CN1878944A - 柴油发动机的egr控制装置及马达驱动式节流阀装置 - Google Patents

柴油发动机的egr控制装置及马达驱动式节流阀装置 Download PDF

Info

Publication number
CN1878944A
CN1878944A CNA2003801107203A CN200380110720A CN1878944A CN 1878944 A CN1878944 A CN 1878944A CN A2003801107203 A CNA2003801107203 A CN A2003801107203A CN 200380110720 A CN200380110720 A CN 200380110720A CN 1878944 A CN1878944 A CN 1878944A
Authority
CN
China
Prior art keywords
control
throttle valve
egr
valve
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2003801107203A
Other languages
English (en)
Inventor
内山康久
上村康宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Publication of CN1878944A publication Critical patent/CN1878944A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/58Constructional details of the actuator; Mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1065Mechanical control linkage between an actuator and the flap, e.g. including levers, gears, springs, clutches, limit stops of the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/17Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system
    • F02M26/21Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the intake system with EGR valves located at or near the connection to the intake system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/46Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition
    • F02M26/47Sensors specially adapted for EGR systems for determining the characteristics of gases, e.g. composition the characteristics being temperatures, pressures or flow rates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/45Sensors specially adapted for EGR systems
    • F02M26/48EGR valve position sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/53Systems for actuating EGR valves using electric actuators, e.g. solenoids
    • F02M26/54Rotary actuators, e.g. step motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/70Flap valves; Rotary valves; Sliding valves; Resilient valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/65Constructional details of EGR valves
    • F02M26/72Housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10006Air intakes; Induction systems characterised by the position of elements of the air intake system in direction of the air intake flow, i.e. between ambient air inlet and supply to the combustion chamber
    • F02M35/10026Plenum chambers
    • F02M35/10032Plenum chambers specially shaped or arranged connecting duct between carburettor or air inlet duct and the plenum chamber; specially positioned carburettors or throttle bodies with respect to the plenum chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10209Fluid connections to the air intake system; their arrangement of pipes, valves or the like
    • F02M35/10222Exhaust gas recirculation [EGR]; Positive crankcase ventilation [PCV]; Additional air admission, lubricant or fuel vapour admission
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M35/00Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
    • F02M35/10Air intakes; Induction systems
    • F02M35/10242Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
    • F02M35/10249Electrical or electronic devices fixed to the intake system; Electric wiring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/02Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits concerning induction conduits
    • F02D2009/0201Arrangements; Control features; Details thereof
    • F02D2009/0276Throttle and EGR-valve operated together
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M2026/001Arrangements; Control features; Details
    • F02M2026/003EGR valve controlled by air measuring device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/11Manufacture or assembly of EGR systems; Materials or coatings specially adapted for EGR systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

本发明是提高EGR回流率的控制响应性的装置。为了EGR控制,具备控制发动机的吸气通路的开度的节流阀(即、供EGR控制的节流阀);与控制被回流到吸气通路的排气的流量的EGR阀。具备:具有节流阀、其驱动马达、以及减速齿轮机构的第一机体;具有EGR阀、其驱动马达、以及减速齿轮机构的第二机体。第一、第二机体被结合成一个集合体,在第一、第二机体安装有覆盖各自的减速齿轮机构的第一、第二罩部。至少用于驱动控制节流阀的电路基板,被内置于所述罩部的至少任一方。在电路基板上,除了节流阀之外,也可以并行设置驱动控制EGR阀的电路。

Description

柴油发动机的EGR控制装置及马达驱动式节流阀装置
技术领域
本发明涉及在柴油车用内燃机中使用的排气回流(EGR)控制装置以及用于其的马达驱动式节流阀(节气门)装置。
背景技术
EGR作为使内燃机的排气中的NOx降低的机构而被人所知。作为现有的电子式EGR气体控制装置,公知的是:在吸气管与EGR气体通路的连接部附近的EGR气体通路部设置开关阀,经由减速齿轮用马达控制该阀门开关(日本特表平2002-521610号公报)。
另外,在其他现有技术中,公知的是:在节流阀的下游的吸气通路部设置EGR气体导入用的弯曲管,使该弯曲管朝向吸气通路下游侧开口,并且在与吸气管连接的EGR气体通路上设置阀门,用真空促动器控制该阀门开关(日本特开平10-213019号公报)
另外,在汽油发动机中,广泛使用的是通过由促动器(例如,直流马达、扭矩马达、步进马达)驱动控制节流阀,将吸入空气流量控制在最佳的电子控制节流阀装置(马达驱动型节流装置)。
其通过促动器控制节流阀的开度,使其与通过加速踏板的踏入量或发动机的运转状态来计算出的目标开度一致。另外,用节流位置传感器检测出节流阀的动作,一边进行反馈控制一边修正位置。
另一方面,柴油发动机是利用空气的压缩热来对燃料进行点火的发动机,不控制吸入空气流量而只控制燃料喷射量,为了驱动控制发动机,不需要汽油发动机车之类的节流阀。
但是,最近在柴油发动机中,由于也存在提高EGR效率、改善自然着火现象等与汽油发动机不同的需求,所以也开始使用电子控制式的节流阀驱动装置。
柴油发动机用电子控制节流阀装置,与汽油发动机不同,在没有实施EGR或防止自然着火现象等时,节流阀位于全开位置。而且,在EGR控制时节流控制节流阀,提高EGR效率。另外,柴油发动机,由于在发动机停止时流入的吸气空气由于发动机热而膨胀,暂时使活塞动作,产生了所谓自然着火现象,所以为了防止这种情况,进行在发动机停止时暂时强制关闭节流阀的控制。
目前,控制柴油发动机用的节流阀或排气的回流量的EGR阀的控制电路被设置在发动机控制单元(ECU)的内部。
在柴油发动机中,在将电子控制式节流阀的控制电路设置于发动机控制单元的情况下,发动机控制计算部的计算负载相对于ECU的现状微机能力变高,电子控制节流阀的控制周期例如是8~16ms。在以控制周期8~16ms来控制电子控制节流阀装置的情况下,控制性(过调量、向目标开度的会聚性)下降。
发明内容
本发明提供一种能够实现控制的改善的柴油发动机的EGR控制装置以及马达驱动式节流阀装置。
本发明,在使排气的一部分回流到柴油发动机的吸气通路内的EGR控制装置中,基本具有如下的结构。
为了EGR控制,具备:控制发动机的吸气通路的开度的节流阀(即、供EGR控制的节流阀)和控制在吸气通路被回流的排气的流量的EGR阀。
具备:具有节流阀、其驱动马达、以及减速齿轮机构的第一机体;具有EGR阀、其驱动马达、以及减速齿轮机构的第二机体。
第一、第二机体被结合成一个集合体,在第一、第二机体,安装有覆盖各自的减速齿轮机构的第一、第二罩部。至少用于驱动控制节流阀的电路基板,被内置于所述罩部的至少任意一方。在电路基板上,除了节流阀之外,也可以并行设置有驱动控制EGR阀的电路。
根据本发明,节流阀的控制电路从ECU独立。特别地,所述控制电路,由于经由罩被安装于具备了节流阀的吸气通路体,所以以吸气通路体为基点驱动控制节流阀。由此,减轻柴油发动机用的ECU的负担,特别地通过在极近的位置检测节流阀或EGR阀的动作并基于此来控制,能够减少信号噪音且改善控制响应性。
特别地,EGR控制时的节流阀,在始终以全开EGR控制、用于防止自然着火现象的控制的情况下,进行对开度进行节流控制的特有的动作。而且,在本发明中,通过使节流阀的吸气机体与其控制电路一体化,控制电路,能够分别存储成为在以吸气机体单独进行EGR控制所需要的基点的机械的节流全开位置、全闭位置。由此,在EGR控制等中,能够提高相对于目标开度的实际节流阀开度、进而提高相对于吸气的EGR率控制的精度。
进而,如果将EGR控制所需要的节流阀控制电路与EGR阀控制电路设置于节流体的罩一侧,则能够实现控制电路与EGR关联机构的集成化、实现控制电路间以及控制电路·促动器之间的布线的削减或者缩短化,提高耐噪音性、发动机室内的电子设备的合理化。
进而,作为能够实现上述控制电路、EGR关联设备的集成化的最佳化的马达驱动式节流阀装置,提出以下这样的装置。
该节流阀装置具备:在EGR控制中使用的节流阀以及EGR阀。进而,具备:具有所述节流阀、其驱动马达、以及减速齿轮机构的第一机体;导入具有所述EGR阀的排气回流通路的一端,且具有EGR阀的驱动马达以及减速齿轮机构的第二机体。而且,在第一机体的下游侧串联结合有第二机体,在第一、第二机体上安装有覆盖各自的减速齿轮机构的第一、第二罩部。通过使节流阀的驱动轴与EGR阀的驱动轴被上下地平行配置,这些驱动轴的减速齿轮以及第一、第二罩部,被排列配置于第一、第二机体的侧面。上述罩部,可以分体的、也可以是一体的。而且,该马达驱动式节流阀的结构,除了柴油发动机之外,即使应用于汽油发动机,也可以实现适当的控制电路与关联设备的集成化。
附图说明
图1是本发明的排气回流控制装置(EGR装置)的一个实施例的局部剖开表示的立体图;
图2是表示其一部分的纵截面图;
图3是上述实施例的侧视图;
图4是上述实施例的横截面图;
图5是上述实施例的俯视图;
图6是表示上述实施例中的EGR阀驱动机构的放大截面图;
图7是部分地表示上述实施例中的节流阀驱动机构的放大截面图;
图8是表示上述实施例的另一侧的侧视图;
图9是表示取下了上述实施例的冷却装置的状态的侧视图;
图10是使用了成为本发明的适用对象的EGR控制装置的发动机***的结构图;
图11以及图12是上述实施例中的EGR控制***的框图;
图13是表示上述实施例的EGR控制器的控制内容的流程图;
图14是表示在上述实施例的EGR控制中使用的回流气体检测器的第一结构的部分截面图;
图15是表示在上述实施例的EGR控制中使用的回流气体检测器的第二结构的部分截面图;
图16是表示在上述EGR控制中使用的节流阀的驱动方式的不同的特性的图;
图17是表示在上述EGR控制中使用的节流阀的驱动方式的不同的特性的图;
图18是与适用本发明的内燃机的EGR控制装置的其他实施例相关的控制***的框图;
图19是在上述EGR控制的其他实施例中使用的图像(map)的结构图;
图20是表示成为上述其他实施例的排气回流控制器的控制内容的流程图;
图21是电子控制节流装置的第一实施方式的***结构图;
图22是在上述实施例中使用的电子控制节流装置的第一实施方式的节流阀开度特性的说明图;
图23是在上述实施例中使用的第一实施方式的节流阀开度的定义的说明图;
图24是上述第一实施方式的纵截面图;
图25是图24的V-V向视的截面图;
图26是上述第一实施方式的节流位置传感器的立体图;
图27是上述第一实施方式的节流位置传感器的电路图;
图28是取下了图25的齿轮罩的状态的A向视图;
图29是取下图25的齿轮罩,进而取下中间齿轮后的状态的A向视图;
图30是取下图25的齿轮罩,进而取下中间齿轮与终级齿轮后的状态的A向视图;
图31是表示上述电子控制节流装置的第一实施方式的齿轮罩的内侧的俯视图;
图32是取下电路保护板(盖体)来表示图31的齿轮罩内侧的俯视图;
图33是用于本发明的电子控制节流装置的第一实施方式的节流促动器控制单元(TACU)的***结构图;
图34是表示上述电子控制节流装置的第一实施方式的H桥电路的结构的电路图;
图35是表示上述电子控制节流装置的第一实施方式的控制部的控制内容的流程图;
图36是上述电子控制节流装置的第一实施方式的控制部的控制内容的说明图;
图37是表示用于本发明的电子控制节流装置的第二实施方式的控制部的控制内容的流程图;
图38是上述电子控制节流装置的第二实施方式的控制部的控制内容的说明图;
图39是用于本发明的电子控制节流装置的第三实施方式的控制部的控制内容的流程图;
图40是用于本发明的电子控制节流装置的第四实施方式的控制部的控制内容的流程图;
图41是上述电子控制节流装置的第四实施方式的控制部的控制内容的说明图;
图42是上述电子控制节流装置的其他实施方式的***结构图;
图43是表示本发明的EGR控制装置的***结构的一个例子的说明图;
图44是表示用于本发明的EGR控制装置的节流阀的控制单元的说明图;
图45是表示本发明的EGR控制装置的***结构的一个例子的说明图;
图46是表示在本发明的EGR控制装置的其他实施例中使用的罩与控制电路的俯视图;
图47是表示用于上述图46的实施例的减压电路的动作波形的说明图;
图48是表示本发明的EGR控制装置的***结构的一个例子的说明图;
图49是表示用于图48的节流阀的控制单元与其周边设备的框图;
图50是表示本发明的马达驱动式节流阀装置的其他实施例的截面图;
图51是表示本发明的马达驱动式节流阀装置的其他实施例的截面图;
图52是表示用于本发明的马达驱动式节流阀装置的其他实施例的齿轮罩及电路基板的俯视图;
图53是表示本发明的EGR控制装置的其他实施例的***结构图。具体实施方式
以下,基于附图详细说明本发明的实施方式。
图1是成为本发明的EGR控制装置的整体立体图,剖开吸气通路一部分可以看到内部。
图2是EGR控制装置的纵截面图,图3是侧视图。
首先,通过图1至图9、图43至图53,对于本发明的整体概要进行说明。
本发明的基本结构如下所述。
EGR控制装置416具备:控制发动机的吸气通路46的开度的节流阀2;与控制在吸气通路46被回流的排气的流量的EGR阀416A。排气回流管的一部分(弯曲的管端413d、413e、413f)进入吸气通路46,在该管端配置EGR阀416A。
形成吸气通路46的一部分的吸气机体(第一机体)45B具备:节流阀2、其驱动马达5、以及减速齿轮机构(6、7、8)(图6、图7)。
吸气机体(第二机体)416B,导入具有EGR阀416A的排气回流管的一端,具备EGR阀的马达416Dm以及减速齿轮机构(416N、416P、Q、416L)(图4)。
第一、第二机体45B、416B,被结合成一个集合体,安装有覆盖各自的减速齿轮机构的第一、第二罩部9、416c。
至少用于驱动控制节流阀(也称为蝶形阀、吸气流量控制阀)2的电路基板200被内置于第一罩部9与第二罩部416c的至少任一方。在本实施例中,这些电路基板经由金属板(散热片)200A被内置于第一罩部9(图7)。也可以在电路基板200上并列设置用于驱动控制EGR阀的控制电路。在电路基板200上也设置了EGR阀的控制电路的情况下,EGR驱动控制信号,从第一罩(节流阀驱动机构侧的罩)9的端子9A,经由第二罩(EGR阀驱动机构侧的罩)416c的连接端子416F,被送到EGR阀用马达416Dm。
在本实施例中,第一、第二罩9、416c各自成形,但也可以一体成形、将电路基板200内置于该罩。此时,能够省略外部连接用连接端子416F。
在本实施例中,为了在节流体(45′、46′)的外壁的相同朝向的侧面上将第一、第二罩9、416c接近配置成排列在上下方向上,要考虑如下情况。
在第一机体45B的下游侧串联连接有第二机体416B。节流阀2的驱动轴3与EGR阀416A的驱动轴416S被上下地平行配置。如此,各驱动轴3、416S的减速齿轮(6、7、8及416N、416P、416q)以及第一、第二罩部9、416c被排列配置在第一、第二机体的侧面。该布局虽然在实施例中没有图示,但是可以容易地实现第一、第二罩部的一体化。
各连接器9A、416F的朝向为朝向节流阀的上游侧。这是考虑了便于向发动机室搭载本装置时的连接器端子与配线的连接、分离。
此处,对于进行本发明的EGR控制等的电路基板200与罩外的ECU300的结构、动作的具体方式的例子,利用图43至图53进行说明。
图43是表示第一实施方式例子的框图。
由于电路基板200被内置于节流体45B的罩9,所以有时统称这些组装体,称为控制单元一体型节流阀装置。ECU300以微机为主体。
在图43中,在内置于齿轮罩9的电路基板200上设置有EGR用的节流阀的驱动控制电路。ECU300输入:从了解发动机状态的各种传感器输入的信号、例如,发动机转速、吸入空气流量、冷却水温度、加速开度、车速、EGR量、EGR温度等,判断是否是EGR模式,如果是,则计算适合于EGR控制(EGR率:吸气流量与排气流量的比率)的节流阀以及EGR阀的目标开度。
ECU300基于该计算结果,对于EGR阀促动器416,经由驱动电路301控制开度。另一方面,对于节流阀2,将目标开度信号送给电路基板200(节流阀控制单元)。节流阀控制单元200以微机为主体,将来自节流开度传感器(节流位置传感器)10的实际开度检测信号与目标开度进行比较,驱动控制马达5(例如,DC马达)使得节流阀2成为目标开度。
对于防止自然着火现象,如果点火信号切断(发动机停止),ECU300将节流阀的目标开度(例如,节流全开)发送给节流阀控制单元200。由此,单元200计算节流阀的目标开度与实际开度,经由驱动电路控制马达5占空比。自然着火现象是柴油发动机在发动机停止时吸气通路处于开放状态而产生的柴油机特有的问题。
在图45的例子中,ECU300基于发动机转速、吸入空气流量、冷却水温度、加速开度、车速计算目标EGR率。另一方面,对于基于EGR率的最佳的节流阀以及EGR阀的目标开度,齿轮罩9侧的电路基板(节流阀控制单元)200进行计算。节流阀控制单元200基于目标EGR与EGR信息(EGR量、EGR温度)计算上述各目标开度。进而,单元200对于EGR阀从其目标开度计算EGR阀控制量(必要占空比量),基于此驱动控制EGR阀用马达416Dm,控制EGR阀416的开度。单元200对于节流阀,基于目标EGR率与吸入空气流量信息计算节流阀2的目标开度,从与实际开度的差计算控制量,基于此驱动马达5来控制节流阀2。在图45中,也可以向ECU300提供防止自然着火现象控制功能。
图53的例子是进行EGR控制与DPF(柴油机颗粒过滤器)再生控制的***的例子。DPF被设置于排气管,虽然捕捉排气中含有的黑烟颗粒,但随着使用会堵塞网眼而使排气的流通性变差。因此,通过强制再燃烧颗粒将其除去,再生DPF。该再生,检测出DPF前后的压差,基于此如果压差Δp变成规定值以下,则ECU300将再生信号发送给齿轮罩9侧的节流阀控制单元(电路基板)200。单元200基于DPF信号输出用于节流节流阀2的开度信号,从其与实际开度信号的偏差计算节流阀控制量,驱动马达5。由此,节流阀2减少向发动机供给的吸入空气流量,通过使排气温度上升来使附着于DPF的颗粒燃烧。此时,基于DPF信号设置于DPF的加热器也加热,迅速地进行颗粒的燃烧、DPF再生。对于EGR控制,与所述相同。
图52是将齿轮罩9搭载于图53的电路基板200上的图。电路基板200的结构是,具备:节流阀控制电路17、马达驱动器16、EGR阀促动器控制电路21,且在节流阀控制电路17上设置有DPF控制电路,输出DPF再生信号。
在吸气机体的齿轮罩侧设置电路基板200,会将电路基板200置于严酷的温度环境下。特别是在柴油发动机的情况下,与汽油发动机相比发动机室内温度很高,特别是在高负载长时间运转不久之后的发动机停止时,由于处于严酷的高温状态,所以需要对电路基板冷却的对策。
在本发明中,对于该问题进行如下应对。
在图46至图49的例子中,特别是如果将本发明用于(通过将电路基板200设置于齿轮罩侧)大型柴油机车,则可有效冷却。目前,对于柴油发动机的车辆***,一般自身不设置节流阀。因此,也没有采用将上述电路基板(节流阀控制单元)200设置于吸气机体的齿轮罩9。在卡车等的大型车辆上,虽然使用24V电源作为车辆电源,但是汽油发动机使用12V电源。因此,如果要将现有的汽油发动机的电子控制节流***用于24V的车辆***,就需要将24V减压到12V的电子电路。另外,如果不对24V电源减压而施加于电子电路,或者将马达5设成24V规格,则焦耳热变大,作为在上述严酷的环境温度下使用的电路基板就不是优选的。在电子电路成为高温的情况下,就有电子电路就不能正常工作,或者通过自我检查***停车等顾虑。
在本例中,利用使马达驱动电源下将到24V~12V的减压电路18来驱动EGR的节流阀驱动马达。
具体来说,如图47所示,例如,使用DC-DC转换器,高速地开启/切断开关,通过PWM控制将24V减压到12V。DC-DC转换器,由于效率高,已减压的功率不会被减压电路消耗,所以与使用电阻等减压的情况相比较,能够抑制产生的焦耳热。而且,对于EGR控制等,与已述的实施例相同地来进行。
在图46中示出了如下的状态,在内置于齿轮罩9的电路基板200上,除了EGR控制电路(微机)17、马达驱动器16、防止噪音电容器19之外,还搭载有上述的减压电路18。端子I是电池电源端子,经由减压电路18连接马达驱动器16,从马达驱动器16经由马达端子5B向马达5供给12V电源。防止噪音电容器19被连接于减压电路·马达驱动器之间的电源线与地线端子E之间。
图50、图51是另外的电路冷却机构的例子。
图50的电路基板200被导热性比树脂罩9好的金属板(例如铝板)80支承。该金属板80贯通树脂罩9,被安装于树脂罩,金属板80的散热面向罩9的外部暴露。根据本实施例,能够提高电路基板的散热效率。其他的结构与其他实施例相同。
在图51的金属板80上进一步安装有冷却水管81。在管81中流通有发动机冷却水。一般来说由于发动机冷却水最高温度也是90℃,所以由于比车辆行驶之后不久的发动机室内温度低,所以可以进一步发挥冷却效果。
以下,具体化上述发明来详细说明。
416对应于该***图(图10)的EGR(Exhaust Gas Recirculate:废气再循环)控制装置416(在本实施例中称为排气回流控制装置)。45对应于在后述的排气回流***图(图10)中所述的吸气控制装置45。吸气控制装置45具有:形成为筒状的吸气通路体45B、与横截该吸气通路体45B的筒状体的中心线延伸并可旋转地被该吸气通路体45B支承的旋转轴3、以及被固定于该旋转轴3(有时也称节流轴)的蝶型阀2(有时也称节流阀、吸气控制阀)。
在吸气通路体45B的外壁部,与该吸气通路体45B一体形成有与旋转轴3并行形成的马达收纳用的壳体(详细说明见图24、25)。
9是树脂罩,在内部设置有控制电路基板(后述)与旋转轴3的旋转角度传感器10(后述)。
该树脂罩9被五个螺丝45a固定于吸气通路体45B的外壁部的已确定的位置。
9A是与树脂罩9被一体树脂成形的连接器。
在连接器9A上,设置有将来自传感器10的信号发送给发动机控制单元的端子、向马达供电用端子、地线端子、从发动机控制单元接收吸气控制阀2的开度控制信号的端子。
排气回流控制装置由同心状的双重管式吸气通路体构成。该吸气通路体在侧壁具有孔,嵌入该孔的排气导入通路部413d在弯曲部413e与沿着吸气通路体的轴线的方向延伸的筒状部413f相连。
具体来说已弯曲成L字状的通路体(413d、413e、413f)从吸气通路体的下方***到吸气通路46内,导入通路部413d被贯穿***于侧壁的孔。
此时,在从吸气通路46的中心向筒状部413f从侧壁的孔离开的方向偏置的状态下***弯曲的通路体(413d、413e、413f)从而***吸气通路46中,在导入通路部413d的前端与侧壁的孔相吻合的位置,使已弯曲的通路体(413d、413e、413f)在吸气通路的中心方向上移动,而将导入通路部413d***侧壁的孔。为了实现该组装作业,在本实施例中,确定吸气通路体的内径与筒状部413的外径以及导入通路部413d的到侧壁内周面的尺寸,使得上述的偏置成为可能。即,将筒状部413f外周面与导入通路部413d的前端部的最长距离设计成与吸气通路46的内径大致相同,使得已弯曲的通路体(413d、413e、413f),在从吸气通路46的中心偏置(在筒状部413f从侧壁的孔离开的方向上)的状态下,能够贯穿***在吸气通路内。虽然筒状部413f外周面与导入通路部413d的前端部的最长距离可以比吸气通路46的内径大,但是在这种情况下,在将已弯曲的通路体(413d、413e、413f)***吸气通路46内时,需要倾斜***,将导入通路部413d置位于侧壁的孔。
为了使该组装作业更加容易进行,与导入通路部413d的长度相比,缩短筒状部413f的长度。
在导入通路部413d被设置于吸气通路46的侧壁的孔的状态下,通过使筒状部413f的中心轴线与吸气通路46的中心轴线一致,如此被设置成双重管状态。
当然并不需要使两者的中心轴线完全一致,有时出于流体阻力或流体的流线等的考虑,优选稍微错开中心从吸气通路46的中心偏置(在筒状部413f从侧壁的孔离开的方向上)。
在吸气通路46的侧壁与弯曲的通路体(413d、413e、413f)的筒状部413f的两者上,在与中心轴线交叉的位置排列成一直线地设置有贯通孔。
调整筒状部413f的偏置位置或者导入通路部413d向侧壁的孔***的尺寸,使得这些贯通孔排列成一条直线。
作为一个方法,在这些贯通孔贯穿***杆件确定两者的位置,之后在适当的位置焊接接合两者。
或者也可以考虑在将两者在规定的位置结合之后来形成贯通孔。
如此,在排列成一条直线的贯通孔贯穿***旋转轴416S,用两个螺丝416m将蝶型阀416A固定于该旋转轴416S。
如图4、6所示,通过在设置于吸气通路侧壁的贯通孔的部分固定的两个滚珠轴承416J、K,来能够旋转地支承旋转轴416S。旋转轴416S的一端虽然被金属罩密封,但另一端从滚珠轴承416K突出。在该突出部贯穿***树脂轴环416U与最终级齿轮416R,通过螺母两者被固定于轴承416K。在树脂轴环与吸气管外壁部之间,绕固定轴承416K的轴承凸台设置有复位弹簧416M。复位弹簧416M的一端被吸气通路侧壁的阶梯部卡止,使得不会向旋转方向移动,另一端被树脂轴环416U卡止。
由于树脂轴环416U与轴一起旋转,因此,如果控制阀向打开方向旋转,则复位弹簧被压缩,对控制阀施加关闭方向的力。
而且,在排气通路体的筒状部开设的孔不仅起到贯穿***旋转轴的孔的作用,还具有抑制因旋转轴的过于弯曲而对滚珠轴承施加过度的力的效果。
在吸气通路体上一体形成有马达收纳壳体部。
在马达收纳壳体部416D收纳马达416Dm,并将其固定于吸气通路体。
在马达416Dm的旋转轴的端部固定有齿轮416N。在被固定于旋转轴416S的终级齿轮416R与齿轮416N之间,由通过树脂成形一体成型的大直径齿轮416P与小直径416Q构成的中间齿轮,被固定轴416T可以旋转地支承。大直径齿轮416P啮合于齿轮416N。
小直径齿轮416Q啮合于终级齿轮416R。该减速齿轮机构的减速比大约是20分之1。由该减速比,能够产生大的控制阀旋转力(大约为100千克力)。这是即使考虑到存在7千克力左右的复位弹簧的力,也是相当大的力,即使有排气中的未燃烧性物质或焦油等而引起的阀门的粘着现象,也能够打开控制阀。作为解除控制阀前端的粘着的力可以是20~30kg的程度,如果是上述力则能够确保对于粘着足够的耐力。
从弯曲的通路体(413d、413e、413f)导入吸气通路的排气,从筒状体413f的出口416f向吸气通路46的中心排出,与流动于周围的新鲜气体均匀混合。
由于排气不与吸气通路体直接接触,所以能够将吸气通路体的温度上升抑制得很低。
416C是树脂罩,在四个部位通过螺丝固定于双重管式吸气通路体的外壁的规定位置。
该树脂罩覆盖减速齿轮机构,还配置有检测旋转轴416S的旋转角度的传感器部416E。
416F是连接器,在树脂罩的树脂成形时与罩一体成形。在该连接器上设置有向外部输出旋转轴的开度信号的端子、从外部向马达供电的端子、及地线端子。
一直延伸到旋转轴416S的树脂罩侧端子部罩416C的位置。在罩416C上,旋转传感器部416E的转子416L被树脂罩416C的平面部可以旋转地支承。在该转子416L上安装有电刷416X。
在构成树脂罩416的盖部的盖板416E的内侧,安装有具有相对于旋转轴成直角的面的基板416W。在面对该基板的电刷416X的位置上形成有没有图示的电阻导体。电阻导体经由一体成形于树脂罩416C的电器导体的端子部416Y,连接于连接器416F。如果树脂罩被固定于吸气通路体的外壁,则旋转轴的端部嵌入转子416L的孔,被板簧416n限制旋转。由此,旋转轴416S的旋转经由转子416L使电刷416X旋转,相对于电阻体的电刷416X的位置的变化被作为电信号从连接器416F向外部发送。
如此检测控制排气通路的开度的控制阀416A的实际的开度,反映于对马达416Dm的控制信号的计算。
该信号被送到发动机控制单元,在那里被用于基于EGR回流率的控制阀416A的开度目标值(作为结果马达416Dm的控制信号)的计算。
而且,向在吸气控制阀的控制装置设置的控制电路200发送该信号,在那里进行同样的计算,能够返回并得到作为目标开度信号的马达416Dm的控制信号。
以上说明的吸气控制装置45于排气回流量控制装置416被互相邻接地安装。
具体地说,在吸气控制装置45的下游端与排气回流量控制装置416的上端接触,在两者之间隔着密封垫(或者密封橡胶)45E,被螺栓45G固定。螺栓45G通过在吸气通路体的周围隔着间隔设置于四个部位的螺栓贯穿***孔45D,连接并向上提升吸气控制装置的上凸缘45C、下凸缘45F与排气回流量控制装置416的吸气通路体的凸缘部416H,将两者固定。
此时,将旋转轴3与416S配置成并行,使从筒状部413f流入到吸气通路46内的排气的流量变多的部分与吸气控制阀的开度最大的部位一致,顺利地进行新鲜气体与排气的混合,使得向各气缸的排气的分配变得均匀。
另外使双方的树脂罩9、416C相对于吸气通路***于相同一侧。根据该结构由于可以在同一侧进行向连接器的连接作业,所以作业性好。另外,有利于确保后述的冷却装置的设置空间。
在这样设置的装置中,不仅是旋转轴并行而且将马达***壳体也配置成并行,马达的旋转轴被配置成与这些旋转轴并行。
根据这样构成的本实施例具有如下的效果。
414是在发动机冷却水与排气之间热交换并冷却排气的冷却装置。冷却水从入口头部414A进入冷却装置,流过配置了图4所示的波形片414a的通路,从冷却水出口头部414B排出。
排气从入口头部413A导入,向箭头所示的方向流过热交换器的并行通路,聚中于出口头部413b,通过连接通路413c被导向形成于吸气通路体的排气导入通路部413d。
此时,在入口,500℃的排气通过与100℃的发动机冷却水热交换,在出口温度下降到200℃。由此,能够直接将排气导入吸气通路体的中心。
415(156)是排气流量传感器。排气传感器,被设置于冷却装置出口的连接通路413d,检测被冷却的排气的流量。如此由于气体温度变化变小所以有测量精度提高的效果。
另外,可以使EGR气体温度下降,提高气体密度(减少体积),扩大回流率的上限,降低NOx。进而由于气体温度低而可以缩短发动机的燃烧温度时间。
413g是用于将排气通路固定于吸气通路体的导入开口413k的螺丝,是该螺丝的贯穿***孔。
而且,在上述实施例中,排气回流量控制装置416的弯曲通路体是另外形成的独立体,虽然说明了将其组装在吸气通路体的内部的情况,但也可如以下这样通过开模来形成一体。
在图2中,在排气回流量控制装置416的双重管式吸气通路体的弯曲通路的内侧与外侧,进行分模使得可以向上游侧与下游侧开模。进而通过在该图右侧设置第三个的开模模具来一体成形。
接着,基于图7详细说明吸气控制装置的树脂罩部分。
马达5的端子5A电连接于在树脂罩9上设置的承受端子14。在本实施例中,在树脂罩9上模型成型的端子14也是阳端子。因此,在马达侧的阳端子5A与罩侧的阳端子14之间,设置有在两侧具有阴端子的中继端子5B。
通过一端被钎焊的连接线202,到达端子14的导体被电连接到在一片控制电路基板200的连接垫上。在控制电路基板200与树脂罩内壁面之间夹层状连接有铝材制的散热板200A。在控制电路基板的其他的另一边,整齐排列有经由一端被软钎焊于连接垫的连接线201而连接于开度传感器10的端子组。电导体10w的一端连接于传感器的电阻基板,另一端连接于连接线201。
12是用于将控制电路基板的表面与齿轮收纳部隔离的隔板(以后有时也称为控制单元罩),形成为不仅可以防止异物侵入到控制电路部,还能阻止中间齿轮7向推力方向运动。
传感器罩10c的支承转子10R的旋转的环状突起被形成于旋转轴的钱端部的周围。轴的前端部嵌合于转子的中心孔,用C环10P将转子固定于旋转轴。
10d是密封橡胶,密封转子10R与传感器罩10c之间。
4c是用于保持密封的金属件,4d是唇边式密封。通过该密封防止因排气的吹回而引起的排气侵入到传感器室或控制回路室。
总结以上的实施例的效果如下所述。
(1)在加减速时的过渡状态下吸气量急剧变化时,由于能够以大的力来打开控制阀,响应速度快(从全开到全闭的时间为100ms左右),能够缩短到达目标回流率的时间。
(2)在从吸气通路侧面导入EGR气体的现有的方法中,产生了气体的偏重。在本结构中,由于将EGR气体导入吸气通路的中心部,所以混合良好,进而气筒分配良好。
(3)冷却装置的冷却效果是,在入口为500度而在出口下降到200度,由于气体温度变化变少,所以测量精度提高。另外。能够使EGR气体温度下降,提高密度(减少体积)、扩大回流率的上限,降低NOx。
进而还有能够通过低的气体温度使发动机的燃烧温度下降,降低NOx的效果。
(4)进而,现有技术中EGR气体在吸气通路的入口与吸气通路体本体接触,但是在本实施例中,由于排气通过排气通路被导入吸气通路内,所以吸气通路体本体不会直接被排气加热。
以下,利用图21~图35,说明使用本发明的柴油发动机的电子控制节流装置的部分。
最初,利用图21,说明本实施方式的电子控制节流装置的***结构。
图21是本发明的第一实施方式的电子控制节流装置的***结构图。
本实施方式的电子控制节流装置,由电子节流体(ETB)100、节流促动器控制单元(TACU)200构成。电子节流体(ETB)100,由在节流体中被支承成可以旋转的节流阀或、驱动该节流阀的马达等的促动器构成。对于其详细结构,利用图24~图31在后说明。
节流促动器控制单元(TACU)200是这样的单元,其控制电子节流体(ETB)100的节流阀的开度,使其成为从发动机控制单元(ECU)300提供的节流阀的目标开度。TACU200对于从ECU300提供的目标开度,向ETB 100输出用于转动ETB100的节流阀的马达驱动占空比信号。通过该占空比信号而转动的节流阀的开度,通过节流位置传感器而被检测出,作为节流传感器输出提供给TACU200。TACU200在通常的控制状态,反馈控制节流阀的开度,使得目标开度与节流传感器输出一致。对于TACU200的结构以及动作,利用图24~图31在后说明。
接着,利用图22以及图23,说明本实施方式的电子控制节流装置中的节流阀的开度。
图22是本发明的第一实施方式的电子控制节流装置中的节流阀的开度特性的说明图。而且,图22(A)是节流阀的开度的静态特性的说明图,图22(B)是节流阀的开度的动态特性的说明图。
最初,通过图22(A)说明节流阀的开度的静态特性。在图22(A)中,横轴表示从TACU200供给到ETB100的马达控制占空比信号的占空比,纵轴表示节流阀的开度。节流阀,如后所述,被复位弹簧向打开方向施力。因此,在占空比为0%时,即,在马达中没有电流流通时,由于通过复位弹簧使节流阀向打开方向返回,所以节流阀的开度变成最大。
占空比在0%~X1%之间,虽然马达产生驱动力,但由于小于复位弹簧的施力,所以节流阀的开度被维持在最大。如果占空比增加到X1%~X2%,则马达产生的驱动力大于复位弹簧的施力,节流阀的开度逐渐向最小减小,在占空比为X2%,节流阀的开度变得最小。然后,占空比在X2%以上,节流阀的开度被维持在最小。占空比X1%、X2%的值,因复位弹簧的施力或马达产生的驱动力的不同而不同,例如,X1%=15%,X2%=30%。因此,例如如果对马达给与占空比22.5%(=(15+30)/2)的马达控制信号,则节流阀的开度保持在最大与最小的中间位置。
以上,表示了占空比与节流阀的开度的静态关系。另一方面,在节流阀的开度从某一开度向另一开度变化时,使用图22(B)所示的动态特性。图22(B)的横轴表示时间,上侧的纵轴表示开度,下侧的纵轴表示占空比。此处,例如,图22(B)的上侧所示,在使节流阀的开度从最大变化到最小的情况,如图22(B)的下侧所示,在时刻t1,使占空比100%的信号持续T1时间并输出,很快地使节流阀的开度从最大向最小方向移动。然后,经过了时间T之后,使占空比-Y1%的信号持续T2时间并输出。此处,占空比的符号为负的情况是对马达通电的电流的方向相反,表示向反方向旋转驱动马达。即,供给占空比100%的信号,在最小方向以高速驱动节流阀的开度,并且在T1时间之后,供给马达的旋转方向向反方向的信号,通过施加制动,使尽快接近于目标开度。之后,反馈控制使占空比变化,使节流传感器的输出开度与目标开度一致。时间T1、T2以及-Y1%的具体值,因控制***的不同而不同,例如,在从最大到最小以100ms的响应时间移动的情况下,T1=30~50ms,-Y1=-100%,T2=3~6ms。这些T1、T2、Y1的值是通过PID计算求得的,是随PID计算的控制常数变化的值。
接着,利用图23,说明本实施方式的电子控制节流装置中的节流阀的开度的定义。
图23是本发明的第一实施方式的电子控制节流装置中的节流阀的开度的定义的说明图。
节流阀的开度有“控制开度”、与“机械开度”这两种开度。在图22说明的开度是控制开度。控制开度是通过TACU200控制的对象的开度,最小开度~最大开度,例如是0~100%。0%是控制全闭状态,100%是控制全开状态。将0~100%的范围称为节流开度控制区域。
另一方面,该ETB100具备用于机械地限制节流阀开度的两个限位部。节流阀卡止于最小侧限位部而停止的位置是机械全闭。节流阀卡止于最大侧限位部而停止的位置是机械全开。将机械全闭~机械全开的范围称为节流转动区域。节流转动区域,如图23所示,是比节流开度控制区域广的范围。
另外,以物理的角度例示各开度,例如,如下所述。此处,如果节流阀相对于空气的流动成直角的位置为0°,则机械全闭Z1例如是6.5°,控制全闭例如是7°。另外,控制全开Z3例如是90°,机械全开Z4例如是93°。
进而,如图23所示,在节流全开控制区域中,存在EGR控制或者DPF控制区域(V1~V2)。即,在从ECU300提供给TACU200的目标开度在V1~V2的范围时,TACU200能够判断正在进行EGR控制或者DPF控制。相对于控制区域(0~100%),例如V1是10%,V2是80%。
接着,利用图24~图31,对于本实施方式的电子控制节流装置的结构进行说明。
图24是本发明的第一实施方式的电子控制节流装置的纵截面图。图25是图4的V-V向视图的截面图。图26是在本发明的第一实施方式中的电子控制节流装置中使用的节流位置传感器的立体图。图27是在本发明的第一实施方式中的电子控制节流装置中使用的节流位置传感器的电路图。图28、图29以及图30是取下了图24的齿轮罩后的状态下的A向视图。图31是在一个实施方式的电子控制节流装置中使用的齿轮罩的俯视图。而且,在各图中相同符号表示相同部分。
如图24所示,节流体1形成空气通路,另外支承各种结构部件。在空气通路,在箭头AIR的方向上自上而下地流动有吸入空气。节流体1,例如是铝压铸件制成的。节流阀2通过螺丝等被固定于节流轴3。节流轴3通过滚珠轴承被支承成相对于节流体1可以转动。在没有对马达施加占空比的图示的状态下,节流阀2被复位弹簧的施力保持在机械全开位置。在节流体1的内部的空隙收纳、固定有DC马达5。DC马达5的驱动力经由没有图示的齿轮被传递给节流轴3,使节流阀2转动。
接着,如图25所示,节流轴3通过滚珠轴承4a、4b被支承成相对于节流体1可以转动。在节流轴3上固定有齿轮8。在齿轮8与节流体1之间保持有复位弹簧11。复位弹簧11向齿轮8以及节流轴3施力,使得节流阀2向全开方向移动。
在节流体1的内部的空隙收纳固定有DC马达5。马达5的输出轴固定有齿轮6。被固定于节流体1的轴7A支承齿轮7可以转动。齿轮6、7、8分别啮合,马达5的驱动力经由齿轮6、7、8被传递给节流轴3。通过节流阀2旋转,电子控制向发动机的吸入空气流量。
齿轮罩9保持有节流促动器控制单元(TACU)200。在齿轮罩9上固定有控制单元罩12。TACU200构成为水分等不会附着的结构。在齿轮罩9一体成形有模型树脂制的连接器端子14。连接器端子14的一方的端部电连接于TACU200。通过将齿轮罩9安装于节流体1,连接器端子的另一方的端部与马达5的马达端子5A卡合,能够电连接TACU200与马达5。如果从TACU200向马达5施加占空比信号,则DC马达5产生旋转力。
另外,检测节流阀2的位置的节流位置传感器10,由可动侧部件即电刷10a、与固定侧部件即电阻体10b构成。电刷10a通过与节流轴3嵌合,与节流阀2形成刚性的结构。电阻体10b被组装入齿轮罩9内。电刷10a通过与电阻体10b接触,将节流阀2的位置转换成电压并输出到控制单元12。
此处,利用图26以及图27,对于节流位置传感器10的结构进行说明。如图26所示,节流位置传感器10由四个电刷10a1、10a2、10a3、10a4与四个电阻体10b1、10b2、10b3、10b4构成。通过电刷10a1、10a2与电阻体10b1、10b2构成第一节流位置传感器,通过电刷10a3、10a4与电阻体10b3、10b4构成第二节流位置传感器。本实施例形成了具备汽油发动机***用的节流位置传感器、即、双***的节流位置传感器的结构,作为柴油发动机用可以只使用双***内的单***。
如图27所示,一方的节流位置传感器,电刷10a1、10a2可以滑动地与电阻体10b1、10b2接触。在电阻体10b2的两端从电源供给直流电压。而且,通过从电阻体10b1检测电压,能够将电刷10a的位置、即、节流阀2的位置作为电压信号检测出来。
TACU200在通常的控制中,使用节流位置传感器100的输出,反馈控制使得节流阀2的位置与目标开度向匹配。
在齿轮7与节流体1之间安装有垫圈150,垫圈15由耐磨损性塑料材料、例如加入有钼的PA66尼龙构成。在马达5没有通电的状态下,马达5不产生驱动力。此时,节流阀2被复位弹簧11保持在机械全开位置。另外,齿轮6以及齿轮8分别处于被刚性固定于各个马达轴、节流轴3的状态,齿轮7被构成为在轴7A上自由的状态。本实施方式的节流控制装置由于被搭载于车辆上,所以这样的齿轮7如果处于自由状态,则由于车辆的振动,齿轮7在轴7A的推力方向上振动,齿轮7的端面会产生通过与节流体1碰撞引起的异常声音的产生、或节流体1的损伤、磨损。顺便提一下,与节流体1是由铝压铸件制成的相对,齿轮是比铝强度高的烧结合金制成的。因此,为了防止异常声音的产生或损伤等,具备由耐磨损塑料构成的垫圈15。
接着,图28是取下了图25的齿轮罩9的状态的A向视图。马达5通过用螺丝将马达固定板5B固定于节流体1。从板5B的开口部突出有马达5的电源端子5A。
在节流体1,在齿轮9的附近的位置,安装有机械全闭限位部13A。如果向马达5供给100%占空比的信号,则齿轮8在箭头B1方向(节流阀2的关闭方向)上转动,在齿轮8形成的限位部端部8A与机械全闭限位部13A接触,保持机械全闭位置。
柴油发动机用电子控制节流装置,在控制单元12检测出DC马达5或节流位置传感器10等的异常的情况下,立刻切断DC马达5的电源或者将控制占空比固定于0%,只是通过向打开方向施力的复位弹簧的弹簧力来使其返回到机械全开位置13B。
接着,图29表示从图28的状态,取下了齿轮7的状态。齿轮8是大约1/3形状的齿轮。齿轮8的一方的端部具有作为限位部端部8A的功能,另一端部也具有作为限位部端部8B的功能。在节流体1上,在齿轮9的附近的位置,安装有机械全开限位部13B。如果不向马达5供给占空比信号或电压,则通过向打开方向施力的复位弹簧的弹簧力,限位部端部8B与机械全开限位部13B接触,节流阀2位于机械全开位置。即,在马达5没有施加占空比的状态下,节流阀2持续保持在机械全开位置。
接着,图30表示从图29的状态,取下了齿轮8的状态。只使用一个复位弹簧11。复位弹簧11的一方的端部11A与节流体1的一部分1A卡合,另一方的端部11B与齿轮8卡合,向使节流阀2打开的方向作用有弹力。
接着,图31是齿轮罩9的俯视图。在齿轮罩9上设置有连接器端子14。另外,在齿轮罩9上设置有用于与ECU300或外部电源连接的连接器9A,其内部的端子与TACU200连接。
图32是取下电路保护板(盖体)来表示图31的齿轮罩内侧的俯视图。
接着,利用图33说明本实施方式的电子控制节流装置的节流促动器控制单元(TACU)200的***结构。
图33是本发明的第一实施方式的电子控制节流装置的节流促动器控制单元(TACU)200的***结构图。而且,在图21、图24以及图25中相同符号表示相同部分。
节流促动器控制单元(TACU)200,由CPU210与马达驱动电路(MDC)230构成。CPU210由差计算部212、PID计算部214、控制量计算部216以及控制部218构成。
差计算部212计算ECU300输出的目标开度θobj与节流位置传感器10输出的节流阀的实际开度θth的开度差Δθth。PID计算部214,基于差计算部212输出的开度差Δθth,计算PID控制量u(t)。通过PID计算求出的PID控制量u(t),由(Kp·Δθth+Kd·(dΔθth/dt)+Ki·∑Δθth·dt)求出。而且Kp是比例常数,Kd是微分常数,Ki是积分常数。控制量计算部216,基于PID控制量u(t),选择后述的H桥电路234的开启·切断的开关,确定电流的流动方向,另外确定开启·切断H桥电路234的开关的占空比,作为控制量信号输出。控制部218,如利用图35详述那样,基于目标开度θth,判定是否进行EGR控制或者DPF控制,在没有进行EGR控制或者DPF控制的情况下,执行用于使节流阀全开的控制,并根据需要,控制对PID计算部214、或控制量计算部216、或MDC230供给电压VB的开关SW1的开闭。
马达驱动电路(MDC)230具备逻辑IC232、H桥电路234。逻辑IC232基于控制量计算部216输出的控制量信号,向H桥电路234的四个开关输出开启切断信号。H桥电路234对应于开启切断信号开闭开关,向马达4供给必要的电流,使马达5正转或反转。
接着,利用图34,说明在本实施方式的电子控制节流装置中使用的H桥电路234的结构。
图34是表示在本发明的第一实施方式的电子控制节流装置中使用的H桥电路234的结构的电路图。
H桥电路234如图所示那样结线有四个晶体管TR1、TR2、TR3、TR4和四个二极管D1、D2、D3、D4,向马达5通有电流。例如,门极信号G1与门极信号G4变成高电平。如果晶体管TR1、TR4导通,则如虚线C1所示那样流通电流。例如,此时,马达5正转。另外,门极信号G2与门极信号G3变成高电平。如果晶体管TR2、TR3导通,则如单点划线C2所示那样流通电流。例如,此时,马达5反转。进而,门极信号G3与门极信号G4变成高电平。如果晶体管TR3、TR4导通,则如双点划线C3所示那样流通电流成为可能。此时,从外部向马达5的驱动轴传递驱动力,如果马达5的转子旋转,则马达5作为发电机动作,能够进行再生制动。而且,即使晶体管TR1、TR2要同时导通,也能够使马达5再生制动。
而且,本实施例是使用了将H桥电路整体一体化的单片微机的情况,向逻辑IC提供数字信号,能够自由控制晶体管的开启、切断。但是在本实施方式中,因为只要能够控制马达驱动电路的状态就能达成目的,所以即使H桥本身使用四个晶体管来构成,或即使使用整体一体化了的逻辑IC来构成也可以。
接着,利用图35及图36,说明本实施方式的电子控制节流装置的控制部218的控制动作。
图35是表示本发明的第一实施方式的电子控制节流装置的控制部的控制内容的流程图。图36是本发明的第一实施方式的电子控制节流装置的控制部的控制内容的说明图。
在步骤s100中,控制部218判断EGR控制或者DPF控制是否结束。在没有结束时,在步骤s100中,继续通常的反馈控制。在结束时,在步骤s120中,执行直到全开的目标角度控制。
此处,在步骤s100的判定中,控制部218利用从ECU300输入的目标开度,判断EGR控制或者DPF控制是否结束。例如,如图23说明的那样,在节流开度控制区域在0~100%的范围的情况下,(V1~V2)的范围(例如(10~80%))是EGR控制或者DPF控制区域。因此,从ECU300输入的目标开度在10~80%的范围内,则控制部218判断是在EGR控制或者DPF控制中,目标开度在0~10%的范围则判断为结束。另外,EC或者在80~100%的范围,则控制部218能够判断是否从EGR控制或者DPF控制U300接收了EGR控制或者DPF控制结束的Flag。
接着,例用图36,对步骤s120中的直到全开的目标角度控制进行说明。在图36中,横轴表示时间t。纵轴表示节流开度(控制开度)θth以及马达占空比Du。节流开度θth在接近于原点的一方为全闭侧,越从原点远离则越接近全开侧。另外,马达占空比Du越接近原点越是接近于占空比100%的一侧,越从原点远离则越接近0%。
图中,实线θth表示节流开度的变化,虚线Du表示施加于马达的占空比。而且,到时刻t3表示正在进行EGR控制或者DPF控制的状态,时刻t3以后表示EGR控制或者DPF控制结束了的情况的状态。另外,在时刻t3以后,实线θth表示进行本实施方式的控制的情况的节流开度的变化,点划线表示没有进行本实施方式的控制的情况的节流开度的变化。
时刻t3之前的期间,通过步骤s110的处理,进行EGR控制或者DPF控制。对应于从ECU300输入的目标开度θobj,施加于马达的占空比Du变化,对其对应,节流开度θth也变化。
在时刻t3,如果判断为EGR控制或者DPF控制结束,则在没有进行本实施方式的控制的情况下,切断向马达的供电,即,占空比成为0%的状态。其结果是,节流阀通过复位弹簧的施力如点划线所示向全开侧移动。然后,在时刻t4,接触于全开限位部,从限位部弹回,反复进行复位弹簧的拉回,最终停止于控制全开。从时刻t3~时刻t4的时间T4例如是150ms。如果以这样的高速,复位弹簧拉回节流阀,则由于与全开限位部碰撞,会引起碰撞噪音的产生以及因冲击负载而引起机械部件的寿命下降。
另一方面,在本实施方式的直到全开的目标角度开环控制中,控制部218,如马达施加占空比Du所示,从判断为EGR控制或者DPF控制已结束的时点(时刻t3)的占空比逐渐减少占空比,在时刻t5将占空比成为0%的控制信号输出给控制量计算部216。控制量计算部216从时刻t3逐渐减少占空比,在时刻t5将占空比成为0%的控制信号输出给逻辑IC232。其结果是,马达与图中虚线Du对应于被提供的占空比信号而旋转,作为结果,如图中实线所示,节流开度θth,从判断为EGR控制或者DPF控制已结束的时点(时刻t3)的开度逐渐向全开侧移动,在时刻t5到达全开点。此处时刻t3~时刻t5的时间T5,例如是500ms,通过逐渐使占空比信号减少,能够减少节流阀在全开点被拉回时的、齿轮8与全开限位部13A的碰撞时的速度,能够防止碰撞噪音的产生以及因冲击负载而引起机械部件的寿命下降。
这样,如果设定开环控制时的马达驱动占空比的提供方,使得与只由向全开方向施力的弹簧力使其返回相比响应变慢(T4<T5=,就能够降低全开限位部与马达驱动***的齿轮的碰撞噪音、冲击能量。进而,如日本特开2003-214196号公报所述那样,在将预先设定的任意的值在任意的时间施加于马达的控制时,就有可能不能消除收制品的响应时间等的偏差,即使节流阀返回到全开位置也继续进行使马达动作的控制,存在过电流对马达造成伤害的顾虑,但在本实施方式中,即使返回到全开位置也不会产生继续进行控制的问题。
而且,控制部218以提供成为目标的占空比的开环方式控制节流开度。此处,该在开环控制时施加的占空比的提供方法,例如,可以以图36所示的单调减少的一次式来提供,或者,以抛物线状的提供方式也可以,只要是最终比只由复位弹簧11的施力来返回的时间慢的提供方法,就能够降低齿轮8与全开限位部13的碰撞时的噪音,冲击负载。
如上所述,在本实施方式中,在判断为EGR控制或者DPF控制已结束,将节流阀移动到全开位置时,由于逐渐减小施加于马达的占空比,所以能够减少齿轮与全开限位部的碰撞时的速度,能够防止碰撞噪音的产生以及因冲击负载而引起机械部件的寿命下降。
接着,利用图37以及图38,对于本发明的第二实施方式的电子控制节流装置的控制部218的控制动作进行说明。
本实施方式的电子控制节流装置的***结构,与图21所示的一样。另外,本实施方式的电子控制节流装置的结构与图24~图31所示的一样。进而,本实施方式的电子控制节流装置的节流制动控制单元(TACU)200的***结构,与图33所示的一样。另外,在本实施方式的电子控制节流装置中使用的H桥电路234的结构,与图34所示的一样。
图37是表示本发明的第二实施方式的电子控制节流装置的控制部的控制内容的流程图。图38是本发明的第二实施方式的电子控制节流装置的控制部的控制内容的说明图。而且,与图35相同的步骤号码表示相同的控制内容。
在图38中,横轴表示时间t。纵轴表示节流开度(控制开度)θth。节流开度θth在接近于原点的一方为全闭侧,越远离原点越接近全开侧。
在步骤s100中,控制部218判断EGR控制或者DPF控制是否结束。在没有结束时,在步骤s110中,继续通常的反馈控制。在已结束时,在步骤s210中,执行马达驱动电路状态控制,接着,在步骤s220中,执行马达驱动停止控制。而且,步骤s100~s220的处理,例如,以3ms的周期来反复进行。
在步骤s210的处理中,控制部218将马达5进行再生制动的动作的控制信号输出到控制量计算部216。如图33说明的那样,若将开启信号供给到晶体管TR3、TR4的门G3、G4,则马达5旋转,在这种情况下,流动有箭头C3方向的电流,马达5进行再生制动动作。此处,控制部218将使晶体管TR3、TR4导通的控制信号输出到控制量计算部216。控制量计算部216将晶体管TR3、TR4导通的控制信号输出到逻辑IC232。此时,节流阀2通过复位弹簧11向全开方向移动。由于节流轴的动作经由齿轮8、7、6被传递到马达5,所以马达5进行再生制动的动作。通过该马达5的再生制动,向节流阀进行向全开方向打开的动作施加制动。
即,此处重要的是,如果切断马达的电源,则以复位弹簧11的施力使马达驱动机构向全开方向旋转,控制H桥电路的晶体管的开启·切断状态,使得通过成为连接了马达电路的状态,将此时的DC马达5的部件旋转的力作用于复位弹簧11的施力的相反方向。如果这样进行控制,如图38所示,节流阀2如马达驱动电路连接时那样缓慢动作,防止齿轮8与全开限位部急剧碰撞。
然后,在步骤s220中,控制部218将执行使马达驱动停止的控制的控制信号输出到控制量计算部216。即,控制部218将马达施加占空比Du成为0%的控制信号输出到控制量计算部216。控制量计算部216将占空比成为0%的控制信号输出到逻辑IC232。其结果是,由于切断了向马达的供电,所以节流阀2通过复位弹簧11向全开方向移动。
另外,马达驱动停止控制也可以切断向马达5的供电。即控制部218,切断图33所示的开关SW1,使来自电源VB的电力经由马达驱动电路230停止供给到马达5。以上,在马达驱动停止控制中,使马达施加占空比Du成为0%并切断H桥电路的晶体管,或者切断在从电源向马达供电的路径上设置的开关,来切断向马达的通电,使马达的驱动停止。
即,通过步骤s210的处理瞬间在向全开方向的动作上施加制动,通过下一步骤s220的处理解除制动,通过复位弹簧向全开方向动作。步骤s100~s220的处理,例如,由于以3ms的周期来反复进行,所以在判断为EGR控制或者DPF控制已结束的情况下,在此期间,反复进行步骤s210的制动和步骤s220的无制动控制,节流阀缓慢地向全开侧移动,例如在时刻t6到达全开点。
图中,时间T4与图36中所示的时间相同,与完全没有制动时的节流开度相对,在本实施方式中,通过在中途周期地施加制动,从时刻t3~时刻t6的时间T6比时间T4变长,能够减少节流阀在全开点被拉回时的、齿轮8与全开限位部13A的碰撞时的速度,能够防止碰撞噪音的产生以及因冲击负载而引起机械部件的寿命下降。
如上所述,在本实施方式中,在判断为EGR控制或者DPF控制已结束,使节流阀移动到全开位置时,最初以马达再生制动的方式,即,通过控制单元内的马达驱动电路将持续保持与马达连接的状态的信号提供给CPU的控制部,通过使利用了马达的旋转力的力如制动器那样作用于、以向全开位置方向转动的方式施力的弹簧力的相反方向,能够降低全开限位部与齿轮等的马达驱动机构的构成部件之间碰撞时的冲击能量,能够防止碰撞噪音的产生以及因冲击负载而引起机械部件的寿命下降。
接着,利用图39,说明本发明的第三实施方式的电子控制节流装置的控制部218的控制动作。
本实施方式的电子控制节流装置的***结构,与图21所示的相同。另外本实施方式的电子控制节流装置的结构,与图24~图31所示的相同。进而本实施方式的电子控制节流装置的节流促动器控制单元(TACU)200的***结构,与图33所示的相同。另外,在本实施方式的电子控制节流装置中使用的H桥电路234的结构,与图34所示的相同。
图39是表示本发明的第三实施方式的电子控制节流装置的控制部的控制内容的流程图。而且,与图35、图37相同的步骤号码表示相同的控制内容。
在本实施方式中,步骤s310与步骤s320的处理被追加到图37的控制中。
在步骤s100中,如果判断为EGR控制或者DPF控制已结束,则在步骤s310中,检查自诊断的标记(flag)。此处确认自诊断结果的状态,如果没有检测出异常,则在步骤s210、s220中,通过再生制动与马达驱动停止,由于成为马达电路连接时的动作所以缓慢地与全开限位部13接触。
自诊断结果,在没有检测出异常的情况下,在步骤s320中,控制部218通过切断H桥电路的全部的晶体管,如图36中单点划线所示,节流阀迅速地移动到全开位置。
这样,自诊断的结果,如果检测出异常,则通过尽可能超前地停止控制,能够防止实际中车辆的异常。
接着,利用图40以及图41,说明本发明的第四实施方式的电子控制节流装置的控制部218的控制动作。
本实施方式的电子控制节流装置的***结构,与图21所示的相同。另外,本实施方式的电子控制节流装置的结构,与图24~图31所示的相同。进而本实施方式的电子控制节流装置的节流促动器控制单元(TACU)200的***结构,与图33所示的相同。另外,在本实施方式的电子控制节流装置中使用的H桥电路234的结构,与图34所示的相同。
图40是表示本发明的第四实施方式的电子控制节流装置的控制部的控制内容的流程图。图41是本发明的第四实施方式的电子控制节流装置的控制部的控制内容的说明图。而且,与图35、图37相同的步骤号码表示相同的控制内容。
在图41中,横轴表示时间t。纵轴表示节流位置θ以及马达占空比Du。节流位置θ在接近于原点的一方为全闭侧,越从原点远离则越接近全开侧。而且,实线表示目标开度θobj,虚线表示实际开度θth(real)。另外,以点线表示的马达占空比Du,在接近于原点的一方是接近于占空比100%的一侧,越远离原点越接近0%。
在步骤s410中,控制部218接收从ECU300输入的目标开度θobj,作为用于进行位置控制的基准。
接着,在步骤s420中,判断:在步骤s410中接收的目标开度θobj是否比规定值A大,且目标开度θobj的变化率Δθobj是否比规定值B小。例如,规定值A为80%,判断图24的步骤s100中的EGR控制或者DPF控制是否已结束。另外,目标开度θobj的变化率Δθobj成为判断基准,除了瞬间目标开度θobj比规定值A大的情况之外,一直判断目标开度θobj是否比规定值A大。变化率Δθobj例如是0.25%。即,在目标开度θobj比规定值A(例如、80%)大,且,目标开度θobj的变化率Δθobj比规定值B(例如、0.25%)小时,判断为EGR控制或者DPF控制已结束,进入步骤s430,如果不是这种情况,则进入步骤s460。
在步骤s460中,对计数值清零而初始化。即,在进行通常的EGR控制或者DPF控制的状态下,计数值C是0,接着,在步骤s407中,判断变量E是否是0。变量E是能够取得“0”与“1”这两个值的变量,在变量E是“0”时,表示正在进行控制,在变量E是“1”时,表示没有进行控制。此处,如果进行控制,变量E为“0”,则进入步骤s110,反馈控制使得节流开度成为目标开度。在图41中,到时刻t3的期间,进行通常的反馈控制的节流阀的开度控制。在该时点,由于是结束了EGR控制或者DPF控制的时点,所以此时的目标角度控制是,对在全开点附近的任意的位置的节流阀位置进行控制使其成为目标开度的开度,并且在任意的时间(在步骤s440,到满足C>D的条件的时间)的期间保持该开度。
另一方面,如果EGR控制或者DPF控制结束,则在步骤s430中,在计数值C上加“1”。然后在步骤s440中,判断计数值C是否超过了规定值D。步骤s440的判断是用于判断:在步骤s430判断EGR控制或者DPF控制结束之后,是否经过了规定时间。规定值D是相当于图41的时刻t3~t7的时间的值,例如,是计数200ms的时间。该规定时间被设定成,比如图36的单点划线所示的通过复位弹簧的施力而向全开侧移动所需时间(例如,在图36的例子中,时间T4(例如、150ms))长。
在没有满足步骤s440的条件的情况下,即,例如,EGR控制或者DPF控制结束并直到经过了200ms,在步骤s470中,判断变量E是否是0。此处,进行控制,变量E为“0”,进入步骤s110,反馈控制使得节流开度变成目标开度。即,在图41中,在时刻t3~t6的期间也一直进行由反馈控制进行的节流阀的开度控制。
通过该控制,能够降低节流传感器的滑动阻力的磨损。在使用了接触式节流传感器的电子控制节流装置时,如果一定开度保持时间(例如,被保持在全开位置的时间)长,则由于振动等的影响阻力体局部磨损。由于这样的局部磨损,产生接触节流位置传感器的输出异常。因此,如本实施方式,直到经过了规定值D相当的时间,尽管EGR控制或者DPF控制没有结束,但通过成为控制状态,可以在时刻t3~t7之间保持在任意的开度,并可以在t7~t8的期间,保持在机械全开位置,从而能够缩短被保持在机械全开位置的时间,这样,由于能够缩短保持时间,所以能够使节流位置传感器的寿命变长。
接着,在步骤s440的判断中,如果计数值C超过了规定值D,即,在图41中,如果到达时刻t7,则在步骤s210、步骤s220中,反复进行由在图37中说明的再生制动引起的制动动作、与非制动动作,齿轮9缓慢地与全开限位部13接触。而且,在步骤s210、s220的处理中,也可以除去步骤s210。即,在步骤s110中,因为在全开点附近的规定位置进行规定时间控制,所以通过步骤s220的处理立刻切断向马达的供电,即使从该规定位置移动到全开位置,由于移动距离短,所以很多情况都是齿轮8与全开限位部13A接触时的冲击力小。
之后,在步骤s450中,使控制状态Flag为“1”,脱离循环。
以上,在本实施方式中,成为EGR区域(时刻t3以后),且,在满足了条件成立状态的持续时间(C>D)的时刻t7以后,反复制动动作与向马达的通电停止,从控制状态转移到非控制状态,使得齿轮8与全开限位部13缓慢接触。
另外,在从EGR控制或者DPF控制结束状态,回复到EGR控制或者DPF控制状态时,如果:目标开度>A、目标开度变化率<B,或者C>D之中任何一个不成立,则能够回复。此时,由于暂时成为非控制状态,则控制状态Flag成为E=1。因此,用步骤s470的判断,进入步骤s480,清空控制量。
如图33说明的那样,PID计算部214,在EGR控制或者DPF控制状态时、在EGR非控制状态时,也反复执行求出占空比的PID计算。PID控制量u(t)=(Kp·Δθth+Kd·(dΔθth/dt)+Ki·∑Δθth·dt)计算出。马达通电、切断状态时,目标开度与实际开度的偏差在关闭一侧变大,积分项的进行动作的部分,关闭方向的控制占空比变成过大的状态。虽然节流位置控制通常在新目标开度附近施加制动使会聚性变好,但是如上所述,如果在关闭方向积分项相当的值过大地积蓄,则有可能不能施加正常的制动,过调量变大,会聚性变差。
因此,在本实施方式中,在步骤s480,对控制量清零。此处,作为清零的控制量,只是积分项相当的部分也可以,另外,即使是与施加占空比有关的全部的值也可以。由此,能够改善响应时间等的控制性能。之后,在步骤s490中,将控制状态Flag设定为E=0,进入通常控制,脱离循环。
如以上说明,在本实施方式中,也能够降低全开限位部与齿轮等的马达驱动机构的构成部件之间在碰撞时的冲击能量,能够防止碰撞噪音的产生以及因冲击负载而引起机械部件的寿命下降。另外能够缩短全开位置的保持时间,使接触式节流传感器超寿命化。进而在从非控制状态进入控制状态时,通过对控制量清零,能够改善响应性等的控制性能。
接着,利用图42,对于本发明的其他的实施方式中的电子控制节流装置的***结构进行说明。
图42是本发明的其他的实施方式中的电子控制节流装置的***结构图。
而且,在以上各实施方式的说明中,TACU200、ECU300是分别形成的独立体,但也可以如图42所示,将TACU200与ECU300一体构成。
对作为以上说明的实施例中的马达控制的吸气节流阀的节流阀装置、以及其控制方法的特征进行总结,如下所述。
节流阀电子的位置控制,公知的是进行如下的位置控制,例如,特开平7-332136号公报所述的那样,利用PID控制等的方法,计算对应于节流阀的实际开度与目标开度的偏差的控制量,将求出的控制量转换为脉冲驱动的开启时间与切断时间的比即占空比,经由H桥电路将PWM信号供给到直流马达,马达产生转矩,经由齿轮、节流轴而以该产生的转矩驱动节流阀。
上述的电子控制节流装置都是汽油用电子控制节流装置,近来,以提高EGR效率、改善自然着火现象等为目的,正在柴油发动机中使用电子控制节流装置。柴油发动机用电子控制节流装置与汽油发动机用的不同,主要是以提高EGR效率、通过节流吸气提高排气温度、使DPF(DieselParticuler Filter)内的煤烟燃烧为目的来进行控制,因此,在没有进行EGR控制或者DPF控制时停止马达控制,节流阀位置处于全开位置。因此,在以下三点大不相同:1),被长时间保持在全开位置;2),存在从进行马达控制的状态到停止状态、或其相反的状态;3),不需要:为了使失控模式消失而在马达通电切断时以任意开度供给一定空气量的默认机构。
柴油发动机用电子控制节流装置,如果EGR控制或者DPF控制结束,则就没有必要控制空气流量,切断马达通电,以复位弹簧使节流阀返回到压力损失最少的全开位置。即与通常持续控制的汽油发动机用的电子控制节流装置不同,存在必须从控制状态停止控制的状态、或者从停止控制的状态开始控制的状态。
如果首先考虑从控制状态停止控制的状态,则第一个问题是,在停止控制时,单纯地切断马达的通电或者使施加占空比为0%,仅以将节流阀位置向打开方向施力的复位弹簧力使其返回全开位置,则全开限位部就会与驱动机构部件激烈碰撞,产生碰撞噪音以及产生因冲击负载而引起机械部件的寿命下降的问题。
对此,公知的装置是,例如,如日本特开2002-256892号公报所公开的,在全开限位部与齿轮之间设置干涉机构,避免因机械地碰撞而引起的问题的电子控制节流装置。
另外,公知的装置是,例如,如日本特开2003-214196号公报所公开的,通过将预先设定的规定值在任意的时间施加于马达,以比通常控制时的速度还低的速度来使马达动作,避免因控制方面的碰撞而引起的问题的电子控制节流装置。
但是,在日本特开2002-256892号公报所公开的方式中,有个问题是,缓冲机构部分的成本上升,缓冲机构老化时的效果减小以及部件数量的增加,从而使得可靠性下降。
另外,在日本特开2003-214196号公报所公开的方式中,由于是将预先设定的规定值在任意的时间施加于马达的控制,所以有个问题是,不能消除部件各自的响应时间等的偏差,有可能即使节流阀返回到全开位置,还在继续进行使马达动作的控制,还会有因过电流给马达带来损害,或者因此过负载施加于机械部件而给机械部件带来损害的顾虑。
在本发明的实施例中消除了该点,提供一种提高可靠性,对马达或机械部件没有损害,能够降低机械的碰撞噪音·冲击能量的电子控制节流控制装置。
根据本实施例:
(1)为了达成上述目的,本发明的电子控制节流装置,具有:促动器,其驱动可以转动地被节流体支承的节流阀;单一的复位弹簧,其提供弹簧力使得所述节流阀返回到全开方向;电子节流体,其具有检测所述节流阀的开度的节流位置传感器;节流促动器控制单元,其对应于通过所述节流位置传感器检测出的所述节流阀的开度与目标开度,驱动所述促动器,其中,所述节流促动器控制单元具备控制机构,所述控制机构在EGR控制或者DPF控制结束时,控制所述促动器,使得在比所述节流阀只通过所述复位弹簧向全开方向移动的时间长的时间内,使所述节流阀向全开方向移动。
通过所述结构,能够得到提高可靠性、对马达或机械部件没有损害,能够降低机械的碰撞噪音·冲击能量的电子控制节流控制装置。
(2)在上述(1)中,优选为,所述控制机构,将成为所述节流阀向全开方向缓慢移动的目标角度的控制信号,提供给所述促动器,来进行反馈控制。
(3)在上述(2)中,优选为,所述控制机构,使提供给所述促动器的占空比信号的占空比缓慢减小。
(4)在上述(1)中,优选为,所述控制机构,如果EGR控制或者DPF控制结束,则重复所述促动器的控制状态与非控制状态。
(5)在上述(4)中,优选为,所述控制机构,在所述控制状态下,将所述促动器作为制动器而使其动作。
(6)在上述(4)中,优选为,所述控制机构,在所述控制状态下,以再生制动状态控制所述促动器。
(7)在上述(4)中,优选为,所述控制机构,在所述非控制状态下,切断向所述促动器的通电。
(8)在上述(7)中,优选为,所述控制机构,使提供给所述促动器的占空比信号的占空比成为0%。
(9)在上述(4)中,优选为,所述控制机构,在节流位置传感器等的自诊断结果异常时,切断向所述促动器的通电。
(10)在上述(4)中,优选为,所述控制机构,在判断为EGR控制或者DPF控制结束之后,在规定时间的期间,控制所述节流阀的开度使其在全开点附近的位置保持规定时间,之后,重复所述促动器的所述控制状态与所述非控制状态。
(11)在上述(1)中,优选为,所述控制机构,在判断为EGR控制或者DPF控制结束之后,在规定时间的期间,控制所述节流阀的开度使其在全开点附近的位置保持规定时间,之后,使所述促动器成为非控制状态。
(12)在上述(11)中,优选为,所述控制机构,在判断为EGR控制或者DPF控制结束之后,在规定时间的期间,控制所述节流阀的开度使其在全开点附近的位置保持规定时间,之后,重复所述促动器的控制状态和所述非控制状态。
(13)在上述(11)中,优选为,所述控制机构,在如下情况下判断所述EGR控制或者DPF控制结束,即:所述节流阀的目标开度超过了规定目标开度;而且,所述目标开度的变化量在规定开度变化量以下;且目标开度在规定开度以上、其变化量在规定开度变化量以下的状态持续规定时间以上。
(14)在上述(12)中,优选为,所述控制机构,在判断为EGR控制或者DPF控制结束之后,在没有满足所述三个条件之中的至少一个的情况下,再次开始促动器控制。
(15)在上述(13)中,优选为,所述控制机构,在再次开始促动器控制时,对施加于促动器的促动器驱动占空比计算部的值进行初始化,之后开始控制。
(16)在上述(15)中,优选为,所述控制机构,促动器驱动占空比计算部的值的初始化,对至少积分项或者进行与其相当的动作的部分进行初始化。
(17)在上述(1)中,优选为,所述电子节流体具备:被固定于所述促动器的输出轴的第一齿轮;被固定于支承所述节流阀的节流轴的第二齿轮;以及从所述第一齿轮传递所述第二齿轮的驱动力的中间齿轮,在所述中间齿轮与支承该中间齿轮的所述节流体之间,还具备耐磨损性部件的垫圈。
(18)另外,为了达成上述目的,本发明的电子控制节流装置,具有:促动器,其驱动可以转动地被节流体支承的节流阀;单一的复位弹簧,其提供弹簧力使得所述节流阀返回到全开方向;电子节流体,其具有检测所述节流阀的开度的节流位置传感器;节流促动器控制单元,其对应于通过所述节流位置传感器检测出的所述节流阀的开度与目标开度,驱动所述促动器,其中,所述节流促动器控制单元具备控制机构,所述控制机构在EGR控制或者DPF控制结束时,将成为所述节流阀向全开方向缓慢移动的目标角度的控制信号提供给所述促动器,来开环控制,使得在比所述节流阀只通过所述复位弹簧向全开方向移动的时间长的时间内,使所述节流阀向全开方向移动。
通过所述结构,能够得到提高可靠性、对马达或机械部件没有损害,能够降低机械的碰撞噪音·冲击能量的电子控制节流控制装置。
(19)另外,为了达成上述目的,本发明的电子控制节流装置,具有:促动器,其驱动可以转动地被节流体支承的节流阀;单一的复位弹簧,其提供弹簧力使得所述节流阀返回到全开方向;电子节流体,其具有检测所述节流阀的开度的节流位置传感器;节流促动器控制单元,其对应于通过所述节流位置传感器检测出的所述节流阀的开度与目标开度,驱动所述促动器,其中,所述节流促动器控制单元具备控制机构,所述控制机构在EGR控制或者DPF控制结束时,如果EGR控制或者DPF控制结束,则重复所述促动器的控制状态与非控制状态,使得在比所述节流阀只通过所述复位弹簧向全开方向移动的时间长的时间内,使所述节流阀向全开方向移动。
通过所述结构,能够得到提高可靠性、对马达或机械部件没有损害,能够降低机械的碰撞噪音·冲击能量的电子控制节流控制装置。
(20)另外,为了达成上述目的,本发明的电子控制节流装置,具有:促动器,其驱动可以转动地被节流体支承的节流阀;单一的复位弹簧,其提供弹簧力使得所述节流阀返回到全开方向;电子节流体,其具有检测所述节流阀的开度的节流位置传感器;节流促动器控制单元,其对应于通过所述节流位置传感器检测出的所述节流阀的开度与目标开度,驱动所述促动器,其中,所述节流促动器控制单元具备控制机构,所述控制机构在EGR控制或者DPF控制结束时,在判断为EGR控制或者DPF控制结束之后,在规定时间的期间,控制所述节流阀的开度使其在全开点附近的位置保持规定时间,之后,重复所述促动器的所述控制状态和所述非控制状态,使得在比所述节流阀只通过所述复位弹簧向全开方向移动的时间长的时间内,使所述节流阀向全开方向移动。
通过所述结构,能够得到提高可靠性、对马达或机械部件没有损害,能够降低机械的碰撞噪音·冲击能量的电子控制节流控制装置。
(21)另外,为了达成上述目的,本发明的电子控制节流装置,具有:促动器,其驱动可以转动地被节流体支承的节流阀;单一的复位弹簧,其提供弹簧力使得所述节流阀返回到全开方向;电子节流体,其具有检测所述节流阀的开度的节流位置传感器;节流促动器控制单元,其对应于通过所述节流位置传感器检测出的所述节流阀的开度与目标开度,驱动所述促动器,其中,所述节流促动器控制单元具备控制机构,所述控制机构在EGR控制或者DPF控制结束时,在判断为EGR控制或者DPF控制结束之后,在规定时间的期间,控制所述节流阀的开度使其在全开点附近的位置保持规定时间,之后,使所述促动器成为非控制状态,使得在比所述节流阀只通过所述复位弹簧向全开方向移动的时间长的时间内,使所述节流阀向全开方向移动。
通过所述结构,能够得到提高可靠性、对马达或机械部件没有损害,能够降低机械的碰撞噪音·冲击能量的电子控制节流控制装置。
(22)另外,为了达成上述目的,本发明的电子控制节流装置,具有:促动器,其驱动可以转动地被节流体支承的节流阀;单一的复位弹簧,其提供弹簧力使得所述节流阀返回到全开方向;电子节流体,其具有检测所述节流阀的开度的节流位置传感器;节流促动器控制单元,其对应于通过所述节流位置传感器检测出的所述节流阀的开度与目标开度,驱动所述促动器,其中,所述电子节流体具备:被固定于所述促动器的输出轴的第一齿轮;被固定于支承所述节流阀的节流轴的第二齿轮;以及从所述第一齿轮传递所述第二齿轮的驱动力的中间齿轮,在所述中间齿轮与支承该中间齿轮的所述节流体之间,还具备耐磨损性部件的垫圈。
以下,对于适用本发明的EGR气体控制***进行说明。
图10表示出了适用本发明的一个实施方式的内燃机的排气回流***的结构。
被吸入发动机的空气,在空气过滤器41中被除掉吸气中的尘埃。然后,通过吸气流量检测器42检测吸气流量G1。被检测出的吸气流量G1的信号被输入发动机控制单元(ECU)421以及排气回流控制器(EGRCONT)420。吸气在涡轮增压机的压缩器43中被加压,通过吸气管44,在吸气流量控制阀5中控制流量或者压力。吸气进而流入吸气总管6,被分配到发动机47的各气筒。
吸气流量控制阀45的开度,通过从排气回流控制器420输出的吸气流量控制信号CTH而被控制。吸气流量控制阀45被马达驱动,例如是蝶式的阀门,检测蝶型阀的开度信号,作为开度信号θth被输入排气回流控制器420。
从在发动机47设置的燃料喷射阀419,向发动机47的气缸供给燃烧用燃料。向燃料喷射阀419的燃料供给是燃料泵417经由燃料配管418进行的。另外,燃料喷射阀419的喷射量通过ECU421而被控制,ECU421将燃料喷射量信号FINJ供给到燃料喷射阀419。
在发动机47结束了燃烧的排气被会聚到排气总管48,在通过了涡轮增压机的涡轮机49之后,通过催化剂410、排气管411被排到大气中。在排气总管48上设置有分支部412,分支了从发动机47的排气的一部分。被分支的排气,作为回流气体被回流管413a引导。在回流管413a上设置有回流气体冷却器414。通过回流气体冷却器414冷却的回流气体,通过回流管413b、回流气体控制阀416,回流到吸气总管46。
回流气体控制阀416的开度,通过从排气回流控制器420输出的回流气体控制阀416的开度控制信号CEG而被控制。回流气体控制阀416,例如,是座阀式的阀门,检测出座阀的行程量,作为行程信号STEG被输入到排气回流控制器420。作为回流气体控制阀416,例如,在使用蝶式的阀门的情况下,蝶型阀的开度信号被输入排气回流控制器420。
在回流管413b上设置有回流气体流量检测器415,其测定流过回流管内部的回流气体流量G2。被测定的回流气体流量G2输入到排气回流控制器420。而且,设置回流气体冷却器414,用于使回流气体的温度下降,也可以将其省略。
ECU421输入有发动机7的转速信号NE、或来自吸气流量检测器2的吸气流量信号G1等之外表示没有图示的发动机或车辆的状态的信号。ECU21,基于这些信号进行计算等,向各种装置作为控制指令值发送给各种装置。ECU421基于发动机7的转速信号NE或吸气流量信号G1等的信号判断发动机47的运转状态。ECU421对应于该运转状态,将回流气体回流率指令值R SET向排气回流控制器420输出。
排气回流控制器420,从吸气流量G1与回流气体流量G2求出排气的回流率R。然后,排气回流控制器420反馈控制吸气流量控制阀45以及/或者回流气体控制阀416A的开度,使得求出的回流率R与回流气体回流率指令值R SET一致。即,在本实施方式中,其特征在于,不仅控制回流气体控制阀416,还控制吸气流量控制阀45,使得排气的回流量成为目标值。
接着,利用图11以及图12,对于本实施方式中的内燃机的排气回流装置中的排气回流控制器的控制内容进行说明。
图11是适用本发明的内燃机的排气回流装置的控制***的框图。图12是表示适用本发明的内燃机的排气回流装置中的排气回流控制器的控制内容的流程图。而且,与图10相同的符号表示相同的部分。
如图11所示,向排气回流控制器420输入有:ECU421输出的回流气体回流率指令值R SET,通过吸气流量检测器42检测出的吸气流量信号G1以及通过回流气体流量检测器415检测出的回流气体流量G2。排气回流控制器420,向回流气体控制阀416输出开度控制信号CEG,向吸气流量控制阀5输出吸气流量控制信号CTH,控制这些阀416、45,使得排气的回流率R成为目标值R SET。而且,排气回流控制器420,从吸气流量信号G1以及回流气体流量G2,利用(G2/(G1+G2))计算出排气的回流率R。
而且,在以下的说明中,吸气流量控制阀45的响应性比回流气体控制阀416的响应性超前。具体来说,吸气流量控制阀45,例如,是孔径为50Φ的蝶型阀,回流气体控制阀416,例如,是座径为30Φ的座阀,此时,吸气流量控制阀45的响应性比回流气体控制阀416的响应性超前。
接着,利用图12,对于排气回流控制器的控制内容进行说明,而且,以下的控制内容全部是通过排气回流控制器420进行的。
在图12的步骤s500中,排气回流控制器420,从吸气流量信号G1以及回流气体流量G2,利用(G2/(G1+G2))计算出排气的回流率R。
接着,在步骤s510中,判断:从ECU421输入的排气的回流率R的目标值R SET的变化量ΔR SET是否比预先设定的基准值ΔR0大。在变化量ΔR SET比基准值ΔR0大的情况下,进入步骤s520,如果不是这种情况则进入步骤s550。即,在步骤s510中,判断排气的回流率R的目标值R SET是否有很大变化。产生内燃机的过渡的运转条件变化,为了降低排气中的有害物质,判断是否产生了需要使排气回流率急剧变化。
在变化量ΔR SET大于基准值ΔR0的情况下,即,在产生了需要使排气回流率急剧变化的情况下,在步骤s520中,判断:在步骤s510中计算出来的排气的回流率是否与排气的回流率R的目标值R SET相等。
在回流率R大于目标值R SET的情况下,在步骤s530中,减少向吸气流量控制阀45输出的开度控制信号CTH,进行控制使得吸气流量控制阀5的开度变小。然后,返回步骤s520,反复直到回流率R变得与目标值R SET相等。
另一方面,在回流率R小于目标值R SET的情况下,在步骤s540中,增加向吸气流量控制阀45输出的开度控制信号CTH,进行控制使得吸气流量控制阀45的开度变大。然后,返回步骤s520,反复直到回流率R变得与目标值R SET相等。
以上,通过反复进行步骤s520、s530、540的处理,反馈控制直到回流率R变得与目标值R SET相等。此时,由于吸气流量控制阀5的响应性超前于回流气体控制阀416的响应性,所以即使在产生了需要使排气回流率急剧变化的情况下,也能够迅速地将排气回流率变更为规定的目标值。
另一方面,在步骤s510的判断中,在变化量ΔR SET被判断为在基准值ΔR0以下的情况下,即,在排气回流率的变化并不很大的情况下,在步骤s550中,判断:在步骤s510中计算出的排气的回流率R是否与排气的回流率R的目标值R SET相等。
在回流率R大于目标值R SET的情况下,在步骤s560中,减少向回流气体控制阀416输出的开度控制信号CEG,进行控制使得回流气体控制阀416的开度变小。然后,返回步骤s550,反复直到回流率R变得与目标值R SET相等。
另一方面,在回流率R小于目标值R SET的情况下,在步骤s570中,增加向回流气体控制阀416输出的开度控制信号CEG,进行控制使得回流气体控制阀416的开度变大。然后,返回步骤s550,反复直到回流率R变得与目标值R SET相等。
以上,通过反复进行步骤s550、s560、570的处理,反馈控制直到回流率R变得与目标值R SET相等。此时,由于回流气体控制阀416的响应性滞后于吸气流量控制阀45的响应性,所以能够进行更加细微的开度控制,从而,能够正确地将排气回流率变更为规定的目标值。
而且,在以上的说明中,虽然吸气流量控制阀5的响应性超前于回流气体控制阀416的响应性,但是相反地,有时回流气体控制阀416的响应性超前于吸气流量控制阀45的响应性。具体来说,吸气流量控制阀45,例如,是孔径为30Φ的蝶型阀,回流气体控制阀416,例如,是座径为50Φ的座阀,此时,回流气体控制阀416的响应性超前于吸气流量控制阀45的响应性。在这种情况下,即在产生了需要使排气回流率急剧变化的情况下,控制响应性超前的回流气体控制阀416,在不需要使排气回流率急剧变化的情况下,控制响应性滞后的吸气流量控制阀45,这样可以提高控制精度。
如上所述,在产生了需要使排气回流率急剧变化的情况下,通过对响应性超前的控制阀进行控制,就能够应对急剧的变化,另一方面,在不需要使排气回流率急剧变化的情况下,通过对响应性滞后的控制阀进行控制,就能够提高控制精度。
以上说明的、在产生了需要使排气回流率急剧变化的情况下的、吸气流量控制阀45的响应性与回流气体控制阀416的响应性的关系,即使如前面实施例那样回流气体控制阀416是蝶型阀,另外,即使在其安装位置如前面实施例那样被配置于吸气通路之间的情况下,也是同样的。
接着,利用图13,对于本实施方式的内燃机的排气回流装置中的排气回流控制器的反馈控制方法进行说明。
图13是在本发明的一个实施方式的内燃机的排气回流装置中,将发动机7的从吸气侧的吸气流量控制阀45到排气侧的涡轮增压机的涡轮机49模型化了的图。而且,与图10相同的符号表示相同的部分。
在图13中,通过吸气流量控制阀5的流量与压力分别为G1、P1,通过涡轮增压机的涡轮机9的流量与压力分别为G3、P4,在回流气体控制阀416中将发动机7为基准,如果通过发动机47的排气侧即回流管413a的流量与压力分别为G2、P2,则该***的关系,能够用以下的公式(1)、公式(2)、公式(3)的联立方程式来表示。
G1+G2=G3=f3(ne,ηv,p2)…(1)
G1=f1(p1,p2,ζ)…(2)
G2=f2(p2,p3,ζ′)…(3)
此处,ne:发动机转速、η:发动机的体积效率、v:发动机排气量、p1:吸气压力、p2:发动机的背压、p3:涡轮增压机的涡轮机背压、ζ:吸气流量控制阀损失系数、ζ′:回流气体控制阀损失系数、f1:吸气流量控制阀流量特性、f2:回流气体控制阀流量特性。
另一方面,回流气体回流率R,如上所述,用R=G2/(G1+G2)计算出。即,如果求出通过吸气流量控制阀5的流量G1与通过回流气体控制阀的流量G2的值则唯一地确定。
此处,如公式(2)所示,通过吸气流量控制阀5的流量G1,能够通过损失系数ζ、即吸气流量控制阀5阀的开度来进行控制。同样地,如公式(3)所示,通过回流气体控制阀416的流量G2,能通过损失系数ζ′、即回流气体控制阀416的阀开度来进行控制。即,以流量G1、G2为基准,通过将反馈***组装入吸气流量控制阀45的阀开度与回流气体控制阀416的阀开度的指令***,就能够控制回流气体回流率R。
进而,此时通过预先把握并设置吸气流量控制阀45以及回流气体控制阀416的流量特性,能够提高控制速度。即,例如,预先把握:驱动吸气流量控制阀45使吸气流量变化时的单位时间相当的流量变化量;与驱动回流气体控制阀416使吸气流量变化时的单位时间相当的流量变化量。然后,在驱动吸气流量控制阀45使吸气流量变化时的单位时间相当的流量变化量,超前于驱动回流气体控制阀416使吸气流量变化时的单位时间相当的流量变化量时,即,在吸气流量控制阀45的响应性超前于回流气体控制阀416的响应性时,在产生了需要使排气回流率急剧变化的情况下,通过控制吸气流量控制阀45,能够迅速地将排气回流率变更为规定的目标值,提高控制速度。
接着,利用图14以及图15,对于在本实施方式的内燃机的排气回流装置中使用的回流气体检测器415的结构进行说明。
图14是表示在使用了本发明的内燃机的排气回流***中使用的回流气体流量检测器的第一结构的部分剖面图。图15是表示在使用了本发明的内燃机的排气回流***中使用的回流气体流量检测器的第二结构的部分剖面图。
图14所示的回流气体流量检测器415是通过回流管内部的压力来测定回流气体流量的。在回流管13b的内壁面的一部分形成有节流部153。低压侧压力探测器152被设置成探测部向节流部153开口。高压侧压力探测151被设置成探测部向没有设置节流部153的部位的回流管413b开口。通过低压侧压力探测器152与高压侧压力探测器151测定回流管413b的内部的压力。低压侧压力探测器152,通过被设置于节流部153,能够利用伯努里定理的文丘里效果。排气回流控制器420,从两个压力探测器151、152的压力差,能够探测回流管413b的内部的回流气体流量G2。进而还具备检测流过回流管413b的内部的回流气体的温度的温度传感器4154。排气回流控制器420,对从压力探测器151、152的压力差求出的回流气体流量G2,通过由温度传感器154检测出的回流气体温度来进行修正。而且,在回流气体流量检测器415的内部具备电路元件,所述电路元件用于对从压力探测器151、152的压力差求出的回流气体流量G2,进而通过由温度传感器154检测出的回流气体温度来进行修正,回流气体流量检测器154也可以将回流气体流量G2的检测信号输出到排气回流控制器420。
图15所示的回流气体流量探测器415A,通过热线式探测器测定回流气体流量。回流气体流量探测器156被设置于回流管413b的壁面。另外,在回流气体流量检测器156上设置有探测部件157,测定回流管413b的内部的回流气体流量。在探测部件157中流通有电流,从而被加热成为一定温度。对应于回流气体的流量,从探测部件157获得的热量变化,此时,通过控制探测部件157的温度使其一定,流过探测部件157的电流成为表示回流气体流量的信号。在该方式中,由于使用热线式探测器,所以能够直接测定质量流量即G2。
以上是回流气体流量探测器415的结构的说明,但作为吸气流量探测器2,也可以使用图14所示的探测压力的方式的探测器、或图15所示的热线式的探测器。
接着,利用图16以及图17,对于在本实施方式的内燃机的排气回流装置中使用的吸气流量控制阀45的特性进行说明。
图16、图17是表示在本发明的一个实施方式的内燃机的排气回流装置中使用的吸气流量控制阀的驱动方式的不同的特性的图。在图16、图17中,横轴表示时间,纵轴表示吸气流量控制阀的阀开度。纵轴的阀开度以百分率来表示,最大开度时为100%。
在图16中,实线X1,作为吸气流量控制阀45,表示使用了电子控制方式的节流促动器时的阀开度的特性。实线X2,作为吸气流量控制阀45,表示使用了真空式的节流促动器时的阀开度的特性。
在以实线X2表示的真空式的促动器中,只控制阀开度A与全开点即B的两个开度,对回流气体回流率进行所述的反馈控制很困难。
另一方面,如实线X1所示,在使用了电子控制方式的节流促动器时,可以无级地控制从阀开度0到全开点B,容易实现反馈控制。因此,作为在本实施方式中使用的吸气流量控制阀45,最好使用电子控制方式的节流促动器。
接着,图17说明电子控制方式的节流促动器的驱动方式的不同而引起的不同特性的图。实线Y1是表示通过直流电动机驱动节流阀方式的节流促动器中的响应性。实线Y1是表示通过步进马达驱动节流阀方式的节流促动器中的响应性。
步进马达虽然为了对应于驱动脉冲的旋转可以进行开环控制,但是如图中的实线Y2所示的特性那样,与直流电动机方式相比响应速度滞后。一般来说由于避免失步等的制约而难以高速化,在寻求高速化时会导致步进马达的大型化进而导致成本变高。
对此,直流电动机,容易获得小型的高速旋转类型的物体,进而,通过进行位置的反馈控制,适合作为小型、高速且成本低的驱动源。
另外,从控制分解度的观点来看,在步进马达中驱动步骤成为控制分解度,与高速化相反。另一方面,在直流电动机的情况下,通过在反馈控制中使用的位置检测传感器的分解度来确定,如果使用电位计等连续输出方式的装置,则能够容易地组成高分解度的反馈***。
因此,作为电子控制方式的节流促动器的驱动源,直流电动机是合适的。而且,在采用了无刷马达的情况下,也能够得到与直流电动机同样的效果。
如以上的说明那样,根据本实施方式,即使在产生了需要使排气回流率急剧变化的情况下,通过对响应性超前的一方的控制阀进行控制,也能够应对急剧的变化,另一方面,在不需要急剧变化时,通过对响应性滞后的一方的控制阀进行控制,能够提高控制精度。
接着,利用图18~图20,对于本发明的其他实施方式的内燃机的排气回流装置的结构以及动作进行说明。而且,使用了本实施方式的内燃机的排气回流装置的发动机***的结构与图10所示的相同。
图18是本发明的其他实施方式的内燃机的排气回流装置的控制***的框图。而且,与图10相同的符号表示相同的部分。图19是在本发明的其他实施方式的内燃机的排气回流装置中使用的图像(map)的结构图。图20是表示在本发明的其他实施方式的内燃机的排气回流装置中的排气回流控制器的控制内容的流程图。而且,与图12相同的符号表示相同的部分。
如图18所示,在本实施方式中,排气回流控制器420A,在其内部具备三维图像420B。在排气回流控制器420A中输入有:ECU421输出的回流气体回流率指令值R SET、通过吸气流量检测器2检测出的吸气流量信号G1、通过回流气体流量检测器415检测出的回流气体流量G2、来自吸气流量控制阀5的开度信号θTH以及来自回流气体控制阀416的行程信号S TEG。
排气回流控制器420A,从吸气流量信号G1以及回流气体流量G2,利用(G2/(G1+G2))计算出排气的回流率R。排气回流控制器420A,最初利用图像420B,向回流气体控制阀16输出开度控制信号CEG、或向吸气流量控制阀5输出吸气流量控制信号CTH,使得排气的回流率R成为目标值R SET,进而通过反馈控制,向回流气体控制阀416输出开度控制信号CEG,向吸气流量控制阀45输出吸气流量控制信号CTH,来控制这些阀416、45。
接着,利用图19,对于三维图像420B的内容进行说明。图像420B是新鲜气体通路开度θTH(%)、回流通路开度S TEG(%)、以及回流率R(%)的三维图像。新鲜气体通路开度θTH(%),在吸气流量控制阀45是蝶型阀时,以百分率表示开度信号θTH,其最大开度为100%。回流通路开度S TEG(%),在回流气体控制阀416是座阀式的阀门时,以百分率表示行程信号S TEG,座阀的最大行程量为100%。
此处,在如最前一个实施例那样回流气体控制阀416是蝶型阀的情况下,与吸气流量控制阀45的情况相同,以百分率表示开度信号θTH,其最大开度为100%。
图19是在某一发动机的运转状态时,表示出了解开上述的公式(1)、公式(2)以及公式(3)的结果。此处,在图示的关系中,吸气流量控制阀45的指示范围是从开度5%到25%,同样地回流气体控制阀414的指示范围是从开度0%到60%。三维图像上的格子点表示满足回流气体回流率的吸气流量控制阀5阀以及回流气体控制阀的阀开度的关系。三维图像420B设置有对应于发动机的各运转状态的多个三维图像。而且,使用对应于发动机的运转状态的图像,通过选择该图像上的格子点,即使通过开环控制也能够控制回流气体回流率。
此处,在观察图19所示的相对于吸气流量控制阀5与回流气体控制阀416的阀开度变化的回流率的变化时,相对于吸气流量控制阀45的开度变化的气体回流率的变化比例,大于相对于吸气流量控制阀5的开度变化的气体回流率的变化比例。进而,在电子控制方式的节流促动器中,实际将100msec以下的节流促动器应用于阀开度从0%到100%的动作,图19中的从5%到25%的区域可以以20msec来动作。因此,在图19所示的例子中,吸气流量控制阀45的响应性超前于回流气体控制阀416的响应性,回流气体回流率指令值R SET,即使在例如脉冲性的急剧变化的情况下,以电子控制方式的节流促动器即吸气流量控制阀5为主使其动作,就能够应对脉冲性的指令值的变动。即,还能够应对过渡的发动机运转状态的变化。
接着,利用图20,对于排气回流控制器420B的控制内容进行说明。而且,以下的控制内容都是通过排气回流控制器420B执行的。另外,与图12相同步骤的号码,表示相同的处理内容。在本实施方式中,步骤s610~步骤s640的处理被追加到图12的处理中。
在图20的步骤s500中,排气回流控制器420B,从吸气流量信号G1以及回流气体流量G2,利用(G2/(G1+G2))计算出排气的回流率R。
接着,在步骤s510中,判断:从ECU421输入的排气的回流率R的目标值R SET的变化量ΔR SET是否比预先设定的基准值ΔR0大。在变化量ΔR SET比基准值ΔR0大的情况下,进入步骤s610,如果不是这种情况则进入步骤s630。即,在步骤s510中,判断排气的回流率R的目标值R SET是否有很大变化。产生内燃机的过渡的运转条件变化,为了降低排气中的有害物质,判断是否产生了需要使排气回流率急剧变化。
在变化量ΔR SET大于基准值ΔR0的情况下,即,在产生了需要使排气回流率急剧变化的情况下,在步骤s610中,利用对应于此时的发动机的运转状态的三维图像420B,从对应于回流气体回流率指令值R SET的回流率R、与回流通路开度S TEG(%),求出作为目标的新鲜气体通路开度θTH(%)。
然后,在步骤s620中,将用于成为作为目标的新鲜气体通路开度θTH(%)的开度控制信号CTH输出到吸气流量控制阀5,进行开环控制使得吸气流量控制阀45的开度成为作为目标的新鲜气体通路开度θTH(%)。如此,通过控制吸气流量控制阀45的开度,能够迅速地控制在作为目标的新鲜气体通路开度θTH(%)附近,使得以开环控制而成为新鲜气体通路开度θTH(%)。
接着,在步骤s520中,判断:在步骤s510中计算出来的排气的回流率R是否与排气的回流率R的目标值R SET相等。
在回流率R大于目标值R SET的情况下,在步骤s530中,减少向吸气流量控制阀45输出的开度控制信号CTH,进行控制使得吸气流量控制阀5的开度变小。然后,返回步骤s520,反复直到回流率R变得与目标值R SET相等。
另一方面,在回流率R小于目标值R SET的情况下,在步骤s540中,增加向吸气流量控制阀45输出的开度控制信号CTH,进行控制使得吸气流量控制阀45的开度变大。然后,返回步骤s520,反复直到回流率R变得与目标值R SET相等。
以上,通过反复进行步骤s520、s530、540的处理,反馈控制直到回流率R变得与目标值R SET相等。如上所述,由于吸气流量控制阀45的响应性超前于回流气体控制阀416的响应性,所以即使在产生了需要使排气回流率急剧变化的情况下,也能够迅速地将排气回流率变更为规定的目标值。
另一方面,在步骤s510的判断中,在变化量ΔR SET被判断为在基准值ΔR0以下的情况下,即,在排气回流率的变化并不很大的情况下,在步骤s630中,利用对应于此时的发动机的运转状态的三维图像420B,从对应于回流气体回流率指令值R SET的回流率R、与新鲜气体通路开度θTH(%),求出作为目标的回流通路开度S TEG(%)。
然后,将用于成为作为目标的回流通路开度S TEG(%)的开度控制信号CEG输出到回流气体控制阀416,进行开环控制使得回流气体控制阀416的开度成为作为目标的回流通路开度S TEG(%)。
接着,在步骤s550中,判断:在步骤s510中计算出来的排气的回流率R是否与排气的回流率R的目标值R SET相等。
在回流率R大于目标值R SET的情况下,在步骤s560中,减少向回流气体控制阀416输出的开度控制信号CEG,进行控制使得回流气体控制阀416的开度变小。然后,返回步骤s550,反复直到回流率R变得与目标值R SET相等。
另一方面,在回流率R小于目标值R SET的情况下,在步骤s570中,增加向回流气体控制阀416输出的开度控制信号CEG,进行控制使得回流气体控制阀416的开度变大。然后,返回步骤s550,反复直到回流率R变得与目标值R SET相等。
以上,通过反复进行步骤s550、s560、570的处理,反馈控制直到回流率R变得与目标值R SET相等。此时,由于回流气体控制阀416的响应性滞后于吸气流量控制阀45的响应性,所以能够进行更加细微的开度控制,从而,能够正确地将排气回流率变更为规定的目标值。
而且,在以上的说明中,虽然吸气流量控制阀45的响应性超前于回流气体控制阀416的响应性,但是相反地,有时回流气体控制阀416的响应性超前于吸气流量控制阀45的响应性。在这种情况下,即在产生了需要使排气回流率急剧变化的情况下,最初开环控制响应性超前的回流气体控制阀416,接着进行反馈控制,在不需要使排气回流率急剧变化的情况下,控制响应性滞后的吸气流量控制阀5,这样可以提高控制精度。
如上所述,在本实施方式中,即使排气回流率急剧变化的情况下,通过最初开环控制响应性超前的控制阀,也能够迅速地将阀移动到目标开度附近,接着,通过反馈控制,使会聚到目标开度,而也可以对应急剧变化,另一方面,在不需要急剧变化的情况下,控制响应性滞后的吸气流量控制阀5,这样可以提高控制精度。
对以上所说明的本实施例的EGR控制***的特征进行总结,其结果如下所述。
在柴油发动机之类的内燃机中,排气净化、特别是为了削减氮氧化物的排放,该排气回流控制是很重要的。作为现有的排气回流装置,例如,日本特开2003-83034号公报、特许第3329711号公报、特表2003-516496号公报所公开的那样,控制排气回流阀的开度,使成为规定的排气回流率。
但是,在控制排气回流阀的开度的现有的方式中,对于内燃机的全部运转区域,特别是对于过渡的运转条件变化,为了降低排气中的有害物质,在产生了需要使排气回流率急剧变化的情况下,就有难以进行适当的控制的问题。
本实施例的目的在于,提供一种内燃机的排气回流流量控制的响应速度以及精度提高了的排气回流装置。
(1)为了达成上述目的,本实施例的排气回流装置,具备:控制内燃机的排气回流通路的回流流量的回流气体控制阀、内燃机的吸气通路的流量控制的吸气控制阀,其中,其具备:检测所述吸气通路的流量的吸气流量探测器;检测所述排气回流通路的排气回流流量的回流量探测器;以及控制机构,所述控制机构对所述吸气控制阀以及/或者所述回流气体控制阀进行反馈控制,使得基于所述吸气流量探测器与所述回流量探测器的输出而求得的排气回流率成为目标回流率。
根据所述结构,能够提高内燃机的排气回流流量控制的响应速度以及精度。
(2)在上述(1)中,优选为,所述控制机构,在所述回流率的目标值急剧变化的情况下,对所述吸气控制阀以及所述回流气体控制阀之内的、响应性超前的阀进行反馈控制。
(3)在上述(1)中,优选为,具备多个通过所述回流气体控制阀开度、所述吸气控制阀开度、所述回流率的组合状态来定义的三维图像,所述控制机构,选择与内燃机的运转状态相对应的所述三维图像,对所述吸气控制阀以及/或者所述回流气体控制阀进行控制,使得基于所述吸气流量探测器与所述回流流量探测器的输出而求得的排气回流率成为目标回流率。
(4)在上述(2)中,优选为,所述控制机构,在所述回流率的目标值急剧变化的情况下,对所述吸气控制阀以及所述回流气体控制阀之内的、响应性超前的阀进行控制。
(5)在上述(1)中,优选为,所述排气回流量探测器,是以所述排气回流通路的至少两处以上的压力差为基准,检测回流量的探测器;或者是检测所述排气回流通路的质量流量的探测器,所述吸气量探测器,是以所述吸气通路的至少两处以上的压力差为基准,检测吸气量的探测器;或者是检测所述吸气通路的质量流量的探测器。
(6)在上述(1)中,优选为,所述吸气控制阀作为电子控制方式的节流促动器。
工业使用性
根据本发明,能够提供一种可以实现EGR等的控制的改善的柴油发动机的EGR控制装置以及马达驱动式节流阀装置。

Claims (19)

1.一种柴油发动机的EGR控制装置,其使排气的一部分回流到柴油发动机的吸气通路内,其中,
具备:
节流阀,其在EGR控制时控制发动机的吸气通路的开度,
EGR阀,其控制被回流到所述吸气通路的排气的流量,
第一机体,其具有所述节流阀、所述节流阀的驱动马达以及减速齿轮机构,
第二机体,其导入具有所述EGR阀的排气回流通路的一端,并具有EGR阀的驱动马达以及减速齿轮机构,
所述第一、第二机体被结合成一个集合体,在所述第一、第二机体安装有覆盖各自的减速齿轮机构的第一、第二罩部,
至少用于驱动控制所述节流阀的电路基板被内置于所述第一罩部与所述第二罩部中至少任一方。
2.根据权利要求1所述的柴油发动机的EGR控制装置,其中,
所述节流阀,除了EGR控制之外,还被使用于防止自然着火现象、柴油机颗粒过滤器的再生中至少一个。
3.根据权利要求1所述的柴油发动机的EGR控制装置,其中,
用于驱动控制所述节流阀以及所述EGR阀的电路基板通过单一基板形成。
4.根据权利要求1所述的柴油发动机的EGR控制装置,其中,
在所述电路基板形成的所述EGR阀的控制信号,从在所述第一罩部设置的连接器端子经由在所述第二罩部设置的连接器端子,被发送到所述EGR阀的驱动马达。
5.根据权利要求1所述的柴油发动机的EGR控制装置,其中,
所述电路基板,从被配置于罩外部的上位的发动机控制单元输入与目标EGR率相关的信号,基于此求出EGR控制时的节流阀开度以及EGR阀开度。
6.一种柴油发动机的EGR控制装置,其使排气的一部分回流到柴油发动机的吸气通路内,其中,
具备:在EGR控制时控制发动机的吸气通路的开度的节流阀以及控制被回流到所述吸气通路的排气的流量的EGR阀,
在具有所述节流阀、所述节流阀的驱动马达以及减速齿轮机构的机体上安装有覆盖所述减速齿轮机构的树脂罩,在该树脂罩内置有用于驱动控制所述节流阀的电路基板,在该电路基板上设置有将电池电压减压到马达电源电压的电路。
7.一种柴油发动机的EGR控制装置,其使排气的一部分回流到柴油发动机的吸气通路内,其中,
具备:在EGR控制时控制发动机的吸气通路的开度的节流阀以及控制被回流到所述吸气通路的排气的流量的EGR阀,
在具有所述节流阀、所述节流阀的驱动马达以及减速齿轮机构的机体上安装有覆盖所述减速齿轮机构的树脂罩,在该树脂罩内置有用于驱动控制所述节流阀的电路基板,
所述电路基板被热传导性比所述树脂罩好的金属板支承,该金属板贯通所述树脂罩,并被安装于该树脂罩,所述金属板的散热面被暴露于所述树脂罩的外部。
8.根据权利要求7所述的柴油发动机的EGR控制装置,其中,
在所述电路基板上,除了所述节流阀之外,还设置有驱动控制所述EGR阀的电路。
9.根据权利要求7所述的柴油发动机的EGR控制装置,其中,
在所述金属板上安装有冷却水管。
10.一种柴油发动机的EGR控制装置,其使排气的一部分回流到柴油发动机的吸气通路内,其中,
具备:在EGR控制时控制发动机的吸气通路的开度的节流阀以及控制被回流到所述吸气通路的排气的流量的EGR阀,
在具有所述节流阀、所述节流阀的驱动马达以及减速齿轮机构的机体上,安装有覆盖所述减速齿轮机构的树脂罩,在该树脂罩内置有用于驱动控制所述节流阀的电路基板,
在所述电路基板上,为了使在发动机的排气通路设置的柴油机颗粒过滤器上附着的颗粒状物质燃烧,并行设置有控制所述节流阀开度的电路。
11.根据权利要求10所述的柴油发动机的EGR控制装置,其中,
在所述电路基板上,除了所述节流阀之外,还设置有驱动控制所述EGR阀的电路。
12.一种马达驱动式节流阀装置,
具备:
节流阀,其在EGR控制时控制发动机的吸气通路的开度,
EGR阀,其控制被回流到所述吸气通路的排气的流量,
第一机体,其具有所述节流阀、所述节流阀的驱动马达、以及减速齿轮机构,
第二机体,其导入具有所述EGR阀的排气回流通路的一端,并具有EGR阀的驱动马达以及减速齿轮机构,其中,
在所述第一机体的下游侧串联结合所述第二机体,在所述第一、第二机体上安装有覆盖各自的减速齿轮机构的第一、第二罩部,
通过上下平行配置所述节流阀的驱动轴与所述EGR阀的驱动轴,将这些驱动轴的减速齿轮以及所述第一、第二罩部排列配置于所述第一、第二机体的侧面。
13.根据权利要求12所述的马达驱动式节流阀装置,其中,
所述第一、第二罩部,分别成形或者一体成形。
14.根据权利要求12所述的马达驱动式节流阀装置,其中,
在所述第一罩部内装有检测所述节流阀的开度的传感器,在所述第二罩部内装有检测所述EGR的开度的传感器,并且,在所述第一、第二罩部成形有连接器,所述连接器至少具有:将来自各自的传感器的信号发送给发动机控制单元的输出端子、向所述驱动马达的供电用端子、地线端子、以及输入各阀门的控制信号的输入端子。
15.根据权利要求14所述的马达驱动式节流阀装置,其中,
所述各连接器朝向所述节流阀的上游侧。
16.一种马达驱动式节流阀装置,
具备:
形成有吸气通路的机体;
被安装于所述吸气通路,对应设备的运转状态来对该吸气通路的通路截面积进行节流的节流阀;
被所述机体支承,固定有所述节流阀的节流阀轴;
在所述机体上安装的马达;
将该马达的旋转传递给所述节流阀轴的减速齿轮机构;
安装于所述机体上的用于覆盖该齿轮机构的树脂罩;
在所述树脂罩上安装的控制电路;
其中,还具有:一体形成于所述树脂罩上,且具有输出来自所述控制电路的EGR阀控制信号的端子的连接器。
17.根据权利要求16所述的马达驱动式节流阀装置,其中,
在所述连接器上设置有接收信号的端子,所述信号表示用于计算所述EGR阀控制信号的设备的状态。
18.根据权利要求16所述的马达驱动式节流阀装置,其中,
在所述控制电路输入有检测所述节流阀轴的旋转角度的开度计的输出信号。
19.根据权利要求16所述的马达驱动式节流阀装置,其中,
在所述连接器上设置有向外部输出检测所述节流阀轴的旋转角度的开度计的输出信号的端子。
CNA2003801107203A 2003-11-28 2003-11-28 柴油发动机的egr控制装置及马达驱动式节流阀装置 Pending CN1878944A (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2003/015271 WO2005052347A1 (ja) 2003-11-28 2003-11-28 ディーゼルエンジンのegr制御装置およびモータ駆動式スロットル弁装置

Publications (1)

Publication Number Publication Date
CN1878944A true CN1878944A (zh) 2006-12-13

Family

ID=34631284

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2003801107203A Pending CN1878944A (zh) 2003-11-28 2003-11-28 柴油发动机的egr控制装置及马达驱动式节流阀装置

Country Status (5)

Country Link
US (1) US20070107708A1 (zh)
EP (1) EP1701029A1 (zh)
JP (1) JPWO2005052347A1 (zh)
CN (1) CN1878944A (zh)
WO (1) WO2005052347A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067894A1 (fr) * 2007-11-07 2009-06-04 Chery Automobile Co., Ltd. Dispositif mécanique à variation continue à tourbillon pour moteur diesel
CN104314714A (zh) * 2014-09-30 2015-01-28 四川田奥环保科技有限公司 一种电控egr阀门
CN106121834A (zh) * 2015-05-08 2016-11-16 福特环球技术公司 用于使用包括空心通道的节气门的真空产生的方法和***
CN107035544A (zh) * 2015-09-15 2017-08-11 株式会社电装 阀设备
CN107084055A (zh) * 2017-03-30 2017-08-22 宁波吉利罗佑发动机零部件有限公司 一种用于车辆发动机的节流阀装置
CN108884765A (zh) * 2016-04-12 2018-11-23 日立汽车***株式会社 阀体、电控节气门主体、马达驱动式节气门主体以及阀门装置
CN112796911A (zh) * 2020-12-21 2021-05-14 中国船舶重工集团公司第七一一研究所 一种用于船舶发动机的可变容积进气箱和动力***

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7946117B2 (en) 2006-12-15 2011-05-24 Caterpillar Inc. Onboard method of determining EGR flow rate
US7788020B2 (en) * 2008-03-11 2010-08-31 Deere & Company System and method for detecting cylinder misfire
US8096289B2 (en) * 2008-11-18 2012-01-17 Cummins Intellectual Properties, Inc. Apparatus and method for separating air compressor supply port from the EGR gas
JP5066142B2 (ja) 2009-06-18 2012-11-07 日立オートモティブシステムズ株式会社 インダクティブ型スロットルセンサ付きモータ駆動型スロットルバルブ装置、およびモータ駆動型スロットルバルブ装置のスロットルシャフトの回転角度を検出するためのインダクティブ型スロットルセンサ
JP4935866B2 (ja) * 2009-07-31 2012-05-23 株式会社デンソー 低圧egr装置
FR2954407B1 (fr) * 2009-12-22 2018-11-23 Valeo Systemes De Controle Moteur Procede de commande d'un circuit egr d'un moteur de vehicule automobile, vanne pour la mise en oeuvre du procede et moteur avec la vanne.
FR2958337B1 (fr) * 2010-03-31 2013-03-01 Valeo Systemes Thermiques Collecteur de repartition de gaz dans la culasse d'un moteur, ensemble d'un collecteur de repartition et d'une culasse de moteur.
EP2426343B1 (de) * 2010-09-07 2013-11-20 Pierburg Pump Technology GmbH Kfz-Verbrennungsmotor-Abgasrückführventil mit einem mechanisch kommutierten Antriebsmotor
JP5510428B2 (ja) * 2011-10-31 2014-06-04 株式会社デンソー 低圧egr装置
DE102011119139A1 (de) * 2011-11-23 2013-05-23 Gustav Wahler Gmbh U. Co. Kg Ventil, insbesondere Niederdruckventil, zur Steuerung einer Abgasrückführung
US9279406B2 (en) 2012-06-22 2016-03-08 Illinois Tool Works, Inc. System and method for analyzing carbon build up in an engine
US20140000576A1 (en) * 2012-06-29 2014-01-02 Continental Automotive Systems, Inc. Chassis mount multi-input h-bridge electrical harness
FR3007470B1 (fr) * 2013-06-25 2017-08-11 Valeo Systemes De Controle Moteur Module de distribution pour distribuer un melange d’admission
US20160169164A1 (en) * 2013-07-23 2016-06-16 Mahindra & Mahindra Ltd. Naturally aspirated common rail diesel engine meeting ultra low pm emission by passive exhaust after treatment
US20150059713A1 (en) * 2013-08-27 2015-03-05 Deere & Company Intake manifold
US10001087B2 (en) * 2014-03-19 2018-06-19 Anthony Stephen Hanak EGR power module and method of use thereof
US10151280B2 (en) * 2014-03-19 2018-12-11 Anthony Stephen Hanak EGR power module and method of use thereof
DE102014213869A1 (de) * 2014-07-16 2016-01-21 Continental Automotive Gmbh Sensorvorrichtung zum Bestimmen einer Verschiebung einer Welle
JP6435969B2 (ja) * 2015-03-31 2018-12-12 株式会社デンソー Egr装置
DE102016003003B4 (de) * 2016-03-11 2017-10-12 Mtu Friedrichshafen Gmbh Zuführungsanordnung zur Einleitung von rückgeführtem Abgas
JP6731325B2 (ja) * 2016-10-12 2020-07-29 日立グローバルライフソリューションズ株式会社 電力変換装置およびこれを用いたシステム
EP3498999B1 (de) * 2017-12-13 2020-12-16 Vitesco Technologies GmbH Ventil für ein abgassystem in einem kraftfahrzeug
KR20210117454A (ko) * 2020-03-19 2021-09-29 현대자동차주식회사 차량의 가변 흡기 시스템
CN214247509U (zh) * 2020-12-18 2021-09-21 无锡法雷奥汽车零配件***有限公司 电子节气门和车辆

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0820292B2 (ja) * 1989-04-14 1996-03-04 株式会社日立製作所 内燃機関用吸入空気流量計測装置
EP1050674B1 (en) * 1995-01-17 2003-04-16 Hitachi, Ltd. Air flow rate control apparatus
DE19549107A1 (de) * 1995-12-29 1997-07-03 Bosch Gmbh Robert Vorrichtung zur Abgasrückführung mit einem im Ansaugkanal betätigbaren Schließelement
DE19607811A1 (de) * 1996-03-01 1997-09-04 Bosch Gmbh Robert Abgasrückführventil
US6135415A (en) * 1998-07-30 2000-10-24 Siemens Canada Limited Exhaust gas recirculation assembly
JP2000136760A (ja) * 1998-10-30 2000-05-16 Aisan Ind Co Ltd 排気ガス還流装置
SE521713C2 (sv) * 1998-11-09 2003-12-02 Stt Emtec Ab Förfarande och anordning för ett EGR-system, samt dylik ventil
WO2000058614A1 (fr) * 1999-03-29 2000-10-05 Hitachi, Ltd. Dispositif d'etranglement commande de maniere electronique
DE19934113A1 (de) * 1999-07-21 2001-01-25 Bosch Gmbh Robert Klappenventil
US6443135B1 (en) * 1999-10-05 2002-09-03 Pierburg Aktiengesellschaft Assembly of a valve unit, a combustion air intake and an exhaust gas recirculation unit for an internal combustion engine
JP2002188464A (ja) * 2000-12-15 2002-07-05 Denso Corp 吸気絞り装置
JP4380072B2 (ja) * 2001-03-09 2009-12-09 株式会社デンソー Egr弁一体型電子ベンチュリ
JP2002317658A (ja) * 2001-04-20 2002-10-31 Denso Corp 内燃機関用スロットル装置
US6640542B2 (en) * 2001-12-20 2003-11-04 Caterpillar Inc Bypass venturi assembly with single shaft actuator for an exhaust gas recirculation system
JP3855818B2 (ja) * 2002-03-28 2006-12-13 日産自動車株式会社 ディーゼルエンジンの排気浄化装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009067894A1 (fr) * 2007-11-07 2009-06-04 Chery Automobile Co., Ltd. Dispositif mécanique à variation continue à tourbillon pour moteur diesel
CN104314714A (zh) * 2014-09-30 2015-01-28 四川田奥环保科技有限公司 一种电控egr阀门
CN106121834A (zh) * 2015-05-08 2016-11-16 福特环球技术公司 用于使用包括空心通道的节气门的真空产生的方法和***
CN106121834B (zh) * 2015-05-08 2020-12-29 福特环球技术公司 用于使用包括空心通道的节气门的真空产生的方法和***
CN107035544A (zh) * 2015-09-15 2017-08-11 株式会社电装 阀设备
CN108884765A (zh) * 2016-04-12 2018-11-23 日立汽车***株式会社 阀体、电控节气门主体、马达驱动式节气门主体以及阀门装置
CN108884765B (zh) * 2016-04-12 2021-07-27 日立汽车***株式会社 电控节气门主体以及马达驱动式节气门主体
CN107084055A (zh) * 2017-03-30 2017-08-22 宁波吉利罗佑发动机零部件有限公司 一种用于车辆发动机的节流阀装置
CN107084055B (zh) * 2017-03-30 2020-03-31 宁波吉利罗佑发动机零部件有限公司 一种用于车辆发动机的节流阀装置
CN112796911A (zh) * 2020-12-21 2021-05-14 中国船舶重工集团公司第七一一研究所 一种用于船舶发动机的可变容积进气箱和动力***

Also Published As

Publication number Publication date
JPWO2005052347A1 (ja) 2007-06-21
US20070107708A1 (en) 2007-05-17
WO2005052347A1 (ja) 2005-06-09
EP1701029A1 (en) 2006-09-13

Similar Documents

Publication Publication Date Title
CN1878944A (zh) 柴油发动机的egr控制装置及马达驱动式节流阀装置
CN1614212A (zh) 电子式排气再循环气体控制装置
CN1022140C (zh) 流体流量控制方法及其控制装置
CN1796755A (zh) 设备的温度控制装置
CN1209556C (zh) 包括内燃机和储热装置的发动机***
CN1211223C (zh) 车辆的燃料箱构造
CN1199007C (zh) 涡轮增压器的控制
CN1287078C (zh) 柴油发动机的燃烧控制装置和燃烧控制方法
CN1314891C (zh) 内燃机的空燃比控制装置
CN1296614C (zh) 内燃机控制***
CN1403696A (zh) Egr控制装置及egr控制方法
CN1260470C (zh) 柴油发动机的控制
CN1241766C (zh) 用于在由电源给负载装置供电时诊断该电源的装置
CN1285832C (zh) 柴油发动机
CN1677286A (zh) 用于移动体的控制***
CN1538056A (zh) 发动机燃油喷射控制
CN1969118A (zh) 内燃机的控制装置
CN1166855C (zh) 排气净化用催化剂装置的劣化判别方法
CN1894492A (zh) 涡轮增压器喘振探测
CN1729357A (zh) 内燃机的气缸入流排气量计算***和内燃机的进气通道入流排气量计算***
CN101062685A (zh) 车辆用行驶控制装置
CN1124407C (zh) 发动机用的控制装置和控制方法
CN1847080A (zh) 带有燃料电池的摩托车以及燃料电池的堆叠结构
CN1692217A (zh) 内燃机的可变气门正时控制设备
CN101033706A (zh) 车辆控制方法和车辆控制装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication