CN1756084A - 具有增益控制功能的δς调制电路 - Google Patents

具有增益控制功能的δς调制电路 Download PDF

Info

Publication number
CN1756084A
CN1756084A CNA2005101084109A CN200510108410A CN1756084A CN 1756084 A CN1756084 A CN 1756084A CN A2005101084109 A CNA2005101084109 A CN A2005101084109A CN 200510108410 A CN200510108410 A CN 200510108410A CN 1756084 A CN1756084 A CN 1756084A
Authority
CN
China
Prior art keywords
mentioned
reference level
circuit
gain
modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2005101084109A
Other languages
English (en)
Inventor
犬饲文人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1756084A publication Critical patent/CN1756084A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/478Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication
    • H03M3/488Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication using automatic control
    • H03M3/492Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication using automatic control in feed forward mode, i.e. by determining the range to be selected directly from the input signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/458Analogue/digital converters using delta-sigma modulation as an intermediate step
    • H03M3/478Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication
    • H03M3/48Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication characterised by the type of range control, e.g. limiting
    • H03M3/486Means for controlling the correspondence between the range of the input signal and the range of signals the converter can handle; Means for out-of-range indication characterised by the type of range control, e.g. limiting by adapting the input gain

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Control Of Amplification And Gain Control (AREA)

Abstract

具有增益控制功能的 Δ∑调制电路配备:可变增益放大器;控制可变增益放大器的增益的控制单元;将可变增益放大器的输出作为输入的Δ∑调制器;以及将Δ∑调制器的输出作为输入的滤波电路。通过控制可变增益放大器的增益的控制单元,进行Δ∑调制器的增益控制。据此,动态范围不依赖于可变增益放大器的设定电平而变动,能够按照可变增益放大器的设定电平得到最佳动态范围。

Description

具有增益控制功能的Δ∑调制电路
                    技术领域
本发明涉及Δ∑调制电路,特别涉及具有按照可变增益放大器的设定电平得到最佳S/N的增益控制功能的Δ∑调制电路。
                    背景技术
迄今,使用Δ∑调制器的***为人们熟知。该***使用在面向数字音响设备的A/D转换电路及D/A转换电路等中。作为上述***,有在用可变增益放大器调节信号电平后将信号输入到Δ∑调制器的***。进而,使用有下述的***:通过构成AGC(自动增益控制)电路,在将信号电平调整到适当的电平后,对信号进行Δ∑调制。
作为第1现有例,图12表示使用了具有可变增益放大器的单级的1次Δ∑调制器的Δ∑调制电路的结构。
外部信号首先输入到可变增益放大器1中。可变增益放大器1通过从DSP(数字信号处理电路)2输出的控制信号CS1,进行增益控制。
1次Δ∑调制器3包括:从可变增益放大器1的输出信号X减去反馈参考电平(+VREF或者-VREF)的加减法器8;将加减法器8的输出信号作为输入的积分器9;将该积分器9的输出量子化成规定位的量子化器6;以及从该量子化器6的数字输出信号Y生成上述反馈参考电平的电平固定反馈电路31。此外,积分电路5由积分器9与加减法器8构成。
Δ∑调制器3的输出信号Y输入到滤波电路4,取出必要的信号带。再有,在图12中,符号Q表示在量子化器6的前后发生的量子化误差。
在这样的Δ∑调制电路中,为了降低包含在Δ∑调制器3的输出信号Y中的噪声成分,使用将Δ∑调制器3的增益缩小到1/A(A是大于1的任意的数值)的方法。这是考虑了图12的Δ∑调制器3对输入信号X的振幅电平具有图13所示的噪声特性的结果。图13的曲线表示输出信号Y的振幅电平包含的量子化噪声电平对Δ∑调制器3中的输入信号X的振幅电平的特性。
如图13所示,在Δ∑调制器3中,当向Δ∑调制器3的输入信号X的振幅电平接近反馈参考电平VREF时,成为输出信号Y的振幅电平包含的量子化噪声电平增大的状态,称这种状态为「过载」状态。因此,设定反馈参考电平的值,使得输入信号X的正负最大振幅电平对正负反馈参考电平(±VREF)成为1/A。例如,在过载电平是0.8VREF、输入信号X的振幅电平的最大值是XMAX的情况下,设定如下。
VREF=XMAX÷0.8=1.25·XMAX                  (1)
这种情况下,Δ∑调制器3的增益(1/A)成为以下的值。
XMAX÷(1.25·XMAX)=0.8                       (2)
这样,使Δ∑调制器3的增益缩小到1/A,防止成为过载状态。但另一方面,通过在后级的滤波电路4中给予增益A(称为比例系数),能够补偿在Δ∑调制器3中被限制的增益。通过进行这样的比例换算,能够有效地降低噪声。在式(1)、(2)的例子中,比例系数为A=1.25。
可变增益放大器1通过来自DSP2的控制信号CS1,能够设定任意的增益。在这里,作为例子,考虑设可变增益放大器1的输入信号振幅电平的最大值为VMAX、可变增益放大器1的增益为Ga、比例系数为Aa的情况。
这时,当设向Δ∑调制器3的输入信号X的振幅电平的最大值为XMAX时,则
XMAX=VMAX·Ga当设比例系数为A时,图12所示的Δ∑调制器3的输出信号Y的振幅电平,能够用以下的传递函数表示。
Y=XMAX/Aa+(1-Z-1)Q
 =VMAX·Ga/Aa+(1-Z-1)Q                          (3)
此外,滤波电路4的输出Dout表述为下述函数。
Dout=Y·Aa
    =VMAX·Ga+(1-Z-1)Q·Aa                         (4)
从式(4)的结果可知,包含在Δ∑调制器3的输出信号中的量子化噪声正比于比例系数Aa。因此,为了减小量子化噪声,需要将比例系数Aa尽量设定地小。在图12中,将Δ∑调制器3的比例系数设定为:即使输入到Δ∑调制器3的最大信号振幅电平,即,VMAX·Ga的信号输入Δ∑调制器3,也不会成为过载状态。
作为第2现有例,图14表示使用了具有AGC电路的单级的1次Δ∑调制器3的A/D转换电路的方框图。该A/D转换电路包括:AGC电路12、Δ∑调制器3及数字滤波电路13。
外部模拟输入信号首先输入到AGC电路12。AGC电路12包括:以模拟信号为输入、通过控制信号CS5使放大率变化的可变增益放大器1;检测并输出可变增益放大器1的输出信号的振幅的电平检测电路15;输出基准电平的基准电平发生器16;以及比较器14,将电平检测电路15的输出与基准电平进行比较,按照该比较结果输出向可变增益放大器1的控制信号CS5。据此,即使在模拟输入信号的电平发生变化时,AGC电路12也具有将信号电平的峰值保持在±V1从可变增益放大器1输出的功能。
1次Δ∑调制器3包括:从AGC电路12的输出信号减去反馈参考电平(+VREF或者-VREF)的加减法器8;以加减法器8的输出信号作为输入的积分器9;将该积分器9的输出量子化成1位数字信号的量子化器6;以及固定反馈电路31,从该量子化器6的数字输出信号Y生成上述反馈参考电平。积分电路5由积分器9与加减法器8构成。电平固定反馈电路31用1位DA转换器构成。
Δ∑调制器3的1位输出信号Y作为数字符号输入到数字滤波电路13中,取出与模拟输入信号成分相当的低频成分,而且,转换成规定位数的数字数据。
上述Δ∑调制型A/D转换电路的比例系数设定为A(A是大于1的任意的数值)。在这里,如上所述,通过设定反馈参考电平的大小,比例系数A实现AGC电路12的输出保持电平对反馈参考电平成为1/A。此外,数字滤波电路13的增益A能够通过使其增益保持在该脉冲响应系数来实现。
再有,在图14中,符号Q表示在量子化器6的前后发生的量子化误差。
在图14中,按照AGC电路12的输出所必需的动态范围决定AGC电路12的输出保持电平。因此,大多切换使用多个保持振幅电平。
在配备了上述AGC电路12的输出保持振幅电平切换功能的Δ∑调制A/D转换电路的情况下,Δ∑调制器3的反馈参考电平,即,比例系数A被设定为与AGC电路12的输出保持电平的最大值一致,使之不成为过载状态。
专利文献1:特开平08-018457号公报
在使用了作为第1现有例的图12所示的具有可变增益放大器的单级1次Δ∑调制器3的Δ∑调制电路中,考虑将可变增益放大器1的增益切换为Ga、Gb、Gc的情况。Δ∑调制器3的比例系数A被设定成与作为输入信号X的振幅电平的最大值的VMAX·Ga一致,当将该值设为Aa固定时,滤波电路4对3个增益设定Ga、Gb、Gc的输出Dout,用下述函数表示。
首先,当将1次Δ∑调制器3的输出分别设为Ya、Yb、Yc时,则:
Ya=VMAX·Ga/Aa+(1-Z-1)Q                      (5)
Yb=VMAX·Gb/Aa+(1-Z-1)Q                      (6)
Yc=VMAX·Gc/Aa+(1-Z-1)Q                      (7)当将滤波电路4的输出分别设为Douta、Doutb、Doutc时,则:
Douta=VMAX·Ga+(1-Z-1)Q·Aa                  (8)
Doutb=VMAX·Gb+(1-Z-1)Q·Aa                  (9)
Doutc=VMAX·Gc+(1-Z-1)Q·Aa                  (10)比较式(8)~(10),尽管信号成分中的增益设定Ga~Gc不同,但作为量子化噪声成分的(1-Z-1)Q·Aa是恒定的。这种情况示于图15。
图15表示输出信号Y的振幅电平及包含在输出信号Y的振幅电平中的噪声电平对Δ∑调制器3的输入信号X的振幅电平的关系。由图可知,通过使可变增益放大器1的增益从Ga下降到Gb、Gc,由于信号电平与量子化噪声电平的差减小,动态范围减小。
接着,考虑了下述情况:在使用了作为第2现有例的图14所示的具有AGC电路的单级1次Δ∑调制器的A/D转换电路中,AGC电路12配备了通过来自DSP2的控制信号CS1切换3个输出保持振幅电平功能。
图16表示输出振幅电平对配备了3个输出保持振幅电平切换功能的AGC电路12的输入信号振幅电平的依赖性。这种情况下,在图14的具有AGC功能的A/D转换电路中,Δ∑调制器3的比例系数A被设定为与作为输出保持振幅电平的最大值的V1一致,当将该值设为A1固定时,数字滤波电路13对3个输出保持振幅电平V1、V2、V3的输出Dout用下述函数表示。
首先,当将1次Δ∑调制器3的输出分别设定为Y1、Y2、Y3时,则:
Y1=V1/A1+(1-Z-1)Q                           (11)
Y2=V2/A1+(1-Z-1)Q                           (12)
Y3=V3/A1+(1-Z-1)Q                           (13)当将数字滤波电路13的输出分别设定为Dout1、Dout2、Dout3时,则:
Dout1=V1+(1-Z-1)Q·A1                       (14)
Dout2=V2+(1-Z-1)Q·A1                       (15)
Dout3=V3+(1-Z-1)Q·A1                       (16)比较式(14)~(16),尽管作为信号成分的V1~V3不同,但作为量子化噪声成分的(1-Z-1)Q·A1是恒定的。这种情况示于图17。图17表示输出信号Y的振幅电平对Δ∑调制器3的输入信号X的振幅电平及包含在输出信号Y的振幅电平中的噪声电平。由图可知,通过使输出保持振幅电平从V1降低到V2、V3,由于信号电平与量子化噪声电平的差减小,所以动态范围减小。
                    发明内容
本发明的目的在于:解决上述问题,提供一种具有增益控制功能的Δ∑调制电路,动态范围不依赖于可变增益放大器的设定电平而变动,能够按照可变增益放大器的设定电平得到最佳动态范围。
为了解决上述课题,第1发明的具有增益控制功能的Δ∑调制电路配备:可变增益放大器、控制可变增益放大器的增益的控制单元、以及增益可变的Δ∑调制器,通过控制单元进行Δ∑调制器的增益控制。
第2发明的具有增益控制功能的Δ∑调制电路是在第1发明的具有增益控制功能的Δ∑调制电路中,还配备增益可变的滤波电路,通过控制单元进行Δ∑调制器的增益控制,并且进行滤波电路的增益控制。
第3发明的具有增益控制功能的Δ∑调制电路中,Δ∑调制器包括级联型Δ∑调制器。
级联型Δ∑调制器配备:
初级Δ∑调制型量子化环(loop),包括:将输入信号与第1反馈参考电平作为输入的第1积分电路;将第1积分电路的输出量子化的第1量子化器;以及从第1量子化器的输出生成第1反馈参考电平的第1转换器;
对初级Δ∑调制型量子化环级联连接的一个或者多个第2级以后的Δ∑调制型量子化环,包括:将从前级的Δ∑调制型量子化环内的任意位置输出的信号构成的量子化环间信号与第2反馈参考电平作为输入的第2积分电路;将第2积分电路的输出量子化的第2量子化器;以及从第2量子化器的输出生成第2反馈参考电平的第2变换器;以及
噪声去除电路,对初级及第2级以后的Δ∑调制型量子化环,将用延迟器使各级的Δ∑调制型量子化环的量子化器的输出延迟了的输出与用微分器使次级的Δ∑调制型量子化环的量子化器的输出微分了的输出进行加法运算后的值作为输出信号。而且,该具有增益控制功能的Δ∑调制电路通过控制单元进行Δ∑调制器的增益控制,并且进行噪声去除电路的增益控制。
在上述第1发明的具有增益控制功能的Δ∑调制电路中,控制单元最好包括数字信号处理器。
在上述第1发明的具有增益控制功能的Δ∑调制电路中,控制单元最好包括:检测并输出可变增益放大器的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较电平检测电路的输出与从基准电平发生器发生的基准电平,按照该比较结果分别输出控制可变增益放大器及Δ∑调制器的增益的控制信号,实现可变增益放大器及Δ∑调制器的增益控制。
在上述第2发明的具有增益控制功能的Δ∑调制电路中,控制单元最好包括:检测并输出可变增益放大器的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较电平检测电路的输出与从基准电平发生器发生的基准电平,按照该比较结果分别输出控制可变增益放大器、Δ∑调制器及滤波电路的增益的控制信号,实现可变增益放大器、Δ∑调制器及滤波电路的增益控制。
在上述第3发明的具有增益控制功能的Δ∑调制电路中,控制单元最好包括:检测并输出可变增益放大器的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较电平检测电路的输出与从基准电平发生器发生的基准电平,按照该比较结果分别输出控制可变增益放大器、Δ∑调制器及噪声去除电路的增益的控制信号,实现可变增益放大器、Δ∑调制器及噪声去除电路的增益控制。
在上述第1发明的具有增益控制功能的Δ∑调制电路中,配备滤波电路,控制单元最好包括:检测并输出滤波电路的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较电平检测电路的输出与从基准电平发生器发生的基准电平,按照该比较结果分别输出控制可变增益放大器及Δ∑调制器的增益的控制信号,实现可变增益放大器及Δ∑调制器的增益控制。
在上述第2发明的具有增益控制功能的Δ∑调制电路中,控制单元最好包括:检测并输出滤波电路的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较电平检测电路的输出与从基准电平发生器发生的基准电平,按照该比较结果分别输出控制可变增益放大器、Δ∑调制器及滤波电路的增益的控制信号,实现可变增益放大器、Δ∑调制器及滤波电路的增益控制。
在上述第3发明的具有增益控制功能的Δ∑调制电路中,配备滤波电路,控制单元最好包括:检测并输出滤波电路的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较电平检测电路的输出与从基准电平发生器发生的基准电平,按照该比较结果分别输出控制可变增益放大器、Δ∑调制器及噪声去除电路的增益的控制信号,实现可变增益放大器、Δ∑调制器及噪声去除电路的增益控制。
在上述各结构中,基准电平发生器最好具有从多个基准电平中有选择地输出任何一个基准电平的结构,在这种情况下,最好还配备将从多个基准电平中选择任何一个基准电平的控制信号给予基准电平发生器的数字信号处理器。
在上述第1发明的具有增益控制功能的Δ∑调制电路中,Δ∑调制器最好配备生成反馈参考电平的电路,通过切换反馈参考电平来实现Δ∑调制器的增益控制。
在上述第2发明的具有增益控制功能的Δ∑调制电路中,滤波电路最好配备放大器与滤波元件,通过切换放大器的增益来实现滤波电路的增益控制。
如上所述,在Δ∑调制电路中配备可变增益放大器、控制可变增益放大器的增益的控制单元、以及增益可变的Δ∑调制器,通过控制单元进行Δ∑调制器的增益控制,能够实现一种具有增益控制功能的Δ∑调制电路,动态范围不依赖于可变增益放大器的设定电平而变动,能够按照可变增益放大器的设定电平得到最佳动态范围。
                    附图说明
图1是表示本发明实施例1中的具有增益控制功能的Δ∑调制电路的结构的方框图。
图2是表示电平可变反馈电路的结构的方框图。
图3是表示图1中的控制信号CS1~CS3与各增益设定的例子的表。
图4是表示图1中的Δ∑调制器的输入信号、输出信号及量子化噪声的关系的图。
图5是表示本发明实施例2中的具有增益控制功能的Δ∑调制电路的结构的方框图。
图6是表示图5中的控制信号CS1~CS3与各增益设定的例子的表。
图7是表示图5中的Δ∑调制器的输入信号、输出信号及量子化噪声的关系图。
图8是表示在本发明实施例2中AGC电路与图1不同的结构例的方框图。
图9是表示本发明实施例3中的具有增益控制功能的Δ∑调制电路的结构的方框图。
图10是表示图9中的Δ∑调制器的输入信号、输出信号及量子化噪声的关系图。
图11是表示在本发明实施例3中AGC电路与图1不同的结构例的方框图。
图12是表示现有例1的Δ∑调制电路的结构的方框图。
图13是表示图12中的Δ∑调制器的输入信号、输出信号及量子化噪声的关系图。
图14是表示现有例2的Δ∑调制电路的结构的方框图。
图15是表示图12中的Δ∑调制器的输入信号、输出信号及量子化噪声的关系图。
图16是表示图14所示的AGC电路的输出保持电平对模拟输入电平的依赖性的特性图。
图17是表示图14中的Δ∑调制器的输入信号、输出信号及量子化噪声的关系图。
                        具体实施方式
以下,参照附图,说明本发明的实施例。
在图1中,作为实施例1,表示使用了具有可变增益放大器的单级1次Δ∑调制器的Δ∑调制电路的结构。
外部信号首先输入到可变增益放大器1中。可变增益放大器1通过从DSP(数字信号处理电路)2输出的控制信号CS1,进行增益控制。
1次Δ∑调制器3包括:从可变增益放大器1的输出信号减去反馈参考电平(+VREF或者-VREF)的加减法器8;将加减法器8的输出信号作为输入的积分器9;将该积分器9的输出量子化成规定位的量子化器6;以及从该量子化器6的数字输出信号Y生成上述反馈参考电平的电平可变反馈电路7。此外,积分电路5由积分器9与加减法器8构成。
Δ∑调制器3的输出信号输入到滤波电路4,取出必要的信号带。滤波电路4由放大器11与滤波元件10构成。再有,在图1中,符号Q表示在量子化器6的前后发生的量子化误差。
上述Δ∑调制器3的比例系数设定为A(A是大于1的任意的数值)。如上所述,在这里,比例系数A通过设定反馈参考电平的大小实现Δ∑调制器3的信号振幅电平X的最大值对反馈参考电平成为1/A。
此外,通过放大器11给予滤波电路4增益,能够补偿在Δ∑调制器3中被限制了的增益。
图2表示电平可变反馈电路7的方框图。按照来自DSP2的控制信号CS2,通过切换生成反馈参考电平的电压±VREF1~VREF3来实现反馈参考电平的切换。
进而,通过控制信号CS3控制放大器11的增益来实现滤波电路4的增益。
其结果是,能够按照在可变增益放大器1中设定的增益,选择Δ∑调制电路的比例系数。
在这里,作为2位数字信号从DSP2输出控制信号CS1~CS3。图3表示可变增益放大器1、Δ∑调制器3及滤波电路4对各控制信号CS1~CS3的增益的设定值。
在图1所示的Δ∑调制电路中,考虑通过控制信号CS1将可变增益放大器1的增益切换成Ga、Gb、Gc的情况。但是,设Ga>Gb>Gc。
设可变增益放大器1的输入信号振幅电平的最大值为VMAX,将2位数字信号设定为控制信号CS1=控制信号CS2=控制信号CS3。
首先,当将1次Δ∑调制器3的输出分别设为Ya、Yb、Yc时,则:
Ya=VMAX·Ga·1/Aa+(1-Z-1)Q                (17)
Yb=VMAX·Gb·Ga/(Aa·Gb)+(1-Z-1)Q         (18)
Yc=VMAX·Gc·Ga/(Aa·Gc)+(1-Z-1)Q         (19)
当设滤波电路4的输出分别为Douta、Doutb、Doutc时,则:
Douta=Ya·Aa
     =VMAX·Ga+(1-Z-1)Q·Aa            (20)
Doutb=Yb·Aa·Gb/Ga
     =VMAX·Gb+(1-Z-1)Q·Aa·Gb/Ga     (21)
Doutc=Yc·Aa·Gc/Ga
     =VMAX·Gc+(1-Z-1)Q·Aa·Gc/Ga     (22)
从式(20)~(22)的结果可知,由于正比于可变增益放大器1的增益与量子化噪声Q相关的系数也变化,因而,动态范围与增益Ga~Gc无关成为恒定。
图4表示输出信号Y的振幅电平及包含在输出信号Y的振幅电平中的噪声电平对这时的Δ∑调制器3的输入信号X的振幅电平的关系。由于设定控制信号CS1=控制信号CS2,所以包含在可变增益放大器1的增益Ga~Gc时的输出信号Y的振幅电平中的噪声电平,分别与噪声电平1~3对应。由于可变增益放大器1的增益下降时噪声电平也下降,因而能够使动态范围恒定。
从以上结果可知,不是像图12所示的现有例1的Δ∑调制电路那样动态范围依赖于可变增益放大器1的设定电平而变动,能够按照可变增益放大器1的设定电平,得到最佳的动态范围。
在本发明中使用的Δ∑调制器3,不是仅限于单级、1次结构,也能够使用于级联型、多次结构的Δ∑调制器中。此外,控制信号CS1~CS3也可以不独立,也能够使之输出相同的信号使用。
在将本发明应用于A/D转换器的情况下,可变增益放大器1及Δ∑调制器3通过模拟电路构成,滤波电路通过数字滤波电路构成。在应用于D/A转换器的情况下,可变增益放大器1及Δ∑调制器3通过数字电路构成,滤波电路通过模拟滤波电路构成。此外,反馈电路的基准电平也用数字值生成。
图5表示使用了配备AGC电路的单级1次Δ∑调制器的A/D转换电路的方框图,作为本发明的实施例2。
A/D转换电路包括AGC电路12、Δ∑调制器3及数字滤波电路13。
外部模拟输入信号首先输入到AGC电路12中。AGC电路12包括:以模拟信号作为输入、通过控制信号CS5变化放大率的可变增益放大器1;检测并输出可变增益放大器1的输出信号的振幅的电平检测电路15;以及比较器14,比较输出基准电平的基准电平发生器16与电平检测电路15的输出与基准电平,按照该比较结果,输出向可变增益放大器1的控制信号CS5。而且,即使在模拟输入信号的振幅变化时,该AGC电路12也发挥将信号振幅的峰值振幅保持在规定的电平从可变增益放大器1输出的功能。进而,在电平检测电路15的输出超过基准电平的情况下,比较器14同时生成控制信号CS2及控制信号CS3。此外,输出保持电平的切换能够按照控制信号CS1通过切换基准电平1~3来实现。
1次Δ∑调制器3包括:从AGC电路12的输出信号减去反馈参考电平(+VREF或者-VREF)的加减法器8;以加减法器8的输出信号作为输入的积分器9;将该积分器9的输出量子化成1位数字信号的量子化器6;以及从该量子化器6的数字输出信号Y生成上述反馈参考电平的电平可变反馈电路7。此外,积分电路5由积分器9与加减法器8构成。电平可变反馈电路7由1位DA转换器构成。Δ∑调制器3的1位输出信号Y作为数字符号输入数字滤波电路13,取出与模拟输入信号成分相当的低频成分,而且,转换成规定位数的数字数据。
上述Δ∑调制型A/D转换电路的比例系数设定为A(A是大于1的任意的数值)。在这里,如上所述,比例系数A通过设定反馈参考电平的大小,实现AGC电路12的输出保持电平对反馈参考电平成为1/A。此外,数字滤波电路13的增益A通过使增益保持在其脉冲响应系数来实现。此外,如图2所示,按照来自DSP2的控制信号CS2,通过切换生成电平可变反馈电路7的反馈参考电平的电压±VREF1~±VREF3,来实现反馈参考电平的切换。
此外,数字滤波电路13的增益按照控制信号CS3通过切换脉冲响应系数来实现。
该结果是,按照在AGC电路12中切换的输出保持电平,能够选择Δ∑调制电路的比例系数。
在这里,作为2位数字信号从DSP2输出控制信号CS1~CS3。在图6中表示AGC电路12的输出保持电平、Δ∑调制器3及数字滤波电路13的增益对各控制信号的设定值。
在图5所示的Δ∑调制电路中,考虑通过控制信号CS1将AGC电路12的输出保持电平切换为V1、V2、V3的情况。其中,设V1>V2>V3。此外,将2位数字信号设定为控制信号CS1=控制信号CS2=控制信号CS3。
首先,当将1次Δ∑调制器3的输出分别设为Y1、Y2、Y3时,则:
Y1=V1·1/A1+(1-Z-1)Q                        (23)
Y2=V2·V1/(A1·V2)+(1-Z-1)Q                 (24)
Y3=V3·V1/(A1·V3)+(1-Z-1)Q                 (25)
当将数字滤波电路13的输出分别设为Doutl、Dout2、Dout3时,则:
Dout1=Y1·A1
     =V1+(1-Z-1)Q·A1                        (26)
Dout2=Y2·A1·V2/V1
     =V2+(1-Z-1)Q·A1·V2/V1                 (27)
Dout3=Y3·A1·V3/V1
     =V3+(1-Z-1)Q·A1·V3/V1                 (28)
从式(26)~(28)的结果可知,由于与AGC电路12的输出保持电平成正比与量子化噪声Q相关的系数也变化,所以与输出保持电平V1~V3无关,动态范围成为恒定。
图7表示输出信号Y的振幅电平及包含在输出信号Y的振幅电平中的噪声电平对这时的Δ∑调制器3的输入信号X的振幅电平的关系。由于设定控制信号CS1=控制信号CS2,所以包含在AGC电路12的输出保持电平V1~V3时的输出信号Y的振幅电平中的噪声电平,分别与噪声电平1~3对应。由于在可变增益放大器1的增益下降时噪声电平也下降,所以能够使动态范围恒定。
从以上结果可知,不像图14所示的现有例2的Δ∑调制电路那样动态范围依赖于可变增益放大器1的设定电平而变动,能够按照可变增益放大器1的设定电平得到最佳的动态范围。
在本发明中使用的Δ∑调制器3不限于单级、1次结构,也能够应用于级联型、多次结构的Δ∑调制器中。此外,控制信号CS1~CS3也可以不独立,能够使之输出相同信号使用。
如图8所示,在本发明的Δ∑调制电路中使用的AGC电路12,也能够包括:以模拟信号为输入、通过控制信号CS5变化放大率的可变增益放大器1;检测并输出数字滤波电路13的输出信号的振幅的电平检测电路15;输出基准电平的基准电平发生器16;以及比较器14,比较电平检测电路15的输出与基准电平,按照该比较结果输出向可变增益放大器1的控制信号CS5。
图9表示使用了配备AGC电路的级联型Δ∑调制器的A/D转换器的方框图,作为本发明的实施例3。
外部模拟输入信号首先输入到AGC电路12中。AGC电路12包括:以模拟信号作为输入、通过控制信号CS5变化放大率的可变增益放大器1;检测并输出可变增益放大器1的输出信号的振幅的电平检测电路15;输出基准电平的基准电平发生器16;以及比较器14,比较电平检测电路15的输出与基准电平,按照该比较结果,输出向可变增益放大器1的控制信号CS5。而且,即使在模拟输入信号的振幅变化时,该AGC电路12也发挥将信号振幅的峰值振幅保持在规定的电平从可变增益放大器1输出的功能。进而,在电平检测电路15的输出超过基准电平的情况下,比较器14同时生成控制信号CS2及控制信号CS4。此外,输出保持电平的切换能够按照控制信号CS1通过切换基准电平1~3来实现。
1∶1级联型Δ∑调制器17包含:配备了1次积分电路5的初级Δ∑调制型量子化环18、配备了1次积分电路21的第2级Δ∑调制型量子化环19及噪声去除电路20。
初级的1次Δ∑调制型量子化环18包括:从AGC电路12的输出信号减去从电平可变反馈电路7生成的反馈参考电平的加减法器8;将加减法器8的输出信号作为输入的积分器9;将该积分器9的输出量子化成1位数字信号的局部量子化器6;以及从该局部量子化器6的数字输出信号Y1生成上述反馈参考电平的电平可变反馈电路7。此外,积分电路5包括积分器9与加减法器8。电平可变反馈电路7由1位DA转换器构成。
第2级的1次Δ∑调制型量子化环19包括:求出通过初级的Δ∑调制型量子化环18的局部量子化器6的输入与电平可变反馈电路7的输出的差信号,即通过初级的Δ∑调制型量子化环18的局部量子化器6发生的量子化误差Q1的加减法器26;从作为加减法器26的输出信号的差信号,减去从电平可变反馈电路23生成的反馈参考电平的加减法器24;将加减法器24的输出信号作为输入的积分器25;将该积分器25的输出量子化成1位数字信号的局部量子化器22;以及从该局部量子化器22的数字输出信号Y2生成上述反馈参考电平的电平可变反馈电路23。此外,积分电路21包括积分器25与加减法器24,电平可变反馈电路23由1位DA转换器构成。
上述初级及第2级Δ∑调制型量子化环18、19的比例系数都设定为A(A是大于1的任意的数值)。其结果是,在初级及第2级的Δ∑调制型量子化环18、19中,增益分别被限制于1/A。
再有,在图9中,符号Q1表示在局部量子化器6的前后发生的量子化误差,Q2表示在局部量子化器22的前后发生的量子化误差。
噪声去除电路20连接成分别接受各Δ∑调制型量子化环18、19的输出信号Y1及Y2。延迟器29被连接成通过放大器27接收输出信号Y1,当输出信号Y1的数据送到加法器31时,起到对输出信号Y2的数据按时间发送的作用。微分器30被构成为通过放大器28接收输出信号Y2,由现有技术中通过众所周知的方法进行微分的数字微分器构成。来自数字微分器的输出通过加法器31与延迟器29的输出进行加法运算,成为1∶1级联型Δ∑调制器17的输出信号Y。该输出信号Y作为数字符号给予数字(抽取)滤波电路13。噪声去除电路20的放大器27、28的增益都设定为A。
上述放大器相当于补偿通过设定噪声去除电路20的增益在各级Δ∑调制型量子化环18、19中被限制的增益的标度补偿单元。上述Δ∑调制器17的比例系数设定为A(A是大于1的任意数值)。在这里,如上所述,比例系数A通过设定反馈参考电平的大小来实现AGC电路12的输出保持电平对反馈参考电平成为1/A。
此外,如图2所示,按照来自DSP2的控制信号CS2,通过切换生成电平可变反馈电路7的反馈参考电平的电压±VREF1~±VREF3,实现反馈参考电平的切换。通过用控制信号CS4切换放大器27、28的增益来实现噪声去除电路20的增益。
该结果是,能够按照在AGC电路12中转换的保持电平,选择Δ∑调制器17的比例系数。
在这里,控制信号CS1、CS2、CS4作为2位数字信号DSP2输出。图10表AGC电路12的输出保持电平、Δ∑调制器17及噪声去除电路20的增益对各控制信号的设定值。
在图9所示的Δ∑调制电路中,考虑通过控制信号CS1将AGC电路12的输出保持电平切换成V1、V2、V3的情况。其中,设V1>V2>V3。此外,将2位数字信号设定为控制信号CS1=控制信号CS2=控制信号CS3。
首先,当将1次Δ∑调制器17的输出分别设为Y1、Y2、Y3时,则:
Y1=V1+(1-Z-1)Q2·A1                        (29)
Y2=V2+(1-Z-1)Q2·A1·V2/V1                 (30)
Y3=V3+(1-Z-1)Q2·A1·V3/V1                 (31)
当将数字滤波电路13的输出分别设为Dout1、Dout2、Dout3时,则:
Dout1=Y1=V1+(1-Z-1)Q2·A1                  (32)
Dout2=Y2=V2+(1-Z-1)Q2·A1·V2/V1           (33)
Dout3=Y3=V3+(1-Z-1)Q2·A1·V3/V1           (34)
从式(32)~(34)的结果可知,由于与AGC电路12的输出保持电平成正比与量子化噪声Q2相关的系数也变化,所以与输出保持电平V1~V3无关,动态范围成为恒定。
从上述结果可知,与实施例1、2的Δ∑调制电路同样,动态范围不依赖于可变增益放大器1的设定电平而变动,能够按照可变增益放大器1的设定电平得到最佳的动态范围。
在本发明中使用的Δ∑调制器17不限于单级、1次结构,也能够使用在级联型、多次结构的Δ∑调制器中。此外,控制信号CS1、CS2、CS4也可以不是独立的,能够使之输出相同信号使用。
本发明也能够使用在各级的Δ∑调制型量子化环的积分电路是X1次、X2次、...Xn次那样的n级的X1:X2:...:Xn级联型Δ∑调制器中。此外,量子化器及DA转换器的位数也可以是多位。
如图11所示,本发明的Δ∑调制电路中使用的AGC电路12,也可以包括:以模拟信号作为输入、通过控制信号CS5变化放大率的可变增益放大器1;检测并输出数字(抽取)滤波电路13的输出信号的振幅的电平检测电路15;输出基准电平的基准电平发生器16;以及比较器14,比较电平检测电路15的输出与基准电平,按照该比较结果,输出向可变增益放大器1的控制信号CS5。
本发明的具有增益控制功能的Δ∑调制电路具有动态范围不依赖于可变增益放大器的设定电平而变动、能够按照可变增益放大器的设定电平得到最佳动态范围的效果,作为面向数字音响设备的A/D转换电路及D/A转换电路等的信号处理单元等是有用的。

Claims (18)

1.一种具有增益控制功能的Δ∑调制电路,其特征在于:
配备:可变增益放大器、控制上述可变增益放大器的增益的控制单元、以及增益可变的Δ∑调制器,通过上述控制单元进行上述Δ∑调制器的增益控制。
2.如权利要求1所述的具有增益控制功能的Δ∑调制电路,其特征在于:
还配备增益可变的滤波电路,通过上述控制单元进行上述Δ∑调制器的增益控制,并且进行上述滤波电路的增益控制。
3.如权利要求1所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述Δ∑调制器包括级联型Δ∑调制器,
上述级联型Δ∑调制器配备:
初级Δ∑调制型量子化环,包括:将输入信号与第1反馈参考电平作为输入的第1积分电路;将上述第1积分电路的输出量子化的第1量子化器;以及从上述第1量子化器的输出生成上述第1反馈参考电平的第1转换器;
对上述初级Δ∑调制型量子化环级联连接的一个或者多个第2级以后的Δ∑调制型量子化环,包括:将从前级的Δ∑调制型量子化环内的任意位置输出的信号构成的量子化环间信号与第2反馈参考电平作为输入的第2积分电路;将上述第2积分电路的输出量子化的第2量子化器;以及从上述第2量子化器的输出生成上述第2反馈参考电平的第2变换器;以及
噪声去除电路,对上述初级及第2级以后的Δ∑调制型量子化环,将用延迟器使各级的Δ∑调制型量子化环的量子化器的输出延迟了的输出与用微分器使次级的Δ∑调制型量子化环的量子化器的输出微分了的输出进行加法运算后的值作为输出信号,
通过上述控制单元进行上述Δ∑调制器的增益控制,并且进行上述噪声去除电路的增益控制。
4.如权利要求1所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述控制单元包括数字信号处理器。
5.如权利要求1所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述控制单元包括:检测并输出上述可变增益放大器的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较上述电平检测电路的输出与从上述基准电平发生器发生的基准电平,按照该比较结果分别输出控制上述可变增益放大器及上述Δ∑调制器的增益的控制信号,实现上述可变增益放大器及上述Δ∑调制器的增益控制。
6.如权利要求5所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述基准电平发生器具有从多个基准电平中有选择地输出任何一个基准电平的结构,
还配备将从多个基准电平中选择任何一个基准电平的控制信号给予上述基准电平发生器的数字信号处理器。
7.如权利要求2所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述控制单元包括:检测并输出上述可变增益放大器的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较上述电平检测电路的输出与从上述基准电平发生器发生的基准电平,按照该比较结果分别输出控制上述可变增益放大器、上述Δ∑调制器及上述滤波电路的增益的控制信号,实现上述可变增益放大器、上述Δ∑调制器及上述滤波电路的增益控制。
8.如权利要求7所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述基准电平发生器具有从多个基准电平中有选择地输出任何一个基准电平的结构,
还配备将从多个基准电平中选择任何一个基准电平的控制信号给予上述基准电平发生器的数字信号处理器。
9.如权利要求3所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述控制单元包括:检测并输出上述可变增益放大器的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较上述电平检测电路的输出与从上述基准电平发生器发生的基准电平,按照该比较结果分别输出控制上述可变增益放大器、上述Δ∑调制器及上述噪声去除电路的增益的控制信号,实现上述可变增益放大器、上述Δ∑调制器及上述噪声去除电路的增益控制。
10.如权利要求9所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述基准电平发生器具有从多个基准电平中有选择地输出任何一个基准电平的结构,
还配备将从多个基准电平中选择任何一个基准电平的控制信号给予上述基准电平发生器的数字信号处理器。
11.如权利要求1所述的具有增益控制功能的Δ∑调制电路,其特征在于:
配备滤波电路,上述控制单元包括:检测并输出上述滤波电路的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较上述电平检测电路的输出与从上述基准电平发生器发生的基准电平,按照该比较结果分别输出控制上述可变增益放大器及上述Δ∑调制器的增益的控制信号,实现上述可变增益放大器及上述Δ∑调制器的增益控制。
12.如权利要求11所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述基准电平发生器具有从多个基准电平中有选择地输出任何一个基准电平的结构,
还配备将从多个基准电平中选择任何一个基准电平的控制信号给予上述基准电平发生器的数字信号处理器。
13.如权利要求2所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述控制单元包括:检测并输出上述滤波电路的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较上述电平检测电路的输出与从上述基准电平发生器发生的基准电平,按照该比较结果分别输出控制上述可变增益放大器、上述Δ∑调制器及上述滤波电路的增益的控制信号,实现上述可变增益放大器、上述Δ∑调制器及上述滤波电路的增益控制。
14.如权利要求13所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述基准电平发生器具有从多个基准电平中有选择地输出任何一个基准电平的结构,
还配备将从多个基准电平中选择任何一个基准电平的控制信号给予上述基准电平发生器的数字信号处理器。
15.如权利要求3所述的具有增益控制功能的Δ∑调制电路,其特征在于:
配备滤波电路,上述控制单元包括:检测并输出上述滤波电路的输出信号的振幅的电平检测电路;发生基准电平的基准电平发生器;以及比较器,比较上述电平检测电路的输出与从上述基准电平发生器发生的基准电平,按照该比较结果分别输出控制上述可变增益放大器、上述Δ∑调制器及上述噪声去除电路的增益的控制信号,实现上述可变增益放大器、上述Δ∑调制器及上述噪声去除电路的增益控制。
16.如权利要求15所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述基准电平发生器具有从多个基准电平中有选择地输出任何一个基准电平的结构,
还配备将从多个基准电平中选择任何一个基准电平的控制信号给予上述基准电平发生器的数字信号处理器。
17.如权利要求1所述的具有增益控制功能的Δ∑调制电路,其特征在于:
上述Δ∑调制器配备生成反馈参考电平的电路,通过切换上述反馈参考电平来实现Δ∑调制器的增益控制。
18.如权利要求2所述的具有增益控制功能的Δ∑调制电路,其特征在于:
滤波电路配备放大器与滤波元件,通过切换上述放大器的增益来实现上述滤波电路的增益控制。
CNA2005101084109A 2004-10-01 2005-10-08 具有增益控制功能的δς调制电路 Pending CN1756084A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004290318A JP4122325B2 (ja) 2004-10-01 2004-10-01 利得制御機能付きデルタシグマ変調回路
JP2004290318 2004-10-01

Publications (1)

Publication Number Publication Date
CN1756084A true CN1756084A (zh) 2006-04-05

Family

ID=36125021

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2005101084109A Pending CN1756084A (zh) 2004-10-01 2005-10-08 具有增益控制功能的δς调制电路

Country Status (3)

Country Link
US (1) US7148829B2 (zh)
JP (1) JP4122325B2 (zh)
CN (1) CN1756084A (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1805897B1 (en) * 2004-10-18 2009-04-01 Nxp B.V. Signal receiver and mobile communication device
TWI307223B (en) * 2006-02-09 2009-03-01 Realtek Semiconductor Corp Signal processing system capable of changing signal levels
JP4589275B2 (ja) 2006-07-27 2010-12-01 パナソニック株式会社 デルタシグマ変調型da変換装置
JP4938597B2 (ja) * 2006-09-19 2012-05-23 パナソニック株式会社 送信回路及び通信機器
US7786912B2 (en) * 2006-12-01 2010-08-31 Intersil Americas Inc. Sigma delta converter system and method
US8779956B2 (en) * 2006-12-01 2014-07-15 Intersil Americas Inc. Sigma-delta converter system and method
KR100743965B1 (ko) * 2007-05-11 2007-08-01 쓰리에이로직스(주) Rf 신호의 오프셋 전압을 보상할 수 있는 복조기 및 그방법
GB2457010A (en) * 2007-12-13 2009-08-05 Ubidyne Inc Automatic gain control for delta sigma modulators
US8199038B2 (en) * 2009-07-28 2012-06-12 Electronics And Telecommunications Research Institute Active resistance-capacitor integrator and continuous-time sigma-delta modulator with gain control function
US8325073B2 (en) * 2010-11-30 2012-12-04 Qualcomm Incorporated Performing enhanced sigma-delta modulation
JP5696508B2 (ja) * 2011-02-04 2015-04-08 ソニー株式会社 Δς変調器および信号処理システム
US8566265B1 (en) 2011-03-10 2013-10-22 Hrl Laboratories, Llc Combined spike domain and pulse domain signal processing
EP2709279A4 (en) 2011-05-10 2015-06-03 Nec Corp DIGITAL MODULATOR
EP2592751B1 (en) 2011-11-14 2017-05-31 Dialog Semiconductor GmbH A sigma-delta modulator for increased volume resolution in audio output stages
WO2013140914A1 (ja) * 2012-03-22 2013-09-26 日本電気株式会社 送信機および送信方法
DE102012110737B4 (de) * 2012-11-09 2020-12-10 Infineon Technologies Ag Analog-Digital-Wandler-Anordnung
US9154172B1 (en) 2013-12-31 2015-10-06 Hrl Laboratories, Llc Time encoded circuits and methods and a time encoder based beamformer for use in receiving and transmitting applications
US9843339B1 (en) 2016-08-26 2017-12-12 Hrl Laboratories, Llc Asynchronous pulse domain to synchronous digital domain converter
JP7139588B2 (ja) * 2017-09-22 2022-09-21 カシオ計算機株式会社 変換装置、電子楽器、情報処理装置、変換方法及びプログラム
US10566993B2 (en) * 2017-12-26 2020-02-18 Asahi Kasei Microdevices Corporation Delta-sigma modulator and delta-sigma converter
KR102593635B1 (ko) 2018-04-11 2023-10-26 한국전자통신연구원 공진기 기반 센서 및 그의 감지 방법
US10727798B2 (en) 2018-08-17 2020-07-28 Invensense, Inc. Method for improving die area and power efficiency in high dynamic range digital microphones
US10855308B2 (en) * 2018-11-19 2020-12-01 Invensense, Inc. Adaptive analog to digital converter (ADC) multipath digital microphones
EP3657683A1 (en) * 2018-11-26 2020-05-27 Nxp B.V. Sigma delta analog to digital converter
CN114866708A (zh) 2021-02-04 2022-08-05 佳能株式会社 光电转换装置、a/d转换器和装备
US11888455B2 (en) 2021-09-13 2024-01-30 Invensense, Inc. Machine learning glitch prediction
CN114039605B (zh) * 2021-11-26 2023-04-25 电子科技大学 一种增益可调节的Sigma-Delta调制器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3214981B2 (ja) 1994-06-30 2001-10-02 旭化成マイクロシステム株式会社 Agc機能付きデルタシグマ型a/d変換器
JP3917193B2 (ja) * 1997-08-29 2007-05-23 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 利得精度を改善したシグマ―デルタ変調器
US6804291B1 (en) * 2000-02-22 2004-10-12 Texas Instruments Incorporated Device and method of digital gain programming using sigma-delta modulator
JP3813125B2 (ja) * 2001-02-08 2006-08-23 アナログ デバイスズ インコーポレイテッド 可変フルスケールを有するマルチビット・シグマデルタ・アナログ・ディジタル変換器
US7268715B2 (en) * 2004-10-29 2007-09-11 Freescale Semiconductor, Inc. Gain control in a signal path with sigma-delta analog-to-digital conversion

Also Published As

Publication number Publication date
US7148829B2 (en) 2006-12-12
US20060071835A1 (en) 2006-04-06
JP2006108892A (ja) 2006-04-20
JP4122325B2 (ja) 2008-07-23

Similar Documents

Publication Publication Date Title
CN1756084A (zh) 具有增益控制功能的δς调制电路
CN1308914C (zh) 噪声抑制装置和方法
CN101048649A (zh) 可扩展解码装置及可扩展编码装置
CN1645918A (zh) 半导体装置及其控制方法、信号处理方法和电子设备
CN1599257A (zh) D类放大器
CN1692551A (zh) 差动放大器及运算放大器
CN1905006A (zh) 噪声抑制***与方法及程序
CN1694350A (zh) D类放大器
CN101044686A (zh) 平均输入电流得到减小的对模拟信号进行采样的***和方法
CN1612485A (zh) 德耳塔-西格玛调制装置
CN101080871A (zh) 增益可变的模拟数字变换器及其增益调整方法和***
CN1655459A (zh) 模数转换器
CN1170988A (zh) 放大器电路和多级放大器电路
CN1511430A (zh) 啸声控制设备和啸声控制方法
CN100347742C (zh) 频带恢复设备和电话机
CN1642001A (zh) D类放大器
CN1235348C (zh) 语音通信装置及回声处理处理器
CN1825896A (zh) 量化精度再现方法和设备,图像拾取设备,信息处理设备
CN1665133A (zh) 发送电路、通信机器、音频机器、影像机器、及发送方法
CN1231011C (zh) 自动增益控制装置
CN1820430A (zh) 接收器
CN1926880A (zh) 数据处理装置、方法和编码装置
CN1601907A (zh) 流水线型及循环型模数转换器
CN1462113A (zh) 放大器电路,传输装置,放大方法和传输方法
CN1929568A (zh) 具有低失真性能和低功耗的调谐器电路和数字广播接收器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
AD01 Patent right deemed abandoned

Effective date of abandoning: 20060405

C20 Patent right or utility model deemed to be abandoned or is abandoned