CN1884058A - 气凝胶碳纳米管及其制备方法和应用 - Google Patents

气凝胶碳纳米管及其制备方法和应用 Download PDF

Info

Publication number
CN1884058A
CN1884058A CNA2006100893859A CN200610089385A CN1884058A CN 1884058 A CN1884058 A CN 1884058A CN A2006100893859 A CNA2006100893859 A CN A2006100893859A CN 200610089385 A CN200610089385 A CN 200610089385A CN 1884058 A CN1884058 A CN 1884058A
Authority
CN
China
Prior art keywords
carbon nanotube
aerogel
tube bank
carbon
functional materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2006100893859A
Other languages
English (en)
Other versions
CN100386258C (zh
Inventor
魏飞
张强
周卫平
徐光辉
杨州
骞伟中
罗国华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsinghua University
Original Assignee
Tsinghua University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsinghua University filed Critical Tsinghua University
Priority to CNB2006100893859A priority Critical patent/CN100386258C/zh
Publication of CN1884058A publication Critical patent/CN1884058A/zh
Priority to PCT/CN2007/001957 priority patent/WO2008000163A1/en
Application granted granted Critical
Publication of CN100386258C publication Critical patent/CN100386258C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • B01D71/0212Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0046Inorganic membrane manufacture by slurry techniques, e.g. die or slip-casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0072Inorganic membrane manufacture by deposition from the gaseous phase, e.g. sputtering, CVD, PVD
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/021Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/117Composites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/24Mechanical properties, e.g. strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/02Single-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • C04B2235/5288Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

气凝胶碳纳米管及其制备方法和应用,属于新型纳米材料制备技术领域。本发明提供的气凝胶碳纳米管是由分散的碳纳米管或碳纳米管管束组成,所述的碳纳米管或碳纳米管管束的直径在1纳米到100微米之间,长径比在101-106,该气凝胶碳纳米管堆密度为0.1-100g/L。气凝胶碳纳米管通过如下方法获得。该方法包括:利用外力将待处理的碳纳米管管束或碳纳米管阵列样品破碎,然后在气相中分散,沉降,分级收集气凝胶碳纳米管。气凝胶碳纳米管通过成型加工作为导热导电材料,或与有机高分子、无机、金属基体等形成透明导电膜、超级导电添加剂、膜材料、力学增强增韧,隔热、增加材料导热性、屏蔽电磁辐射等复合材料。

Description

气凝胶碳纳米管及其制备方法和应用
技术领域
本发明涉及一种碳纳米管以及制备方法和应用,尤其涉及一种气凝胶碳纳米管以及其制备方法和应用,属于新型纳米材料制备技术领域。
背景技术
碳纳米管(Carbon Nanotubes,简写为CNTs)是由碳原子组成的一种新型纳米材料。由于其理想的一维结构使其在增强、导热、导电、电磁屏蔽、吸波复合材料、分子器件、催化剂载体、纳米电子器件等方面具有广泛的应用。
目前人们已经获得了多种形貌的碳纳米管。使用“纳米聚团床催化裂解法”(专利申请号:01118349.7;PCT/CN02/00044)可以获得大批量的碳纳米管,使用浮游方法可以获得一定量的超长碳纳米管阵列(专利公开号:CN 1724343A)。作为复合材料的应用,往往需要分散较好的碳纳米管才能够发挥出碳纳米管的优异性能。所以对于碳纳米管的实际应用,获得分散较好的碳纳米管是首要问题。
目前,分散较好的碳纳米管大部分都是在液体介质中进行。例如“一种利用外力破碎液洗纯化细长碳纳米管的方法”(专利号:ZL02117419.9)等一般都是在水中进行。而碳纳米管的大规模应用是用于和其它基体复合制备复合材料,这就意味在很多情况下都需要将分散的碳纳米管从液相中分离出来。如果在气相中直接实现分散,避免了脱除溶剂过程,所以气相分散的碳纳米管是一种具有重要潜在应用的材料。
发明内容
本发明的目的是提供一种分散好的气凝胶碳纳米管及其制备方法和应用,其制备过程中可以在气相中直接分散,无需液相分散介质,避免了碳纳米管制备复合材料使用液相分散在复合过程中所需的脱溶剂步骤。
本发明的技术方案如下:
一种气凝胶碳纳米管,其特征在于:所述的气凝胶碳纳米管是由分散的碳纳米管或碳纳米管管束组成,所述的碳纳米管或碳纳米管管束的直径在1纳米到100微米之间,长径比在101-106,该气凝胶碳纳米管堆密度为0.1~100g/L。
本发明提供了一种所述气凝胶碳纳米管的制备方法,其特征在于该方法包括如下步骤:
1)利用外力将待处理的碳纳米管管束或碳纳米管阵列样品经一次或多次破碎,形成堆密度为0.1~100g/L碳纳米管聚团;
2)利用气流将经过步骤1)处理的样品在气相中分散,沉降;
3)分级收集符合气凝胶碳纳米管的特征的沉降物,得到所述的气凝胶碳纳米管。
在上述步骤中,所述待处理的碳纳米管管束或碳纳米管阵列样品为单壁碳纳米管管束、多壁碳纳米管管束、单壁碳纳米管阵列或多壁碳纳米管阵列中的一种或几种。所述的外力方法采用高速气流剪切、机械高速剪切、砂磨或***方法。
本发明还提供了一种所述气凝胶碳纳米管的应用,即所述气凝胶碳纳米管通过成型加工作为导热、导电的材料,或通过与有机高分子、无机材料或金属基体复合作为增强力学性能的结构复合材料、增强导电性能的功能材料、增大电极和电容器比表面积的功能材料、屏蔽电磁辐射的功能材料、透明导电性能的复合材料、增强导热性能的功能材料,隔热性能良好的功能材料以及催化剂载体材料的应用。
本发明与现有技术相比,具有以下优点和有益的效果:本发明所提供的气凝胶碳纳米管可以在气相中直接进行分散,无需液相法等所需的分散介质;对于分散后的产物可以进行再次的分级处理;对于超长的碳纳米管无损伤;该工艺方法操作简单,成本低,易于工程放大。这种气凝胶碳纳米管可以和有机高分子、无机高分子、金属等形成复合的结构或功能材料。由于没有液相的参与,所以这种方法获得的复合材料不会包括像共混或者其它方法引进碳纳米管的分散剂。这种气凝胶碳纳米管可以通过成型加工作为导热、导电的材料,或通过与有机高分子、无机材料或金属基体复合作为增强力学性能的结构复合材料、增强导电性能的功能材料、增大电极和电容器比表面积的功能材料、屏蔽电磁辐射的功能材料、透明导电性能的复合材料、增强导热性能的功能材料,隔热性能良好的功能材料以及催化剂载体材料的应用。
附图说明
图1为气凝胶碳纳米管的制备工艺流程图。
图2a为本发明采用的碳纳米管阵列样品机械破碎前的扫描电镜照片图。
图2b是本发明对图2a所示的碳纳米管阵列经机械高速剪切破碎后的碳纳米管样品扫描电镜照片。
图2c是将破碎后的样品在气相中分散、沉降30s后的气凝胶碳纳米管扫描电镜照片。
图2d是将破碎后的样品在气相中分散、沉降4min后的气凝胶碳纳米扫描电镜管照片。
图3是对碳纳米管阵列经气流剪切后,在气相中分散、沉降1min后的气凝胶碳纳米管扫描电镜照片。
图4a是对碳纳米管管束经机械高速剪切破碎后,在气相中分散、沉降30s后的气凝胶碳纳米管扫描电镜照片。
图4b是对碳纳米管管束经机械高速剪切破碎后,在气相中分散、沉降3min后的气凝胶碳纳米管扫描电镜照片。
图5是对碳纳米管阵列经机械高速剪切破碎后,在气相中分散、沉降15min后的气凝胶碳纳米管扫描电镜照片。
图6是利用气凝胶碳纳米管在气相中成型获得纸张的扫描电镜照片。
图7是将气凝胶碳纳米管平铺在透明高分子薄膜上形成的透明导电膜扫描电镜照片。
具体实施方式
下面结合附图及实施例进一步说明本发明的具体实施。提供这些实施方案的目的是使本发明能够完全公开,向所属领域的技术人员充分传达本发明的思想和实施效果。然而,本发明可以按许多不同的方式实施。
实施例1
本实施例考察机械剪切对碳纳米管阵列气相分散的效果以及气流分散沉降获得气凝胶碳纳米管的实际效果。使用的样品利用浮游催化方法制得碳纳米管阵列,其中碳纳米管阵列长度为1.4mm,碳纳米管的面积约在几十平方毫米。取该阵列100mg置于高速剪切机内,调节机械剪切转速为10000转/分,粉碎2min后取出。在碳纳米管阵列中,相对于管轴向方向,平行排列的管之间作用力很弱,因此发生机械剪切时,剪切力更容易作用在其碳纳米管管径方向,从而实现了碳纳米管阵列变成细的管束。由于碳纳米管以及碳纳米管管束本身具有柔性,这样保证其在剪切过程中其不易断裂,保持原有长度。粉碎后的扫描电镜照片参见图2b。可以看出,取出的碳纳米管聚团已经成为直径为1~25μm,长度为100~1400μm的碳纳米管管束,堆密度为2g/cm3。可以看到规整的碳纳米管阵列被打散形成了大团的气凝胶碳纳米管。
将上述气凝胶碳纳米管在一直径为75mm的石英管中,通入表观气速为0.2m/s的空气,此时碳纳米管体积进一步膨胀,在气相中悬浮分散。待停止通入空气后,分散的气凝胶开始下落。收集不同时间落下的沉降物。沉降0.5min后的产物的扫描电镜照片参见图2c。可以其中碳纳米管管束的直径为1~25μm,长度为100~1400μm的碳纳米管管束,形成了数百微米的气凝胶聚团碳纳米管,堆积密度在1.3g/L。
沉降4min后的产物的扫描电镜照片参见图2d。可以其中碳纳米管管束的直径为1~25μm,长度为100~1000μm的碳纳米管管束,为形成了单分散的管束的气凝胶聚团碳纳米管,堆积密度在0.5g/L。
实施例2气流剪切碳纳米管阵列
本实施例考察气流剪切对碳纳米管阵列气相分散的效果。使用的样品由浮游催化方法制得,主要是有取向的碳纳米管阵列,其中碳纳米管阵列长度为1.0mm,碳纳米管的面积约在几十平方毫米。取该阵列1.0g置于气流剪切机内,调节高速剪切气流线速度为5m/s,破碎剪切2min后取出。粉碎后的扫描电镜照片参见图3。可以看出,得到的气凝胶碳纳米管直径在15~30μm,长度在几百到几千微米,堆密度在4g/L。
将上述气凝胶碳纳米管在一直径为75mm的石英管中,通入表观气速为0.2m/s的空气,此时碳纳米管体积进一步膨胀,在气相中悬浮分散。待停止通入空气后,分散的气凝胶开始下落。收集不同时间落下的沉降物。沉降1min后的产物也为气凝胶碳纳米管,其堆积密度在1.4g/L。沉降5min后的气凝胶碳纳米管堆积密度在0.2g/L。
实施例3
本实施例考察机械剪切对碳纳米管管束气相分散的效果。使用的样品由催化化学气相沉积方法制得,主要是有取向的碳纳米管管束,其中碳纳米管阵列长度为数百微米。将碳纳米管管束产品取该阵列1000mg置于高速剪切机内,调节机械剪切转速为10000转/分,粉碎2min后取出。粉碎后的扫描电镜照片参见图4a。可以看出,取出的碳纳米管已经成为直径为50~250nm,长度为10~100μm的碳纳米管管束形式存在。碳纳米管形成微米级别的聚团。此时堆密度为42g/L。可以看到规整的碳纳米管阵列被打散形成大团的气凝胶碳纳米管。
将上述气凝胶碳纳米管在一直径为75mm的石英管中,通入表观气速为0.2m/s的空气,此时碳纳米管体积进一步膨胀,在气相中悬浮分散。待停止通入空气后,分散的气凝胶开始下落。收集不同时间落下的沉降物。沉降3min后的产物的扫描电镜照片参见图4b。可以其中此时收集的碳纳米管管束直径更小,碳纳米管管束直径在50~200nm,长度为1~10μm,堆密度为2.2g/L。
实施例4
本实施例考察机械剪切以及沉降对碳纳米管管束气相分散的效果。使用的样品为碳纳米管管束。将碳纳米管管束产品取该阵列500mg置于高速剪切机内,调节机械剪切转速为30000转/分,粉碎20min后取出。然后将破碎后的碳纳米管置于一直径为75mm的石英管中,通入表观气速为0.05m/s的空气,此时碳纳米管体积进一步膨胀,在气相中悬浮分散。待停止通入空气后,分散的气凝胶开始下落。收集不同时间落下的沉降物。沉降15min后的产物的扫描电镜照片参见图5。此时收集的碳纳米管为10~100nm,长度为10~500μm的碳纳米管管,堆密度为0.1g/L。
实施例5
将例2中获得气凝胶碳纳米管利用空气为分散介质,采用高速回转的辊筒,将气凝胶碳纳米管原料分散为碳纳米管管束状态,使其在空气中悬浮,然后调节真空度使碳纳米管管束飘落到运行着的铜网上;碳纳米管管束受铜网下真空抽吸作用,相互交错重叠成厚薄均匀的纸页,再经环氧树脂加以粘合、干燥、卷取等,即得到成型的纸。所成纸的微观图像参见图6。该纸张厚度为0.1mm,具有很低的电阻率,其体积电阻率可以达到10-2Ωcm,导热率在1000W/mK,断裂强度20.2MPa,断裂伸长率为9.4%,弹性模量为436.3MPa。
实施例6
将上述纸张固定在抽滤设备中,使1%的聚乙烯醇(PVA)溶液抽滤通过气凝胶碳纳米管纸,此时PVA会吸附到碳纳米管表面形成PVA-CNT复合材料。将该复合材料进一步热压,测量其厚度为0.1mm,具有很低的电阻率,其体积电阻率可以达到1Ωcm,导热率在300W/mK,断裂强度27.42MPa,断裂伸长率为4.22%,弹性模量为1956.3MPa,远远高于采用相同方法制备的等厚度PVA薄膜本身的电阻率和导热率。所以该复合材料可作为应用于力学增强的结构材料、增强导电性能的功能材料、增强导热性能的功能材料。
实施例7
将例2中获得气凝胶碳纳米管溶于去离子水中,形成浓度约为10ppm的碳纳米管溶液。在3000转/分的转速下将该溶液涂到透明的基板上面,形成透光率到80%的透明导电膜,其扫描电镜照片参见图7。通过四探针电阻仪可以测出其表面电阻率可以达到1000Ω/□,形成了透光率高、导电性好的透明导电膜。
实施例8
将例2中获得的气凝胶碳纳米管分散后和环氧树脂进行共混,待混合均匀后加入固化剂形成了碳纳米管-环氧树脂混合物。当碳纳米管含量超过0.003wt%时即形成了了导电网络,其电导率达到了10-3S/m,这样只要在高分子基体中添加少量的气凝胶碳纳米管,即可以实现该复合材料作为导电材料。
实施例9
将例2中获得的气凝胶碳纳米管分散后和三氧化二铝进行球磨12hr实现其均匀混合。然后在烘箱中110℃下烘干24hr得到气凝胶碳纳米管和三氧化二铝的复合粉末。然后将该复合粉术在压制压力为20MPa下1500℃下热压60min,制备得到气凝胶碳纳米管-三氧化二铝样品。三氧化二铝载体的密度为3.80g/cm3,断裂强度为362MPa,断裂韧性在2.81MPa m0.5。当加入1%的气凝胶碳纳米管之后,三氧化二铝载体的密度为3.76g/cm3,断裂强度为420MPa,断裂韧性在5.10MPa m0.5。可以看出,添加气凝胶碳纳米管,提高了陶瓷材料韧性,同时也提高了材料的抗弯强度。这主要是由于分散的碳纳米管能够钉扎在陶瓷晶粒晶界上,可做成陶瓷增韧增强复合材料。

Claims (5)

1.一种气凝胶碳纳米管,其特征在于:所述的气凝胶碳纳米管是由分散的碳纳米管或碳纳米管管束组成,所述的碳纳米管或碳纳米管管束的直径在1纳米到100微米之间,长径比在101-106,该气凝胶碳纳米管堆密度为0.1~100g/L。
2.一种如权利要求1所述气凝胶碳纳米管的制备方法,其特征在于该方法包括如下步骤:
1)利用外力将待处理的碳纳米管管束或碳纳米管阵列样品经一次或多次破碎,形成堆密度为0.1~100g/L碳纳米管聚团;
2)利用气流将经过步骤1)处理的样品在气相中分散,沉降;
3)分级收集符合气凝胶碳纳米管的特征的沉降物,得到所述的气凝胶碳纳米管。
3.按照权利要求2所述气凝胶碳纳米管的制备方法,其特征在于:所述待处理的碳纳米管管束或碳纳米管阵列样品为单壁碳纳米管管束、多壁碳纳米管管束、单壁碳纳米管阵列或多壁碳纳米管阵列中的一种或几种。
4.按照权利要求2所述气凝胶碳纳米管的制备方法,其特征在于:步骤(1)中所述的外力方法采用高速气流剪切、机械高速剪切、砂磨或***方法。
5.如权利要1所述气凝胶碳纳米管通过成型加工作为导热、导电的材料,或通过与有机高分子、无机材料或金属基体复合作为增强力学性能的结构复合材料、增强导电性能的功能材料、增大电极和电容器比表面积的功能材料、屏蔽电磁辐射的功能材料、透明导电性能的复合材料、增强导热性能的功能材料,隔热性能良好的功能材料以及催化剂载体材料的应用。
CNB2006100893859A 2006-06-23 2006-06-23 气凝胶碳纳米管及其制备方法和应用 Active CN100386258C (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CNB2006100893859A CN100386258C (zh) 2006-06-23 2006-06-23 气凝胶碳纳米管及其制备方法和应用
PCT/CN2007/001957 WO2008000163A1 (en) 2006-06-23 2007-06-22 Aerogel carbon nanotube, and methods for preparing the same, membrane and composite material containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100893859A CN100386258C (zh) 2006-06-23 2006-06-23 气凝胶碳纳米管及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN1884058A true CN1884058A (zh) 2006-12-27
CN100386258C CN100386258C (zh) 2008-05-07

Family

ID=37582383

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100893859A Active CN100386258C (zh) 2006-06-23 2006-06-23 气凝胶碳纳米管及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN100386258C (zh)
WO (1) WO2008000163A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502580A (zh) * 2011-10-27 2012-06-20 清华大学 一种碳纳米管阵列及其制备方法与在制备超级电容器中的应用
CN109239756A (zh) * 2018-09-29 2019-01-18 清华大学 一种电离辐射检测方法和传感器
CN109750490A (zh) * 2018-12-10 2019-05-14 青岛科技大学 一种基于化纤成型段的皮层导电化处理方法
CN111727123A (zh) * 2018-01-12 2020-09-29 米其林集团总公司 具有解聚碳纳米管的橡胶组合物
CN115036515A (zh) * 2022-08-12 2022-09-09 清华大学 碳纳米材料复合集流体及其制备方法、电极和电池
CN115036449A (zh) * 2022-08-12 2022-09-09 清华大学 干法复合电极的制备方法、干法复合电极及电池

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2910458B1 (fr) * 2006-12-20 2009-04-03 Centre Nat Rech Scient Aerogels a base de nanotubes de carbone
GB0708294D0 (en) * 2007-04-28 2007-06-06 Q Flo Ltd A continuous process for preparing and collecting nanotube films that are supporated by a substrate
US20100190639A1 (en) 2009-01-28 2010-07-29 Worsley Marcus A High surface area, electrically conductive nanocarbon-supported metal oxide
US8685287B2 (en) * 2009-01-27 2014-04-01 Lawrence Livermore National Security, Llc Mechanically robust, electrically conductive ultralow-density carbon nanotube-based aerogels
US20110024698A1 (en) * 2009-04-24 2011-02-03 Worsley Marcus A Mechanically Stiff, Electrically Conductive Composites of Polymers and Carbon Nanotubes
US8629076B2 (en) 2010-01-27 2014-01-14 Lawrence Livermore National Security, Llc High surface area silicon carbide-coated carbon aerogel
US20140093728A1 (en) * 2012-09-28 2014-04-03 Applied Nanostructured Solutions, Llc Carbon nanostructures and methods of making the same
ES2820556T3 (es) 2012-09-28 2021-04-21 Applied Nanostructured Sols Materiales compuestos formados por mezcla de cizallamiento de nanoestructuras de carbono y métodos afines
US9327969B2 (en) 2012-10-04 2016-05-03 Applied Nanostructured Solutions, Llc Microwave transmission assemblies fabricated from carbon nanostructure polymer composites
US9133031B2 (en) * 2012-10-04 2015-09-15 Applied Nanostructured Solutions, Llc Carbon nanostructure layers and methods for making the same
US9107292B2 (en) 2012-12-04 2015-08-11 Applied Nanostructured Solutions, Llc Carbon nanostructure-coated fibers of low areal weight and methods for producing the same
US10399322B2 (en) 2014-06-11 2019-09-03 Applied Nanostructured Solutions, Llc Three-dimensional printing using carbon nanostructures
US9802373B2 (en) 2014-06-11 2017-10-31 Applied Nanostructured Solutions, Llc Methods for processing three-dimensional printed objects using microwave radiation
CN104437279B (zh) * 2014-11-17 2016-08-24 北京大学 掺杂碳纳米管气凝胶及其制备方法与应用
FR3076827A1 (fr) 2018-01-12 2019-07-19 Arkema France Matiere solide agglomeree de nanotubes de carbone desagreges.
IL307814A (en) * 2021-03-19 2023-12-01 Chasm Advanced Mat Inc Long carbon nanotubes with a narrow diameter and catalysts for their production
CN113133297B (zh) * 2021-04-20 2023-06-27 合肥工业大学 一种超交联聚苯乙烯基复合炭气凝胶电磁屏蔽材料及其制备方法
CN114804108B (zh) * 2022-02-25 2023-09-15 西安理工大学 N、S共掺杂MXene/纤维素衍生碳气凝胶的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1176142C (zh) * 2002-03-14 2004-11-17 四川大学 聚合物/碳纳米管复合粉体及其固相剪切分散的制备方法
CN1176015C (zh) * 2002-04-19 2004-11-17 清华大学 一种利用外力破碎液洗纯化细长碳纳米管的方法
WO2004024428A1 (en) * 2002-09-10 2004-03-25 The Trustees Of The University Pennsylvania Carbon nanotubes: high solids dispersions and nematic gels thereof
JP3676337B2 (ja) * 2002-10-23 2005-07-27 独立行政法人科学技術振興機構 カーボンナノチューブとイオン性液体とから成るゲル状組成物とその製造方法
KR20050097088A (ko) * 2004-03-30 2005-10-07 삼성에스디아이 주식회사 탄소나노튜브 분말 제조방법

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102502580A (zh) * 2011-10-27 2012-06-20 清华大学 一种碳纳米管阵列及其制备方法与在制备超级电容器中的应用
CN102502580B (zh) * 2011-10-27 2014-08-27 清华大学 一种碳纳米管阵列及其制备方法与在制备超级电容器中的应用
CN111727123A (zh) * 2018-01-12 2020-09-29 米其林集团总公司 具有解聚碳纳米管的橡胶组合物
CN109239756A (zh) * 2018-09-29 2019-01-18 清华大学 一种电离辐射检测方法和传感器
CN109750490A (zh) * 2018-12-10 2019-05-14 青岛科技大学 一种基于化纤成型段的皮层导电化处理方法
CN109750490B (zh) * 2018-12-10 2021-04-09 青岛科技大学 一种基于化纤成型段的皮层导电化处理方法
CN115036515A (zh) * 2022-08-12 2022-09-09 清华大学 碳纳米材料复合集流体及其制备方法、电极和电池
CN115036449A (zh) * 2022-08-12 2022-09-09 清华大学 干法复合电极的制备方法、干法复合电极及电池

Also Published As

Publication number Publication date
WO2008000163A1 (en) 2008-01-03
CN100386258C (zh) 2008-05-07

Similar Documents

Publication Publication Date Title
CN100386258C (zh) 气凝胶碳纳米管及其制备方法和应用
US8753543B2 (en) Chemically functionalized submicron graphitic fibrils, methods for producing same and compositions containing same
CN1803594A (zh) 一种大面积的超薄碳纳米管膜及其制备工艺
KR101666478B1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
Zhu et al. Alignment of multiwalled carbon nanotubes in bulk epoxy composites via electric field
CN1315362C (zh) 具有微波吸收功能的碳纳米管/陶瓷复合材料及制备方法
CN105367824B (zh) 剥离的碳纳米管、其制备方法及由此获得的产品
JP5632448B2 (ja) 炭素材料及びその製造方法
CN1228481C (zh) 碳素纤维及使用碳素纤维的复合材料
US8753740B2 (en) Submicron-scale graphitic fibrils, methods for producing same and compositions containing same
CN104627977B (zh) 一种氧化石墨烯增强的复合纳米碳纸及其制备方法
CN100448920C (zh) 利用电纺丝法制备具有低介电常数高分子纳米纤维膜的方法
CN103058172A (zh) 一种碳纳米管-石墨烯复合材料的制备方法
CN101054467A (zh) 碳纳米管复合材料及其制备方法
CN110157931B (zh) 一种具有三维网络结构的纳米碳增强金属基复合材料及其制备方法
CN112143003B (zh) 一种具有可见光热转换性能的贵金属/高分子复合薄膜的制备方法
CN102898872B (zh) 功能化石墨烯、其制备方法及在石墨烯/非极性聚合物复合材料中的应用
CN1669982A (zh) 碳纳米管/莫来石陶瓷基复相材料及其制备方法
WO2015099378A1 (ko) 그래핀의 제조 방법과, 그래핀의 분산 조성물
CN1789338A (zh) 导电聚苯胺与碳纳米管复合的电磁屏蔽复合膜及其制法
CN101041431A (zh) 一种氮和过渡金属元素掺杂的碳纳米颗粒的制备方法
Zhao et al. Processing and structure of carbon nanofiber paper
CN105295098A (zh) 一种氧化石墨烯、碳纳米管多臂定构型导热填料的制备方法
CN1176015C (zh) 一种利用外力破碎液洗纯化细长碳纳米管的方法
CN113555217A (zh) 一种碳纳米管/石墨烯/聚偏氟乙烯介电复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C57 Notification of unclear or unknown address
DD01 Delivery of document by public notice

Addressee: Di Gengyan

Document name: Notice of failure to request a suspension

EE01 Entry into force of recordation of patent licensing contract

Assignee: Tsinghua University

Assignor: XINNA TECHNOLOGY CO., LTD.

Contract record no.: 2010990000860

Denomination of invention: Aerogel carbon nanotube and its preparation method and application

Granted publication date: 20080507

License type: Exclusive License

Open date: 20061227

Record date: 20101027

EE01 Entry into force of recordation of patent licensing contract

Assignee: XINNA TECHNOLOGY CO., LTD.

Assignor: Tsinghua University

Contract record no.: 2010990000860

Denomination of invention: Aerogel carbon nanotube and its preparation method and application

Granted publication date: 20080507

License type: Exclusive License

Open date: 20061227

Record date: 20101027

EC01 Cancellation of recordation of patent licensing contract

Assignee: XINNA TECHNOLOGY CO., LTD.

Assignor: Tsinghua University

Contract record no.: 2010990000860

Date of cancellation: 20191024

EC01 Cancellation of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20061227

Assignee: Jiangsu Nanai Polytron Technologies Inc

Assignor: Tsinghua University

Contract record no.: X2019990000138

Denomination of invention: Aerogel carbon nanotube and its preparation method and application

Granted publication date: 20080507

License type: Exclusive License

Record date: 20191024