CN1843994B - 生物活性玻璃纳米粉体及其仿生合成方法 - Google Patents

生物活性玻璃纳米粉体及其仿生合成方法 Download PDF

Info

Publication number
CN1843994B
CN1843994B CN2006100351111A CN200610035111A CN1843994B CN 1843994 B CN1843994 B CN 1843994B CN 2006100351111 A CN2006100351111 A CN 2006100351111A CN 200610035111 A CN200610035111 A CN 200610035111A CN 1843994 B CN1843994 B CN 1843994B
Authority
CN
China
Prior art keywords
microemulsion
ammonium hydroxide
aqueous solution
weight
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2006100351111A
Other languages
English (en)
Other versions
CN1843994A (zh
Inventor
陈晓峰
王迎军
赵娜如
杨宇霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN2006100351111A priority Critical patent/CN1843994B/zh
Publication of CN1843994A publication Critical patent/CN1843994A/zh
Application granted granted Critical
Publication of CN1843994B publication Critical patent/CN1843994B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/097Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C12/00Powdered glass; Bead compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0007Compositions for glass with special properties for biologically-compatible glass

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Ceramic Engineering (AREA)
  • Glass Compositions (AREA)
  • Materials For Medical Uses (AREA)

Abstract

本发明涉及一种生物活性玻璃纳米粉体及其仿生合成方法,所述方法包括制备微乳液、水解、混合、陈化、脱模、干燥、热处理的步骤。得到含有CaO 36%~16%(重量)、P2O5 4%(重量)、SiO2 60%~80%(重量)的生物活性玻璃纳米粉体。利用本方法制备的生物活性玻璃纳米粉体具有高生物活性、降解性以及良好生物相容性的优点,适用于生物医用领域。

Description

生物活性玻璃纳米粉体及其仿生合成方法
技术领域
本发明涉及一种纳米材料的制备方法,特别是一种生物活性玻璃纳米粉体的仿生合成方法。
背景技术
人类由于肿瘤、炎症、药物或毒素作用、老龄化及各类创伤而导致的骨、齿组织的坏死、缺损及病变是临床多发病症,这些疾病往往给患者带来极大的痛苦,有些还威胁到患者的生命安全。目前国内外已临床应用的骨组织修复及骨组织工程材料由于其组成、结构及功能上与天然骨组织具有很大差异,从而导致其骨修复效果以及与组织和细胞的亲和性不够理想。在骨缺损的临床修复以及骨组织工程研究领域均迫切需要具有良好细胞亲和性和促进新生骨组织生长的新型生物材料。
美国的Hench在70年代初首先报道某些组成的玻璃具有生物活性,能与人体组织形成成键联结的特点。生物玻璃的研究现已成为材料学、生物化学以及分子生物学的交叉学科。做为组织工程支架的原材料和骨缺损填充材料及纳米药载都有广阔的应用前景。
生物活性玻璃的制备技术国内外近年已有一些专利和文献报道:中国专利公开号CN200410080802.4,发明创造名称为一种合成高纯超细生物玻璃粉的方法,该专利方法制得粉体平均粒径为150-300nm,不发生硬团聚;中国专利公开号CN200310122616.8,发明创造名称为纳米介孔以及介孔-大孔复合生物玻璃及其制备方法以及中国专利公开号CN03128993.2,发明创造名称为一种制备溶胶凝胶生物玻璃块体材料的方法,制备的生物玻璃具有很好的生物活性和生物相容性。上述发明创造不足之处在于制备的粉体粒度难以控制,颗粒分布范围较宽,而且易形成团聚。
发明内容
本发明针对现有技术存在的不足,提供一种生物活性玻璃纳米粉体及其仿生合成方法,利用微乳液有机模板控制粉体生长,制备出具有高生物活性、降解性以及良好生物相容性的生物活性玻璃纳米材料。
本发明的生物活性玻璃纳米粉体的仿生合成方法,包括如下步骤:
(1)制备微乳液:在环己烷中加入辛烷基酚基聚氧乙烯醚(TritonX-100)、助表面活性剂及氢氧化铵水溶液或硝酸钙水溶液,配制氢氧化铵溶液的微乳液和硝酸钙溶液的微乳液;
(2)水解:步骤(1)得到的氢氧化铵溶液的微乳液中加入正硅酸乙脂(TEOS)和磷酸三乙脂(TEP),发生水解反应,水解反应时间为30~60分钟,正硅酸乙脂(TEOS)∶磷酸三乙脂(TEP)∶氢氧化铵溶液的微乳液重量比为9~13∶1∶50~100;
(3)混合:按体积比1∶1将步骤(1)得到的硝酸钙溶液的微乳液加入到步骤(2)得到的水解液中,搅拌60-80分钟,得到混合液;
(4)陈化:将上述混合液在室温下放置3-4天;
(5)脱膜:在上述混合液中加入浓度为70%-80%重量的丙酮溶液,发生絮凝,分离出絮凝胶体,用浓度为70%-80%重量的丙酮溶液或无水乙醇清洗3-4次;
(6)干燥:将上述絮凝胶体真空干燥后,在600℃-700℃温度下热处理2-3小时。
优选方案如下:
步骤(1)中,所述硝酸钙溶液的微乳液中各组分摩尔比为环己烷∶TritonX-100∶助表面活性剂∶硝酸钙水溶液=30∶1∶5~10∶0.5~1.5,硝酸钙水溶液浓度为0.6M;
所述氢氧化铵溶液的微乳液中各组分摩尔比为环己烷∶TritonX-100∶助表面活性剂∶氢氧化铵水溶液=30∶1∶5~10∶0.5~1.5,氢氧化铵水溶液浓度为12.5%重量。
步骤(1)中,所述助表面活性剂为正丁醇、正戊醇、正己醇、正辛醇中的一种或一种以上混合物。
通过本发明的方法制备的生物活性玻璃纳米粉体,含有36%~16%(重量)CaO、4%(重量)P2O5、60%~80%(重量)SiO2,该粉体的平均粒径范围为20nm~50nm,颗粒形貌为球形,对应颗粒比表面积为245.49m2/g-97.52m2/g。
本发明与现有技术相比,具有如下优点:
(1)本发明采用微乳液有机模板法制备生物活性玻璃纳米粉体,原料的水解与反应被限制在微水核中,合成的颗粒粒度小而均匀,而且颗粒大小容易控制;
(2)本发明所制备的生物活性玻璃纳米粉体具有生物相容性、可降解性;
(3)本发明所制备的生物活性玻璃纳米粉体分散性好,具有较大的比表面积。
附图说明
图1是实施例1所制备的生物活性玻璃纳米粉体透射电镜图;
图2是实施例1所制备的生物活性玻璃纳米粉体粒径分布图;
图3是实施例2所制备的生物活性玻璃纳米粉体透射电镜图;
图4是实施例2所制备的生物活性玻璃纳米粉体粒径分布图;
图5是实施例3所制备的生物活性玻璃纳米粉体透射电镜图;
图6是实施例3所制备的生物活性玻璃纳米粉体粒径分布图。
具体实施方式
实施例1
(1)制备微乳液有机模板:在环己烷中加入辛烷基酚基聚氧乙烯醚(TritonX-100)、助表面活性剂及氢氧化铵水溶液(浓度12.5%)或硝酸钙水溶液(浓度0.6M),配制氢氧化铵溶液的微乳液和硝酸钙溶液的微乳液;
(2)水解:加入正硅酸乙脂(TEOS)和磷酸三乙脂(TEP)到氢氧化铵溶液的微乳液中,发生水解反应,水解反应时间为30~60分钟,正硅酸乙脂(TEOS)∶磷酸三乙脂(TEP)∶氢氧化铵水溶液的重量比为9∶1∶50;
(3)混合:将步骤(1)配置的硝酸钙溶液的微乳液按体积比1∶1加入到步骤(2)得到的微乳液中,搅拌60分钟,得到混合液;
(4)陈化:将上述混合液在室温下放置3天;
(5)脱膜:在上述混合液中加入80%(浓度)的丙酮溶液,发生絮凝,分离出絮凝胶体,用80%(浓度)的丙酮溶液或无水乙醇清洗3次;
(6)干燥:将上述絮凝胶体真空干燥后,在600℃温度下热处理3小时。
步骤(1)中,所述硝酸钙溶液的微乳液中各组分摩尔比范围为环己烷∶TritonX-100∶助表面活性剂∶硝酸钙水溶液(mol比)=30∶1∶6∶0.75,所述氢氧化铵溶液的微乳液中各组分摩尔比范围为环己烷∶TritonX-100∶助表面活性剂∶氢氧化铵水溶液(mol比)=30∶1∶6∶0.75。所述助表面活性剂是正己醇。得到的含有36%~16%(重量)CaO、4%(重量)P2O5、60%~80%(重量)SiO2
得到的生物活性玻璃纳米粉体含量范围在36%~16%(重量)CaO、4%(重量)P2O5、60%~80%(重量)SiO2之中。
如图1、2所示,得到的粉体分散性好,颗粒粒度小而均匀,颗粒形貌为球形,其平均粒径为25nm,对应颗粒比表面积在245.49m2/g-97.52m2/g。
实施例2
(1)制备微乳液有机模板:在环己烷中加入辛烷基酚基聚氧乙烯醚(TritonX-100)、助表面活性剂及氢氧化铵水溶液(浓度12.5%)或硝酸钙水溶液(浓度0.6M),配制氢氧化铵溶液的微乳液和硝酸钙溶液的微乳液;
(2)水解:加入正硅酸乙脂(TEOS)和磷酸三乙脂(TEP)到氢氧化铵溶液的微乳液中,发生水解反应,水解反应时间为30分钟,正硅酸乙脂(TEOS)∶磷酸三乙脂(TEP)∶氢氧化铵水溶液的重量比为13∶1∶100;
(3)混合:将步骤(1)配置的硝酸钙溶液的微乳液按体积比1∶1加入到步骤(2)得到的微乳液中,搅拌80分钟,得到混合液;
(4)陈化:将上述混合液在室温下放置4天;
(5)脱膜:在上述混合液中加入75%(浓度)的丙酮溶液,发生絮凝,分离出絮凝胶体,用75%(浓度)的丙酮溶液或无水乙醇清洗4次;
(6)干燥:将上述絮凝胶体真空干燥后,在700℃温度下热处理2小时。
步骤(1)中,所述硝酸钙溶液的微乳液中各组分摩尔比范围为环己烷∶TritonX-100∶助表面活性剂∶硝酸钙水溶液(mol比)=30∶1∶9∶1.25,所述氢氧化铵溶液的微乳液中各组分摩尔比范围为环己烷∶TritonX-100∶助表面活性剂∶氢氧化铵水溶液(mol比)=30∶1∶9∶1.25。所述助表面活性剂为正己醇、正辛醇的混合物(摩尔比1∶1)。
得到的生物活性玻璃纳米粉体含量范围在36%~16%(重量)CaO、4%(重量)P2O5、60%~80%(重量)SiO2之中。
如图3、4所示,得到的粉体分散性好,颗粒粒度小而均匀,颗粒形貌为球形,其平均粒径为35nm,对应颗粒比表面积在245.49m2/g-97.52m2/g。
实施例3
(1)制备微乳液有机模板:在环己烷中加入辛烷基酚基聚氧乙烯醚(TritonX-100)、助表面活性剂及氢氧化铵水溶液(浓度12.5%)或硝酸钙水溶液(浓度0.6M),配制氢氧化铵溶液的微乳液和硝酸钙溶液的微乳液;
(2)水解:加入正硅酸乙脂(TEOS)和磷酸三乙脂(TEP)到氢氧化铵溶液的微乳液中,发生水解反应,水解反应时间为30分钟,正硅酸乙脂(TEOS)∶磷酸三乙脂(TEP)∶氢氧化铵水溶液的重量比为9∶1∶50;
(3)混合:将步骤(1)配置的硝酸钙溶液的微乳液按体积比1∶1加入到步骤(2)得到的微乳液中,搅拌60分钟,得到混合液;
(4)陈化:将上述混合液在室温下放置3天;
(5)脱膜:在上述混合液中加入70%(浓度)的丙酮溶液,发生絮凝,分离出絮凝胶体,用70%(浓度)的丙酮溶液或无水乙醇清洗4次;
(6)干燥:将上述絮凝胶体真空干燥后,在600℃温度下热处理3小时。
步骤(1)中,所述硝酸钙溶液的微乳液中各组分摩尔比范围为环己烷∶TritonX-100∶助表面活性剂∶硝酸钙水溶液(mol比)=30∶1∶6∶1.5,所述氢氧化铵溶液的微乳液中各组分摩尔比范围为环己烷∶TritonX-100∶助表面活性剂∶氢氧化铵水溶液(mol比)=30∶1∶6∶1.5。所述助表面活性剂为正戊醇。
得到的生物活性玻璃纳米粉体含量范围在36%~16%(重量)CaO、4%(重量)P2O5、60%~80%(重量)SiO2之中。
如图5、6所示,得到的粉体分散性好,颗粒粒度小而均匀,颗粒形貌为球形,其平均粒径为50nm,对应颗粒比表面积在245.49m2/g-97.52m2/g。
实施例4
(1)制备微乳液有机模板:在环己烷中加入辛烷基酚基聚氧乙烯醚(TritonX-100)、助表面活性剂及氢氧化铵水溶液(浓度12.5%)或硝酸钙水溶液(浓度0.6M),配制氢氧化铵溶液的微乳液和硝酸钙溶液的微乳液;
(2)水解:加入正硅酸乙脂(TEOS)和磷酸三乙脂(TEP)到氢氧化铵溶液的微乳液中,发生水解反应,水解反应时间为60分钟,正硅酸乙脂(TEOS)∶磷酸三乙脂(TEP)∶氢氧化铵水溶液的重量比为13∶1∶100;
(3)混合:将步骤(1)配置的硝酸钙溶液的微乳液按体积比1∶1加入到步骤(2)得到的微乳液中,搅拌80分钟,得到混合液;
(4)陈化:将上述混合液在室温下放置3天;
(5)脱膜:在上述混合液中加入70%(浓度)的丙酮溶液,发生絮凝,分离出絮凝胶体,用70%(浓度)的丙酮溶液或无水乙醇清洗4次;
(6)干燥:将上述絮凝胶体真空干燥后,在600℃温度下热处理3小时。
步骤(1)中,所述硝酸钙溶液的微乳液中各组分摩尔比范围为环己烷∶TritonX-100∶助表面活性剂∶硝酸钙水溶液(mol比)=30∶1∶7∶1.5,所述氢氧化铵溶液的微乳液中各组分摩尔比范围为环己烷∶TritonX-100∶助表面活性剂∶氢氧化铵水溶液(mol比)=30∶1∶7∶1.5。所述助表面活性剂为正丁醇与正戊醇的混合物(摩尔比=1∶1)。

Claims (3)

1.生物活性玻璃纳米粉体的仿生合成方法,其特征在于该生物活性玻璃纳米粉体由36%~16%重量CaO、4%重量P2O5、60%~80%重量SiO2组成;该粉体的平均粒径范围为20nm~50nm,颗粒形貌为球形,对应颗粒比表面积为245.49m2/g-97.52m2/g,包括如下步骤:
(1)制备微乳液:在环己烷中加入TritonX-100、助表面活性剂及氢氧化铵水溶液或硝酸钙水溶液,配制氢氧化铵溶液的微乳液和硝酸钙溶液的微乳液;
(2)水解:步骤(1)得到的氢氧化铵溶液的微乳液中加入正硅酸乙脂和磷酸三乙脂,发生水解反应,水解反应时间为30~60分钟,正硅酸乙脂∶磷酸三乙脂∶氢氧化铵水溶液的重量比为9~13∶1∶50~100;
(3)混合:按体积比1∶1将步骤(1)得到的硝酸钙溶液的微乳液加入到步骤(2)得到的水解液中,搅拌60-80分钟,得到混合液;
(4)陈化:将上述混合液在室温下放置3-4天;
(5)脱膜:在上述混合液中加入浓度为70%-80%重量的丙酮溶液,发生絮凝,分离出絮凝胶体,用浓度为70%-80%重量的丙酮溶液或无水乙醇清洗3-4次;
(6)干燥:将上述絮凝胶体真空干燥后,在600℃-700℃温度下热处理2-3小时。
2.根据权利要求1所述的方法,其特征在于步骤(1)中,所述硝酸钙溶液的微乳液中各组分摩尔比为环己烷∶TritonX-100∶助表面活性剂∶硝酸钙水溶液=30∶1∶5~10∶0.5~1.5,硝酸钙水溶液浓度为0.6M;所述氢氧化铵溶液的微乳液中各组分摩尔比为环己烷∶TritonX-100∶助表面活性剂∶氢氧化铵水溶液=30∶1∶5~10∶0.5~1.5,氢氧化铵水溶液浓度为12.5%重量。
3.根据权利要求2所述的方法,其特征在于步骤(1)中,所述助表面活性剂为正丁醇、正戊醇、正己醇、正辛醇中的一种或一种以上混合物。
CN2006100351111A 2006-04-21 2006-04-21 生物活性玻璃纳米粉体及其仿生合成方法 Expired - Fee Related CN1843994B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2006100351111A CN1843994B (zh) 2006-04-21 2006-04-21 生物活性玻璃纳米粉体及其仿生合成方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2006100351111A CN1843994B (zh) 2006-04-21 2006-04-21 生物活性玻璃纳米粉体及其仿生合成方法

Publications (2)

Publication Number Publication Date
CN1843994A CN1843994A (zh) 2006-10-11
CN1843994B true CN1843994B (zh) 2010-09-01

Family

ID=37062965

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006100351111A Expired - Fee Related CN1843994B (zh) 2006-04-21 2006-04-21 生物活性玻璃纳米粉体及其仿生合成方法

Country Status (1)

Country Link
CN (1) CN1843994B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106186674B (zh) * 2016-07-06 2019-02-15 浙江理工大学 一种中空生物活性玻璃球、制备方法及其应用
CN106673426A (zh) * 2017-01-13 2017-05-17 上海师范大学 一种掺杂稀土元素的多孔微球状纳米级生物玻璃材料及其制备方法和应用
CN110507547B (zh) * 2019-09-27 2021-10-26 华南理工大学 一种基于生物活性玻璃/壳聚糖的复合活髓保存材料及其制备方法与应用
CN112957451B (zh) * 2021-02-26 2021-12-17 四川大学 生物活性玻璃/仿生功能多肽复合体及制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074916A (en) * 1990-05-18 1991-12-24 Geltech, Inc. Alkali-free bioactive sol-gel compositions
CN1334243A (zh) * 2001-08-27 2002-02-06 清华大学 一种制备粒径可控的纳米氧化锆的方法
CN1361076A (zh) * 2002-01-18 2002-07-31 中国科学院上海硅酸盐研究所 纳米级生物活性玻璃粉体材料及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5074916A (en) * 1990-05-18 1991-12-24 Geltech, Inc. Alkali-free bioactive sol-gel compositions
CN1334243A (zh) * 2001-08-27 2002-02-06 清华大学 一种制备粒径可控的纳米氧化锆的方法
CN1361076A (zh) * 2002-01-18 2002-07-31 中国科学院上海硅酸盐研究所 纳米级生物活性玻璃粉体材料及制备方法

Also Published As

Publication number Publication date
CN1843994A (zh) 2006-10-11

Similar Documents

Publication Publication Date Title
CN103420364B (zh) 一种石墨烯/羟基磷灰石复合材料的制备方法
CN101695584B (zh) 一种促骨再生修复的可注射复合材料及其制备方法
CN100357178C (zh) 碳酸型高活性部分结晶磷酸钙及其制备方法
CN101518659B (zh) 一种生物活性仿生磷酸钙纳米材料及其制备方法和用途
CN103272279B (zh) 一种生物活性多层化复相陶瓷微球材料、制备方法及应用
CN1323726C (zh) 锶磷灰石骨水泥制剂及其应用
US20070098811A1 (en) High strength biological cement composition and using the same
CN1843994B (zh) 生物活性玻璃纳米粉体及其仿生合成方法
CN101288634B (zh) 夜光营养发乳及其制备方法
CN102634042A (zh) 一种具有生物活性的聚乙烯醇复合水凝胶及其制备方法
CN101623514A (zh) 一种金属离子掺杂纳米羟基磷灰石的制备方法
CN101584886A (zh) 层状仿生关节软骨修复与置换材料及其制备方法
CN107032775B (zh) 一种纳米羟基磷灰石、硅酸二钙复合生物陶瓷及其制备方法和应用
CN102600511A (zh) 一种可注射活性骨修复材料及其制备方法
CN108421085A (zh) 石墨烯与羟基磷灰石复合仿生骨材料及其制备方法
CN101433734A (zh) 一种纳米羟基磷灰石生物活性材料的合成方法
CN102886069B (zh) 溶胶凝胶生物玻璃-高分子杂化材料的制备方法
CN101292943A (zh) 纳米氧化锌牙膏
CN103848574A (zh) 一种含锶生物玻璃粉体制备、及含锶多孔生物玻璃支架的制备方法
CN106074311A (zh) 一种能够作为漱口水使用的牙膏及其制备方法
CN101343055A (zh) 纳米羟基磷灰石水溶胶及其制备方法和在牙膏中的应用
CN109180083A (zh) 一种薰衣草香型硅藻泥建筑涂料制备方法
JP2001152129A (ja) 鉱物粉末組成物
CN101401952A (zh) 一种纳米羟基磷灰石生物活性材料的制备方法
CN115998962A (zh) 一种组织粘附性复合水凝胶的合成方法及其绿色序列治疗种植体周围炎的应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20100901

CF01 Termination of patent right due to non-payment of annual fee