CN1860693A - 用于多天线通信***的频率选择性发射信号加权 - Google Patents

用于多天线通信***的频率选择性发射信号加权 Download PDF

Info

Publication number
CN1860693A
CN1860693A CNA200480020711XA CN200480020711A CN1860693A CN 1860693 A CN1860693 A CN 1860693A CN A200480020711X A CNA200480020711X A CN A200480020711XA CN 200480020711 A CN200480020711 A CN 200480020711A CN 1860693 A CN1860693 A CN 1860693A
Authority
CN
China
Prior art keywords
signal
weight
weighted
transmitter
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA200480020711XA
Other languages
English (en)
Inventor
塞韦林·卡特罗伊斯
文科·厄斯戈
皮特·W·鲁
皮特·范鲁延
杰克·温特斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Broadcom Corp
Zyray Wireless Inc
Original Assignee
Zyray Wireless Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zyray Wireless Inc filed Critical Zyray Wireless Inc
Publication of CN1860693A publication Critical patent/CN1860693A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/063Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0837Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using pre-detection combining
    • H04B7/0842Weighted combining
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L2025/0335Arrangements for removing intersymbol interference characterised by the type of transmission
    • H04L2025/03426Arrangements for removing intersymbol interference characterised by the type of transmission transmission using multiple-input and multiple-output channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03178Arrangements involving sequence estimation techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Radio Transmission System (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一种生成发射权重值的方法,用于各种发射机和接收机接口内的信号加权。所述权重值基于所述信号的通信信道状态和传输模式确定,所述权重值是频率的函数。各种实施例中,通过多个天线中的每个天线发射的加权信号的加权通过对应的多个发射天线空间权重中的一个来实现。这些实施例中,引入对各种发射权重值和发射天线空间权重的组合的搜索,以找出能优化性能指标(例如输出信噪比、输出误码率或输出误包率)的一个权重组合。

Description

用于多天线通信***的频率选择性发射信号加权
技术领域
本发明涉及使用具有多个天线组件的发射机和接收机的通信***,更具体地,本发明涉及多天线***中实现信号加权合并的权重生成方法。
背景技术
大多数当前的无线通信***都是由配置了单个发射和接收天线的多个节点组成的。但是,对于大范围的无线通信***而言,有迹象表明:其包括容量在内的性能可以通过使用多发射和/或多接收天线而得到充分改进。这样的配置构成了许多所谓“智能”天线技术的基础。这种技术,结合时空信号处理,既可以用于对抗期望接收信号的多路径衰减带来的有害效应,也可以用于抑制干扰信号。凭借这种方法,现存的和即将开发的数字无线***(例如CDMA***、TDMA***、WLAN***和基于OFDM如802.1a/g标准的***)的性能和容量都可以得到改进。
在信号接收处理中使用引入分集增益并能抑制干扰的多组件天线***可以至少部分地消除对上述类型的无线***的性能的损害。关于这方面的内容,在由J.H.Winter等人所著的发表在IEEE通讯汇刊(IEEE Transactions onCommunications)1994年2月第42卷第2/3/4编第1740~1751页的《天线分集对无线通信***性能的影响(The Impact of Antenna Diversity On the Capacityof Wireless Communication Systems)》一文中有所描述。这种分集增益,通过减少多路径以获得更一致地覆盖范围,通过增加接收的信噪比(signal-to-noise,简称SNR)以获得更大地范围或者减少所需的发射功率,并通过提供更强的抗干扰能力或允许更高的频率再使用率以获得更大的容量,从而提高***性能。
众所周知,在使用了多天线接收机的通信***内,一组M个接收天线能无效掉M-1个干扰。因此,N个信号可以使用N个发射天线在同一带宽上同时被发射,然后通过配置在接收机内的一组N个天线将这些发射信号分解为N个单独的信号。这类***通常被称为多入多出(MIMO)***,并且已被广泛研究。例如,由J.H.Winter所著的发表在IEEE通讯汇刊(IEEE Transactions onCommunications)1987年11月第COM-35卷第11编的《多用户室内无线电***的最优组合(Optimum combining for indoor radio systems with multipleusers)》;由C.Chuah等人所著的发表在IEEE澳大利亚悉尼98全球通信***学报(Proceedings of Globecom’98 Sydney,Australia,IEEE1998)1998年11月第1894~1899页的《室内无线环境下多天线阵列***的容量(Capacity ofMulti-Antenna Array Systems In Indoor Wireless Environment)》;由D.Shiu等人所著的发表在IEEE通信汇刊(IEEE Transactions on Communications)2000年3月第48卷第3编第502~513页的《衰减相关性及其对多组件天线***性能的影响(Fading Correlation and Its Effect on the Capacity of Multi-ElementAntenna Systems)》。
多组件天线排列尤其是MIMO引人注目的一方面在于,使用这种配置后,能够获得显著的***性能提升。在对接收机可用信道理想评估的假设条件下,在具有N个发射和N个接收天线组件的MIMO***内,接收信号可以分解为N个空间多路复用的独立信道中。这使得***的容量相对于单天线***增加N倍。若总发射功率固定不变,则MIMO提供的容量与天线组件数量成线性比例。特别地,具有N个发射和N个接收天线后,相对于单天线***可获得数据传输速率的N倍增长,而无需增加总带宽或总发射功率。关于这方面的介绍,请参考G.J.Foschini等人所著的发表在Kluwer学术出版社1998年3月出版的《无线个人通信(Wireless Personal Communications)》第6卷第3编第311~335页的《衰减环境下使用多天线的无线通信的约束(On limits of WirelessCommunications in a Fading Environment When Using Multiple Antennas)》一文。在实验用的基于N倍空间多路复用的MIMO***中,经常在给定发射机或接收机中配置超过N个的天线。这样做是因为每个附加天线都将增加可适于所有N个空间多路复用信号的分集增益、天线增益和干扰抑制。关于这方面的介绍,请参考由G.J.Foschini等人所著的发表在IEEE通信选题杂志(IEEEJournal on Selected Areas in Communications)1999年11月第17卷第11专题第1841~1852页的《使用多组件阵列的高频谱利用率无线通信的简化处理(Simplified processing for high spectral efficiency wireless communicationemploying multi-element arrays)》一文。
尽管增加发射和/或接收天线的数量能增强MIMO***性能的多个方面,但必须为每个发射和接收天线提供各自的射频链使成本增加。每一条射频链一般包括低噪声放大器、滤波器、下变频器和模/数转换器(A/D),而后三种设备占了射频链成本的主要部分。在某些现有的单天线无线接收机中,单个所需的射频链占接收机总成本的比例可能超过30%。由此很明显,当发射和接收天线的数量增加时,总的***成本和功率消耗也会明显增加。因此,需要提供一种技术,在使用相对较多的发射/接收天线的同时,不会相应增加***成本和功率消耗。
上述作为参考的尚未审批的No.10/801930非临时性专利申请通过描述一种无线通信***提供了这样一种技术,即在该***中,存在这样一种可能,那就是可以在发射机和/或接收机中使用与发射/接收天线相比,数量较少的RF链。
在一个典型的接收机实现方案中,M(M>N)个天线中每一个所提供的信号在通过低噪音放大器后被分解,然后连同来自同一接收机的其他天线的信号一起在RF域内加权合并。这样一来便生成N个RF输出信号,然后通过N个RF链进行传输。每条RF链中的A/D转换器生成的输出信号随后接受数字化处理,从而生成N个空间多路复用输出信号。通过使用相对低廉的部件在RF域进行必要的加权合并,可以使用多于N个的接收天线但却只使用N个射频链来实现N倍的空间多路复用***,并且只需与N个接收天线的***相似的成本。这就是说,接收机的性能可以通过使用额外的天线以相对低廉的成本来实现。相似的技术也可应用于使用N个RF链和多于N个发射天线的发射机实现方案中。
上述作为参考的‘930非临时性申请中描述的基于射频的加权技术使得可以在RF域内对空间加权信号进行合并,就像对基带信号一样。这项技术的一个优势在于,使用仅仅N个发射RF链和N个接收RF链就可以实现RF加权合并,而与发射天线和接收天线的数量无关。此外,尽管‘930非临时性申请描述的是基于射频的加权合并,但也可以先进行数字信号处理,然后在发射机内将信号转换为模拟/RF信号,最后,在接收机内将模拟/RF信号转换为数字信号。这种技术在MIMO***中具有连续性的干扰消除(参见,例如“V-BLAST”:一种在强散射无线信道中实现超高数据率的架构(An architecturefor realizing very high data rates over the rich-scattering wireless channel),URSIISSSE会议论文集,1998年9月第295-300页)。
尽管上述美国专利申请号为10/801,930的非临时性专利申请描述的技术可能不具备与瞬时域和/或频率域信号处理情况下的基带技术相同的性能,但其更低的成本使得仍然可以选用此技术。频率域处理可使用在,例如发射信号包含一定数量的频率副载波的***中。在采用基于正交频分复用(OFDM)的***,如无线局域网***(更多的时候简称为802.11a和802.11g)时,需要执行此类信号处理。作为选择的,为使成本与采用传统方法时所需要的相同甚至更低,还可以通过使用美国专利申请号为10/801,930的专利申请的技术来使用更多的天线,这样便可得到与传统方法相比更为优越的性能。
发明内容
本发明提供一种为加权组件生成发射信号频率权重值的***和方法,所述加权组件用于各种多天线发射机和接收机结构内的信号加权合并阵列中。更具体地说,本发明可与用于处理按照多个负载波信号分别调制的一个或多个信息信号的多天线发射机和接收机结构内的基于RF的加权合并阵列结合使用。本发明还可应用于同一多天线发射机或接收机结构中还设有基带加权和合并阵列的情况,以及同一多天线发射机或接收机结构中同时采用基于RF和基带的加权合并阵列的情况。
依据本发明,频率选择性权重生成方法随发射模式的不同而不同。本发明所介绍的权重生成方法可应用于几种不同类型的多天线通信***中,这些***包括例如上面参考的非临时专利申请中描述的***。在特定的实施例中,本发明的技术可应用于单信道(SC)***(即没有空间多路复用的***)内的多天线接收机中,还可应用于单信道***的多天线发射机中,或采用空间多路复用的MIMO***中。
正如这里所描述的那样,频率选择性发射信号权重可依据发射和接收空间权重来生成,以对性能指标进行优化,这些指标包括多天线通信***的输出信噪比、输出误码率或输出误包率。频率选择性发射信号权重也可使用发射和接收空间权重的结合来生成,以对性能进行优化。
根据本发明的一个方面,本发明涉及一种方法和实现该方法的装置,用于在无线信道上发射信号。所述方法包括如下步骤:基于在所述信道上传送的初始信号,获取表示所述信道状态的信息;获取表示所述信号传输模式的信息;基于所述信道状态和所述信号的传输模式,确定所述信号的发射权重值,所述发射权重值是关于频率的函数;使用所述发射权重值对所述信号进行加权,从而生成加权信号;依据所述传输模式发射所述加权信号。
本发明还提供一种用于发射信号的***。所述***包括接收机,用于接收初始信号,并为所述初始信号估计信道状态信息;以及发射机,用于依据传输模式发射信号,并基于所述信道状态信息和所述传输模式执行发射信号加权,所述加权权重是关于频率的函数。
根据本发明的另一个方面,本发明提供一种***,所述***包括接收机,用于接收初始信号,并基于预先确定的信道状态信息和信号传输模式估计发射信号权重值的组合,所述权重值是关于频率的函数。所述***还包括发射机,用于使用所述发射权重值对所述信号进行加权,从而生成加权信号,并依据所述传输模式发射所述加权信号。
附图说明
下面将结合附图及实施例对本发明作进一步说明,附图中:
图1A和1B是传统MIMO通信***的示意图;
图2A和2B是包含一个发射机和一个接收机用于基于RF的加权合并的MIMO通信***的框图;
图3是带有基带合并阵列的单信道(SC)单入多出(SIMO)单载波***中的发射机和接收机结构的示意图;
图4是使用本发明所介绍的发射信号权重生成方法的一个实施例并采用基带合并阵列的SC-SIMO单载波***中的发射机和接收机结构的示意图;
图5A是使用本发明所介绍的发射信号权重生成方法的一个实施例并采用基带合并阵列的SC-MIMO-OFDM***中的发射机和接收机结构的示意图;
图5B是使用本发明所介绍的发射信号权重生成方法并采用基于RF加权合并阵列的SC-SIMO-OFDM***中的发射机和接收机结构的示意图;
图6是本发明的发射信号权重生成方法的一个实施例的流程图;
图7是SC-MIMO-OFDM***的编码操作模式下作为信噪比(SNR)的函数的误包率(PER)的性能比较示意图;
图8是SC-MIMO-OFDM***的未编码操作模式下作为信噪比(SNR)的函数的误包率(PER)的性能比较示意图;
图9是SC-MIMO-OFDM***的16QAM调制编码操作模式下作为信噪比(SNR)的函数的误包率(PER)的性能比较示意图。
具体实施方式
正如下面所述,依据几个实施例进行描述的本发明提供了一种频率选择性发射信号权重值的生成方法,可应用于使用各种编码和调制技术的多种通信***中。依据本发明,生成的权重值可改善通信***的一个或多个性能指标,包括输出信噪比和误包率。优选地,在某些实施例中,本发明的频率选择性发射信号加权技术可与其他性能增强技术一同使用,这些技术包括但不限于用于提高多天线***性能的空间加权,这在上述引用的申请号为10/801,930的美国非临时性专利申请中进行了描述,并在此全文引用。
为了便于理解本发明的原理,下文将首先大致的对与频率选择性发射信号加权方法一同使用的多种性能增强方法进行介绍。随后再对本发明的发射信号权重生成方法进行详细描述,这些描述可应用但不限于这里所介绍的这些和其他性能增强方案中。
I.性能增强方法
空间多路复用
众所周知,空间多路复用(spatial multiplexing,简称SM)提供一种信号传输模式,该模式在发射机和接收机中都使用多个天线,通过这种方式,无线电链路的比特率可以在对应的功率和带宽消耗没有增加的情况下得到提高。在发射机和接收机中都使用了N个天线的情况下,提供给发射机的信息符号输入流被分为N个独立的子流。空间多路复用使每个子流占用适用的多路访问协议中的同一“信道”(例如:时隙、频率或者代码/密钥序列)。在发射机内,每一子流被单独应用于N个发射天线中,并通过中间多路径通信信道传送至接收机。然后,该复合多路径信号由接收机中配置的N个接收天线的接收阵列所接收。在接收机内,随后估算对于给定子流在接收天线阵列中的N个相位和N个振幅所定义的“空间特征(spatial signature)”。接着,使用信号处理技术来分离接收的信号,将原始的子流还原并合成为原始的输入符号流。有关空间多路复用通信和典型***实现的原理在例如J.H.Winter等人所著的发表在IEEE通信汇刊1987年11月第COM-35卷第11编的《多用户室内无线电***的最优合并》(“Optimum combining for indoor radio systems with multipleusers”,by J.H.Winters,IEEE Transactions on Communications,Vol.COM-35,No.11,November 1987)一文中有进一步描述,在此将其全文引用。现有的MIMO***
通过先参考图1描述的现有的MIMO通信***,本发明的原理可以得到更全面的理解。如图1所示的MIMO***100包括图1A所示的发射机110和图1B所示的接收机130。该发射机110和接收机130分别包括一组T个发射射频链和一组R个接收射频链,这些射频链用于发射和接收一组N个空间多路复用信号。在***100内,假设(i)T>N并且R=N,(ii)T=N并且R>N,或(iii)T>N并且R>N。
参看图1A,将被发射的一般由数字符号流组成的输入信号S,被解复用器102解复用为N个独立的子流S1,2...,N。这些子流S1,2...,N随后被发送到数字信号处理器(DSP)105,并由其生成一组T个输出信号T1,2...,N。这T个输出信号T1,2...,N一般由N个子流S1,2...,N通过加权来生成,也就是乘一个复数,将所述N个子流中的每一个与T个不同的加权系数相乘以形成NT个子流。这NT个子流随后被合并,生成T个输出信号T1,2...,T。而后,利用一组T个数/模(D/A)转换器108将这T个输出信号T1,2...,T转换成T个模拟信号A1,2...,T,每个模拟信号又通过与本地振荡器114提供的信号混频,在混频器112内被上变频转换到适用的发射载波射频频率上。接着,将所得到的T个射频信号(即RF1,2...,T)利用各自的放大器116放大,并通过各自的天线118发射。
参看图1B,由发射机110发射的射频信号由接收机130中的一组R个接收天线131接收。天线131接收到的R个信号中的每一信号由各自的低噪放大器133进行放大,并经滤波器135滤波。而后利用混频器137将得到的每一滤波信号从射频下变频转换至基带,这是通过给每一滤波信号提供一个来自本地振荡器的信号来实现的。尽管图1B所示的接收机为零拍接收机,但也可以使用具有中间中频频率特征的外差接收机。然后,利用对应的一组R个模/数转换器140,将混频器137生成的R个基带信号分别转换成数字信号。接着,利用数字信号处理器(DSP)142对得到的R个数字信号D1,2...,R进行加权和合并,生成N个空间多路复用输出信号S’1,2...,N,这些输出信号包括有发射信号S1,2...,N的估计值。然后,利用复用器155对该N个输出信号S’1,2...,N进行复用,生成原始输入信号S的估计值160(S’)。
空间多路复用通信***内的射频加权和合并
现在来看图2,所示为根据上述引用的处于审查中的非临时专利申请的原理配置的具有发射机210和接收机250的MIMO通信***200的结构示意图。图2所示的***中,尽管分别在发射机210和接收机250配置了多于N个的发射/接收天线,发射机210和接收机250仅利用N个发送/接收射频链,实现N倍的空间多路复用。具体地,发射机210包含一组MT个发射天线240,接收机包含一组MR个接收天线260,假设(i)MT>N并且MR=N,(ii)MT=N并且MR>N,或(iii)MT>N并且MR>N。
如图2A所示,将被发射的输入信号S由解复用器(DEMUX)202解复用为N个独立的子流SS1,2...,N。随后,利用对应的一组数/模转换器206将这些子流SS1,2...N转换成N个模拟子流AS1,2...,N。接着,利用一组混频器212使用来自本地振荡器214的信号,将N个模拟子流AS1,2...,N上变频转换到适用的发射载波射频频率上。而后,得到的N个射频信号(也就是,RF1,2...,N)中每一个由分频器218分为MT个信号,以形成N(MT)个射频信号。然后,使用复数乘法器226x,y对所述N(MT)个射频信号中的每一个进行加权,其中x表示N个分频器218中的一个分频器的信号起始点,y表示一组MT个合并器230中的一个合并器的相应的信号终止点。然后使用合并器230将该加权后射频信号合并,从而生成一组MT个输出信号。随后,对应的一组MT个放大器234放大这MT个输出信号,然后利用MT个天线240发射该被放大后的输出信号。生成的复数乘法器226x,y的加权值可最大化接收机输出信号的信噪比(SNR)或最小化其误码率(BER)。
参看图2B,发射机210发射的MT个射频信号由接收机250中配置的MR个接收天线260接收。每个接收信号由各自的低噪放大器264放大,然后由MR个分频器268分为N路。得到的MR(N)个分离信号随后由各自的加权电路272x,y分别加权,其中,x表示MR个分频器218中一个分频器的信号起始点,y表示N个合并器276中一个合并器对应的信号终止点。这些加权后的信号随后利用N个合并器276合并以产生一组N个信号,并由相应的N个滤波器280滤波。随后,利用N个混频器282,向其提供由本地振荡器284产生的载波信号,将得到的N个滤波信号下变频转换到基带。尽管图2B所示的接收机250是零拍接收机,但也可以使用具有中间中频特征的外差接收机来实现。接着,利用对应的一组N个模/数转换器286将混频器282生成的N个基带信号转换为数字信号。而后,利用数字信号处理器288进一步处理这N个数字信号,形成N个空间多路复用输出信号SS’1,2...,N,即N个独立子流SS1,2...,N的估计值。N个输出信号SS’1,2...,N随后通过复用器292复用,生成输出信号S’,也就是输入信号S的估计值。
注意到,如同通过图1中的***100在基带以传统方法实现的空间加权或线性合并方案一样,发射机210和接收机250可以在射频域内实现空间加权或线性合并。但是,在本发明的接收机250中DSP(数字信号处理器)228仍可在***100中执行许多其他的潜在实现的原有的基带信号处理操作,例如,连续干扰消除(详见例如“V-BLAST”:一种在强散射无线信道中实现超高数据率的架构(An architecture for realizing very high data rates over therich-scattering wireless channel),URSI ISSSE会议论文集,1998年9月第295-300页)。而且,本发明揭示的***的一个重要特征是,即使实际上使用了多于N个发射/接收天线时,也仅仅只需配置N个发射/接收射频链。编码和均衡
图3所示为单载波***300的框图,该***使用了带有一个发射天线的发射机302、带有两个接收天线的接收机310、极大似然序列估计(MLSE)均衡器和解码器316。信号S可以是例如GSM信号。信道用于表示产生频率选择性衰减的环境,例如,以室内和室外传输路径为代表的多路径环境。
如图3所示,当信号S在信道上进行传输时,信号S经过频率选择性衰减,必然降低信号S的强度。为了消除频率选择性衰减带来的影响,在理想状态下,该接收机是时空白化匹配滤波器,其与衰减相匹配。如图3所示,该滤波器包括有长度对应于每个天线的信道(外加发射滤波器)存储器的长度的线性均衡器312、连接在其后将合并信号反馈给MLSE均衡器的合并器314以及解码器316。
编码器304通常代表多种编码方法,例如,卷积码、线性分组码、涡轮码(turbo code)或格码,这些方法可用于提高***的性能。下述引用的参考文件提供了更多的细节,在增强型数据速率GSM演进(EDGE)***的相关部分,介绍了例如如何改变卷积码的编码率可增将***的性能:“EDGE的***性能,对在用数字蜂窝***增强型数据率的建议”A.Furuskar第48届IEEE车载技术研讨会,第2卷,1998年5月,1284-1289页,(“System Performanceof EDGE,a Proposal for Enhanced Data Rates in Existing Digital CellularSystems”,by A.Furuskar,et al,48th IEEE Vehicular Technology Conference,Volume:2,May 1998,pages 1284-1289)以及“EDGE的无线接口性能,对在用数字蜂窝***增强型数据率的建议”,A.Furuskar第48届IEEE车载技术研讨会,第2卷,1998年5月,1064-1068页(“Radio Interface Performance of EDGE,a proposal for Enhanced Data Rates in Existing Digital Cellular Systems”,by A.Furuskar,et al,48th IEEE Vehicular Technology Conference,Volume:2,May 1998,pages 1064-1068)。
灌水原理(Waterfilling)
在所有上述天线***中,收到的信号仍然受到频率选择性衰减造成的失真带来的影响。对于采用了编码方案的***而言,例如图3中描述的***300,众所周知,在包含这种失真的情况下,***的容量可通过灌水原理来最大化,参见例如“用于无线通信***的多用户空时编码”Wang,J.;Yao,K.,无线通信和网络协会2002年3月17日至21日,276-279页,第1卷(“Multiuserspatio-temporal coding for wireless communications”,Wang,J.;Yao,K.,WirelessCommunications and Networking Conference,17-21 Mar 2002,pages:276-279vol.1),其中,每个频率上的发射功率与该频率上的信道增益成比例,但如果该信道增益低于指定的阀值,那么在该频率上将不会有能量发射。但是,这种情况下的容量是一个理想值,该值是一个边界值,并且无法达到,这是因为它需要极好的编码和/或均衡。实际中的均衡器并非理想的,而且使用编码也是有限的编码(或根本没有编码)。
平滑法(Smoothing)
另一方面,在接收机不使用编码和均衡的情况下,例如使用单个复合权重替代线性均衡器且不使用MLSE的情况下,还可使用称为“平滑法”的频率选择性发射信号加权技术来消除接收机中的信号间干扰。通过使用平滑技术,每个频率的发射信号使用该频率下信道响应的反向值进行加权,即预均衡,实现对该频率选择性信道的补偿。该技术类似于Tomlinson预编码,参见例如“使用取模算法的新型自动均衡器”,M.Tomlinson,电子Letter,1971年3月25日,第7卷,No.5/6。需要注意的是,这与上面描述的灌水原理刚好相反。
仍然需要注意的是,在使用完整的交错/解交错和编码的情况下,***的性能取决于平均接收信噪比(SNR)。但是平滑法却降低了该平均SNR。这样一来,在***采用编码技术的情况下通常不使用平滑技术。这与灌水原理相反,灌水原理在这种情况下会增加SNR。
由于今天的许多***混合使用了编码和均衡技术,并可在多种使用不同编码和调制技术的预定模式下工作,随着模式的变化,上述这些频率选择性发射信号加权方法都不是最优的,而需要一种不同的权重生成方法。
实际效果在于,对性能进行优化的发射滤波(频率选择性信号加权)不仅与均衡器的使用有关,还与编码和调制技术有关。由于许多***,例如EDGE***,使用具有不同编码和调制率的多种模式工作,依据本发明几个实施例的频率选择性发射信号加权方法就不只基于信道状态信息,还与模式有关。这些权重可对性能指标进行优化,例如输出SNR、输出位误码率和误包率。
II.频率选择性发射信号加权方法
在一个示范性实施例中,本发明涉及频率选择性发射信号权重生成方法,用于对多天线通信***中的发射信号进行加权,以改善***性能。
本发明适用于例如,(i)单信道***(即缺少空间多路复用的***)内使用多天线的接收机;(ii)单信道***内使用多天线的发射机;(iii)发射机和/或接收机使用的射频链数量少于发射/接收天线的具有空间多路复用或单信道的MIMO***。
本发明不仅可使用相对低廉的RF组件来改进基于RF的空间加权合并方法,本发明公开的方法对同时包含基于RF和基带的空间加权合并阵列也同样适用。因此,这里对本发明的介绍将同时依据基于RF和基带的空间加权合并方法而展开,它们可同时应用于本发明的多个实施例中。
在本发明的另一方面,本发明还可用于多入多出通信***内的频率选择性发射信号权重生成方法,该通信***使用发射机来广播多个(N)空间多路复用信号(使用至少N个发射天线),其中,接收天线的数量(M)大于空间多路复用信号的数量。收到的信号将使用单独频率的权重来进行分解和RF域内的加权合并,以此来生成多个输出信号,该输出信号的数量等于空间多路复用信号的数量。输出的信号随后反馈给相应的RF链以在基带域中进行处理。
示范性方案
本发明的频率选择性加权和权重生成技术将结合图4至图9中的示范性方案进行描述。尽管本发明参考几种示范性***给出介绍,但应当清楚本发明的频率选择性发射信号加权方法不限于图4至图9中特定的***类型。例如,本发明所介绍的方法可应用但不限于以下4个方案:1)未采用空间多路复用的单信道SIMO***中使用多天线的接收机;2)未采用空间多路复用的单信道多入单出(MISO)***中使用多天线的发射机;3)未采用空间多路复用的单信道MIMO***中使用多天线的发射机和使用多天线的接收机;4)采用空间多路复用的MIMO***中发射机和/或接收机RF链数量少于发射机/接收机天线数量的***。
还有一点需要说明的是,所述频率选择性发射信号加权方法在应用于上述4种类型的***时还可使用基带合并阵列、基于RF的加权合并阵列,以及同时使用基于RF和基带的阵列。
为便于描述,下面介绍的例子多结合使用OFDM调制的***来进行说明,但是,本发明的频率选择性发射信号加权方法在一些实施例中还可应用于基于直接顺序扩频(DS-SS)的***。上述引用的美国非临时性专利申请No.10/801,930使用了很大篇幅来对这种***进行了描述,本发明的频率选择性发射信号加权方法对这种***也同样适用。
首先来看图4,图4是根据本发明一个实施例的单载波***400的示意图,其中,单载波***400使用一个发射天线402和一个带有两个接收天线406A和406B的接收机404。如图所示,该实施例中的发射机408包括编码器模块410、信道状态信息(CSI)和模式部分412、权重计算部分414和信号加权部分416。该实施例中的接收机包括极大似然序列估计(MLSE)均衡器418。
信号S可以是GSM信号,但这并不是必须的。由于频率选择性衰减的原因,某些实施例中的接收机404包括有时空白化匹配滤波器,与该衰减相匹配。如图4所示,该滤波器包括线性均衡器420A、420B,其长度等于每个天线的信道(外加发射和接收滤波器,例如根升余弦滤波器(Root Raised Cosinefilter))存储器的长度,并紧接着进行合并,随后合并信号424反馈给MLSE均衡器418和解码器。在使用了这样的接收机404之后,假设总的发射功率是固定的并且发射机408中的信道状态信息是完整的,***400的容量通过灌水原理可得到最大化,即每个频率上的发射功率与信道增益成比例(或者在信道增益低于阀值的情况下没有发射功率)。
正如前面所讨论的,这种容量是建立在理想编码情况下的,因此灌水原理作为解决方案只能在理想编码和均衡情况下才适用。在实际中,均衡器并非理想的,而且一般使用有限的编码(或根本未采用编码)。
未使用编码和时域均衡,即如果线性均衡器420A、420B被单个复合权重所替代,并且不使用MLSE 418,那么通过图3所描述的平滑方法可对***的性能进行优化。
此外,需要注意的是,使用极佳的交错/解交错和编码的情况下,***性能取决于平均接收信噪比。平滑法会降低该平均SNR,而灌水原理可增加该平均SNR。
因此,如这里所继续描述的那样,发射机408的权重计算部分414确定发射信号加权(也称为发射滤波)为不仅是所使用的均衡器的函数,也是编码和调制技术的函数。这样做的好处是,权重计算部分414依据信道状态信息和模式来生成权重值,此方法适用于许多***,例如使用每种模式具有不同的编码合调制率的多种模式工作的EDGE***。在某些实施例中,生成的权重可对性能指标进行优化,例如输出SNR和误包率。
尽管图4是结合单载波***例如GSM对本发明的实施例进行的介绍,但是本发明的频率选择性发射信号加权方法也可应用于使用了耙指(RAKE)接收机的CDMA或WCDMA***。本发明还可应用于OFDM***,以下将对用于WLAN OFDM***802.11a的双发射和双接收天线单信道MIMO***进行详细描述。
在某些实施例中,频率选择性发射信号权重值和发射/接收空间权重值结合起来计算。各种方案中的计算空间权重的技术在上述引用的美国非临时专利申请No.10/801,930中进行了公开,通过使用计算得出的空间权重值,性能指标如输出SNR和误包率可得到提高。
在本发明的某些实施例中,可使用全局搜索技术来确定可提升***性能的频率选择性发射信号权重。该技术包括在给定传输模式下,对可提升***性能指标例如SNR和BER值的频率选择性发射信号权重值组合表进行搜索。在某些实施例中,发射信号权重和发射/接收空间权重都可以通过该全局搜索来确定。
例如,搜索引擎查找RF/基带(即空间)权重和发射信号权重组,该权重组可在满足特定约束条件(总发射功率、最大可接收的BER)的前提下对指定的标准(例如,最大SNR、最小BER)进行改善(例如,优化)。该搜索引擎可以是盲目的或半盲目的(blind or semi-blind)(即,可在封闭型函数内对某些已知信息进行模拟,并将该信息结合在搜索内以加快运行时间)。该搜索可以同时在每个权重***可用的相位和振幅上执行。例如,一个实施例中,相位的范围处于0-360度有限范围内,则搜索的步长可在1-10度之间取值。某些实施例中振幅处于[0,20dB]的有限范围内,则搜索的步长可在0.1-1dB之间取值。
再来看图5A和5B,所示为符合IEEE802.11a标准的两个示范性发射机/接收机***500、550的框图。也就是说,发射机508、560使用OFDM调制,其中表示为{s0,s1,...,sNt-1}的Nt个连续的使用正交调幅调制后的数据符号组成的数据流被调制成为一组Nt个正交副载波,参见J.Heiskala和J.Terry编写的“OFDM无线LANs:理论与实践指导”,Sams出版社,2001年12月出版(J.Heiskala and J.Terry,OFDM Wireless LANs:A Theoretical and PracticalGuide,Sams Publishing,Dec,2001),在此本申请引用该文为参考文件。
首先来看图5A,所示为根据本发明一个实施例的使用两个发射天线502A、502B和两个接收天线506A、506B的单信道MIMO-OFDM***500的框图。如图所示,本实施例中的发射机508包括编码器模块510、串并转换器511、信道状态信息(CSI)和模式部分512、权重计算部分514和信号加权部分516。在本实施例中,信号S由编码器模块510进行编码,然后由串并转换器511分解为并行数据子流513。信号加权部分516接收并使用来自权重计算部分514的发射信号权重值515对并行数据子流513进行加权。
如图所示,权重计算部分514从CSI和模式部分512接收有关信道状态和当前操作模式的信息。依据信道状态信息和信号的传输模式,权重计算部分514确定信号的发射权重值,该权重值是频率的函数。
在这个示范性实施例中,包含有加权并行数据子流517的加权信号在使用相应的天线空间加权模块522A、522B分别进行空间加权,并使用相应的反转快速傅立叶变换524A,、524B分别转换为对应多个天线502A、502B的OFDM信号后,通过多个天线502A、502B分别进行发射。需要注意的是,这个实施例中的空间加权模块522A、522B是在基带中实现的,并且正因如此,天线(空间)权重对于接收机和发射机中的每个OFDM音调均可用。
天线502A、502B发射的信号随后通过信道进行传输,随后由天线组件506A、506B接收,然后转换到基带。在完成串并转换524A、524B之后,收到的基带信号在每个音调上乘以接收空间权重526A、526B。加权后,将信号发往FFT 528并进行合并。FFT 528输出的合并后的接收信号随后由解码模块518进行解码,以生成原始信号的副本。
再来看图5B,所示为根据本发明另一个实施例的使用两个发射天线552A、552B和两个接收天线580A、580B的单信道MIMO-OFDM***550的框图。如图所示,图5B中的***是多权重***,其中对于发射机560和接收机570的所有音调来说,每个天线都有一个复合权重554、578。在这种情况下,空间权重在RF域中实现,但在另一种实现方法中,图5B的发射机560和接收机570中的基于RF的加权模块554、578还可使用类似的基带域中的阵列来补充。两种情况下空间权重的计算在用于最大化输出SNR的上述引用的美国非临时性专利申请No.10/801930中,以及用于最小化输出误码率的名称为“用于采用基于最小误码率的基于RF和基带信号加权合并的多天线通信***的权重生成方法”、申请日为2004年7月13日的美国非临时性专利申请(该申请要求申请日为2003年7月21日的美国临时专利申请No.60/488,845的优先权)中进行了介绍。
在操作过程中,信号S首先由编码器556进行编码,然后由串并转换器558分解为并行数据子流559。信号加权部分562接收并使用来自权重计算部分564的发射信号权重563对并行数据子流559进行加权。
如图所示,权重计算部分564从CSI和模式部分566接收有关信道状态和当前操作模式的信息。依据信道状态和信号的传输模式,权重计算部分564将确定该信号的发射权重值,该权重值是频率的函数。
在该示范性实施例中,包含加权并行数据子流567的加权信号随后使用反转快速傅立叶变换568转换为OFDM信号,并上变频转换至RF域,在进行分解后,RF域中OFDM信号的每部分都进行空间加权554A、554B,并通过发射天线552A、552B中的相应天线进行发射。注意到在图5B的实施例中,合并权重554是在RF域而不是在基带域实现的,这使得发射RF链的数量降低到一条。
天线552A、552B发射的信号随后通过信道进行传输,然后由天线组件580A、580B接收。在进行合并之前,由接收天线接收的每个RF信号乘以相应的接收空间权重578A、578B,之后转换到基带并从串行转换为并行子流581,然后发送给FFT 582并进行合并。FFT 582输出的合并后的接收信号随后传送给解码器584进行解码,以生成原始信号S的副本。
现在来看图6,所示为根据本发明一个实施例由图4、5A和5B中的发射机所实现的频率信号加权方法的流程图。
首先,当发射机第一次上电时(步骤602),信道状态未知,这时信号加权部分416、516、562使用一组缺省的频率信号权重。由于这些发射信号权重只能改善性能,在发射信号加权未启用,或所有权重相等时,就可以选用缺省一组权重。
随后,获取信道状态信息(CSI)(步骤604)。在某些实施例中,获取CSI的操作在接收机中完成,并且相关的信息通过无线方式以控制消息反馈给发射机中的CSI和模式获取部分412、512、566。在这些实施例中,由已知符号组成的训练序列从发射机408、508、560发送给接收机404、504、470。在接收机404、504、470处,依据收到的信号和已知符号序列对信道进行估算。目前存在多种依据训练序列的信道估算技术,例如,参见J.-J.van de Beek等编写的《OFDM***中的信道估算》,1995年7月25日-28日IEEE第45届车载技术研讨会,第2卷815-819页(J.-J.van de Beek et al.,“On ChannelEstimation in OFDM Systems”,IEEE 45th Vehicular Technology Conference,vol.2,25-28 Jul 1995,pp.815-819),在此本申请引用该文为参考文件。
接下来,在某些实施例中,一旦信道已知,就执行一个算法来决定哪个候选的可能模式最适合当前的CSI(步骤606)。该算法通常称为链路自适应,可以保证不管信道状况如何变化,在指定模式选择标准(最大数据率、最小发射功率)的情况下,总是使用最高效的模式。有关用于频率选择性MIMO***的链路自适应的其他细节在S.Catreux等编写的发表在2002年6月IEEE通信杂志第40卷No.6 108-115页的“用于无线数据网络的自适应调制和MIMO编码”(“Adaptive Modulation and MIMO Coding for Broadband Wireless DataNetworks”,by S.Catreux et al.,IEEE Communications Magazine,Vol.40,No.6,June 2002,PP.108-115)中进行了介绍。在这点上,信道状态和模式信息均可反馈给发射机408、508、560,而权重计算部分414、514、564使用该信息来计算发射信号权重。
在这些实施例中,发射信号权重还可在接收机中进行计算,计算得出的权重通过无线方式以控制信息发往发射机。注意到该反馈的前提是假设信道变化足够缓慢,使得接收机中用于计算权重的CSI和权重应用于发射机时的CSI之间紧密相关。
在其他实施例中,所有建立CSI的操作和模式获取操作都在发射机408、508、560中进行。在某些***中(例如限制噪音环境中的时分双工(TDD)***),上行信道与下行信道相同。因此,发射机可估算信道,计算模式和发射信号权重值,并使用这些估算的参数通过下行信道进行传输。在这些实施例中,发射机从上行信道接收训练序列,执行信道和模式估算,并最终计算出发射信号权重值。这样就不需要进行反馈。
在信道状态可用后,缺省权重被基于当前CSI和当前模式的更优频率权重(例如,由权重计算部分414、514、564计算得出)所替代(步骤608)。
在图5A和5B中介绍的多载波(OFDM)实施例中,每个音调由基于当前CSI和当前模式的发射信号权重进行调整。音调k上的调整后的数据符号表示为:
αksk                                                (1)
在某些实施例中,每个音调通过发射信号权重进行调整后,接着应用空间权重(步骤610)。在有关OFDM***的介绍中,对于多个发射天线中的每一个,将调整后的数据aksk乘以发射空间权重,这样的话,天线i上发射的信号表示如下:
txsi,k=vi,kaksk                                   (2)
音调k上的发射信号向量为:
txs kv k·aksk                                       (3)
其中 v k=[v1,k,…vnT,k]T是nT×1元向量,nT是发射天线组件的数量。
天线i发射的信号随后通过信道进行传播,并由M个天线元件组成的阵列接收,并对该收到的信号在每个音调上乘以接收到的表示为 u k=[u1,k,…uM,k]T的空间权重。加权之后,信号将发往FFT并进行合并。FFT输出的合并后的接收信号表示如下:
yku k HHk· v k·aksk+ u k H n k                            (4)
其中Hk是音调k上的信道频率响应,是大小为M×nT的矩阵,n是具有零均值和变量σ2的复合附加高斯白噪声(AWGN)。
如前面所介绍的,在某些实施例中未采用编码和时域均衡,而使用平滑技术来改善接收机的性能。在基于OFDM的***中,如参考图5A和5B介绍的***中,应用平滑法的过程包括使用发射信号权重对音调进行调整,使接收机中的处理后SNR(这里也称为输出SNR)在整个频率带宽(BW)上呈平滑状态。对应等式(4)的处理后SNR为:
SNR k = | | u ‾ k H H k · v ‾ k | | 2 | α k | 2 E [ s k s k * ] σ 2 | | u ‾ k | | 2 - - - ( 5 )
当引入平滑技术后,ak的值使得每个音调上的SNRk都一样。
根据等式(5),ak的解为:
α k = | | u ‾ k | | | | u ‾ k H H k · v ‾ k | | - - - ( 6 )
如果每个音调上的接收空间权重是一样的,那么ak的解变成:
α k = 1 | | u ‾ k H H k · v ‾ k | | - - - ( 7 )
为了保持所有音调上的总发射功率(即Nt·P)恒定,而不管发射天线组件的数量是多少或是否使用了发射频率信号加权,所以假设每个数字符号的功率为P/nT,即:
E [ s k s k * ] = P / n T - - - ( 8 )
依据等式(3)和(8)的所有音调的总发射功率为:
TXPW = Σ k = 1 N t E [ α k * s k * v ‾ k H v ‾ k α k s k ] = Σ k = 1 N t v ‾ k H v ‾ k | α k | 2 E [ s k s k * ] = P / n T Σ k = 1 N t v ‾ k H v ‾ k | α k | 2 = N t P - - - ( 9 )
那么对频率调整后的发射权重的约束可表示为:
Σ k = 1 N t v ‾ k H v ‾ k | α k | 2 = N t n T - - - ( 10 )
通过提高最差音调的SNR,同时降低稍好音调的SNR,如上所述的发射平滑技术带宽上的总发射功率进行不均衡再分配。当信道在某个音调上存在深度衰减的情况下,大部分功率将分配给该音调,这样一来结果将不是最佳的。
因此,一个实施例中,对上述平滑算法添加一个标准,来限制用于一个音调的发射功率最大峰值。换句话说,ak的值通过一个阀值设定了上限。通过这种方式,当特定音调出现深度衰减的时候,该音调不会破坏性的占据不成比例的可用功率。
在使用编码的情况下,上述发射平滑方法由于降低了平均输出SNR(如下面模拟结果所示)而降低了接收机的性能;因此在某些实施例中,在使用了编码的情况下,还会使用发射信号加权技术,而非上述平滑技术。
在某些实施例中,当***使用了编码技术的时候,还采用称为量化部分信号加权(QPSW)的加权技术。通过使用这种QPSW加权技术,部分音调(对应每个音调最大输出SNR的第X个百分点)的功率减小A个dB的量(其中A可以是常数或是关于输出SNR的函数),而另一部分音调(对应每个音调最小输出SNR的第Y个百分点)的功率增加B个dB的量(其中B可以是常数或关于输出SNR的函数)。在这些实施例中,X、Y、A和B的值取决于使用的编码技术。在指定了编码技术之后,这些值可通过全局搜索来查找得到。
图7和图8所示为平滑技术对图5A和图5B中的***产生的影响。具体说,图7所示为802.11a“模式1”(即编码率为1/2的BPSK)格式的信号的误包率对比接收SNR的示意图,图8所示为802.11a“模式10”(未编码的BPSK)格式的信号的误包率对比接收SNR的示意图。
图5A中所描述的***的曲线编号为MW-BB(基带多权重),图5B中所描述的***的曲线编号为MW-RF(RF多权重)。图5B中***的结果示出了同时使用最大SNR标准和最小比特误码率标准的情况。图中还示出了选择分集的结果(标号为sel)。
如图7所示,对于模式1来说,使用平滑技术降低了性能,因为模式1采用1/2的编码率。如图所示,在10**-1的误包率下,图5A中所示的***的SNR降低了0.4dB,图5B中所示的***的SNR降低了1.9dB。
相比而言,如图8所示,对于模式10来说,使用平滑技术提升了***能行,因为该模式没有使用编码。如图所示,在10**-1的误包率下,图5A和图5B中所示的***的SNR分别增加了2.9和2.35dB。这样的话,这些结果说明频率加权算法对这几个实施例有效,该算法将发射信号频率选择性权重建立为关于特定通信***所处的操作模式的函数。
图9所示为图5A和图5B所示的***使用QPSW技术且运行在模式6(采用编码率为3/4的16QAM)的情况下产生的误包率对比接收SNR的示意图。
对于模式6来说,上述QPSW技术的实现参数为X=30,A=1.5dB,Y=X,B为输出SNR的函数。如图9所示,对于10**-1的误包率而言,该发射信号加权方法分别将图5A和图5B中***的SNR提高了0.45dB和0.3bB。对于10**-2的PER而言,QPSW将图5A中***的SNR增加了1dB。
在某些实施例中,这些权重随着CSI的变化而变化。例如,CSI一旦变化,权重也随之更新。例如,在基于数据包的***中,训练序列嵌入每个包的头部,这样CSI可以在每个包中实现。在视频流应用中,数据包连续发送,并且由于信道并非随着每个包的发送而发生明显的变化,CSI的变化可被准确的检测到,发射信号权重的更新也就很及时。在某些实施例中,设定只有CSI的变化超过预定的阀值时才对权重进行更新,这样可以提高效率。
在更多的突发应用中(例如互联网下载),可能存在闲置时段,该时段内没有数据包发送。因此,在某些实施例中,如果该闲置时间比信道相干时间长,权重就将重新初始化为缺省值,上述处理过程也随之重新开始。
本领域的技术人员应该明白,本发明也可扩展至单载波***。类似于OFDM实施例,在单载波实施例中,可对性能进行优化的发射信号加权依赖于调制方法和编码以及所使用的均衡技术。如上面所述,在使用了理想编码和均衡技术的情况下,灌水原理的效果更优;但当接收机没有使用均衡或编码的情况下,平滑技术的效果更优。由于多数使用某些编码和非理想均衡的***都处于此两种情况之间,最优的发射信号权重会发生变化,并可通过例如全局搜索来找到。由于在某些***中,调制和编码方法会发生变化,因此最优的发射信号权重也会随调制方法和编码(模式)的变化而同时变化。
虽然以上结合附图对本发明进行了详细介绍,但本发明并不限于上述描述中的细节,因为在不脱离本发明主旨和范围的前提下,本领域的普通技术人员可以对本发明进行许多变更和修改。这包括将本发明应用于移动、固定、窄带/宽带和室内/室外无线***中,以及时分双工和频分双工无线***中。
此外,前面的描述使用了特定的术语来对本发明进行解释,目的是让读者更好的理解本发明的内容。但是,本领域的技术人员应该明白,这些细节并不是实施本发明所必须的。另外,公知的电路和设备使用框图进行的描述,目的是避免对本发明的理解产生不必要的混淆。因此,前面对本发明特定实施例的描述,其目的是对本发明进行解释。这些描述并不是穷尽性的,也不是将本发明限定在所揭示的特定形式上,显然,依据上述介绍,可对本发明作出许多修改和变更。以上选择的实施例是为了更好的解释本发明的主旨及实际应用,以便本领域的技术人员可以更好的应用本发明,并依据特定的需求对本发明的各种实施例进行修改。因此,以下的权利要求和其同等替换定义了本发明的范围。

Claims (78)

1、一种在无线信道上传输信号的方法,其特征在于,包括如下步骤:
基于在所述信道上传送的初始信号,获取表示所述信道状态的信息;
获取表示所述信号传输模式的信息;
基于所述信道状态和所述信号的传输模式,确定所述信号的发射权重值,所述发射权重值是关于频率的函数;
使用所述发射权重值对所述信号进行加权,从而生成加权信号;
依据所述传输模式发射所述加权信号。
2、根据权利要求1所述的方法,其特征在于,所述发射步骤通过多个天线执行,所述方法还包括使用所述对应的多个发射天线空间权重中一个对通过所述多个天线中的每个天线发射的所述加权信号进行加权。
3、根据权利要求2所述的方法,其特征在于,所述确定步骤包括生成所述发射权重值和所述多个发射天线空间权重。
4、根据权利要求3所述的方法,其特征在于,所述发射权重值和所述多个发射天线空间权重通过全局搜索结合起来优化。
5、根据权利要求2所述的方法,其特征在于,所述多个发射天线空间权重在基带下实现,或在RF实现,或在基带和RF的结合下实现。
6、根据权利要求1所述的方法,其特征在于,所述确定步骤还包括确定发射功率权重值,其中所述加权信号的任何频率的发射功率通过阀值设定了上限。
7、根据权利要求1所述的方法,其特征在于,所述确定步骤还包括:
生成发射权重值,以:
降低所述信号的一部分频率的功率,所述一部分频率对应于SNR高于阈值的初始信号的频率;
增加所述信号的一部分频率的功率,所述一部分频率对应于SNR低于阈值的初始信号的频率。
8、根据权利要求1所述的方法,其特征在于,所述信号为单载波信号。
9、根据权利要求1所述的方法,其特征在于,所述信号为GSM信号。
10、根据权利要求1所述的方法,其特征在于,所述信号为多载波信号。
11、根据权利要求1所述的方法,其特征在于,所述信号为码分多址信号。
12、根据权利要求1所述的方法,其特征在于,所述信号为超宽带信号。
13、根据权利要求1所述的方法,其特征在于,所述信号是正交频分复用信号。
14、根据权利要求13所述的方法,其特征在于,所述发射权重是标量。
15、根据权利要求1所述的方法,其特征在于,所述传输模式从由编码模式、编码率、调制模式和调制率组成的组中选出。
16、根据权利要求1所述的方法,其特征在于,所述加权步骤包括对所述信号进行加权以优化性能指标。
17、根据权利要求16所述的方法,其特征在于,所述性能指标是输出信噪比。
18、根据权利要求16所述的方法,其特征在于,所述性能指标是输出误包率。
19、一种用于发射信号的***,其特征在于,包括:
接收机,用于接收初始信号,并为所述初始信号估计信道状态信息;
发射机,用于依据传输模式发射信号,并基于所述信道状态信息和所述传输模式执行发射信号加权,所述加权权重是关于频率的函数。
20、根据权利要求19所述的方法,其特征在于,所述接收机包括多个接收天线,用于基于通过所述多个接收天线收到的信号估计所述信道状态信息,其中所述接收机还用于使用对应的多个接收天线空间权重中的一个,对通过所述多个接收天线中的每一个接收的信号进行加权。
21、根据权利要求20所述的方法,其特征在于,所述多个接收天线空间权重在基带下实现,或在RF实现,或在基带和RF的结合下实现。
22、根据权利要求19所述的方法,其特征在于,所述发射机用于发射所述初始信号,所述接收机用于通过无线链路向发射机发射所述估算的信道状态信息。
23、根据权利要求19所述的方法,其特征在于,所述接收机由所述发射机容置,其中所述发射机按照时分双工方式工作。
24、根据权利要求19所述的方法,其特征在于,所述信号为单载波信号。
25、根据权利要求19所述的方法,其特征在于,所述信号为GSM信号。
26、根据权利要求19所述的方法,其特征在于,所述信号为码分多址信号。
27、根据权利要求19所述的方法,其特征在于,所述信号为超宽带信号。
28、根据权利要求19所述的方法,其特征在于,所述信号是正交频分复用信号。
29、根据权利要求19所述的方法,其特征在于,所述发射机通过使用标量权重对所述信号的频率进行加权,来实现通过频率对信号发射功率进行加权。
30、根据权利要求19所述的方法,其特征在于,所述传输模式从由编码模式、编码率、调制模式和调制率组成的组中选出。
31、根据权利要求19所述的方法,其特征在于,所述发射信号加权包括生成发射信号权重以优化性能指标。
32、根据权利要求31所述的方法,其特征在于,所述性能指标是输出信噪比。
33、根据权利要求31所述的方法,其特征在于,所述性能指标是输出误包率。
34、根据权利要求20所述的方法,其特征在于,所述发射机通过使用基于所述多个接收天线空间权重生成的发射权重对信号频率进行加权,从而实现对发射信号的加权。
35、根据权利要求20所述的方法,其特征在于,所述发射机通过使用与所述多个接收天线空间权重一起生成的发射权重对信号频率进行加权,从而实现对发射信号加权。
36、根据权利要求35所述的方法,其特征在于,所述发射机还通过全局搜索同时优化所述发射权重和所述多个接收天线空间权重。
37、根据权利要求19所述的方法,其特征在于,所述发射信号加权包括发射功率加权,其中任何特定频率的发射功率通过阀值设定了上限。
38、根据权利要求19所述的方法,其特征在于,所述发射机包括多个发射天线,其中通过所述多个中的每个天线发射的信号进一步使用对应的多个发射天线空间权重中的一个进行加权。
39、根据权利要求38所述的方法,其特征在于,所述多个发射天线空间权重在基带下实现,或在RF实现,或在基带和RF的结合下实现。
40、根据权利要求20所述的方法,其特征在于,所述发射机包括多个发射天线,其中通过所述多个中的每个天线发射的信号进一步使用对应的多个发射天线空间权重中的一个进行加权。
41、根据权利要求40所述的方法,其特征在于,所述多个发射天线空间权重在基带下实现,或在RF实现,或在基带和RF的结合下实现。
42、根据权利要求40所述的方法,其特征在于,所述发射机用于通过使用基于所述多个接收天线空间权重和所述多个发射天线空间权重生成的发射权重对信号频率进行加权,以执行发射信号加权。
43、根据权利要求40所述的方法,其特征在于,所述发射机用于通过使用基于与所述多个接收天线空间权重和所述多个发射天线空间权重一同生成的发射权重对信号频率进行加权,以执行发射信号加权。
44、根据权利要求43所述的方法,其特征在于,所述发射机还用于通过全局搜索同时优化所述发射权重和所述多个发射和接收天线空间权重。
45、根据权利要求40所述的方法,其特征在于,所述发射机用于通过多个中的每个发射天线发射一组空间多路复用信号。
46、根据权利要求38所述的方法,其特征在于,所述发射机用于通过使用基于所述多个发射天线空间权重生成的发射权重对所述信号频率进行加权,以执行发射信号加权。
47、根据权利要求38所述的方法,其特征在于,所述发射机用于通过使用与所述多个发射天线空间权重一同生成的发射权重对所述信号频率进行加权,以执行发射信号加权。
48、根据权利要求47所述的方法,其特征在于,所述发射机还用于通过全局搜索同时优化所述发射权重和所述多个发射天线空间权重。
49、一种用于发射信号的***,其特征在于,包括:
接收机,用于接收初始信号,并基于预先确定的信道状态信息和信号传输模式估计发射信号权重值的组合,所述权重值是关于频率的函数;
发射机,用于使用所述发射权重值对所述信号进行加权,从而生成加权信号,并依据所述传输模式发射所述加权信号。
50、根据权利要求49所述的方法,其特征在于,所述发射机用于发射所述初始信号,所述接收机用于通过无线链路向所述发射机发送所述发射信号权重组合。
51、根据权利要求49所述的方法,其特征在于,所述接收机由所述发射机容置,其中所述发射机按照时分双工方式工作。
52、根据权利要求49所述的方法,其特征在于,所述接收机包括多个接收天线,用于基于通过所述多个接收天线收到的信号估算信道状态信息,其中所述接收机还用于使用对应的多个接收天线空间权重中的一个对通过所述多个中的一个接收天线收到的信号进行加权。
53、根据权利要求52所述的方法,其特征在于,所述多个接收天线空间权重在基带下实现,或在RF实现,或在基带和RF的结合下实现。
54、根据权利要求49所述的方法,其特征在于,所述信号为单载波信号。
55、根据权利要求49所述的方法,其特征在于,所述信号为GSM信号。
56、根据权利要求49所述的方法,其特征在于,所述信号为码分多址信号。
57、根据权利要求49所述的方法,其特征在于,所述信号为超宽带信号。
58、根据权利要求49所述的方法,其特征在于,所述信号是正交频分复用信号。
59、根据权利要求58所述的方法,其特征在于,所述发射机用于通过使用标量权重对所述信号的频率进行加权,来实现使用所述频率对所述信号发射功率进行加权。
60、根据权利要求49所述的方法,其特征在于,所述传输模式从由编码模式、编码率、调制模式和调制率组成的组中选出。
61、根据权利要求49所述的方法,其特征在于,所述发射信号加权包括生成发射信号权重以优化性能指标。
62、根据权利要求61所述的方法,其特征在于,所述性能指标是输出信噪比。
63、根据权利要求61所述的方法,其特征在于,所述性能指标是输出误包率。
64、根据权利要求52所述的方法,其特征在于,所述发射机用于通过使用基于所述多个接收天线空间权重生成的发射权重对所述信号频率进行加权,以执行发射信号加权。
65、根据权利要求52所述的方法,其特征在于,所述发射信号权重与所述多个接收天线空间权重一同生成。
66、根据权利要求65所示的方法,其特征在于,所述发射机还通过全局搜索同时优化所述发射信号权重和所述多个接收天线空间权重。
67、根据权利要求49所示的方法,其特征在于,所述发射信号加权包括发射功率加权,其中任何特定频率的发射功率通过阀值设定了上限。
68、根据权利要求49所示的方法,其特征在于,所述发射机包括多个发射天线,其中通过所述多个中的每个天线发射的信号进一步使用对应的多个发射天线空间权重中的一个进行加权。
69、根据权利要求68所示的方法,其特征在于,所述多个发射天线空间权重在基带下实现,或在RF实现,或在基带和RF的结合下实现。
70、根据权利要求52所示的方法,其特征在于,所述发射机包括多个发射天线,其中通过所述多个中的每个天线发射的信号进一步使用对应的多个发射天线空间权重中的一个进行加权。
71、根据权利要求70所示的方法,其特征在于,所述多个发射天线空间权重在基带下实现,或在RF实现,或在基带和RF的结合下实现。
72、根据权利要求70所示的方法,其特征在于,所述发射信号权重基于所述多个接收天线空间权重和所述多个发射天线空间权重生成。
73、根据权利要求70所示的方法,其特征在于,所述发射信号权重与所述多个接收天线空间权重和所述多个发射天线空间权重一同生成。
74、根据权利要求73所示的方法,其特征在于,通过全局搜索同时优化所述发射信号权重和所述发射和接收天线空间权重。
75、根据权利要求70所示的方法,其特征在于,所述发射机用于通过所述多个中的每个发射天线发射一组空间多路复用信号。
76、根据权利要求68所示的方法,其特征在于,所述发射信号权重基于所述多个发射天线空间权重生成。
77、根据权利要求68所示的方法,其特征在于,所述发射信号权重与所述多个发射天线空间权重一同生成。
78、根据权利要求77所示的方法,其特征在于,通过全局搜索同时优化所述发射权重和所述多个发射天线空间权重。
CNA200480020711XA 2003-07-29 2004-07-29 用于多天线通信***的频率选择性发射信号加权 Pending CN1860693A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US49112803P 2003-07-29 2003-07-29
US60/491,128 2003-07-29

Publications (1)

Publication Number Publication Date
CN1860693A true CN1860693A (zh) 2006-11-08

Family

ID=34748728

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA200480020711XA Pending CN1860693A (zh) 2003-07-29 2004-07-29 用于多天线通信***的频率选择性发射信号加权

Country Status (5)

Country Link
US (1) US8767860B2 (zh)
EP (3) EP2523383A3 (zh)
CN (1) CN1860693A (zh)
DE (2) DE202004021936U1 (zh)
WO (1) WO2005065070A2 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861704A (zh) * 2007-09-19 2010-10-13 新加坡科技研究局 传送数据至接收器的方法
WO2012167476A1 (en) * 2011-07-13 2012-12-13 Huawei Technologies Co., Ltd. Method for transmission in a wireless communication system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI435561B (zh) * 2008-08-11 2014-04-21 Inst Information Industry 多輸入多輸出天線系統、用於該多輸入多輸出天線系統之信號傳輸方法、信號傳輸裝置、電腦可讀取紀錄媒體及電腦程式產品
JP2011041229A (ja) * 2009-08-18 2011-02-24 Sony Corp 送信装置、受信装置、無線装置および送信装置における伝送モード制御方法
JP5640888B2 (ja) * 2011-05-18 2014-12-17 富士通株式会社 基地局及び受信方法
KR20160052070A (ko) * 2014-11-04 2016-05-12 삼성전자주식회사 비직교 송신 신호를 사용하는 다중 반송파 시스템에서 신호를 송수신하는 방법 및 장치
CN105024166B (zh) * 2015-06-26 2017-10-17 中国船舶重工集团公司第七二四研究所 基于子阵的平面阵列天线方向图综合方法
MX2021004797A (es) * 2015-07-23 2022-12-07 Samsung Electronics Co Ltd Aparato de transmision, aparato de recepcion, y metodos de control de los mismos.
CN106685495A (zh) * 2015-11-05 2017-05-17 索尼公司 无线通信方法和无线通信设备
US9847802B1 (en) * 2016-08-16 2017-12-19 Xilinx, Inc. Reconfiguration of single-band transmit and receive paths to multi-band transmit and receive paths in an integrated circuit
US11456897B2 (en) * 2018-04-09 2022-09-27 Nec Corporation Communication apparatus, method, program, and recording medium
US10516452B1 (en) * 2018-06-08 2019-12-24 University Of South Florida Using artificial signals to maximize capacity and secrecy of multiple-input multiple-output (MIMO) communication
US10644771B2 (en) * 2018-06-08 2020-05-05 University Of South Florida Using artificial signals to maximize capacity and secrecy of multiple-input multiple-output (MIMO) communication

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69725995T2 (de) * 1996-08-29 2004-11-11 Cisco Technology, Inc., San Jose Raumzeitliche signalverarbeitung für übertragungssysteme
FI108588B (fi) * 1998-12-15 2002-02-15 Nokia Corp Menetelmä ja radiojärjestelmä digitaalisen signaalin siirtoon
US7289570B2 (en) * 2000-04-10 2007-10-30 Texas Instruments Incorporated Wireless communications
JP2002064414A (ja) * 2000-08-14 2002-02-28 Sony Corp 通信システム及び通信方法、並びに通信端末
US6802035B2 (en) * 2000-09-19 2004-10-05 Intel Corporation System and method of dynamically optimizing a transmission mode of wirelessly transmitted information
US6369758B1 (en) * 2000-11-01 2002-04-09 Unique Broadband Systems, Inc. Adaptive antenna array for mobile communication
US6771706B2 (en) 2001-03-23 2004-08-03 Qualcomm Incorporated Method and apparatus for utilizing channel state information in a wireless communication system
US7177369B2 (en) 2001-04-27 2007-02-13 Vivato, Inc. Multipath communication methods and apparatuses
US7688899B2 (en) 2001-05-17 2010-03-30 Qualcomm Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US7072413B2 (en) 2001-05-17 2006-07-04 Qualcomm, Incorporated Method and apparatus for processing data for transmission in a multi-channel communication system using selective channel inversion
US6717931B2 (en) * 2002-01-02 2004-04-06 Nokia Corporation Adaptive spreading factor based on power control
US7020110B2 (en) 2002-01-08 2006-03-28 Qualcomm Incorporated Resource allocation for MIMO-OFDM communication systems
US7983355B2 (en) * 2003-07-09 2011-07-19 Broadcom Corporation System and method for RF signal combining and adaptive bit loading for data rate maximization in multi-antenna communication systems
US20040192218A1 (en) 2003-03-31 2004-09-30 Oprea Alexandru M. System and method for channel data transmission in wireless communication systems

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101861704A (zh) * 2007-09-19 2010-10-13 新加坡科技研究局 传送数据至接收器的方法
US8379751B2 (en) 2007-09-19 2013-02-19 Agency For Science, Technology And Research Method of transmitting data to a receiver
WO2012167476A1 (en) * 2011-07-13 2012-12-13 Huawei Technologies Co., Ltd. Method for transmission in a wireless communication system
CN103918193A (zh) * 2011-07-13 2014-07-09 华为技术有限公司 用于无线通信***中的发射方法
US9210710B2 (en) 2011-07-13 2015-12-08 Huawei Technologies Co., Ltd. Transmission of channel state information in a wireless communication system
CN103918193B (zh) * 2011-07-13 2016-11-09 华为技术有限公司 用于无线通信***中的发射方法

Also Published As

Publication number Publication date
US20120076238A1 (en) 2012-03-29
DE202004021918U1 (de) 2012-11-06
DE202004021936U1 (de) 2013-01-10
US8767860B2 (en) 2014-07-01
EP2523383A2 (en) 2012-11-14
WO2005065070A3 (en) 2006-07-06
EP1678863A4 (en) 2011-11-09
EP2523382A2 (en) 2012-11-14
EP2523383A3 (en) 2013-01-16
WO2005065070A2 (en) 2005-07-21
EP2523382A3 (en) 2013-01-16
EP1678863A2 (en) 2006-07-12

Similar Documents

Publication Publication Date Title
US7535969B2 (en) Frequency selective transmit signal weighting for multiple antenna communication systems
CN1860701A (zh) 选择天线的方法和***
CN1281004C (zh) 控制多输入、多输出通信信道的收发器中的方法和***
CN100340077C (zh) 多天线无线传输***中信道环境自适应传输方法
CN103986556B (zh) 用于在mimo无线通信***中提供有效预编码反馈的方法和设备
JP4386836B2 (ja) 固有モード毎に適用される選択的チャネル反転を備えたコード化mimoシステム
US8767860B2 (en) Frequency selective transmit signal weighting for multiple antenna communication systems
CN1841987A (zh) 无线通信装置和无线通信方法
JP2011024233A (ja) 広帯域mimo/misoシステムのためのビーム−ステアリング及びビーム−フォーミング
CN1697361A (zh) 无线通信***、通信装置、接收装置、通信方法及信道估计方法
KR20080041100A (ko) 무선 통신 시스템에서의 데이터 전송 방법
CN1890909A (zh) Mimo***中用于本征模式发射的接收机空间处理
CN101039136A (zh) 基于空频编码的多天线发射分集方法及其***
CN1957546A (zh) 具有量化的波束形成反馈的多输入多输出多载波通信***及方法
TW200408216A (en) Diversity transmission modes for mimo ofdm communication systems
CN1757213A (zh) 使用多种码元长度的多载波传输
CN1750448A (zh) 具有高发送速率的微分时空块编码装置及其方法
WO2010104982A1 (en) Precoding technique for multiuser mimo based on eigenmode selection and mmse
CN1805304A (zh) 具有自适应能力的多天线***及其跨层方法
US8155229B2 (en) Apparatus and method for transmitting/receiving a signal in a communication system
CN1838558A (zh) 多天线多用户通信***中的发送天线选择方法和设备
CN1658528A (zh) 一种mimo—ofdm***的自适应信道估计方法
CN107888522A (zh) 信道估计增强的方法及无线设备
CN1977486A (zh) 用于多输出无线通信***中最大似然译码的***和方法
CN1815941A (zh) 多天线传输***中的天线选择和比特分配方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Open date: 20061108