CN1762790B - 氢气生产方法 - Google Patents

氢气生产方法 Download PDF

Info

Publication number
CN1762790B
CN1762790B CN2005100976039A CN200510097603A CN1762790B CN 1762790 B CN1762790 B CN 1762790B CN 2005100976039 A CN2005100976039 A CN 2005100976039A CN 200510097603 A CN200510097603 A CN 200510097603A CN 1762790 B CN1762790 B CN 1762790B
Authority
CN
China
Prior art keywords
gas
ceramic monoliths
catalyzer
hydrogen
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2005100976039A
Other languages
English (en)
Other versions
CN1762790A (zh
Inventor
S·S·坦汉卡
S·V·克里希南
M·H·莱森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde LLC
Original Assignee
BOC Group Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BOC Group Inc filed Critical BOC Group Inc
Publication of CN1762790A publication Critical patent/CN1762790A/zh
Application granted granted Critical
Publication of CN1762790B publication Critical patent/CN1762790B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/36Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using oxygen or mixtures containing oxygen as gasifying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/248Reactors comprising multiple separated flow channels
    • B01J19/2485Monolithic reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • C01B3/24Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons
    • C01B3/26Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds of hydrocarbons using catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00513Controlling the temperature using inert heat absorbing solids in the bed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1011Packed bed of catalytic structures, e.g. particles, packing elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1023Catalysts in the form of a monolith or honeycomb
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1029Catalysts in the form of a foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1064Platinum group metal catalysts
    • C01B2203/107Platinum catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明提供了一种生产氢气的方法,该方法通过在足以生成氢气的温度下使含烃气体通过陶瓷整料,并在足以与所述陶瓷整料上的碳反应生成一氧化碳的温度下使含氧气体通过该陶瓷整料。该方法使用一个或多个反应床,以生成氢气之后接着生成一氧化碳的方式循环进行。

Description

氢气生产方法
本申请要求2004年8月25日提交的美国临时专利申请60/604,285的优先权。
技术领域
将烃转化为含有氢气和一氧化碳的气体在本领域是众所周知的。这些方法的例子包括催化水蒸气转化、自热催化转化、催化部分氧化和非催化部分氧化。这些方法各有优缺点,生成各种比例的氢气和一氧化碳(也称为合成气)。本发明涉及一种通过使用整料(monolith)基催化剂制造氢气或甲烷-氢气混合物的烃裂化方法。本发明还涉及用单机反应器(single unit reactor)生产合成气。
背景技术
部分氧化方法也是广为人知的,并且本领域中具有各种催化部分氧化方法。部分氧化是一个放热反应,其中甲烷之类的烃气体和空气之类的含氧气体在高温下与催化剂接触,以生成含有高浓度氢气和一氧化碳的反应产物。这些方法中所用的催化剂通常为负载在合适载体上的铂或铑之类的贵金属,以及镍之类的其它过渡金属。
部分氧化方法将天然气之类的含烃气体转化成氢气、一氧化碳和二氧化碳与水之类的其它痕量组分。该方法通常是通过将预热的烃和含氧气体注入燃烧室(在燃烧室内,在氧气含量少于完全燃烧所需的化学计量的条件下发生烃的氧化)中进行。该反应在很高的温度(例如高于700℃,经常是高于1000℃),以及高达150个大气压的压力下进行。在一些反应中,也可向燃烧室内注入水蒸气或二氧化碳来改变合成气产物并调节氢气与一氧化碳的比例。
近来,公开了这样的部分氧化方法,其中,在沉积在陶瓷泡沫(整料)载体上的催化剂如金属存在下,在高空速下使烃气体与含氧气体接触。该整料载体充满了铂、钯或铑之类的贵金属,或者镍、钴、铬等其它过渡金属。通常,这些整料载体由氧化铝、氧化锆、氧化镁等固体耐火材料或陶瓷材料制成。在进行这些反应的时候,首先使烃原料气和含氧气体在超过400℃,通常是超过600℃的温度下,以超过每小时100,000的标准气体每小时空速(GHSV)与金属催化剂接触。
然而,这些方法仍然需要进行下游分离以获得分离产物(氢气和/或一氧化碳)。在本发明的烃裂化方法中,氢气和一氧化碳通过循环方式操作,在单个反应器中分别直接制得。
先前的由烃分解制备氢气的方法的缺点在于,在固定床操作中的压降过大,或者循环流化床的操作很复杂。本发明方法提出了这些问题的解决方案,因为所述陶瓷整料具有高孔隙率和大孔径,并且在操作过程中引起的压降可以忽略不计。另外,没有催化剂的移动以及由此带来的磨损、堵塞或者其它与循环流化床相关的问题。此外,先前的方法的注意力集中在产物仅为氢气(M.Poirier和C.Sapundzhiev)或者氢气和碳产物(N.Muradov)。本发明方法能够通过调节含氧气流再生的操作参数,选择性地产生纯CO而不产生CO2,并且CO能连续地收集;从而显著提升产物的价值。
发明内容
本发明提供了一种制备氢气和一氧化碳的方法,它包括以下步骤:
a)在足以生成氢气的温度下使含烃气体通过陶瓷整料;
b)在足以与所述陶瓷整料上的碳反应生成一氧化碳的温度下,使含氧气体通过该陶瓷整料。
本发明的方法宜循环地进行。所述气体的气流可在至少两个反应器之间交替,以获得连续的产物流。在步骤之间,用氮气之类的惰性气体对包含陶瓷整料的反应器进行短暂的吹扫,以避免形成可燃性混合物。
在本发明的其它实施方式中,一氧化碳可作为第二产物收集,或者可送入变换反应器中以制得更多的氢气。
在本发明的另一个实施方式中,可调节再生条件,通过将沉积在催化剂表面上的碳完全氧化来获得二氧化碳一种产物。
在本发明的另一个实施方式中,通过控制气体的加入流速和陶瓷整料的操作温度来或者主要含有甲烷和约20-30体积%氢气的产物气体混合物。
附图说明
图1为用来生产氢气和任选的一氧化碳的双床整料反应器***的示意图。
图2为用来生产氢气的双床***的示意图。
具体实施方式
氢气由本发明的方法按下述制备:首先使甲烷之类的含烃气流通入含有陶瓷整料的反应器中,该陶瓷整料充满了催化剂。烃在约1-30巴的压力下通过该陶瓷整料。
在该方法的第二个步骤中,使含氧气体(例如空气、富氧空气、纯氧或氧气与水蒸气的混合物)通入该反应器,与最初焦结沉积在陶瓷整料上的碳发生反应。调节操作条件,以形成一氧化碳,所述一氧化碳可作为产物收集或直接导入变换气体反应器进一步生产更多的氢气。
在这两个步骤之间,向反应室内通入选自氮气、氩气、氦气或水蒸气的惰性气体以吹扫反应室。所述惰性气体宜为水蒸气。这将在整个方法过程中抑制可燃性混合物的形成,并且水蒸气可通过冷凝从氢气和一氧化碳的产物气体中较简单地分离。该方法的第一个步骤(裂化步骤)是吸热的,而第二个步骤(烧焦)是放热的。第二个步骤中产生的热量将储存在陶瓷整料体内或呈其它形式热质的形式(例如反应器中的化学瓷料),并用于该方法的第一个步骤中。
所述含烃气体可以是任何气态烃或可汽化的液态烃本身,或者与其它含烃气体的混合物。较佳地,所述含烃气体选自乙烷、丙烷、丁烷、苯、或者它们的混合物。
用于生产氢气和一氧化碳的含烃气体的气体流速约为690-1380小时-1,当第二个步骤中使用空气时,该气体流速约为1725-3450小时-1。当使用氧气时,该气体流速约为345-690小时-1
进行第一个步骤(裂化)时的温度约为700-900℃。第二个步骤在大致相同的温度下进行。
较佳地,含烃气体在大于500℃,更好是大于约500℃的温度下进行。
较佳地,含氧气体在大于约25℃,更好是在大于约100℃的温度下与水蒸气一起加入。
在本发明的另一个实施方式中,以能生成包含甲烷和氢气的混合物的方式控制所述第一个步骤中反应器的操作条件。控制含烃气体的加料流速和反应室的操作温度,从而制得甲烷和氢气的混合物(含有约20-30体积%的氢气)。该混合物可用作汽车发动机或其它内燃机设备的燃料,特别是用来减少氮氧化物(NOx)和其它排放物的生成,并能提高发动机的效率。所述对反应器***的“调节”能够产生含有约20-100体积%的控制量的氢气的产物气体,该产物气体可用于各种工业用途。在850℃和5磅/平方英寸(psig)下进行的研究得到含有35%甲烷和58%氢气的气体混合物。
也可以对再生条件进行调节,使得产物全都是二氧化碳。这同样包括调节反应条件,使得在引入该反应的第二个步骤反应时调节含氧气体(例如空气、富氧空气、纯氧、或者氧气与水蒸气的混合物)的含量。通过引入化学计量或大于化学计量的含氧气体以使得环境富氧,可得到二氧化碳而不是一氧化碳。
本发明所用的金属催化剂由陶瓷整料载体结构构成,该陶瓷整料载体结构由氧化铝基材组成并充满了Fe、Ni、Pd之类的过渡金属或者它们的混合物。本文中使用的“金属催化剂”指的是包括金属和整料载体的整个催化剂结构。该整料载体通常是由单一结构单元形成的陶瓷泡沫状结构,其中,通道以不规则的或规则的模式排列,相邻的通道之间有间隔。所述单一结构单元用来代替常规的微粒状或颗粒状催化剂(它们在本发明的方法中是较为不利的)。所述不规则模式的整料载体的例子包括用于熔化金属的过滤器。规则模式载体的例子包括用于纯化机动车废气和用于各种化学工艺中的整料蜂巢状载体。优选的是具有不规则通道的陶瓷泡沫结构。这两种类型的整料载体都是人们已知的,都可以商业购得。
所述催化剂元件由陶瓷泡沫整料构成,所述陶瓷泡沫整料基本上由氧化铝构成,并含有约0.5-5重量%的过渡金属(较佳的是金属单质铁、镍、钯、或者它们的混合物)。任选地,可使用约2-5重量%的铁本身或其与其它金属的混合物。反应器包括若干陶瓷泡沫圆盘,包括其上充满了催化剂,且剩下的空白部分用来填充空隙空间的那些。空白圆盘可由氧化铝、氧化锆、堇青石、或者它们的混合物制成。充满的金属可与氧化铝一同用作用于裂化过程的催化剂。含有催化剂的圆盘的孔隙率为40-70孔/英寸(ppi),以使催化剂的负载达到最大。空白圆盘具有20-40ppi的较高孔隙率,以保持低的压降。
以下参看附图,图1为用于进行本发明的双床反应器***的示意图。线路1通过阀1A和线路3将含烃气体输送到阀3A。含烃气体继续通过线路7到达第一陶瓷整料床A。含氧气体从线路2经过阀2A和线路4到达阀12A,在含烃气体流动停止之后进入陶瓷整料床A。在该实施方式中,双床***能够连续制得氢气产物,并且在通过线路12通入含烃气体和含氧气体这两个步骤之间,通过线路5和阀2A、线路4和阀12A将氮气之类的惰性气体引入陶瓷整料床A或B内。
含烃气体通过陶瓷整料床A之后,氢气产物将作为产物经线路9和阀9A从线路14流出。此时含氧气体将进入线路12,然后进入陶瓷整料床B,并在那里与陶瓷整料上的碳发生反应生成一氧化碳,生成的一氧化碳流过线路11、阀11A并经线路13离开陶瓷整料床B。还可含有一定量二氧化碳的一氧化碳气流从这里任选地进入变换转化器C,同时水蒸气通过线路15进入。变换转化所得的产物气体是氢气和二氧化碳,它们经线路16离开。
当陶瓷整料床B用作生产反应器时,含烃气体从阀3A进入线路8,然后流入陶瓷整料床B,在那里反应产物氢气作为产物经过线路10、阀9A和线路14流出***。同时,含氧气体将经过线路4、阀12A和线路12进入陶瓷整料床A。在那里它将与陶瓷整料A上的存在的碳发生反应,生成的一氧化碳气体从线路11离开。该一氧化碳中还可能存在一定量的二氧化碳,该混合物将通过阀11A离开,然后经线路13送入变换反应器中。
应当注意的是,如果需要一氧化碳/二氧化碳作为最终产物,可将其从线路13排出而不进入变换反应器中。
图2为与图1中所示结构不同的用于生产氢气的双床方法的示意图。含烃气体将通过线路20进入陶瓷整料床D(它是固定床陶瓷整料)。含烃气体将在该陶瓷整料床内发生反应,生成的氢气作为产物气体通过线路21离开。在这种情况下阀22A和32A是关闭的。含氧气体将经线路27和线路28进入陶瓷整料床E并在那里发生反应,生成的一氧化碳和一些二氧化碳经线路26和线路25流出。
当陶瓷整料床E为生产床时,含烃气体经线路20和线路22通过阀22A,或者经线路24和阀24到达线路26,在那里含烃气体将在陶瓷整料床E内与陶瓷整料发生反应。生成的氢气将作为产物气体经线路28、线路32,通过阀32A,或者经线路30和阀30A以及线路21排出。同时,含氧气体经线路27,然后经线路30和阀30A或者线路32和阀32A进入线路21,在那里含氧气体将进入陶瓷整料床D。所述含氧气体将发生反应,生成的含有一些二氧化碳的一氧化碳气体通过线路20离开陶瓷整料床D,然后经线路22和阀22A或者线路24和阀24A进入线路26,然后从线路25排出。图中未显示,但与本发明一致的是,可将一氧化碳气体导入变换转化器内,并在那里用于生产更多的氢气。
实施例
整料催化剂的制备
具有氧化铝洗涂层(washcoat)且每英寸具有45个孔(ppi)的整料是商业可得的,其长度为3英寸和6英寸,直径1.5英寸。用水浸泡3英寸长的整料,然后真空干燥2小时以记录该整料的重量增加。通过将Fe、Ni和Pd的盐溶解于水中制备铁、镍和钯的溶液,用来在该整料上负载3-5重量%的金属。
对在制得的盐溶液中的浸渍过的整料进行真空干燥之后,将其在800℃的氮气中煅烧过夜,随后在含5%氢气的氮气气氛中还原近似长的时间。应当注意的是,发现该还原时间对试验而言略显不足,这是因为在还原步骤之后该整料上仍残留有一定量的氧化铁。
试验步骤
用于试验本发明方法的试验步骤是两步循环过程。在第一个步骤中,通过压力调节器和一系列阀调节压力和流速,将甲烷通入含有已通过上述方法制备的催化剂的加热炉内。在第二个步骤中,通过压力调节器和阀以逆流方式向加热炉内通入空气,并调节空气流速以更有利于选择性地生成CO。在热裂化步骤(步骤I)和催化再生步骤(步骤II)之间需要以氮气作为吹扫气体来进行短暂的吹扫步骤(本发明人预期也可使用水蒸气)。
所述加热炉在700℃、800℃和900℃的温度下操作。甲烷以很多种空速通过加热炉。试验三种不同的催化剂:3.5%铁、2%镍和2%钯。
使用下式(1)测量甲烷向氢气的转化率,其中P为观测到在离开加热炉的产物气体中氢气的浓度。该试验的结果列于表1a、1b和1c。
表1a.在900℃的产物气体中观测到的最大氢气浓度
  空速(h-1)   Fe(3.5%)   Ni(2%)   Pd(2%)
  375   89   84.5   92.3
  550   89
  750   89   80   91.5
  900   88.5
  1100   86   82   90
  2150   87
表1b.在800℃的产物气体中观测到的最大氢气浓度
 空速(h-1)   Fe(3.5%)   Ni(2%)   Pd(2%)
 375   89   82   87
 550   89
 750   88   79   86
 900
 1100   85   75   85
表1c.在700℃的产物气体中观测到的最大氢气浓度
 空速(h-1)   Fe(3.5%)   Ni(2%)   Pd(2%)
 375   80   76   62
 550   75
 750   72   73   63
 900
 1100   68   70   59
应当注意的是,如果X为甲烷向氢气的转化率百分数,并且如果P为表1a、1b和1c中给出的产物气体中观测到的氢气浓度,则可用方程式(1)求出X的大致近似值。
                    X=P/(200-P)       (1)
该试验的结果证明,Fe和Pd催化剂在800℃和900℃下在性能方面优于Ni催化剂。还发现在第一个步骤中,产物气体中一氧化碳的含量通常约为2-10体积%。
按上述进行进一步的试验来确定更高催化剂负载的效果。按上述方法制备浓度高于制备3.5重量%的催化剂所需浓度的铁盐溶液。铁的负载量达到约5重量%。
表2a和2b总结了3.5重量%和5重量%铁整料在产物气体中观测到的最大氢气浓度方面的比较。如上文中使用的,方程式(1)提供了各种情况下对甲烷转化率的估计。
               表2a.在900℃下3.5重量%和5重量%Fe整料的比较
                                             3.5%Fe整料                                              5%Fe整料
  空速(H-1)   产物中的最大%H2  最大%CH4裂化   产物中的最大%H2  最大%CH4裂化
  375   89  80.2   92.3  85.5
  550   89.2  80.5
  750   89  80.2   93  87
  900   88.5  80.0
  1100   86  75.4   92  85.2
  1700   88.8  80.0
               表2a.在800℃下3.5重量%和5重量%Fe整料的比较
                                            3.5%Fe整料                                               5%Fe整料
  空速(H-1)   产物中的最大%H2  最大%CH4裂化   产物中的最大%H2  最大%CH4裂化
  375   89.4  80.6   90.1  82
  550   88.8  80.1
  750   87.7  78.1   89.7  81.3
  1100   85.0  73.9
  1700   81.2  68.4
尽管在整料催化剂上负载更多的Fe促进了甲烷的裂化,但是在900℃下效果最好。
尽管本发明已经参照具体的实施方式进行了描述,但是对本领域的技术人员来说,显而易见的是本发明还有很多其它形式和修改。所附的权利要求书和本发明通常应当解释为包括在本发明的真实精神和范围之内的所有这些明显的形式和修改。

Claims (8)

1.一种生产氢气的热裂化方法,它包括以下步骤:
(a)在700-900℃的温度下使含烃的第一气流通过陶瓷整料承载的催化剂,以形成在所述陶瓷整料承载的催化剂上的碳,其中,所述陶瓷整料承载的催化剂由氧化铝基材组成并充满了选自Fe、Ni、Pd及其组合的过渡金属;
(b)在700-900℃的温度下使含氧的第二气流通过所述陶瓷整料承载的催化剂,以与步骤(a)中形成在所述陶瓷整料承载的催化剂上的碳反应,以产生一氧化碳或二氧化碳。
2.如权利要求1所述的方法,其特征在于,所述含烃的第一气流是气态烃或可汽化的液态烃,或者它们的混合物。
3.如权利要求1所述的方法,其特征在于,在1-30巴的压力和大于300℃的温度下使所述含烃的第一气流通过所述陶瓷整料承载的催化剂。
4.如权利要求1所述的方法,其特征在于,所述方法是循环方法。
5.如权利要求1所述的方法,其特征在于,在步骤(a)和步骤(b)之间用惰性气体对所述陶瓷整料承载的催化剂进行吹扫。
6.如权利要求1所述的方法,其特征在于,将由步骤(b)中的反应产生的热量储存在所述陶瓷整料承载的催化剂中,并用于该方法的步骤(a)中。
7.如权利要求1所述的方法,其特征在于,所述陶瓷整料为陶瓷泡沫状结构。
8.如权利要求1所述的方法,其特征在于,所述陶瓷整料呈圆盘或圆柱的形状。
CN2005100976039A 2004-08-25 2005-08-25 氢气生产方法 Expired - Fee Related CN1762790B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US60428504P 2004-08-25 2004-08-25
US60/604,285 2004-08-25
US11/145,835 2005-06-06
US11/145,835 US7544342B2 (en) 2004-08-25 2005-06-06 Hydrogen production process

Publications (2)

Publication Number Publication Date
CN1762790A CN1762790A (zh) 2006-04-26
CN1762790B true CN1762790B (zh) 2012-01-11

Family

ID=35385044

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005100976039A Expired - Fee Related CN1762790B (zh) 2004-08-25 2005-08-25 氢气生产方法

Country Status (7)

Country Link
US (1) US7544342B2 (zh)
EP (1) EP1630129A1 (zh)
KR (1) KR101180251B1 (zh)
CN (1) CN1762790B (zh)
CA (1) CA2512958C (zh)
SG (1) SG120243A1 (zh)
TW (1) TWI373451B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100599668B1 (ko) * 2004-08-19 2006-07-12 한국과학기술연구원 연료의 부분 산화 개질 반응용 촉매 성형체 더미, 이를 이용한 연료 개질 장치 및 연료 개질 방법
WO2007112491A1 (en) * 2006-03-31 2007-10-11 The University Of Tasmania Microreactor
CN200992485Y (zh) * 2006-12-15 2007-12-19 华城能源再生科技有限公司 微型制氢装置
WO2009090631A2 (en) * 2008-01-14 2009-07-23 Hydrogen Catalyst Ltd. Monolithic catalyst and uses thereof
EP2796198A1 (en) * 2013-04-23 2014-10-29 Danmarks Tekniske Universitet Catalysts for selective oxidation of ammonia in a gas containing hydrogen
GB201620667D0 (en) * 2016-12-05 2017-01-18 Univ Oxford Innovation Ltd Process
CN109019510A (zh) * 2018-09-25 2018-12-18 上海涛川能源科技有限公司 一种制氢方法
WO2024077371A1 (en) * 2022-10-12 2024-04-18 Innova Hydrogen Corp. Apparatus and method for catalytic pyrolysis of light hydrocarbons
CA3210231C (en) 2022-12-19 2024-03-12 Ekona Power Inc. Methods and systems for adjusting inputs to a pyrolysis reactor to improve performance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129060A (en) * 1962-04-03 1964-04-14 Universal Oil Prod Co Control of conversion in a catalytic hydrogen producing unit
US3342561A (en) * 1963-01-22 1967-09-19 Universal Oil Prod Co System for hydrogen production by catalytic decomposition of a hydrocarbon stream
US3355248A (en) * 1963-12-16 1967-11-28 Universal Oil Prod Co Process for producing hydrogen and carbon with an essentially ironfree catalyst
CN1257826A (zh) * 1998-10-20 2000-06-28 波克股份有限公司 烃的部分氧化法
CN1370733A (zh) * 2000-03-02 2002-09-25 波克股份有限公司 烃的催化部分氧化
US20030031901A1 (en) * 2001-07-27 2003-02-13 Norbert Breuer Fuel cell system having two reformer units for catalytic decomposition

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3928973A (en) 1974-08-12 1975-12-30 Mintech Corp Process for extracting water and energy from synthesis gas
US4244810A (en) 1979-12-10 1981-01-13 Texaco Inc. Fluidized catalytic cracking process for increased hydrogen production
NL8203582A (nl) 1982-09-16 1984-04-16 Shell Int Research Werkwijze voor het bereiden van synthesegas.
US4522894A (en) 1982-09-30 1985-06-11 Engelhard Corporation Fuel cell electric power production
US4844837A (en) 1982-09-30 1989-07-04 Engelhard Corporation Catalytic partial oxidation process
ES2019383B3 (es) 1986-05-27 1991-06-16 Ici Plc Metodo para iniciar un proceso para la produccion de una corriente gaseosa que contiene hidrogeno y oxidos de carbono.
EP0287238B1 (en) 1987-04-13 1991-09-11 Imperial Chemical Industries Plc Process and apparatus for the production of a hot pressurised gas stream by catalytic combustion
US5246791A (en) 1988-07-06 1993-09-21 Johnson Matthey Public Limited Company Fuel cell containing a reforming catalyst
US5198084A (en) 1989-04-26 1993-03-30 Western Research Institute Low-cost process for hydrogen production
US5149464A (en) 1989-06-30 1992-09-22 Gas Research Institute Catalytic gas conversion method
GB9000528D0 (en) 1990-01-10 1990-03-14 Shell Int Research Fixed bed reactor
US5106590A (en) 1990-05-11 1992-04-21 Davy Mckee (London) Limited Gas mixer and distributor with heat exchange between incoming gases
AU649359B2 (en) 1991-10-17 1994-05-19 Shell Internationale Research Maatschappij B.V. Catalyst and process for the catalytic partial oxidation of hydrocarbons
AU654612B2 (en) 1992-01-27 1994-11-10 Shell Internationale Research Maatschappij B.V. Process for producing a hydrogen-containing gas
DE69322129T2 (de) 1992-06-24 1999-05-12 Shell Internationale Research Maatschappij B.V., Den Haag/S'gravenhage Verfahren zur katalytischen Kohlenwasserstoffteiloxidation
GB2275480A (en) 1993-02-03 1994-08-31 Shell Int Research A process of changing the molecular structure of hydrocarbon feed
EP0640561B1 (en) 1993-08-24 1998-11-11 Shell Internationale Researchmaatschappij B.V. Process for the catalytic partial oxidation of hydrocarbons
ATE168969T1 (de) 1993-09-23 1998-08-15 Shell Int Research Verfahren zur herstellung von kohlenmonoxid und wasserstoff
TW299307B (zh) 1993-11-29 1997-03-01 Shell Internat Res Schappej Bv
MY131526A (en) 1993-12-27 2007-08-30 Shell Int Research A process for the preparation of carbon monoxide and/or hydrogen
US5560900A (en) 1994-09-13 1996-10-01 The M. W. Kellogg Company Transport partial oxidation method
US5883138A (en) * 1997-04-25 1999-03-16 Exxon Research And Engineering Company Rapid injection catalytic partial oxidation process and apparatus for producing synthesis gas (law 562)
JP2000007301A (ja) 1998-06-29 2000-01-11 Ngk Insulators Ltd 改質反応装置
US6540975B2 (en) * 1998-07-27 2003-04-01 Battelle Memorial Institute Method and apparatus for obtaining enhanced production rate of thermal chemical reactions
US6506510B1 (en) 2000-12-15 2003-01-14 Uop Llc Hydrogen generation via methane cracking for integrated heat and electricity production using a fuel cell
FR2831880A1 (fr) 2001-11-08 2003-05-09 Air Liquide Procede de production d'hydrogene par decomposition catalytique d'hydrocarbures, procede et installation de production d'energie electrique en comportant application

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3129060A (en) * 1962-04-03 1964-04-14 Universal Oil Prod Co Control of conversion in a catalytic hydrogen producing unit
US3342561A (en) * 1963-01-22 1967-09-19 Universal Oil Prod Co System for hydrogen production by catalytic decomposition of a hydrocarbon stream
US3355248A (en) * 1963-12-16 1967-11-28 Universal Oil Prod Co Process for producing hydrogen and carbon with an essentially ironfree catalyst
CN1257826A (zh) * 1998-10-20 2000-06-28 波克股份有限公司 烃的部分氧化法
CN1370733A (zh) * 2000-03-02 2002-09-25 波克股份有限公司 烃的催化部分氧化
US20030031901A1 (en) * 2001-07-27 2003-02-13 Norbert Breuer Fuel cell system having two reformer units for catalytic decomposition

Also Published As

Publication number Publication date
KR20060092856A (ko) 2006-08-23
CN1762790A (zh) 2006-04-26
EP1630129A1 (en) 2006-03-01
CA2512958A1 (en) 2006-02-25
KR101180251B1 (ko) 2012-09-05
CA2512958C (en) 2014-06-03
US7544342B2 (en) 2009-06-09
TW200621629A (en) 2006-07-01
TWI373451B (en) 2012-10-01
US20060045844A1 (en) 2006-03-02
SG120243A1 (en) 2006-03-28

Similar Documents

Publication Publication Date Title
CN1762790B (zh) 氢气生产方法
US10632437B2 (en) Shell-and-tube type reactor for reforming natural gas and a preparation method of syngas or hydrogen gas by using the same
US6747066B2 (en) Selective removal of oxygen from syngas
US4863707A (en) Method of ammonia production
EP1903001A2 (en) Method and Apparatus for Syngas Production
AU2008327957B2 (en) Process to prepare a mixture of hydrogen and carbon monoxide
EP1047630A1 (en) Control of hydrogen and carbon monoxide produced in partial oxidation process
US20140120023A1 (en) Methods and systems for ammonia production
JP2004203737A (ja) 炭化水素類を部分酸化して水素と一酸化炭素を製造する方法
WO2001046068A1 (en) Process for the catalytic partial oxidation of a hydrocarbonaceous feedstock
Lund Improving selectivity during methane partial oxidation by use of a membrane reactor
JP2001212458A (ja) 改質ガス中の一酸化炭素の選択酸化触媒
US11472700B2 (en) Catalyst and process for thermo-neutral reforming of petroleum-based liquid hydrocarbons
US20060168887A1 (en) Method for producing a fuel gas containing hydrogen for electrochemical cells and associated device
CN104860266B (zh) 用于氨生产的合成气生产方法
RU2248932C1 (ru) Катализатор (варианты), способ его приготовления (варианты) и способ получения синтез-газа
WO2003033137A1 (en) Promoted cobalt-chromium oxide catalysts on lanthanide-modified supports and process for producing synthesis gas
KR20040020106A (ko) 고효율 합성가스 제조용 촉매를 이용한 합성가스의 제조공정
JP2023073692A (ja) 水素製造方法及び水素製造設備
RU2211081C1 (ru) Способ очистки водородсодержащей газовой смеси от оксида углерода
JP2010184836A (ja) 水素生成装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120111

Termination date: 20150825

EXPY Termination of patent right or utility model