液来确认。增塑剂在聚酯中的溶解度可如下测定:
1.向小管形瓶中放置1/2英寸切片的标准参考薄膜,厚度为5密耳(0.127mm),宽约等于管形瓶的宽度。
2.向管形瓶中加入增塑剂,直至该薄膜被完全覆盖。
3.将装有薄膜和增塑剂的管形瓶放置在架子上,1小时后观察,4小时后再次观察。注意该薄膜和液体的外观。
4.室温观察后,将该管形瓶放入加热设备中,将温度保持在75℃下恒定1小时,随后观察该薄膜和液体的外观。
5.在以下的每一个温度(℃)下重复步骤4:100、140、150和160。
可用于本发明的增塑剂的实例有以下物质:
                     表A-增塑剂
己二酸衍生物
己二酸二辛酯
己二酸二(2-乙基己酯)
己二酸二(正庚酯,正壬酯)
己二酸二异丁酯
己二酸二异癸酯
己二酸二壬酯
己二酸二(十三烷基酯)
壬二酸衍生物
壬二酸二(2-乙基己酯)
壬二酸二异癸酯
壬二酸二异辛酯
壬二酸二甲酯
壬二酸二正己酯
苯甲酸衍生物
二甘醇二苯甲酸酯(DEGDB)
二丙二醇二苯甲酸酯
丙二醇二苯甲酸酯
聚乙二醇200二苯甲酸酯
新戊二醇二苯甲酸酯
柠檬酸衍生物
乙酰柠檬酸三正丁基酯
乙酰柠檬酸三乙酯
柠檬酸三正丁酯
柠檬酸三乙酯
二聚体酸衍生物
二聚体酸双-(2-羟乙酯)
环氧衍生物
环氧化亚麻子油
环氧化豆油
环氧妥尔油酸2-乙基己酯
富马酸衍生物
富马酸二丁酯
甘油衍生物
甘油三苯甲酸酯
甘油三乙酸酯
甘油二乙酸酯一月桂酸酯
异丁酸酯衍生物
2,2,4-三甲基-1,3-戊二醇二异丁酸酯
2,2,4-三甲基-1,3-戊二醇一异丁酸酯(Texanol diisobutyrate)
间苯二甲酸衍生物
间苯二甲酸二甲酯
间苯二甲酸二苯酯
邻苯二甲酸二正丁酯
月桂酸衍生物
月桂酸甲酯
亚油酸衍生物
亚油酸甲酯,75%
马来酸衍生物
马来酸二(2-乙基己酯)
马来酸二正丁酯
苯六甲酸酯(mellitate)
1,2,4-苯三甲酸三辛酯
1,2,4-苯三甲酸三异癸酯
1,2,4-苯三甲酸三(正辛酯,正癸酯)
1,2,4-苯三甲酸三异壬酯
肉豆蔻酸衍生物
肉豆蔻酸异丙酯
油酸衍生物
油酸丁酯
甘油一油酸酯
甘油三油酸酯
油酸甲酯
油酸正丙酯
油酸四氢糠基酯
棕榈酸衍生物
棕榈酸异丙酯
棕榈酸甲酯
石蜡烃衍生物
氯化石蜡,41%氯
氯化石蜡,50%氯
氯化石蜡,60%氯
氯化石蜡,70%氯
磷酸衍生物
磷酸2-乙基己酯二苯酯
磷酸异癸酯二苯酯
磷酸叔丁基苯酯二苯酯
间苯二酚双(二苯氧基磷酸酯)(RDP)
100%RDP
75%RDP和25%DEGDB(重量)的共混物
50%RDP和50%DEGDB(重量)的共混物
25%RDP和75%DEGDB(重量)的共混物
磷酸三(丁氧基乙酯)
磷酸三丁酯
磷酸三(甲苯酯)
磷酸三苯酯
邻苯二甲酸衍生物
邻苯二甲酸丁酯苄酯
邻苯二甲酸2,2,4-三甲基-1,3-戊二醇酯苄酯
邻苯二甲酸丁酯辛酯
邻苯二甲酸二辛酯
邻苯二甲酸二环己酯
邻苯二甲酸二(2-乙基己酯)
邻苯二甲酸二乙酯
邻苯二甲酸二己酯
邻苯二甲酸二异丁酯
邻苯二甲酸二异癸酯
邻苯二甲酸二异庚酯
邻苯二甲酸二异壬酯
邻苯二甲酸二异辛酯
邻苯二甲酸二甲酯
邻苯二甲酸二(十三烷基酯)
邻苯二甲酸二(十一烷基酯)
蓖麻油酸衍生物
蓖麻油酸丁酯
三乙酰基蓖麻油酸甘油酯
乙酰基蓖麻油酸甲酯
蓖麻油酸甲酯
乙酰基蓖麻油酸正丁酯
丙二醇蓖麻油酸酯
癸二酸衍生物
癸二酸二丁酯
癸二酸二(2-乙基己酯)
癸二酸二甲酯
硬脂酸衍生物
乙二醇一硬脂酸酯
甘油一硬脂酸酯
异硬脂酸异丙酯
硬脂酸甲酯
硬脂酸正丁酯
丙二醇一硬脂酸酯
丁二酸衍生物
丁二酸二乙酯
磺酸衍生物
N-乙基邻,对-甲苯磺酰胺
邻,对-甲苯磺酰胺
使用如Michael M.Coleman,John E.Graf和Paul C.Painter在其著作“Specific Interactions and the Miscibility of Polymer Blends(聚合物共混物具体的相互作用和可混溶性)”中所述的溶解度参数测定还可预测增塑剂的溶解度,溶解度数值由测试中存在的各种增塑剂决定。EASTARTMBIO的溶解度值确定为10.17(cal/cc)1/2。Coleman等人通过比较各增塑剂的溶解度值对实验室数据作出了评价,提出如果溶剂/增塑剂的溶解度值在聚合物的溶解度值±2(cal/cc)1/2范围内,则该溶剂/增塑剂与所述聚合物在某种程度上相容。此外,增塑剂的溶解度值与所述AAPE共聚酯的溶解度值越接近,则二者越相容。但是,由于当两个分子相遇时许多力共同起作用,特别是当所述增塑剂/溶剂与聚合物大分子相比极小时更是如此,简单地说除了纯的所述物质外,还存在一些其他物质,因此解度参数不是绝对的。例如对于二丙二醇二苯甲酸酯,工业制备的材料可包括各种含量的二丙二醇一苯甲酸酯、丙二醇二苯甲酸酯、丙二醇一苯甲酸酯以及可能存在多个聚丙二醇基。
与上述类似的测试描述于The Technology of Plasticizers(增塑剂技术),J.Kern Sears和Joseph R.Darby所著,Society of PlasticEngineers/Wiley and Sons,New York出版,1982,第136-137页。在该测试中,将一粒聚合物置于加热的显微镜载物台上的一滴增塑剂中。如果所述聚合物消失,则为可溶的。还可根据溶解度参数对增塑剂分类。增塑剂的溶解度参数或内聚能密度的平方根可根据Coleman等在Polymer 31,1187(1990)中所述的方法计算。最优选增塑剂的溶解度参数(δ)为约8.17-约12.17(cal/cc)1/2。通常应理解为增塑剂的溶解度参数应在所述聚酯溶解度参数的2.0个单位内,优选小于所述聚酯溶解度参数的1.5个单位,更优选小于所述聚酯溶解度参数的10个单位。
可用于本发明的增塑剂的实例有包含以下残基的酯:(i)包括一种或多种以下酸的残基:邻苯二甲酸、己二酸、1,2,4-苯三甲酸、苯甲酸、壬二酸、对苯二甲酸、间苯二甲酸、丁酸、戊二酸、柠檬酸和磷酸;和(ii)包括一种或多种以下醇的残基包含最高达约20个碳原子的脂族、脂环族或芳族醇。此外,所述增塑剂的醇残基的非限制性的实例有甲醇、乙醇、丙醇、异丙醇、丁醇、异丁醇、硬脂醇、月桂醇、苯酚、苄醇、对苯二酚、邻苯二酚、间苯二酚、乙二醇、新戊二醇、1,4-环己烷二甲醇和二甘醇。所述增塑剂还包括一种或多种苯甲酸酯、邻苯二甲酸酯、磷酸酯或间苯二甲酸酯。
在一个实施方案中,优选的增塑剂选自N-乙基-邻,对-甲苯磺酰胺、磷酸2-乙基己酯二苯酯、磷酸异癸酯二苯酯、磷酸三丁酯、磷酸叔丁基苯酯二苯酯、磷酸三(甲苯酯)、氯化石蜡(60%氯)、氯化石蜡(50%氯)、丁二酸二乙酯、马来酸二正丁酯、马来酸二(2-乙基己酯)、硬脂酸正丁酯、乙酰柠檬酸三乙酯、柠檬酸三乙酯、柠檬酸三正丁酯、乙酰柠檬酸三正丁酯、油酸甲酯、富马酸二丁酯、己二酸二异丁酯、壬二酸二甲酯、环氧化亚麻子油、甘油一油酸酯、乙酰蓖麻油酸甲酯、乙酰蓖麻油酸正丁酯、丙二醇蓖麻油酸酯、聚乙二醇200二苯甲酸酯、二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二正丁酯、邻苯二甲酸二异丁酯、邻苯二甲酸丁酯苄酯或甘油三乙酸酯。
在第二个实施方案中,优选的增塑剂选自N-乙基-邻,对-甲苯磺酰胺、磷酸2-乙基己酯二苯酯、磷酸异癸酯二苯酯、磷酸三丁酯、磷酸叔丁基苯酯二苯酯、磷酸三(甲苯酯)、氯化石蜡(60%氯)、氯化石蜡(50%氯)、丁二酸二乙酯、马来酸二正丁酯、马来酸二(2-乙基己酯)、硬脂酸正丁酯、乙酰柠檬酸三乙酯、柠檬酸三乙酯、柠檬酸三正丁酯、壬二酸二甲酯、聚乙二醇200二苯甲酸酯、二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二正丁酯、邻苯二甲酸二异丁酯、邻苯二甲酸丁酯苄酯或甘油三乙酸酯。
在第三个实施方案中,优选的增塑剂选自N-乙基-邻,对-甲苯磺酰胺、磷酸2-乙基己酯二苯酯、磷酸异癸酯二苯酯、磷酸叔丁基苯酯二苯酯、磷酸三(甲苯酯)、氯化石蜡(60%氯)、氯化石蜡(50%氯)、丁二酸二乙酯、马来酸二正丁酯、硬脂酸正丁酯、聚乙二醇200二苯甲酸酯、二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二正丁酯、邻苯二甲酸二异丁酯或邻苯二甲酸丁酯苄酯。
在第四个实施方案中,优选的增塑剂选自N-乙基-邻,对-甲苯磺酰胺、磷酸2-乙基己酯二苯酯、磷酸异癸酯二苯酯、磷酸叔丁基苯酯二苯酯、磷酸三(甲苯酯)、氯化石蜡(60%氯)、聚乙二醇200二苯甲酸酯、二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二正丁酯或邻苯二甲酸丁酯苄酯。
在第五个实施方案中,优选的增塑剂选自N-乙基-邻,对-甲苯磺酰胺、磷酸叔丁基苯酯二苯酯、磷酸三(甲苯酯)、二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯或邻苯二甲酸丁酯苄酯。
在第六个实施方案中,优选的增塑剂选自N-乙基-邻,对-甲苯磺酰胺、二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯或邻苯二甲酸二甲酯。
在第七个实施方案中,二甘醇二苯甲酸酯为优选的增塑剂。
本发明中将AAPE、聚合物(A)和(B)、聚合物共混物、薄膜和片材、阻燃剂和添加剂称为“可生物降解的”是指所述聚酯组合物、薄膜和片材在环境影响下,在合适的和具证明性的时间间隔内降解,所述时间间隔例如ASTM标准方法D6340-98,题为“Standard TestMethods for Determining Aerobic Biodegradation of Radiolabeled PlasticMaterials in an Aqueous or Compost Environment(测定放射性标记塑料材料在含水或堆肥环境中需氧生物降解的标准测试方法)”中所定义。本发明的AAPE、聚合物(A)和(B)、薄膜和片材、阻燃剂和添加剂还可为“可生物分解的”,是指采用DIN方法54900测定,这些材料在堆肥环境中易成碎片。开始时所述AAPE、组合物、薄膜和片材经热、水、空气、微生物和其他因素的作用在环境中降低分子量。这种分子量的降低导致物理性能(薄膜强度)下降且通常薄膜破裂。一旦所述AAPE的分子量足够低,则各单体和低聚物被微生物同化。在需氧环境中,这些单体或低聚物最终氧化为CO2、H2O和新的细胞生物质。在厌氧环境中,这些单体或低聚物最终氧化为CO2、H2O、乙酸酯、甲烷和细胞生物质。成功的生物降解要求可生物降解的材料与活性微生物种群或由活性微生物种群产生的酶之间必需建立直接的物理接触。用于降解本发明的薄膜、共聚酯和共聚酯组合物的活性微生物种群通常可得自任何市政或工业废水处理厂或堆肥厂。此外,成功的生物降解要求满足某些最低的物理和化学要求,例如合适的pH值、温度、氧含量、适当的养分和潮湿程度。
堆肥可定义为微生物降解和将固体有机废物转化为土壤。堆肥的一个重要的特征在于它们可自动加热,热为有机物代谢分解的天然副产物。根据堆的大小或其隔热能力,热量可被收集并引起内温上升。堆肥的有效降解取决于自然界的进展或微生物种群的演替。开始时堆肥的微生物种群中嗜温种(最佳生长温度为20-45℃)占优势。
随着土著嗜温微生物区系的增殖和有机物的代谢开始降解过程。导致产生大量的代谢热,将堆的内温升至约55-65℃。较高的温度作为选择性动力,一方面有利于嗜热种的生长(最佳生长温度为45-60℃),另一方面抑制嗜温生物的生长。
尽管自然界中温度分布通常是周期性变化的,嗜温和嗜热种***替,但是为了得到最佳的降解速率,市政堆肥厂努力将工作温度控制在55-60℃。市政堆肥装置也通常是需氧过程,为微生物代谢所需提供足够的氧以加速生物降解速率。
为了赋予所需的性能,本发明的可生物降解的聚合物共混物中可包含多种任选的组分。这些组分包括但不局限于增塑剂、阻燃剂填料、天然聚合物和不可生物降解的聚合物。
任选加入填料可有许多原因,包括但不局限于增加杨氏模量并降低成本和降低在加工过程中所述聚合物共混物“结块”或自粘附。本发明范围内的填料通常分为三类:(1)无机颗粒填料、(2)纤维和(3)有机填料。
术语“颗粒”或“颗粒填料”应广义理解为包括具有任何不同形状和长厚比的填料颗粒。通常“颗粒”为长厚比(即长与厚度的比率)小于约10∶1的那些固体。长厚比大于约10∶1的固体理解为“纤维”则更好,该术语在下文中定义和讨论。
事实上,任何已知的填料无论惰性或活性均可掺入所述可生物降解的聚合物共混物中。通常加入无机填料易显著降低所得到的聚合物共混物的成本。如果使用较少量的无机填料,对最终组合物的强度影响程度最小,而加入较大量的无机填料,则易对强度的影响程度加大。在加入无机填料易降低关键的物理参数(例如拉伸强度或柔韧性)的情况下,加入的填料量应在降低所得到的组合物的成本的同时,还能保持预期用途所需的足够的机械性能。但是,在加入无机填料可改进给定应用的一种或多种所需物理性能(例如劲度、压缩强度)的情况下,为了得到所需的性能并同时显著降低成本,希望加入的填料的量最大化。
在所述可生物降解的聚合物共混物中可用的无机填料的实例包括以下不同的材料,例如沙、砂砾、碎岩石、矾土、花岗岩、石灰石、砂石、玻璃珠、气凝胶、干凝胶、云母、粘土、矾土、二氧化硅、高岭土、微球体、空心玻璃球、多孔陶瓷球、二水合石膏、不溶盐、碳酸钙、碳酸镁、氢氧化钙、铝酸钙、碳酸镁、二氧化钛、滑石、陶瓷材料、火山灰质材料、盐、锆化合物、硬硅钙石(晶体硅酸钙凝胶)、重量轻的膨胀粘土、珍珠岩、蛭石、水合或非水合水硬水泥颗粒、浮石、沸石、页状剥落岩石、矿石、矿物和其他地质材料。所述聚合物共混物中可加入各种其他无机填料,包括以下材料,例如金属和金属合金(例如不锈钢、铁和铜)、球或空心球形材料(例如玻璃、聚合物和金属)、屑、粒料、薄片和粉末(例如微硅石)。
无机填料的粒径或粒径范围取决于由所述聚合物共混物待制备的薄膜、片材或其他制品的壁厚。通常壁厚越厚,则可接受的粒径越大。在大多数情况下,为了降低成本和无机填料的比表面积,对于给定的应用优选在可接受的粒径范围内最大的粒径。对于希望具有显著柔韧性、拉伸强度和弯曲耐久性的薄膜(例如塑料袋),优选无机填料的粒径小于薄膜壁厚的约10%。例如,对于厚度为40μm的吹塑薄膜,优选无机填料的粒径等于或小于4μm。
加至聚合物共混物的具体填料的量取决于多种因素,包括其他加入的组分的量和种类以及填料颗粒自身的比表面积和/或填充密度。因此,在本发明的聚合物共混物中的颗粒填料的浓度范围很宽,从低至所述聚合物共混物的约5%体积至高达所述聚合物共混物的约90%体积。由于可使用各种无机填料的不同的密度,因此在某些情况下用重量百分比而非体积百分比表达无机填料的浓度会更恰当。因此,所述无机填料组分的浓度范围很宽,从低至所述聚合物共混物的5%重量至高达所述聚合物共混物的95%重量。
由于待制备制品所需的性能标准,在希望热塑性相性能占优势的情况下,优选所述无机填料的用量为所述聚合物共混物的约5%-约50%体积。另一方面,当希望产生高度无机填充的体系时,优选所述无机填料的用量为约50%-约90%体积。
鉴于这些竞争的目标,无机填料实际的优选用量可在宽范围内变化。但是,概况地说,为了明显降低所得到的聚合物共混物的成本,优选所述无机填料组分的量大于所述聚合物共混物重量的约15%,更优选大于所述聚合物共混物重量的约25%,还更优选大于所述聚合物共混物重量的约35%,最优选大于所述聚合物共混物重量的约50%。但是,所述无机填料可为任何用量,例如大于所述聚合物共混物重量的约3%,优选大于所述聚合物共混物重量的约5%,更优选大于所述聚合物共混物重量的约10%。
为了改进所述聚合物共混物的物理性能,可任选使用各种纤维。与上述填料相同,通常纤维组成与热塑性相不同的单独的固相。但是,由于纤维的形状(即长径比大于至少约10∶1),因此纤维比颗粒填料更好地赋予强度和韧性。在本说明书和附加的权利要求书中使用的术语“纤维”和“纤维质材料”包括无机纤维和有机纤维。可向可模塑的混合物中加入纤维以增加柔韧性、延性、挠曲性、内聚力、伸长能力、挠曲能力、韧性、死褶、断裂能以及所得到的片材和制品的挠曲强度和拉伸强度。
可掺入所述聚合物共混物的纤维包括天然存在的有机纤维,例如萃取自木材、植物叶子和植物茎的纤维素纤维。此外,还可使用由玻璃、石墨、二氧化硅、陶瓷、褐块石棉或金属材料制备的无机纤维。优选的纤维包括棉、木纤维(硬木或软木纤维,其实例有南方硬木和南方松)、亚麻、蕉麻、剑麻、青麻、***和蔗渣,因为在正常的条件下它们易分解,因此。在许多情况下甚至可使用再生纸纤维,再生纸纤维非常便宜且来源丰富。所述纤维可包括一种或多种纤丝、织物、筛网或簇,可共挤、共混或浸渍于本发明的聚合物共混物中。
与较厚纤维相比,向基体中加入明显少量体积和质量的较长和较窄的纤维可对所述聚合物共混物赋予更高的强度,因此优选用于制备本发明制品的纤维的长宽比(或“长径比”)高。所述纤维的长径比至少为约10∶1,优选大于约25∶1,更优选大于约100∶1,最优选大于约250∶1。
加至所述聚合物共混物的纤维的量因最终模塑制品的所需性能而变,拉伸强度、韧性、柔韧性和成本为决定加至任何混合物中的纤维量的主要标准。因此,在本发明的聚合物共混物中纤维的浓度范围宽,为所述聚合物共混物重量的0%-约90%。优选纤维的用量为所述聚合物共混物重量的约3%-约80%,更优选为所述聚合物共混物重量的约5%-约60%,最优选为所述聚合物共混物重量的约10%-约30%。
本发明的聚合物共混物还可包含各种有机填料。根据所述聚合物共混物和待加入的有机填料的熔点,所述有机填料可保持为离散颗粒,组成与热塑性相分离的固相,或者可部分或完全熔融与热塑性相部分或完全缔合。
有机填料可包括各种天然存在的有机填料,例如seagel、软木、种子、明胶、木粉、锯屑、磨制聚合物材料、琼脂基材料等。有机填料还可包括一种或多种合成聚合物,实际上合成聚合物的种类是无穷的。由于有机填料的不同性质,对于任选的有机填料组分通常没有优选的浓度范围。
可用于本发明的聚合物共混物的天然聚合物包括淀粉和纤维素的衍生物、蛋白质及其衍生物以及其他多糖(例如多糖树胶)及其衍生物,其中某些在本申请中被描述为可生物降解添加剂。
淀粉衍生物的实例包括但不局限于改性淀粉、阳离子和阴离子淀粉、淀粉酯(例如乙酸淀粉)、淀粉羟乙基醚、烷基淀粉、糊精、胺淀粉、磷酸淀粉和二醛淀粉。
纤维素衍生物的实例包括但不局限于纤维素酯(例如甲酸纤维素、乙酸纤维素、二乙酸纤维素、丙酸纤维素、丁酸纤维素、戊酸纤维素、混合纤维素酯及其混合物)和纤维素醚(例如甲基羟乙基纤维素、羟甲基乙基纤维素、羧基甲基纤维素、甲基纤维素、乙基纤维素、羟乙基纤维素、羟乙基丙基纤维素及其混合物)。
可掺入本发明的聚合物共混物的其他多糖基聚合物包括藻酸、藻酸盐、藻胶、琼脂、***树胶、瓜耳树胶、金合双胶、角叉菜聚糖树胶、flircellaran树胶、茄替胶、psyllium树胶、栌树胶、罗望子树胶、刺槐豆胶、刺梧桐树胶、黄原酸胶和黄蓍树胶及其混合物或衍生物。
合适的蛋白质基聚合物的实例有Zein.RTM.(衍生自玉米的醇溶谷蛋白)、骨胶原(萃取自动物***和骨头)及其衍生物,例如明胶和胶、酪蛋白(牛奶中的主要蛋白质)、向日葵蛋白、卵蛋白、大豆蛋白、植物明胶、谷蛋白及其混合物或衍生物。
尽管所述聚合物共混物的一个重要特征为通常认为是可生物降解的,但是包含一种或多种不可生物降解的聚合物当然也在本发明的范围内。如果所述不可生物降解的聚合物通常构成离散相而非占优势的连续相,则包含不可生物降解的聚合物的聚合物共混物仍然是可生物降解的,至少部分可生物降解。降解时,所述聚合物共混物将留下不可生物降解的残余物,但仍比完全不可生物降解的聚合物的片材和薄膜优异。
适于形成片材和薄膜的常用不可生物降解的聚合物的实例包括但不局限于聚乙烯、聚丙烯、聚丁烯、聚对苯二甲酸乙二醇酯(PET)、1,4-环己烷二甲醇改性的PET(PETG)、聚氯乙烯、聚偏二氯乙烯(PVDC)、聚苯乙烯、聚酰胺、尼龙、聚碳酸酯、聚硫醚、聚砜、包括一种或多种上述物质的共聚物等。
本发明还包括一种挤坯吹塑制品、薄膜或片材的方法,制备挤出型材的方法或挤出薄膜或片材的方法,其中所述产品均包含本文上述聚合物共混物,以及由这些方法制备的薄膜、片材、挤出型材或挤坯吹塑制品。
本发明的共混物还用作模塑塑料零件或用作薄膜和/或片材。这种零件的实例包括眼镜框、牙刷把、玩具、汽车内部装璜、工具把手、照相机零件、剃刀零件、自来水笔吸水管、一次性注射器、瓶子、非纺织品、食品包装、包装薄膜等。
对于本发明(包括各实施例)进行以下测定:采用ASTM方法D256测定伊佐德冲击强度。于25℃下,将0.5g试样加入100ml 60/40%重量的苯酚/四氯乙烷溶液(PM95)中测定特性粘度(IV)(单位为dl/g)。采用转矩流变测定法测定零剪切粘度,记录单位为泊。采用DSC(扫描速率为20℃/分钟)测定玻璃化转变温度(Tg)和熔融温度(Tm)。本文使用以下缩写:“IV”为特性粘度;“g”为克;“psi”为磅/平方英寸;“CC”为立方厘米;“m”为米;“rpm”为每分钟转数;“AAPE”为脂族-芳族共聚酯,在实施例中使用是指己二酸丁二醇酯-对苯二甲酸丁二醇酯共聚物,其中己二酸酯与对苯二甲酸酯的%摩尔百分比为55/45。PLA为聚乳酸。采用ASTM D648,在455千帕(约66psi)下测定热挠曲温度(HDT),测定单位为psi。采用ASTM D256,在23℃下测定有缺口和无缺口依佐德冲击强度。采用ASTM D790,测定挠曲模量、屈服应变和屈服应力。采用ASTM D638,测定拉伸强度。有缺口和无缺口伊佐德数值单位为英尺-磅/英寸(53焦耳/米=1英尺-磅/英寸)。
已具体参考优选的实施方案详述本发明,但应理解的是,在本发明的精神和范围内可进行各种变化和改变。此外,所有的专利、专利申请(公开或未公开的、国外或国内的)、参考文献或上述其他出版物均通过引用将其与本发明的实践相关的任何公开内容结合到本文中。
                      实施例
通过以下实施例进一步说明本发明的聚合物共混物及其制备,包括有代表性的聚酯的制备。使用TA Instruments 2950差示扫描量热仪(DCS),以20℃/分钟的扫描速率测定该共混物的玻璃化转变温度(Tg)。
在以下的实施例中,采用通用方法制备共混物:在Sterling 1.25英寸单螺杆挤出机中混配制备PLA和AAPE的共混物。典型的方法如下:将各原料于60-70℃下干燥过夜,至水份含量小于50ppm。将各组分在袋中共混,随后使用AccuRate加料器以所需的速率通过料斗加至挤出机的料筒中。
在以下条件下在Toyo 90注塑机上将已制备的共混物模塑。这些条件不应认为是理想的条件,但是为这类共混可用的典型的条件:注嘴温度=200℃;1区温度=200℃;2区温度=200℃;3区温度=200℃;4区温度=200℃;熔融温度=200℃;注入和保压压力为900psig;模塑温度为25℃;螺杆速度为150rpm。
熔融压力和挤出机电流(amps)根据组合物而变,但范围分别为100-150psi和4-10。
随后将从挤出机出来的线材用水骤冷,随后用造粒机切。
                                             表I
                                          原料特征
  原料   级别   在PM95中的IV   DSC(℃)   在190℃下的零剪切粘度泊
  第一次加热   冷却   第二次加热
  Tg   Tm   Tcc   Tg   Tm
AAPE   Eastar BioPolymer 1.061 -31 50,111 25 -31 113 4323
  AAPE   Ecoflex   1.155   -33   104   16   -30   108   21110
  PLA   PLA 5429B   1.388   63   151   58   36460
  PLA   PLA TE4000   1.105   66   167   62   165   10784
  填料浓缩物 BI008-A -33 77,112 64 -34 114
注:填料浓缩物为与50%重量浓度的碳酸钙混配的Eastar Bio聚合物
Eastar Bio聚合物定义为包含55%摩尔的己二酸、45%摩尔的对苯二甲酸和100%摩尔的1,4-丁二醇的聚合物,其中二酸组分的总摩尔百分比等于100%摩尔,二醇组分的总摩尔百分比等于100%摩尔。Ecoflex聚合物(BASF所售)包含与Eastar Bio相同的组分,但认为还包含少量的支化剂。PLA 5429B和PLA TE-4000均为聚乳酸,但如表I所示粘度不同。B1008A为50%重量的Eastar Bio和50%重量的碳酸钙。
                                            表II
                                         共混物特征
Ex. AAPE PLA% B1008A%   伊佐德(Lzod)冲击强度
  0℃,有缺口所有模式的平均能量[ft-lb/in]   0℃,无缺口所有模式的平均能量[ft-lb/in]   23℃,有缺口所有模式的平均能量[ft-lb/in]   23℃,无缺口所有模式的平均能量[ft-lb/in]
  1234567891011121314151617   6515755025156515755025156515752515   2575255075852575255075852575257585   10100000101000001010000   10.730.889.922.811.670.5810.130.748.052.251.070.5811.740.6811.240.970.58   14.0611.7712.5131.759.275.3611.8213.3913.1121.4210.656.0314.3814.6916.939.915.8   8.4518.464.311.930.587.950.886.163.121.190.5610.090.649.051.080.57   11.6215.498.7621.5420.715.188.9716.548.7622.1322.75.1211.6517.712.8112.735.32
实施例1-6:AAPE为Eastar Bio,PLA为Cargill-Dow 5429B。
实施例7-12:AAPE为Eastar Bio,PLA为Unitika TE4000。
实施例13-17:AAPE为ECOFLEX,PLA为Cargill-Dow 5429B。
Eastar Bio聚合物为包含45%摩尔的对苯二甲酸、55%摩尔的己二酸和100%摩尔的1,4-丁二醇的组合物,其中二醇的总摩尔百分比等于100%摩尔,二酸的总摩尔百分比等于100%摩尔;B1008A为50%重量的Eastar Bio和50%重量的碳酸钙。
                           表III模塑试条-总的机械性能
挠曲性能23℃,ASIM D790   拉伸性能ASTM D63823℃, HDT   伊佐德冲击强度-所有模式的平均能量(ft-lb/in)
  264psi   66psi   0℃   0℃   23℃   23℃
  共混物   Bio%   PLA%   B1008A%   设定温度(℃)   挠曲模量[psi]   屈服应变[%]   屈服应力[Psi]   能量/体积@断裂[lb/in2]   屈服应变[%]   屈服应力[psi] T[℃]   有缺口   无缺口   有缺口   无缺口
  18   90   0   10   160   15,636   9   938   22.5   1,077   41   43   6.2   7.0   4.7   6.0
  20   90   0   10   200   14,542   10   993   26.1   1,119   38   44   6.3   6.4   4.6   5.4
  21   65   25   10   160   42,540   8   1,768   19.0   1,408   40   47   10.1   14.5   7.9   12.0
  22   65   25   10   200   43,389   9   1,787   3,114   17.2   1,456   41   48   10.7   14.1   8.5   11.6
  23   40   50   10   160   164,081   6   4,781   2,115   7.5   3,104   49   52   2.3   32.5   3.2   31.2
  24   40   50   10   200   159,784   6   4,777   2,077   7.1   3,218   51   54   2.5   30.6   3.6   31.3
  25   15   75   10   170   375,847   4   9,709   715   3.4   7,068   50   52   1.0   11.5   1.1   15.5
  26   15   75   10   200   404,006   4   10,431   723   3.4   7,343   52   53   0.9   11.8   1.0   15.5
  27   0   90   10   170   492,017   4   12,649   372   3.2   8,519   51   52   0.7   8.5   0.8   8.8
  28   0   90   10   200   490,769   4   12,551   660   3.1   8,486   52   54   0.6   8.5   0.8   9.5
  29   75   25   0   170   39,575   9   1,779   17.9   1,410   40   47   9.8   11.9   7.6   10.4
  30   75   25   0   200   43,321   9   1,810   4,263   17.9   1,418   42   51   9.9   12.5   8.5   8.8
  31   50   50   0   170   145,572   6   4,747   1,994   6.3   3,165   49   53   2.7   33.0   3.8   25.7
  32   50   50   0   200   149,530   6   4,665   1,064   6.3   3,048   51   53   2.8   31.0   4.3   21.5
  33   25   75   0   170   335,923   4   8,895   604   3.4   6,819   50   53   1.6   16.6   1.6   28.2
  34   25   75   0   200   329,314   4   8,903   554   3.4   6,782   52   53   1.7   9.3   1.9   20.7
  35   15   85   0   170   419,177   4   11,377   426   3.7   8,746   50   54   0.6   5.7   0.7   4.7
  36   15   85   0   200   428,006   4   11,882   482   3.6   8,876   52   54   0.6   5.4   0.6   5.2
  37   0   100   0   170   517,227   4   14,052   650   3.7   10,017   51   54   0.5   5.0   0.6   4.2
  38   0   100   0   200   510,123   4   13,936   494   3.5   9,876   53   54   0.6   5.0   0.6   4.1
实施例18-38:AAPE为Eastar Bio,PLA为Cargill-Dow 5429B。B1008A为50%重量的Eastar Bio和50%重量的碳酸钙。
基于上述数据清楚地看出,本文感兴趣的组合物为独特的并且取决于AAPE/PLA共混物的比率,不取决于PLA或AAPE本身的性质。
具体参考优选的实施方案详述了本发明,但应理解的是,在本发明的精神和范围内可进行各种变化和改变。

Claims (72)

1.一种聚合物共混物,所述聚合物共混物包含:
(A)约15%-约60%重量的至少一种玻璃化转变温度小于约0℃的柔性可生物降解的聚合物(A);和
(B)约85%-约40%重量的至少一种玻璃化转变温度大于约10℃的刚性可生物降解的聚合物(B);
所述百分比基于所述聚合物共混物的总重量计算;
其中采用ASTM D256,所述聚合物共混物在0℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。
2.权利要求1的聚合物共混物,所述聚合物共混物包含:
(A)至少一种玻璃化转变温度小于约-10℃的所述可生物降解的聚合物(A);和
(B)至少一种玻璃化转变温度大于约20℃的所述可生物降解的聚合物(B)。
3.权利要求2的聚合物共混物,所述聚合物共混物包含:
(A)至少一种玻璃化转变温度小于约-20℃的所述可生物降解的聚合物(A);和
(B)至少一种玻璃化转变温度大于约30℃的所述可生物降解的聚合物(B)。
4.权利要求3的聚合物共混物,所述聚合物共混物包含:
(A)至少一种玻璃化转变温度小于约-30℃的所述可生物降解的聚合物(A);和
(B)至少一种玻璃化转变温度大于约40℃的所述可生物降解的聚合物(B)。
5.权利要求1的聚合物共混物,所述聚合物共混物包含至少一种占所述聚合物共混物总重量的约1%-约50%重量的可生物降解的添加剂(C);
其中采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。
6.权利要求1的共混物,其中所述聚合物(A)选自脂族-芳族聚酯、包含具有至少5个碳原子的重复单元的脂族聚酯、聚己内酯和丁二酸酯基脂族聚合物。
7.权利要求1的共混物,其中所述聚合物(A)选自脂族-芳族聚酯、聚羟基戊酸酯、羟基丁酸酯-羟基戊酸酯共聚物、聚己内酯、聚丁二酸丁二醇酯、聚丁二酸己二酸丁二醇酯和聚丁二酸乙二醇酯。
8.权利要求1的共混物,其中所述至少一种聚合物(A)为脂族-芳族聚酯。
9.权利要求8的共混物,其中所述至少一种聚合物(A)为脂族-芳族聚酯,所述脂族-芳族聚酯包含:
(1)二酸残基,所述二酸残基包含约1-65%摩尔的一种或多种芳族二羧酸残基和99%-约35%摩尔的一种或多种选自以下的非芳族二羧酸残基:包含约4-14个碳原子的脂族二羧酸残基和包含约5-15个碳原子的脂环族二羧酸残基;其中二酸残基的总摩尔百分数等于100%摩尔;和
(2)二醇残基,所述二醇残基选自一种或多种包含约2-8个碳原子的脂族二醇、包含约2-8个碳原子的聚亚烷基醚和包含约4-12个碳原子的脂环族二醇;其中二醇残基的总摩尔百分数等于100%摩尔。
10.权利要求9的共混物,其中所述芳族二羧酸残基选自对苯二甲酸、间苯二甲酸或其混合物。
11.权利要求10的共混物,其中所述脂族-芳族共聚酯包含约25-65%摩尔的对苯二甲酸残基。
12.权利要求11的共混物,其中所述脂族-芳族共聚酯包含约35-65%摩尔的对苯二甲酸残基。
13.权利要求12的共混物,其中所述脂族-芳族共聚酯包含约40-60%摩尔的对苯二甲酸残基。
14.权利要求9的共混物,其中所述一种或多种非芳族二羧酸残基选自己二酸、戊二酸或其混合物。
15.权利要求14的共混物,其中所述一种或多种脂族-芳族共聚酯包含约75-35%摩尔的选自己二酸或戊二酸的非芳族二羧酸。
16.权利要求15的共混物,其中所述脂族-芳族共聚酯包含约65-35%摩尔的所述一种或多种选自己二酸或戊二酸的非芳族二羧酸。
17.权利要求16的共混物,其中所述脂族-芳族共聚酯包含约40-60%摩尔的所述一种或多种选自己二酸或戊二酸的非芳族二羧酸。
18.权利要求1的共混物,其中聚酯(A)的一种或多种二醇残基选自乙二醇、二甘醇、1,2-丙二醇、1,3-丙二醇、2,2-二甲基-1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、聚乙二醇、二甘醇、2,2,4-三甲基-1,6-己二醇、硫二甘醇、1,3-环己烷二甲醇、1,4-环己烷二甲醇、2,2,4,4-四甲基-1,3-环丁二醇、三甘醇或四甘醇。
19.权利要求1的共混物,其中所述脂族-芳族共聚酯的二醇残基基本由脂族二醇残基组成。
20.权利要求19的共混物,其中聚酯(A)包含一种或多种选自以下的二醇:1,4-丁二醇、1,3-丙二醇、乙二醇、1,6-己二醇、二甘醇或1,4-环己烷二甲醇。
21.权利要求20的共混物,其中所述脂族-芳族共聚酯包含一种或多种选自以下的二醇:1,4-丁二醇、乙二醇或1,4-环己烷二甲醇。
22.权利要求21的共混物,其中所述脂族-芳族共聚酯的二醇残基包括1,4-丁二醇。
23.权利要求22的共混物,其中所述二醇残基包含约80-100%摩尔的1,4-丁二醇,其中二醇残基的总摩尔百分数等于100%摩尔。
24.权利要求9的共混物,其中所述脂族-芳族共聚酯的二酸和二醇残基基本由以下残基组成:
(1)约25-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和75%-约35%摩尔的非芳族二羧酸残基;和
(2)由脂族二醇组成的二醇残基。
25.权利要求24的共混物,其中所述脂族-芳族共聚酯的二酸和二醇残基基本由以下残基组成:
(1)约25-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和75%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基。
26.权利要求25的共混物,其中所述脂族-芳族共聚酯的二酸和二醇残基基本由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基。
27.权利要求26的共混物,其中所述脂族-芳族共聚酯的二酸和二醇残基基本由以下残基组成:
(1)约40-60%摩尔的对苯二甲酸残基的芳族二羧酸残基和60%-约40%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基。
28.权利要求1的共混物,其中所述聚合物(B)选自聚酯酰胺、改性聚对苯二甲酸乙二醇酯、基于聚乳酸的生物聚合物、聚羟基链烷酸酯、聚羟基丁酸酯、聚羟基戊酸酯和羟基丁酸酯-羟基戊酸酯共聚物。
29.权利要求28的共混物,其中所述至少一种聚合物(B)为基于聚乳酸的生物聚合物。
30.一种聚合物共混物,所述聚合物共混物包含:
(A)约15%-约60%重量的至少一种玻璃化转变温度小于约0℃的聚合物(A),其中所述聚合物(A)包含:
(1)二酸残基,所述二酸残基包含约1-65%摩尔的芳族二羧酸残基和99%-约35%摩尔的选自以下的非芳族二羧酸残基:包含约4-14个碳原子的脂族二羧酸残基和包含约5-15个碳原子的脂环族二羧酸残基;其中二酸残基的总摩尔百分数等于100%摩尔;和
(2)二醇残基,所述二醇残基选自一种或多种包含约2-8个碳原子的脂族二醇、包含约2-8个碳原子的聚亚烷基醚和包含约4-12个碳原子的脂环族二醇;其中二醇残基的总摩尔百分数等于100%摩尔;
(B)约85%-约40%重量的至少一种玻璃化转变温度大于约10℃的聚合物(B),其中所述聚合物(B)为基于聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;且
其中采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
31.权利要求30的共混物,所述共混物包含至少一种占所述聚合物共混物总重量的约1%-约50%重量的可生物降解的添加剂(D)。
32.权利要求30的共混物,其中所述脂族-芳族共聚酯包含约25-65%摩尔的对苯二甲酸残基。
33.权利要求32的共混物,其中所述脂族-芳族共聚酯包含约35-65%摩尔的对苯二甲酸残基。
34.权利要求33的共混物,其中所述脂族-芳族共聚酯包含约40-60%摩尔的对苯二甲酸残基。
35.权利要求30的共混物,其中所述非芳族二羧酸残基选自己二酸、戊二酸或其混合物。
36.权利要求35的共混物,其中所述脂族-芳族共聚酯包含约75-35%摩尔的选自己二酸、戊二酸或其混合物的非芳族二羧酸。
37.权利要求36的共混物,其中所述脂族-芳族共聚酯包含约65-35%摩尔的选自己二酸、戊二酸或其混合物的非芳族二羧酸。
38.权利要求30的共混物,其中所述脂族-芳族共聚酯包含约40-60%摩尔的选自己二酸、戊二酸或其两种或多于两种二酸残基的组合的非芳族二羧酸。
39.权利要求30的共混物,其中所述脂族-芳族聚酯的一种或多种二醇残基选自乙二醇、二甘醇、1,2-丙二醇、1,3-丙二醇、2,2-二甲基-1,3-丙二醇、1,3-丁二醇、1,4-丁二醇、1,5-戊二醇、1,6-己二醇、聚乙二醇、二甘醇、2,2,4-三甲基-1,6-己二醇、硫二甘醇、1,3-环己烷二甲醇、1,4-环己烷二甲醇、2,2,4,4-四甲基-1,3-环丁二醇、三甘醇或四甘醇。
40.权利要求30的共混物,其中所述脂族-芳族共聚酯的一种或多种二醇残基基本由脂族二醇残基组成。
41.权利要求40的共混物,其中所述脂族-芳族共聚酯的一种或多种二醇残基包括选自以下的二醇:1,4-丁二醇、1,3-丙二醇、乙二醇、1,6-己二醇、二甘醇或1,4-环己烷二甲醇。
42.权利要求41的共混物,其中所述脂族-芳族共聚酯的一种或多种二醇残基包括选自以下的二醇:1,4-丁二醇、乙二醇或1,4-环己烷二甲醇。
43.权利要求42的共混物,其中所述脂族-芳族共聚酯的一种或多种二醇残基包括1,4-丁二醇。
44.权利要求43的共混物,其中所述二醇残基包括约80-100%摩尔的1,4-丁二醇,其中二醇残基的总摩尔百分数等于100%摩尔。
45.权利要求44的共混物,其中所述二醇残基包括约95-100%摩尔的1,4-丁二醇,其中二醇残基的总摩尔百分数等于100%摩尔。
46.权利要求30的共混物,其中所述脂族-芳族共聚酯的二酸和二醇残基基本由以下残基组成:
(1)约25-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和75%-约35%摩尔的非芳族二羧酸残基;和
(2)由脂族二醇组成的二醇残基。
47.权利要求46的共混物,其中所述脂族-芳族共聚酯的二酸和二醇残基基本由以下残基组成:
(1)约25-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和75%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基。
48.权利要求47的共混物,其中所述脂族-芳族共聚酯的二酸和二醇残基基本由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基。
49.权利要求48的共混物,其中所述脂族-芳族共聚酯的二酸和二醇残基基本由以下残基组成:
(1)约40-60%摩尔的对苯二甲酸残基的芳族二羧酸残基和60%-约40%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基。
50.权利要求1或30的共混物,其中所述聚合物(B)选自聚酯酰胺、改性聚对苯二甲酸乙二醇酯、基于聚乳酸的生物聚合物、聚羟基链烷酸酯、聚羟基丁酸酯、聚羟基戊酸酯和羟基丁酸酯-羟基戊酸酯共聚物。
51.一种聚合物共混物,所述聚合物共混物包含:
(A)约15%-约50%重量的至少一种聚合物(A),其中所述聚合物(A)主要由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基;和
(B)约85%-约50%重量的至少一种聚合物(B),其中所述聚合物(B)为基于聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;
其中采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
52.权利要求51的共混物,其中所述脂族-芳族共聚酯包含约40-60%摩尔的一种或多种选自己二酸或戊二酸的非芳族二羧酸。
53.权利要求51的共混物,其中所述聚合物(B)选自聚酯酰胺、改性聚对苯二甲酸乙二醇酯、基于聚乳酸的生物聚合物、聚羟基链烷酸酯、聚羟基丁酸酯、聚羟基戊酸酯和羟基丁酸酯-羟基戊酸酯共聚物。
54.一种聚合物共混物,所述聚合物共混物包含:
(A)约25%-约50%重量的至少一种聚合物(A),其中所述聚合物(A)主要由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基;和
(B)约75%-约50%重量的至少一种聚合物(B),其中所述聚合物(B)为基于聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;
其中采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
55.权利要求54的共混物,其中所述脂族-芳族共聚酯包含约40-60%摩尔的一种或多种选自己二酸或戊二酸的非芳族二羧酸。
56.权利要求54的共混物,其中所述聚合物(B)选自聚酯酰胺、改性聚对苯二甲酸乙二醇酯、基于聚乳酸的生物聚合物、聚羟基链烷酸酯、聚羟基丁酸酯、聚羟基戊酸酯和羟基丁酸酯-羟基戊酸酯共聚物。
57.一种聚合物共混物,所述聚合物共混物包含:
(A)约40%-约60%重量的至少一种聚合物(A),其中所述聚合物(A)主要由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基;和
(B)约60%-约40%重量的至少一种聚合物(B),其中所述聚合物(B)为基于聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;
其中采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
58.权利要求57的共混物,其中所述脂族-芳族共聚酯包含约40-60%摩尔的一种或多种选自己二酸或戊二酸的非芳族二羧酸。
59.权利要求57的共混物,其中所述聚合物(B)选自聚酯酰胺、改性聚对苯二甲酸乙二醇酯、基于聚乳酸的生物聚合物、聚羟基链烷酸酯、聚羟基丁酸酯、聚羟基戊酸酯和羟基丁酸酯-羟基戊酸酯共聚物。
60.一种聚合物共混物,所述聚合物共混物包含:
(A)约40%-约50%重量的至少一种聚合物(A),其中所述聚合物(A)主要由以下残基组成:
(1)约35-65%摩尔的对苯二甲酸残基的芳族二羧酸残基和65%-约35%摩尔的己二酸残基、戊二酸残基或己二酸残基和戊二酸残基的组合;和
(2)由1,4-丁二醇组成的二醇残基;和
(B)约60%-约50%重量的至少一种聚合物(B),其中所述聚合物(B)为基于聚乳酸的生物聚合物;
所述百分比基于所述聚合物共混物的总重量计算;
其中采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
61.权利要求60的共混物,其中所述脂族-芳族共聚酯包含约40-60%摩尔的一种或多种选自己二酸或戊二酸的非芳族二羧酸。
62.权利要求60的共混物,其中所述聚合物(B)选自聚酯酰胺、改性聚对苯二甲酸乙二醇酯、基于聚乳酸的生物聚合物、聚羟基链烷酸酯、聚羟基丁酸酯、聚羟基戊酸酯和羟基丁酸酯-羟基戊酸酯共聚物。
63.权利要求1、30、51或57的共混物,其中所述脂族-芳族共聚酯为支链的。
64.权利要求1、30、51或57的共混物,所述共混物包含增塑剂。
65.权利要求64的共混物,其中所述增塑剂选自N-乙基-邻,对-甲苯磺酰胺、磷酸2-乙基己酯二苯酯、磷酸异癸酯二苯酯、磷酸三丁酯、磷酸叔丁基苯酯二苯酯、磷酸三(甲苯酯)、氯化石蜡(60%氯)、氯化石蜡(50%氯)、丁二酸二乙酯、马来酸二正丁酯、马来酸二(2-乙基己酯)、硬脂酸正丁酯、乙酰柠檬酸三乙酯、柠檬酸三乙酯、柠檬酸三正丁酯、乙酰柠檬酸三正丁酯、油酸甲酯、富马酸二丁酯、己二酸二异丁酯、壬二酸二甲酯、环氧化亚麻子油、甘油一油酸酯、乙酰蓖麻油酸甲酯、乙酰蓖麻油酸正丁酯、丙二醇蓖麻油酸酯、聚乙二醇200二苯甲酸酯、二甘醇二苯甲酸酯、二丙二醇二苯甲酸酯、邻苯二甲酸二甲酯、邻苯二甲酸二乙酯、邻苯二甲酸二正丁酯、邻苯二甲酸二异丁酯、邻苯二甲酸丁酯苄酯或甘油三乙酸酯。
66.一种包含权利要求1、30、51或57的聚合物共混物的薄膜或片材。
67.权利要求66的薄膜或片材,其中所述薄膜或片材通过挤出或压延制备。
68.一种包含权利要求1、30、51或57的聚合物共混物的注塑制品。
69.一种包含权利要求1、30、51或57的聚合物共混物的制品,其中采用ASTM D256,所述聚合物共混物在0℃下的无缺口依佐德冲击强度至少为9ft-lbs/in。
70.一种包含权利要求1、30、51或57的聚合物共混物的制品,其中采用ASTM D256,所述聚合物共混物在23℃下的无缺口依佐德冲击强度至少为20ft-lbs/in。
71.权利要求69和70中任一项的制品,所述制品通过挤坯吹塑形成。
72.权利要求69和70中任一项的制品,所述制品通过型材挤塑形成。
CN2004800382180A 2003-12-22 2004-12-17 具有改进的流变性和改进的无缺口冲击强度的聚合物共混物 Expired - Fee Related CN1898324B (zh)

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US53172303P 2003-12-22 2003-12-22
US53159903P 2003-12-22 2003-12-22
US60/531,599 2003-12-22
US60/531,723 2003-12-22
US11/005,587 2004-12-06
US11/005,266 2004-12-06
US11/005,266 US7368511B2 (en) 2003-12-22 2004-12-06 Polymer blends with improved rheology and improved unnotched impact strength
US11/005,587 US7160977B2 (en) 2003-12-22 2004-12-06 Polymer blends with improved notched impact strength
PCT/US2004/042775 WO2005063883A1 (en) 2003-12-22 2004-12-17 Polymer blends with improved rheology and improved unnotched impact strength

Publications (2)

Publication Number Publication Date
CN1898324A true CN1898324A (zh) 2007-01-17
CN1898324B CN1898324B (zh) 2010-11-03

Family

ID=34743807

Family Applications (3)

Application Number Title Priority Date Filing Date
CN201310014534.5A Expired - Fee Related CN103122129B (zh) 2003-12-22 2004-12-17 具有提高的切口冲击强度的聚合物共混物
CN2004800384133A Expired - Fee Related CN1898325B (zh) 2003-12-22 2004-12-17 具有提高的切口冲击强度的聚合物共混物
CN2004800382180A Expired - Fee Related CN1898324B (zh) 2003-12-22 2004-12-17 具有改进的流变性和改进的无缺口冲击强度的聚合物共混物

Family Applications Before (2)

Application Number Title Priority Date Filing Date
CN201310014534.5A Expired - Fee Related CN103122129B (zh) 2003-12-22 2004-12-17 具有提高的切口冲击强度的聚合物共混物
CN2004800384133A Expired - Fee Related CN1898325B (zh) 2003-12-22 2004-12-17 具有提高的切口冲击强度的聚合物共混物

Country Status (11)

Country Link
EP (2) EP1697461B1 (zh)
JP (4) JP2007515543A (zh)
KR (2) KR101152076B1 (zh)
CN (3) CN103122129B (zh)
AU (2) AU2004309338B2 (zh)
CA (2) CA2550002C (zh)
ES (2) ES2720601T3 (zh)
IN (2) IN2006DE03550A (zh)
MX (2) MX282710B (zh)
NO (2) NO20063357L (zh)
WO (2) WO2005063881A1 (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328580A (zh) * 2011-01-19 2013-09-25 东洋制罐集团控股株式会社 生物降解性树脂组合物
CN103339197A (zh) * 2011-01-27 2013-10-02 Sk新技术株式会社 基于二氧化碳的聚合物共混组合物以及由此生产的环境友好装饰材料
CN103635533A (zh) * 2011-06-30 2014-03-12 巴斯夫欧洲公司 通过注射成型制备的制品
CN104185655A (zh) * 2012-02-20 2014-12-03 诺瓦蒙特股份公司 用于制造具有高的热变形温度的制品的可生物降解的聚合物组合物
CN106589875A (zh) * 2017-01-03 2017-04-26 扬州大学 微晶纤维素改性聚(β‑羟基丁酸酯)复合材料的制备方法
CN106589874A (zh) * 2017-01-03 2017-04-26 扬州大学 乙基纤维素改性聚(β‑羟基丁酸酯)复合材料的制备方法
CN108368330A (zh) * 2015-12-04 2018-08-03 日本电气株式会社 聚乳酸类树脂组合物和聚酯类树脂组合物及其制备方法和其成形体
CN111424059A (zh) * 2020-06-08 2020-07-17 中粮营养健康研究院有限公司 利用生物发酵技术制备乳酸以生产高产率、高光纯丙交酯的方法和***
CN112625414A (zh) * 2020-12-17 2021-04-09 北京易联结科技发展有限公司 一种海水降解复合材料及其制备方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515543A (ja) * 2003-12-22 2007-06-14 イーストマン ケミカル カンパニー 改善されたノッチ付き衝撃強さを有するポリマーブレンド
US7368503B2 (en) * 2003-12-22 2008-05-06 Eastman Chemical Company Compatibilized blends of biodegradable polymers with improved rheology
JP4491337B2 (ja) * 2004-02-06 2010-06-30 大阪瓦斯株式会社 生分解性プラスチック材料及び成形体
JP2005330458A (ja) * 2004-04-22 2005-12-02 National Institute Of Advanced Industrial & Technology ポリマー組成物、ポリマー組成物の製造方法及びポリマー組成物からなる成形体
JP2006057053A (ja) * 2004-08-23 2006-03-02 Advanced Plastics Compounds Co 樹脂組成物及び樹脂組成物の製造方法
JP5293912B2 (ja) * 2006-02-20 2013-09-18 三菱化学株式会社 樹脂製フィルム
KR101470353B1 (ko) * 2006-07-14 2014-12-09 듀폰 테이진 필름즈 유.에스. 리미티드 파트너쉽 다층 밀봉재 막
KR100888090B1 (ko) 2007-11-14 2009-03-11 (주)에코메이트코리아 내구성이 개선된 생분해성 수지 조성물
WO2009110472A1 (ja) * 2008-03-04 2009-09-11 三井化学株式会社 ポリエステル系樹脂、その製造方法およびその用途
US8937135B2 (en) * 2008-09-29 2015-01-20 Basf Se Biodegradable polymer mixture
CN101508791B (zh) * 2009-03-24 2012-10-03 邢金香 一种可生物降解塑料薄膜的生产方法
BR112012024006B1 (pt) 2010-03-22 2021-03-09 Sonoco Development Inc aditivo para melhorar o desempenho de artigos de biopolímero
BR112012029305B1 (pt) 2010-05-17 2020-04-07 Cj Cheiljedang Corp composição de mistura polimérica de ácido polilático com poli-hidroxialcanoato, método de preparação da referida composição, laminado multicamadas, artigos e filme a compreendendo
KR101650923B1 (ko) * 2010-05-20 2016-08-25 에스케이케미칼주식회사 폴리유산 수지 및 공중합 폴리에스테르 수지 블렌드 및 이를 이용한 성형제품
US9228079B2 (en) * 2010-06-17 2016-01-05 Tipa Corp. Ltd Biodegradable sheet and an array of separable pouches for liquids
EP2522695A1 (de) 2011-05-10 2012-11-14 Basf Se Biologisch abbaubare Polyesterfolie
CN102838856B (zh) 2011-06-23 2015-06-17 中国石油化工股份有限公司 一种生物可降解的复合物及其制备方法和一次性用品
CN102838855B (zh) * 2011-06-23 2015-06-17 中国石油化工股份有限公司 生物可降解的复合物及其制备方法和一次性用品
US9034945B2 (en) 2011-06-30 2015-05-19 Basf Se Item produced via thermoforming
JP2013082839A (ja) 2011-10-12 2013-05-09 Fuji Xerox Co Ltd 樹脂組成物、及び樹脂成形体
ES2879250T3 (es) 2012-06-05 2021-11-22 Cj Cheiljedang Corp Mezclas poliméricas biodegradables
SG11201408321PA (en) 2012-06-13 2015-01-29 Tipa Corp Ltd Biodegradable sheet
CN102863671A (zh) * 2012-08-03 2013-01-09 扬州辰逸旅游用品有限公司 一种牙刷柄及其生产工艺方法
CN104583312B (zh) * 2012-08-24 2018-04-03 巴斯夫欧洲公司 用于制备薄壁注塑件的聚合物混合物
JP6315661B2 (ja) * 2014-01-15 2018-04-25 大成建設株式会社 覆砂工法
WO2015162632A1 (en) * 2014-04-24 2015-10-29 Fi-Plast S.R.L. Compound between a thermoplastic polymer and a filler for producing films for packaging foodstuffs, in particular coffee capsules
CN106471060B (zh) * 2014-05-09 2018-10-12 巴斯夫欧洲公司 通过热成型制造的制品
EP3140350B1 (de) 2014-05-09 2018-06-27 Basf Se Spritzgussartikel
WO2017087658A1 (en) 2015-11-17 2017-05-26 Cj Research Center, Llc Polymer blends with controllable biodegradation rates
CN106117529A (zh) * 2016-07-27 2016-11-16 江阴和创弹性体新材料科技有限公司 低透湿的生物可降解共聚酯
CN106147152B (zh) * 2016-08-02 2018-01-16 扬州三星塑胶有限公司 一种易切割pet片材及其制备方法
CA3040988A1 (en) * 2016-10-21 2018-04-26 China Petroleum & Chemical Corporation Polyester composition, preparation method therefor and application thereof
SK922017A3 (sk) * 2017-09-13 2019-04-02 Envirocare, S.R.O. Biodegradovateľná polymérna zmes a spôsob jej prípravy
CN110157160A (zh) * 2018-03-21 2019-08-23 韩银兰 一种高性能的环保可降解型广告板及其制备方法
CN108559238B (zh) * 2018-05-02 2020-11-13 张家港绿洲新材料科技有限公司 一种生物基可降解的聚羟基羧酸合金材料及其制备方法和应用
EP3696232B1 (de) 2019-02-15 2021-08-25 Basf Se Spritzgussartikel
JP2020164629A (ja) * 2019-03-29 2020-10-08 積水化成品工業株式会社 生分解性熱可塑性エラストマー発泡成形体
JP7299974B2 (ja) * 2019-04-22 2023-06-28 三井化学株式会社 電子機器筐体、その製造方法および金属樹脂複合体
IT201900025471A1 (it) * 2019-12-24 2021-06-24 Novamont Spa Composizione polimerica per film con migliorate proprieta' meccaniche e disintegrabilita'
JP6944669B1 (ja) * 2020-04-01 2021-10-06 アイ‐コンポロジー株式会社 食器用器具・容器包装
IT202000007963A1 (it) 2020-04-15 2021-10-15 Novamont Spa Composizione polimerica biodegradabile per la realizzazione di articoli stampati.
CN114940745B (zh) * 2022-06-09 2024-06-25 万华化学集团股份有限公司 一种分子量可控的聚乳酸的制备方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09169896A (ja) * 1995-09-25 1997-06-30 Shin Etsu Chem Co Ltd 生分解性を有するポリマー組成物および収縮フィルム
US5756651A (en) * 1996-07-17 1998-05-26 Chronopol, Inc. Impact modified polylactide
EP1027384B1 (en) * 1997-10-31 2005-07-27 Metabolix, Inc. Polymer blends containing polyhydroxyalkanoates and compositions with good retention of elongation
JPH11241008A (ja) * 1998-02-26 1999-09-07 Mitsui Chem Inc ポリ乳酸系樹脂組成物
EP1309661A2 (de) * 2000-08-11 2003-05-14 bio-tec Biologische Naturverpackungen GmbH & Co. KG Biologisch abbaubarer polymerblend
US6573340B1 (en) * 2000-08-23 2003-06-03 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Biodegradable polymer films and sheets suitable for use as laminate coatings as well as wraps and other packaging materials
JP3797868B2 (ja) * 2000-10-30 2006-07-19 三菱樹脂株式会社 生分解性熱成形用シート状物および容器
JP4608118B2 (ja) * 2001-03-08 2011-01-05 ユニチカ株式会社 ドレーン材およびその分解促進方法
US7297394B2 (en) * 2002-03-01 2007-11-20 Bio-Tec Biologische Naturverpackungen Gmbh & Co. Kg Biodegradable films and sheets suitable for use as coatings, wraps and packaging materials
WO2002078944A1 (en) * 2001-03-28 2002-10-10 E. Khashoggi Industries, Llc Biodegradable polymer blends for use in making films, sheets and other articles of manufacture
JP3514736B2 (ja) * 2001-04-12 2004-03-31 三菱樹脂株式会社 樹脂組成物、成形体およびその製造方法
JP3510218B2 (ja) * 2001-05-02 2004-03-22 ユニチカ株式会社 ポリ乳酸系フィルムおよびその製造方法
JP2003064245A (ja) * 2001-08-29 2003-03-05 Unitika Ltd 生分解性フィルムまたはシート、およびこれらを用いた成型品
JP3583097B2 (ja) * 2001-10-23 2004-10-27 三菱樹脂株式会社 乳酸系樹脂成形体
JP3862557B2 (ja) * 2001-11-28 2006-12-27 旭化成ライフ&リビング株式会社 透明な耐衝撃性ポリ乳酸系延伸フィルム又はシート、及び、その製造方法
JP4243926B2 (ja) * 2001-12-13 2009-03-25 旭化成ケミカルズ株式会社 生分解性熱収縮性フィルム及びそれを用いたシュリンク包装体
JP3972791B2 (ja) * 2002-02-05 2007-09-05 東洋製罐株式会社 生分解性樹脂組成物及び蓋材
JP2003268088A (ja) * 2002-03-13 2003-09-25 Dainippon Ink & Chem Inc ポリ乳酸用改質剤及び該改質剤を含有するポリ乳酸組成物
JP4117147B2 (ja) * 2002-05-22 2008-07-16 三菱樹脂株式会社 射出成形体
JP4034596B2 (ja) * 2002-05-27 2008-01-16 三菱樹脂株式会社 射出成形体
JP4223245B2 (ja) * 2002-08-07 2009-02-12 ユニチカ株式会社 生分解性ポリエステル樹脂組成物、その製造方法、及びそれより得られる発泡体、成形体
JP2004143203A (ja) * 2002-10-22 2004-05-20 Mitsubishi Plastics Ind Ltd 射出成形体
US7172814B2 (en) * 2003-06-03 2007-02-06 Bio-Tec Biologische Naturverpackungen Gmbh & Co Fibrous sheets coated or impregnated with biodegradable polymers or polymers blends
JP2007515543A (ja) * 2003-12-22 2007-06-14 イーストマン ケミカル カンパニー 改善されたノッチ付き衝撃強さを有するポリマーブレンド

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103328580A (zh) * 2011-01-19 2013-09-25 东洋制罐集团控股株式会社 生物降解性树脂组合物
CN103339197A (zh) * 2011-01-27 2013-10-02 Sk新技术株式会社 基于二氧化碳的聚合物共混组合物以及由此生产的环境友好装饰材料
CN103635533A (zh) * 2011-06-30 2014-03-12 巴斯夫欧洲公司 通过注射成型制备的制品
CN103649222A (zh) * 2011-06-30 2014-03-19 巴斯夫欧洲公司 通过热成型制备的物品
CN104185655A (zh) * 2012-02-20 2014-12-03 诺瓦蒙特股份公司 用于制造具有高的热变形温度的制品的可生物降解的聚合物组合物
CN104185655B (zh) * 2012-02-20 2016-01-13 诺瓦蒙特股份公司 用于制造具有高的热变形温度的制品的可生物降解的聚合物组合物
CN108368330A (zh) * 2015-12-04 2018-08-03 日本电气株式会社 聚乳酸类树脂组合物和聚酯类树脂组合物及其制备方法和其成形体
US10961388B2 (en) 2015-12-04 2021-03-30 Nec Corporation Polylactic acid resin composition and polyester resin composition, and method for producing the same and molded body thereof
CN106589875A (zh) * 2017-01-03 2017-04-26 扬州大学 微晶纤维素改性聚(β‑羟基丁酸酯)复合材料的制备方法
CN106589875B (zh) * 2017-01-03 2018-12-11 扬州大学 微晶纤维素改性聚(β-羟基丁酸酯)复合材料的制备方法
CN106589874B (zh) * 2017-01-03 2018-12-11 扬州大学 乙基纤维素改性聚(β-羟基丁酸酯)复合材料的制备方法
CN106589874A (zh) * 2017-01-03 2017-04-26 扬州大学 乙基纤维素改性聚(β‑羟基丁酸酯)复合材料的制备方法
CN111424059A (zh) * 2020-06-08 2020-07-17 中粮营养健康研究院有限公司 利用生物发酵技术制备乳酸以生产高产率、高光纯丙交酯的方法和***
CN112625414A (zh) * 2020-12-17 2021-04-09 北京易联结科技发展有限公司 一种海水降解复合材料及其制备方法
CN112625414B (zh) * 2020-12-17 2022-06-21 北京易联结科技发展有限公司 一种海水降解复合材料及其制备方法

Also Published As

Publication number Publication date
AU2004309338B2 (en) 2010-09-09
CA2549990C (en) 2009-06-16
CA2549990A1 (en) 2005-07-14
MX282710B (es) 2011-01-10
WO2005063883A1 (en) 2005-07-14
ES2718635T3 (es) 2019-07-03
EP1697462B1 (en) 2019-01-23
CN103122129A (zh) 2013-05-29
AU2004309361A1 (en) 2005-07-14
KR20060120215A (ko) 2006-11-24
WO2005063881A1 (en) 2005-07-14
NO20063357L (no) 2006-09-22
CN1898325B (zh) 2013-03-06
CN1898325A (zh) 2007-01-17
JP2007515543A (ja) 2007-06-14
EP1697461B1 (en) 2019-03-13
KR101151939B1 (ko) 2012-06-01
JP2007515546A (ja) 2007-06-14
MXPA06007104A (es) 2006-08-23
KR101152076B1 (ko) 2012-06-11
CN1898324B (zh) 2010-11-03
CA2550002C (en) 2009-07-14
AU2004309338A1 (en) 2005-07-14
KR20060120216A (ko) 2006-11-24
JP2012062490A (ja) 2012-03-29
EP1697461A1 (en) 2006-09-06
IN2006DE03551A (zh) 2007-08-31
EP1697462A1 (en) 2006-09-06
IN2006DE03550A (zh) 2007-08-31
CA2550002A1 (en) 2005-07-14
MX282711B (es) 2011-01-10
NO20063359L (no) 2006-09-21
AU2004309361B2 (en) 2011-01-20
MXPA06007106A (es) 2006-08-18
CN103122129B (zh) 2016-12-07
ES2720601T3 (es) 2019-07-23
JP2012193387A (ja) 2012-10-11

Similar Documents

Publication Publication Date Title
CN1898324A (zh) 具有改进的流变性和改进的无缺口冲击强度的聚合物共混物
CN1898326A (zh) 具有改善流变性的可生物降解聚合物的增容共混物
US7160977B2 (en) Polymer blends with improved notched impact strength
US7368511B2 (en) Polymer blends with improved rheology and improved unnotched impact strength
CN1290817C (zh) 酯化合物、用于可生物降解的脂肪族聚酯树脂的增塑剂、和可生物降解的树脂组合物
CN1131281C (zh) 含有脂族-芳族共聚多酯的组合物
CN101056938A (zh) 用于薄膜和片材应用具有改进的应力发白的聚酯共混物
CN1246385C (zh) 生物降解速度受到控制的可生物降解的树脂组合物、膜和农业用地膜
CN1898311A (zh) 聚酯组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: NOVAMONT SPA

Free format text: FORMER OWNER: EASTMAN CHEM CO.

Effective date: 20130823

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20130823

Address after: Italy Novara

Patentee after: NOVAMONT S.P.A.

Address before: Tennessee

Patentee before: EASTMAN CHEMICAL Co.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20101103

CF01 Termination of patent right due to non-payment of annual fee