CN1882031A - 形成多聚焦堆图像的方法和设备 - Google Patents

形成多聚焦堆图像的方法和设备 Download PDF

Info

Publication number
CN1882031A
CN1882031A CN 200510125371 CN200510125371A CN1882031A CN 1882031 A CN1882031 A CN 1882031A CN 200510125371 CN200510125371 CN 200510125371 CN 200510125371 A CN200510125371 A CN 200510125371A CN 1882031 A CN1882031 A CN 1882031A
Authority
CN
China
Prior art keywords
image
focusing
array
target
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200510125371
Other languages
English (en)
Other versions
CN1882031B (zh
Inventor
菲利普·M.·戈什
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FFEI Ltd
Original Assignee
FFEI Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from EP05253702.4A external-priority patent/EP1610166B1/en
Application filed by FFEI Ltd filed Critical FFEI Ltd
Publication of CN1882031A publication Critical patent/CN1882031A/zh
Application granted granted Critical
Publication of CN1882031B publication Critical patent/CN1882031B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

提供一种产生目标的多聚焦堆图像的方法。该堆图像具有目标的多个图像,每个图像具有对应的焦点范围或位置。该方法利用目标和光检测器阵列之间的相对扫描运动,扫描期间该阵列用于反复地接收来自目标作为扫描行的图像信息。扫描期间在各个图像的焦点范围或位置之间改变目标和该阵列间的相对聚焦,从而得到该堆中的各图像。从而每个图像是由在扫描期间从各个焦点范围或位置处得到的图像信息形成的。还提供完成该方法的设备。

Description

形成多聚焦堆图像的方法和设备
技术领域
本发明涉及形成多聚焦堆图像的方法和设备。
背景技术
在一些诸如医学应用的市场领域中,利用显微镜检查样本并且利用附着在显微镜的二维数字相机生成数字图像。数字相机捕获的被观察的样本在面积上受到限制。对于40x的物镜,典型的面积仅为0.7mm宽。在显微镜载片上的有效面积给定为64×24mm情况下,可能的样本面积仅为非常小的面积。对此的一种办法是在整个样本面积上步进和重复,其还称为宏抖动。更优选的处理是利用类似于在US 6,711,283中公开的行扫描部件,其中可以收集0.7×64mm的长条数据。接着可以扫描相邻的带从而可以把图像接合或缝合在一起,如专利GB 2206011中说明那样。
如US 6,711,283中提到那样,长条扫描的一个问题是必须在整个扫描长度上保持聚焦。作为一个例子,对于数值孔径为0.65的40x透镜焦深约为1微米。典型的显微镜载片不是按保持这种类型的容限制造的,并且安装时可能由于安装方法或者在重力下弯曲超过1微米。而且要成像的样本本身不平直到1微米。在US 6,711,283中通过单独地在扫描长度建立聚焦图并且在扫描期间动态地调整聚焦以和该聚焦图配合解决该问题。遗憾的是,为每个样本建立聚焦图是耗时的。典型的聚焦方法是在不同的聚焦水平下扫描同一个区域然后利用评定算法确定最佳聚焦。存在若干已使用的评定算法,一个例子是取相邻象素间的差的平方和。这种评定算法产生例如图1中示出的函数,其中峰值(用箭头指示)看成是焦点。
用来解决该问题的另一种方法是得到多个聚焦水平不同的扫描。这称为聚焦堆或Z堆并在图2中示出。其思想是,在任何时刻至少聚焦扫描图像中的一个并且晚些时候可以组合Z图像堆400以给出单个聚焦图像。可以从一些供应商得到组合图像的软件。该方法的问题,对于样本聚焦变化范围内的小焦深,许多图像层需要覆盖完整的聚焦范围并且这会是耗时的。最佳聚焦线示在401上。在不同的位置402上堆中的图像只提供很少的有用信息。
从而需要解决这些缺点。
发明内容
依据本发明的第一方面我们提供一种产生目标的多聚焦堆图像的方法,谊堆图像包括该目标的多个图像,每个图像具有对应的焦点范围或位置,谊方法包括:
造成目标和光检测器阵列之间的相对扫描运动,该阵列用于在以扫描行的形式扫描期间从谊目标反复接收图像信息;以及
扫描期间在各个图像的所述焦点范围或位置之间造成改变该目标和该阵列之间的相对聚焦,从而得到堆中的图像,其中每个图像是由在扫描期间从各个焦点范围或位置得到的图像信息形成的。
从而本发明相当不同于现有技术方法。在现有方法中堆图像是按相继的图像帧得到的,而在本发明中通过扫描行得到图像。重要的是,扫描行是扫描期间反复在图像的不同焦点位置(固定的或在一范围内的)之间交换的情况下得到的,并且然后利用这些扫描行在扫描结束时形成该堆中的不同聚焦的图像。这些图像可以被想成是聚焦水平或聚焦层。在讨论扫描时,应理解在具有多于一行的检测器的阵列下该术语包含若干检测器行的输出。但是,扫描行上的检测器的数量在数量级大于这种阵列的小数量(约小于16)。
从而本发明在可以使用相对便宜的设备的情况下明显优于现有技术。它还避免需要多次扫描目标,多次扫描会在记录得到的信息上造成问题。另外不需要用于事先产生聚焦图的辅助设备。它还允许在短时间内以及不需要以后的扫描情况下对非常局部的区域得到不同聚焦的图像信息。这有助于确保在任何介入阶段光学设备或样本中不发生变化并且能对扫描中带有明显构形的目标提供聚焦水平的在线改变。
典型地对目标的若干地带重复该方法并且在对目标的单次扫描中得到多聚焦堆图像。最好,在为堆中的某特定图像从目标得到图像信息的扫描行后修改相对聚焦,从而在为所述特定图像再次得到其它扫描行(图像信息)之前为至少一个其它图像得到该扫描行。从而在扫描期间可以在图像之间循环聚焦,以从各条扫描行构建这些图像。可以为每幅图像得到目标的公共区或部分的图像信息,而且可以在扫描期间暂停相对运动达到这一点。替代地,扫描运动可以基本是连续的,接着可以内插对每幅图像得到的图像信息从而形成该堆内的具有不同聚焦位置或范围的对应图像。
该阵列可以是定义第一方向的一维阵列,并且相对扫描运动处于大致垂直于该第一方向的方向上。聚焦位置或范围彼此可以在聚焦上均匀或不均匀地隔开。聚焦范围包括处于限定该范围的二个外聚焦位置之间的聚焦区。当使用聚焦范围时,对于堆中的不同图像聚焦范围可以重叠或不重叠。当使用聚焦范围时,该方法可以包括在扫描期间利用来自扫描行的图像信息从而修改聚焦以当扫描继续进行时对每幅图像得到相继的扫描行。为此可以使用作为聚焦位置的函数的聚焦评定曲线,并且该方法则还可包括对堆中的图像控制聚焦从而对特定区覆盖“理想的”聚焦位置。可以把堆中的最中心图象(组)排列成和这些区中的理想聚焦位置相对应。
可以利用堆中的各图像产生输出图像,这些输出图像具有根据构建其的图像的聚焦范围或位置的焦深。
谊阵列可以包括多个大致沿扫描方向排列在子阵列中的象素。它们可以大致沿扫描方向是隔开的并且每个子阵列适应接收对应颜色的光。
在一些例子中从相邻的区得到图像信息。当提供“m”个整数子阵列时,最好子阵列的间距按以区宽单位从阵列看到为mn-1,其中n是非零整数,典型地使不同时刻从不同区得到的图像信息相交织。
根据阵列的维数和定位确定相对运动的速度。
依据本发明的第二方面我们提供一种用来产生目标的多聚焦堆图像的设备,该堆图像包括该目标的多个图像,多个图像具有对应的焦点范围或位置,该设备包括:
光检测器阵列,用于以扫描行的形式接收来自图像的图像信息;
扫描装置,用于提供谊阵列和目标之间的相对运动;
聚焦装置,用于控制该阵列和目标之间的相对聚焦,以及
控制***,用于操作该扫描装置以造成目标和光检测器阵列之间的相对扫描运动;用于适应对该阵列进行控制以在扫描期间反复接收来自目标的图像信息;并且还用于操作该聚焦装置以在扫描期间在各个图像的所述焦点范围或位置之间造成目标和该阵列之间的相对聚焦的改变,从而得到堆中的各图像,其中每个图像是由在扫描期间各个焦点范围或位置处得到的图像信息形成的。
该阵列可以包括排列在大致垂直于扫描方向的方向上的一维阵列或多个子阵列。象素的数量可以是大的,例如约为5000。可以提供子阵列的数量“m”,子阵列是隔开的从而从各区段中得到的对应图像信息在图像中大致沿扫描方向上的整数区段隔开。这种隔开可以是实际上的物理隔开或者等效地是光学隔开,例如通过使用分束器以及物理隔开的子阵列提供。
对于彩色图像,最好子阵列各包括滤光器从而接收与一些特定颜色对应的光。聚焦部件可以通过移动该阵列或目标或者当其包括成像透镜通过移动成像透镜或成像透镜的组成部分实现聚焦。当聚焦部件包括叠镜时,聚焦部件通过移动叠镜实现聚焦。为此也可以使用光厚度可控的窗口,例如光电有源石英窗口或者带有作为转动角的函数的可变光厚度的可转动窗口。
谊设备和方法可用于若干成像应用中,不过已发现在视场和场深典型地相当有效的显微镜中它是特别有好处的。
附图说明
现参照附图说明依据本发明的方法和设备的一些例子,附图中:
图1示出技术上已知的聚焦评定曲线;
图2示出现有技术堆图像和理想聚焦;
图3是阵列扫描的示意透视图;
图4示出扫描中扫描线的排列;
图5示出带有“停止—启动”扫描的三聚焦堆积;
图5a示出一种特定的三聚焦堆方案;
图6示出带有平滑扫描的三聚焦堆;
图7示出堆中不均匀间隔的图像;
图8示出堆中的非平面的图像;
图9示出扫描期间图像之间的不均匀间距;
图10a示出下图像的交叉;
图10b示出上、下聚焦堆图像的交叉;
图11示出聚焦跟踪期间焦点对准评定曲线;
图12示出聚焦跟踪期间聚焦评定曲线的边缘;
图13示出跟踪聚焦的图像堆;
图13a示出对该样本的堆;
图14示出该堆图像的焦点极端下的变化;
图15示出图14的二个位置上聚焦评定曲线;
图16示出焦点对准下的三个外堆图像位置;
图17示出三个位置,其中二个在聚焦的边缘上;
图18示出多行检测器阵列;
图19a示出带有三个聚焦堆和平滑扫描的三个相邻的行检测器;
图19b示出带有三个聚焦堆和平滑扫描的四个相邻的行检测器;
图19c示出带有三个聚焦堆和平滑扫描的二个相邻的行检测器;
图20示出隔开的三个行检测器阵列;
图21a示出带有2行间距的3行检测器;
图21b示出带有5行间距的3行检测器;
图21c示出带有8行间距的3行检测器。
图22a示出带有2行间距、三聚焦堆以及光滑扫描的3行检测器;
图22b示出带有5行间距、三聚焦堆以及光滑扫描的3行检测器;并且示出3个聚焦位置;
图22c示出带有3行间距、三聚焦堆以及光滑扫描的4行检测器;
图23示出带有缩窄线的不相邻行检测器;
图24示出用切换光扫描的RGB,并示出带有2行间距和3聚焦位置的3行检测器;
图25a示出排列在彩色组中的多个检测器;
图25b示出排列在彩色序列中的多个检测器;
图26a示出含有二个分束器和三个阵列的设备;
图26b示出二个阵列、二个镜结构;
图26c示出三个阵列、二个镜结构;
图27a说明检测器头的移动;
图27b说明成像透镜的移动;
图27c说明可移动叠束镜的使用;
图27d说明样本的移动;
图27e说明成像透镜内的移动件;
图27f示出可调光厚度的例子;
图27g采用可变光厚度的转动窗口;以及
图28示出可变光厚度的分布。
具体实施方式
标准行扫描涉及单行x象素阵列,每个象素典型地对应该阵列中的一个检测器。对于彩色,对三个颜色中的每种颜色提供单个行(例如红绿蓝)。接着在垂直于检测器阵列行的方向上横移该单个行。把该横移速度置成在检测器的一次“行时间”后使检测器在扫描方向上横移一个象素的距离,从而下个行时间产生一条邻接前一个行的象素行。这在图3中示出,图中沿箭头指示的方向扫描1维阵列。
图4是从1维阵列的尾巴看到的1维阵列扫描的透视布局。横移方向用箭头表示,其中第一扫描行用“1”标记,第二行用“2”标记,并且依次类推。最简单的实施例是扫描并在移动到下个行期间把聚焦调整在不同的聚焦堆位置上。图5示出得到三个这样的堆的情况。这涉及停止—启动横移扫描,但不需要同一图像内的扫描行的内插。可以看出图5中用垂直箭头指示的聚焦方向大致在此情况中垂直于横移(扫描)方向。图5a更详细地示出该方案,其中线性阵列1具有进入该图的平面的方向。利用透镜达到聚焦变化。在15处示出带有可变厚度的样本,该样本定位在充当支承的载片上。用箭头X表示扫描行的位置,而扫描方向用Y示出。在此实施例中横移具有横移中的“停止—启动”动作,这并不总是希望的,因为停止和启动横移机构可能导致在图像中显示成跳动的位置误差。
在另一实施例中可以把横移安排成是平滑的(固定的扫描速度),但其比图4慢三倍并且产生图6中所示的图像。接着如果需要的话可以使用内插方法以便利用相邻图像整治每个Z堆图像。尽管这些实施例示出三聚焦堆图像,最好能产生从2到任何实际数量的多聚焦堆图像。还不必必须使这些聚焦堆图像等距隔开,从而例如可能具有5个堆图像,其中包括三个中央堆和二个***聚焦堆。这在图7中示出,其中行1和5和更接近间隔的行2、3和4更大地隔开。
不需要把聚焦堆保持在固定平面中。这在图8中说明。可以在扫描期间跟随预定非平面投影的或者扫描期间通过反复确定最佳聚焦位置从而跟随样本中的非平面表面的堆图像获取***中出现这样的情况。如图9中说明那样,堆内相邻图像中行间的间距不必是固定的。例如在图9中,该堆中的上、下图像展示不固定的间距,而在扫描中三个中央图像行具有固定的间距。
在一些情况中,如图10a、10b中示出那样,聚焦堆可以排列成彼此交叉。在图10a中,该堆中的最低图像在扫描期间和次低图像相交,而在图10b中,上、下图像和相邻的图像层相交,扫描开始时的次序是1、2、3、4、5而当扫描结束的次序变成2、1、3、5、4。
一次取多个聚焦堆并且在扫描期间调整聚焦的一个具体优点是,有可能跟踪非平面体,例如组织样本或岩石样本的表面的聚焦,如果把二个外聚焦位置排列在聚焦曲线的斜坡上,有可能预测最佳聚焦位置并且调整聚焦位置从而把中央聚焦位置置在最佳聚焦位置上。这可以通过利用三个聚焦位置C、D、E借助图11中示出的聚焦评定曲线达到。在此方式下有可能通过查看检测器在所有三个位置上的相对评定值监视扫描器是否焦点对准。如果聚焦从聚焦位置上移动,则它会改变相对聚焦值如图12中所示。
比较图11和12可以看出,外聚焦位置(C和E)的相对评定值改变但中央聚焦位置(D)不必改变。如果扫描期间监视到此,则当此出现时可以调整聚焦以把聚焦位置(例如D)带回到聚焦范围的中央。这能减少需要扫描的聚焦堆的数量,因为如图13中所示不存在聚焦堆不接近图像聚焦的区域,在图13中示出堆图像300在扫描301期间跟随最佳聚焦线,它的大优点是由于不必扫描更多的其中许多图像只具有很少有用信息的堆图像而节约时间。通过扫描期间调整额定聚焦以跟随样本,从而会一次只给出较少的不同聚焦值。这更详细地在图13a中示出。
可分离调整聚焦的措施能使扫描器在良好的聚焦值范围改变时把外聚焦水平置在聚焦边缘上。这在图14和15中示出,其中图15示出图14的扫描中二个位置A、B上的评定曲线。例如在细胞层的扫描中出现这种可变聚焦范围状态,在细胞层扫描的一些实施例中细胞在多层中堆在其它细胞的上面并且细胞层的数量在扫描中是变化的。图10和14中示出的在堆中的图像间改变间距的思想提供许多优点。许多现有方案不能提供这种功能。
另一实施例是把外聚焦图像排列在聚焦范围的边缘上但实际上不在焦点的外面。接着监视聚焦评定以保证所有的检测器都不在焦点之外。一旦一个外检测器显示达到焦点之外的评定值,调整聚焦以使所有的检测器回到焦点对准。图16示出三个焦点位置C、D、E(全都聚焦),而图17示出尽管位于聚焦边缘但仍聚焦的位置。这能使用户通过聚焦查看是否在比扫描器的聚焦范围大的焦深下扫描样本。还能利用软件借助一设备把这些图像组合成一个图像提高焦深。
尽管至今我们只说明使用1维阵列,能使用多个检测器以在提高生产率情况下完成该任务。如图18中所示,一实施例采用3乘x的象素阵列。按前面那样在锯齿式下移动聚焦,但横移速度要大n倍,其中n是行检测器阵列的数量。图19a、19b和19c示出分别带有用于3、4和2个行阵列的多聚焦位置的多个相邻行检测器。
而且不要求该多个行检测器具有彼此相邻的行。从而能如图20中所示建立检测器间存在间隙的扫描过程。在此状态下在检测器的行间距关系上存在限制。对于整数扫描行间距,1维检测器数组间的间距必须为mn-1,其中m是1维检测器阵列的数量,而n是不等于零的整数(零情况和相邻行情况相同)。接着必须把扫描速度置成m。这给出图21a到21c以及图22a到22c示出的扫描图案。在图21a中列出的数字是1维检测器阵列的行号,从而此情况下行数为3,它们的间距为2(m=3,n=1)。对于图21b,行数=3,间距=5(m=3,n=2)。对于图21c,行数=3,间距=8(m=3,n=3)。在图22a中,行数=3,间距=2(m=3,n=1),并存在三个聚焦位置。在图22b中,行数=3,间距=5(m=3,n=2),并存在三个聚焦位置。在图22c中,行数=4,间距=4(m=4,n=1),并有三个聚焦位置。尽管可能不是总是要求检测器间具有整数行间距并且甚至如图23中所示希望用重叠的或者“缩窄”的行扫描,在图23中行数=3、间距=2.5、扫描行间距=2并有三个聚焦位置。
为了产生彩色图像或者多通道图像,能基于逐行地改变照明的颜色并且以通道数为因数减慢横移。例如如图24中所示对于红绿蓝三色扫描应要求为单色速度的三分之一的横移速度,在图24中利用切换光发生红绿蓝扫描,图中行数=3,间距=2(m=3,n=1)并有三个聚焦位置。
另一种产生红、绿、蓝彩色信息的方法是在检测器的各个行上放置红、绿、蓝滤光器。这种组合可以包括如图25a中所示把所有颜色相同的行组合在一起或者如图25b中所示把颜色序列组合在一起。重要的是要注意,如果不要求各带色行的重叠或缩窄,则和单色行间距那样应用“相同颜色行—相同颜色行”的间距限制。
在所有焦面数量小于所使用的1维阵列的数量的情况中,要求检测器检测光的时间短于移动到下个位置编号所需的时间以防止影象模糊。例如,对于带有单个焦面的四行检测器,光检测时间应短于运动时间的四分之一。不必必须具有图18、20和25a、25b中示出的单检测器***。
可以在如图26a至26c中示出的各种光重叠方法组合例如图3中示出的单行的检测器,以使检测器全都位于相同的焦面上。图26a示出使用含有二个分束器4、5和三个阵列1、2、3的设备。阵列1、3的虚象分别示在1’、3’。光轴示出在6处。检测器阵列的间距是二个扫描行(m=3,n=1)。图26b示出行间距2(m=3,n=1)下的双阵列和双镜7、8方案。阵列1和2和主射线分别在1”和2”处示出。图26c示出行间距8(m=3,n=3)下的三阵列1、2、3和双镜7、8***。
如果布局置成不把检测器放在同一个平面中,则当扫描期间需要对相对焦面进行任何调整时,则检测器必须彼此相对移动并造成难以实现可变的不均匀焦面分离,或者大量的不均匀聚焦堆会需要大量的检测器以便同时扫描每个焦面。其它组合检测器的方法包括光纤束,物理上把检测器靠在一起以及排列在成像透镜上的微棱柱阵列。
存在若干在扫描期间调整聚焦的可能方法,其中一些在图27a至27g中示出。图27a示出包括带着3个阵列的双分束器***的检测器头9的移动。在10上示出聚焦移动范围。图27b示出一种替代的例子,其中利用样本和检测器中间的成像透镜11的移动。图27c示出利用可移动的光束叠镜12、13、14达到聚焦。图27d示出如何通过移动样本15达到聚焦调制。图27e示出通过移动成像透镜11内的元件16达到聚焦改变。图27f示出替代设备,其中在样本侧设置厚度可调的窗口17,例如光电有源石英窗口。通过改变窗口的光厚度造成聚焦运动。图27g使用可变光厚度的转动窗口18。其中通过改变窗口的光厚度造成聚焦运动。该窗口具有绕其轴转动为函数(即沿圆周)改变光厚度和/或沿矢径方向改变光厚度的分布。这在图28中更详细地示出。
本文说明的方案和现有技术相当不同,在现有技术中利用多个检测器通过每个检测器在不同的聚焦位置上捕获图像。相反,利用本发明在许多情况中我们可以使用单个检测器,例如如图3中所示。我们接着在逐行的基础上改变聚焦以形成多个聚焦值。这在图5至10中示出。我们还可以例如图18至25中那样采用多个检测器,但是任何时刻这些检测器处于相同的聚焦位置。
概言之,从而提供一种行扫描方法以便一次产生多聚焦堆图像。1维(典型地)检测器数组在垂直于该阵列的轴的方向上横移并且通常处于检测器表面的平面中。对聚焦堆图像的每个图像调整扫描行之间的聚焦。当横移机构移动到第一聚焦堆图像的下个扫描行时循环地重复该过程,直至形成所有聚焦堆图像。
检测器阵列典型地在垂直于谊阵列的轴的方向上(相对)横移并且通常在检测器表面平面中,横移速度取为使下一个行组为图像上的m行的整数倍。作为检测器的敏感区这些行不必必须尺寸相同。可以按彩色通道(若设置)的数量为因子减小相对于行的横移速度,并且在每次改变聚焦之前或期间对图像的每个通道改变照明颜色。
扫描期间可有益地调整聚焦水平以便跟踪聚焦区。通过查看聚焦区两侧上至少两个水平下的聚焦评定函数的关系可以利用这些聚焦水平确定聚焦范围,其中这些水平置在该聚焦区的边缘上,例如保持焦点对准平面和焦面边缘之间的固定关系。
在具体实施例中可以利用分束器/镜/微棱柱(成像透镜附近)以及阵列产生多个共焦线1维阵列。

Claims (38)

1.一种产生目标的多聚焦堆图像的方法,该堆图像包括该目标的多个图像,每个图像具有对应的焦点范围或位置,该方法包括:
造成目标和光检测器阵列之间的相对扫描运动,该阵列用于在以扫描行的形式扫描期间从该目标反复接收图像信息;以及
在扫描期间在各个图像的所述焦点范围或位置之间造成要改变的该目标和该阵列之间的相对聚焦,从而得到该堆中的图像,其中每个图像是由在扫描期间在各个焦点范围或位置得到的图像信息形成的。
2.依据权利要求1的方法,其中对该目标的多个幅区重复该方法。
3.依据权利要求1或2的方法,其中在对目标的单次扫描内得到该多聚焦堆图像。
4.依据权利要求1至3中任一权利要求的方法,其中在为该堆中的一特定图像从该目标得到一条扫描行后,改变相对聚焦,从而在为所述特定图像得到另一扫描行之前为该堆中的至少另一个图像得到一扫描行。
5.依据权利要求4的方法,其中在扫描期间,顺序地为每个图像得到扫描行从而在图像之间反复地循环聚焦。
6.依据权利要求5的方法,其中在每次循环期间暂停相对运动。
7.依据权利要求1至5中任一项的方法,其中扫描运动大致是连续的。
8.依据权利要求7的方法,还包括内插为每个图像得到的图像信息从而形成该堆中的具有不同聚焦位置或范围的对应图像。
9.依据上述任一权利要求的方法,其中该阵列是定义第一方向的一维阵列。
10.依据权利要求9的方法,其中该相对扫描运动大致垂直于该第一方向。
11.依据上述任一权利要求的方法,其中聚焦位置或范围彼此焦点均匀间隔。
12.依据权利要求1至10中任一权利要求的方法,其中聚焦位置或范围彼此焦点不均匀地间隔。
13.依据权利要求12的方法,其中当采用聚焦范围时,各聚焦范围不重叠。
14.依据权利要求12的方法,其中当采用聚焦范围时,聚焦范围是重叠的。
15.依据上述任一权利要求的方法,还包括,当采用聚焦范围时,扫描期间利用图像信息以修改聚焦,以便为每个图像的各个区得到相继的图像信息。
16.依据权利要求15的方法,还包括得到作为聚焦位置的函数的评定曲线。
17.依据权利要求16的方法,还包括对堆中的各图像控制聚焦从而对特定区覆盖理想聚焦位置。
18.依据权利要求17的方法,其中堆中最中央图像(组)的聚焦被设置为对应于这些区的理想聚焦位置。
19.依据上述任一权利要求的方法,还包括组合堆中的图像从而产生输出图像,该输出图像具有根据构建其的各图像的聚焦范围或位置的焦深。
20.依据上述任一权利要求的方法,其中该阵列包括多个大致沿扫描方向排列在子阵列中的象素。
21.依据权利要求20的方法,其中这些子阵列大致沿扫描方向是隔开的。
22.依据权利要求21的方法,其中每个子阵列适于接收对应颜色的光。
23.依据权利要求22的方法,其中对每个图像从相邻的区得到图像信息并且其中提供m个子阵列,而且其中以区宽为单位从该阵列看到的子阵列间距为m×n-1,其中n为非零整数,从而交织不同时间得到的来自不同区段的图像信息。
24.依据上述任一权利要求的方法,其中根据该阵列的维数和定位确定相对运动的速度。
25.一种用于产生目标的多聚焦堆图像的设备,该堆图像包括该目标的多个图像,每个图像具有对应的焦点范围或位置,该设备包括:
光检测器阵列,用于以扫描行的形式接收来自目标的图像信息;
扫描装置,用于提供该阵列和目标之间的相对运动;
聚焦装置,用于控制该阵列和目标之间的相对聚焦,以及
控制***,用于操作该扫描装置以造成目标和光检测器阵列之间的相对扫描运动;还适应于对该阵列进行控制以在扫描期间反复接收来自目标的图像信息;并且还用于操作该聚焦装置以在扫描期间在各个图像的所述焦点范围或位置之间造成目标和该阵列之间的相对聚焦的改变,从而得到堆中的各图像,其中每个图像是由在扫描期间各个焦点范围或位置处得到的图像信息形成的。
26.依据权利要求25的设备,其中该阵列包括一维阵列。
27.依据权利要求25或26的设备,其中该阵列包括多个排列在大致垂直于扫描方向的方向上的子阵列。
28.依据权利要求27的设备,其中提供并且隔开m个子阵列,从而从各区段中得到的对应图像信息在图像中大致沿扫描方向上的整数区段隔开。
29.依据权利要求27或28的设备,其中子阵列各包括滤光器从而接收和特定颜色对应的光。
30.依据权利要求28或29的设备,还包括分束器从而提供依据权利要求28的子阵列的物理隔开以及子阵列的虚间隔。
31.依据权利要求25至30中任一项的设备,其中该聚焦装置通过阵列的移动实现聚焦。
32.依据权利要求25至31中任一项的设备,还包括成像透镜并且其中该聚焦装置通过该成像透镜的或者成像透镜构件的移动实现聚焦。
33.依据权利要求25至32中任一项的设备,还包括叠镜并且其中该聚焦装置通过叠镜的移动实现聚焦。
34.依据权利要求25至33中任一项的设备,其中该聚焦部件通过目标的移动实现聚焦。
35.依据权利要求25至32中任一项的设备,还包括光厚度可控的窗口,其中该聚焦装置通过操作该窗口实现聚焦。
36.依据权利要求35的设备,其中该窗口由光电材料构成。
37.依据权利要求36的设备,其中该窗口可转动并且具有是转动角的函数的可变光厚度。
38.依据权利要求25至37中任一项的设备,其中该设备构成用于对显微目标成像的显微镜***的一部分。
CN 200510125371 2005-06-15 2005-11-16 形成多聚焦堆图像的方法和设备 Active CN1882031B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP05253702.4A EP1610166B1 (en) 2004-06-24 2005-06-15 Method and apparatus for forming a multiple focus stack image
EP05253702.4 2005-06-15

Publications (2)

Publication Number Publication Date
CN1882031A true CN1882031A (zh) 2006-12-20
CN1882031B CN1882031B (zh) 2013-03-20

Family

ID=37519988

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200510125371 Active CN1882031B (zh) 2005-06-15 2005-11-16 形成多聚焦堆图像的方法和设备

Country Status (1)

Country Link
CN (1) CN1882031B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102818528A (zh) * 2011-06-02 2012-12-12 先进科技新加坡有限公司 用于在增强景深的情形下检查物体的装置和方法
CN101482649B (zh) * 2008-01-10 2013-06-05 奥林巴斯株式会社 显微镜装置
CN103765290A (zh) * 2011-07-29 2014-04-30 Ffei公司 用于图像扫描的方法和装置
CN105556240A (zh) * 2013-08-01 2016-05-04 阿莱恩技术有限公司 用于生成聚焦彩色图像的焦距扫描
CN108702455A (zh) * 2016-02-22 2018-10-23 皇家飞利浦有限公司 用于生成对象的具有增强景深的合成2d图像的装置
WO2022106810A1 (en) * 2020-11-17 2022-05-27 Ffei Limited Image scanning apparatus and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6248988B1 (en) * 1998-05-05 2001-06-19 Kla-Tencor Corporation Conventional and confocal multi-spot scanning optical microscope
US6771283B2 (en) * 2000-04-26 2004-08-03 International Business Machines Corporation Method and system for accessing interactive multimedia information or services by touching highlighted items on physical documents

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI482996B (zh) * 2008-01-10 2015-05-01 Olympus Corp The focus depth of the microscope device and the microscope device is enlarged
CN101482649B (zh) * 2008-01-10 2013-06-05 奥林巴斯株式会社 显微镜装置
CN102818528A (zh) * 2011-06-02 2012-12-12 先进科技新加坡有限公司 用于在增强景深的情形下检查物体的装置和方法
CN102818528B (zh) * 2011-06-02 2015-04-15 先进科技新加坡有限公司 用于在增强景深的情形下检查物体的装置和方法
US9903785B2 (en) 2011-07-29 2018-02-27 Ffei Limited Method and apparatus for image scanning
US9638573B2 (en) 2011-07-29 2017-05-02 Ffei Limited Method and apparatus for image scanning
CN103765290B (zh) * 2011-07-29 2017-08-01 Ffei公司 用于图像扫描的方法和装置
CN103765290A (zh) * 2011-07-29 2014-04-30 Ffei公司 用于图像扫描的方法和装置
CN105556240A (zh) * 2013-08-01 2016-05-04 阿莱恩技术有限公司 用于生成聚焦彩色图像的焦距扫描
US9956061B2 (en) 2013-08-01 2018-05-01 Align Technology, Inc. Methods and systems for generating color images
CN105556240B (zh) * 2013-08-01 2018-08-28 阿莱恩技术有限公司 用于生成聚焦彩色图像的焦距扫描
US10363118B2 (en) 2013-08-01 2019-07-30 Align Technology, Inc. Methods and systems for generating color images
US10716647B2 (en) 2013-08-01 2020-07-21 Align Technology, Inc. Methods and systems for generating color images
US10874491B2 (en) 2013-08-01 2020-12-29 Align Technology, Inc. Methods and systems for generating color images of intraoral cavities
CN108702455A (zh) * 2016-02-22 2018-10-23 皇家飞利浦有限公司 用于生成对象的具有增强景深的合成2d图像的装置
WO2022106810A1 (en) * 2020-11-17 2022-05-27 Ffei Limited Image scanning apparatus and method

Also Published As

Publication number Publication date
CN1882031B (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
EP2422525B1 (en) Digital imaging system, plenoptic optical device and image data processing method
CN102687056B (zh) 用于显微镜检查的传感器
JP2006011446A (ja) 複数焦点スタック画像を形成する方法及び装置
CN1991335A (zh) 共焦点显微镜及采用它的荧光测量方法和偏振光测量方法
US9088729B2 (en) Imaging apparatus and method of controlling same
CN102084281B (zh) 用于显示器或其他应用的基于二维多边形扫描仪的光束扫描
CN1882031A (zh) 形成多聚焦堆图像的方法和设备
CN1317887C (zh) 光电转换装置和使用该装置的摄象设备
US20130135515A1 (en) Digital imaging system
JP2005128086A5 (zh)
CN102089697A (zh) 摄像设备
WO2010058759A1 (ja) 透明体検査装置
JP2005292839A (ja) スリット共焦点顕微鏡およびその作動方法
CN108519329A (zh) 一种多路扫描与探测的线共聚焦成像装置
CN102414025A (zh) 光学成像***
EP3264745A1 (en) Scanning imaging system with a novel imaging sensor with gaps for electronic circuitry
EP3278167B1 (en) High resolution pathology scanner with improved signal to noise ratio
JP7190034B2 (ja) 高スループット光トモグラフィ三次元イメージングシステム
JP2009086669A (ja) 照明された試料の光学的捕捉のための方法および装置
CN107850766A (zh) 用于光学显微镜中的图像处理的***和方法
US20100027869A1 (en) Optical Carriage Structure of Inspection Apparatus and its Inspection Method
US10429315B2 (en) Imaging apparatus and imaging method
JP2022511677A (ja) 高スループット光トモグラフィイメージング方法及びイメージングシステム
KR20220083702A (ko) 서브픽셀 라인 스캐닝
US9137421B2 (en) Image reading device and method of reading images

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant