CN1711679A - 利用抑制三阶跨导改进rf晶体管放大器的线性度 - Google Patents

利用抑制三阶跨导改进rf晶体管放大器的线性度 Download PDF

Info

Publication number
CN1711679A
CN1711679A CNA2003801027105A CN200380102710A CN1711679A CN 1711679 A CN1711679 A CN 1711679A CN A2003801027105 A CNA2003801027105 A CN A2003801027105A CN 200380102710 A CN200380102710 A CN 200380102710A CN 1711679 A CN1711679 A CN 1711679A
Authority
CN
China
Prior art keywords
transistor
power amplifier
different
transistors
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2003801027105A
Other languages
English (en)
Other versions
CN1711679B (zh
Inventor
R·S·彭格利
S·M·伍德
J·P·奎恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wolfspeed Inc
Original Assignee
Cree Microwave LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cree Microwave LLC filed Critical Cree Microwave LLC
Publication of CN1711679A publication Critical patent/CN1711679A/zh
Application granted granted Critical
Publication of CN1711679B publication Critical patent/CN1711679B/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/68Combinations of amplifiers, e.g. multi-channel amplifiers for stereophonics
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3205Modifications of amplifiers to reduce non-linear distortion in field-effect transistor amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Optical Communication System (AREA)
  • Microwave Amplifiers (AREA)

Abstract

包括多个并联操作的晶体管的晶体管放大器的线性度通过减小晶体管产生的信号奇数阶跨导导数来改进。能够以组的形式提供晶体管,每组上施加不同的偏置电压,或每组晶体管上可以施加不同的输入信号。晶体管组具有不同的物理参数,如在场效应晶体管中的栅极的宽长比及晶体管的门限电压。

Description

利用抑制三阶跨导改进RF晶体管放大器的线性度
发明背景
本发明通常涉及RF和微波晶体管放大器,并更具体地,本发明涉及改进这种功率放大器的线性度。
RF功率放大器典型地包括并联操作的多个晶体管单元。该晶体管包括硅横向扩散MOSFETS(LDMOSFET)或其它包括硅双极型、SIC MESFET以及如GAAS MESFET、InGaP HBT和GaN HEMT这样的III-V装置的半导体技术。
改进的线性度和操作是RF功率晶体管技术内的目标。不同的RF功率晶体管技术中的线性度的确定中具有多个共同的因素,包括随信号电平改变输入和阻抗、随信号电平改变电容和它们的导数、击穿和衬底导电效应、操作类型及随偏置和信号电平改变跨导和它的导数。
本发明涉及通过减少奇数阶跨导导数来改进线性度。
发明简述
根据本发明,通过使用多个晶体管和导数叠加(多个晶体管跨导导数的正负值相消)减少奇数阶跨导导数来改进RF功率晶体管的线性度。
在本发明的一个实施例中,多个晶体管(其中每个能够包括多个晶体管单元)由共用RF输入所驱动,但是具有不同的DC偏置电压。在另一实施例中,晶体管和晶体管单元具有不同的导电门限电压。这是通过例如在制作期间改变FET的沟道渗杂来得到的。在本发明的另一实施例中,在晶体管中改变RF输入的相位,同时改变或不改变到晶体管的DC偏置电压或门限电压。仍在另一实施例中,改变晶体管的沟道和栅极宽长比,更可取地是在相同的半导体管芯上形成不同栅极宽度的晶体管,从而减小对过程变化和组件公差的灵敏度。
抑制三阶和其它奇数阶跨导的优点是增加线性度或在固定线性度上增加效率,这导致制造利润的提高并使总的功率放大器的大小减小。参考附图,根据下面详细的描述和所附的权利要求,本发明和本发明的目的和特征将更显而易见。
附图简述
图1是常规的RF功率晶体管放大器的符号表示,该放大器可以包括具有共用DC偏置的共用RF输入驱动的多个晶体管。
图2是根据本发明的实施例包括三个晶体管的RF晶体管放大器的简图,每一个晶体管由共用RF输入驱动,但是具有不同的DC偏置电压。
图3是本发明的另一实施例的简图,其中三个功率晶体管由共用RF输入驱动,具有共用DC偏置但是具有不同的门限电平。
图5是本发明的另一实施例的简图,其中多个FET晶体管具有不同的栅极宽长比。
图6是分别具有常规的偏置和驱动和具有多栅极偏置的四个LDMOS FET的三阶互调功率的曲线图。
发明详述
跨导是测量输出电流中的改变的,是输入电压的函数。在场效应晶体管中,如LDMOS FET,增量的漏电流id能够表示为增量的栅极电压,Vg的函数,在静止的偏置点Id(Vg,0)周围,其中Id是大信号漏电流,如下面所述。
i d = dI d d V g | V = V g . 0 v g + 1 2 d 2 I d d V g 2 | V = V g . 0 v g 2 + 1 6 d 3 I d d V g 3 | V = V g . 0 v g 3 = g 1 v g + g 2 v g 2 + g 3 v g 3
跨导导数的二阶导数或二次谐波不在输入信号频率的范围内,因而不存在问题。然而,三阶导数和较高的奇数导数频率上较接近于输入信号并且能够引起线性度问题。
根据本发明,通过在多个晶体管单元中相消正负值来减小奇数阶跨导导数的不利影响。这以若干方式来实现,如图2-5所示,而不是操作具有共用RF输入和共用DC偏置电压并且具有共用单元结构的所有晶体管单元,如图1中示意地说明,在图1中以10示出的所有晶体管单元由一个RF输入信号12来驱动,具有共用DC偏置电压14。
根据本发明的一个实施例,如图2所示,晶体管被编成三个组10-1、10-2和10-3,这三组的输入和输出与共用RF输入驱动12和共用输出16连接在一起。然而,每个组具有所标记的单独的DC偏置。例如,利用LDMOS晶体管单元,对于在4到5伏范围内的输入电压,偏置可以是如4.1、4.2和4.3伏。正如一般惯例,DC偏置电压可以和施加到晶体管的控制元件(例如栅极或基极)的RF输入驱动一起施加。
图3是本发明的另一实施例的简图,其中,三个晶体管组10-1、10-2和10-3具有相同的DC偏置电压和RF输入驱动,但是晶体管组的门限电压不同,通过改变晶体管单元的沟道渗杂来实现。例如,通过改变沟道渗杂,能够改变门限电压。此外,DC偏置电压能够与施加到晶体管控制元件(例如栅极或基极)的RF输入驱动相结合。
图4是本发明的另一实施例,其中,晶体管组10-1、10-2和10-3具有相同的DC偏置14并具有相同的RF输入12,但是通过改变输入线12-1、12-2和12-3的长度改变输入的相位。在输入相位中的不同产生多个晶体管的跨导导数的正负值的交错,并且在16上相加时,正负值趋向于相消。
图5是本发明的另一实施例简图,其中,晶体管组10-1、10-2和10-3具有不同的栅极宽长比。通过以10-20%改变宽长比,再次地改变多个晶体管组的跨导导数的正负值。
图6是说明四个LDMOS FET晶体管三阶导数功率(dBm或dBc)与功率输出(powerout)(dBm)的关系曲线图,以60示出的是当晶体管被常规驱动和偏置时的关系曲线,以62示出的是当晶体管被不同的偏置电压驱动(类似于图2三个晶体管的简图)时的关系曲线。在2.14GHz上驱动晶体管,整个输出功率70瓦。需要注意的是,在8到13dB的补偿功率范围内,三阶导数的功率从大约40dBm减小到60dBm,并因此增加功率放大器的线性度。
已经描述了多个晶体管放大器的若干实施例,构造、偏置或驱动多个晶体管放大器,使得奇数阶跨导导数的正负值趋向于相消,从而改进功率放大器操作的线性度。尽管根据特定的实施例已经描述了本发明,但是描述是说明本发明的并不用于限制本发明。对于本领域的技术人员在不偏离如所附权利要求所定义的本发明的实际精神和范围的前提下,不同的修改和应用可以存在。

Claims (19)

1、一种具有改进的线性度和操作的RF功率放大器,包括多个并联操作的晶体管,驱动电压和偏置电压施加到所述晶体管,由此来自所述多个晶体管的奇数跨导导数的正负值趋向于相消。
2、如权利要求1所定义的RF功率放大器,其中所述晶体管具有不同的偏置电压。
3、如权利要求1所定义的RF功率放大器,其中所述晶体管具有不同的输入信号。
4、如权利要求3所定义的RF功率放大器,其中到所述晶体管的输入信号的相位不同。
5、如权利要求4所定义的RF功率放大器,其中所述晶体管具有不同的偏置电压。
6、如权利要求4所定义的RF功率放大器,其中所述晶体管具有不同的输入电压。
7、如权利要求6所定义的RF功率放大器,其中所述晶体管具有不同的偏置电压。
8、如权利要求1所定义的RF功率放大器,其中从场效应晶体管和双极型晶体管组成的组中选择所述晶体管。
9、如权利要求8所定义的RF功率放大器,其中所述场效应晶体管和双极型晶体管包括硅和化合物半导体材料。
10、一种具有改进的线性度和操作的RF功率放大器,包括多个并联操作的晶体管,所述晶体管的物理参数不同,由此来自所述多个晶体管的奇数跨导导数的正负值趋向于相消。
11、如权利要求10所定义的RF功率放大器,其中所述晶体管包括具有栅极的场效应晶体管,所述晶体管栅极的宽长比不同。
12、如权利要求10所定义的RF功率放大器,其中所述晶体管包括场效应晶体管,所述晶体管的电压门限不同。
13、一种改进多晶体管功率放大器的操作线性度的方法,包括步骤:
a)提供与共用输出连接的多组晶体管,及
b)操作所述多组晶体管,由此输入信号的奇数阶跨导导数的正负值趋向于相消。
14、如权利要求13所定义的方法,其中步骤b)包括变更施加到所述多个组的输入信号。
15、如权利要求14所定义的方法,其中步骤b)包括提供施加到所述多个组的具有不同相位的输入信号。
16、如权利要求13所定义的方法,其中步骤b)包括施加不同的偏置电压到所述多个组。
17、如权利要求13所定义的方法,其中步骤a)包括提供具有不同物理参数的多组晶体管。
18、如权利要求17所定义的方法,其中所述晶体管是具有栅极的场效应晶体管,每组晶体管具有不同于其它组的栅极宽长比。
19、如权利要求18所定义的方法,其中所述晶体管是场效应晶体管,每组晶体管具有不同于其它组的门限值。
CN2003801027105A 2002-11-06 2003-11-04 利用抑制三阶跨导改进rf晶体管放大器的线性度 Expired - Lifetime CN1711679B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/289,734 US6819184B2 (en) 2002-11-06 2002-11-06 RF transistor amplifier linearity using suppressed third order transconductance
US10/289,734 2002-11-06
PCT/US2003/035415 WO2004045070A1 (en) 2002-11-06 2003-11-04 Improved rf transistor amplifier linearity using suppressed third order transconductance

Publications (2)

Publication Number Publication Date
CN1711679A true CN1711679A (zh) 2005-12-21
CN1711679B CN1711679B (zh) 2010-04-28

Family

ID=32176101

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2003801027105A Expired - Lifetime CN1711679B (zh) 2002-11-06 2003-11-04 利用抑制三阶跨导改进rf晶体管放大器的线性度

Country Status (11)

Country Link
US (1) US6819184B2 (zh)
EP (1) EP1573908B1 (zh)
JP (1) JP4977320B2 (zh)
KR (1) KR101056889B1 (zh)
CN (1) CN1711679B (zh)
AT (1) ATE470264T1 (zh)
AU (1) AU2003291339A1 (zh)
CA (1) CA2504979C (zh)
DE (1) DE60332868D1 (zh)
TW (1) TWI337450B (zh)
WO (1) WO2004045070A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401299B (zh) * 2006-03-09 2010-10-06 联发科技股份有限公司 用于偏置晶体管的装置及方法
CN101656514B (zh) * 2009-09-07 2011-09-28 东南大学 一种基于匹配共享增益可控的并联型射频功率放大器
CN106298766A (zh) * 2015-05-27 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 一种功率器件及优化功率器件的方法

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7421254B2 (en) * 2003-10-23 2008-09-02 Broadcom Corporation High linearity, high efficiency power amplifier with DSP assisted linearity optimization
US7853235B2 (en) * 2004-02-11 2010-12-14 Qualcomm, Incorporated Field effect transistor amplifier with linearization
KR100614928B1 (ko) * 2005-08-17 2006-08-25 삼성전기주식회사 선형화를 위한 미분 중첩회로
DE602005027624D1 (de) * 2005-10-20 2011-06-01 Ericsson Telefon Ab L M Transkonduktanzstufen-anordnung
US7573329B2 (en) * 2006-02-09 2009-08-11 Vt Silicon, Inc. System and method for IM3 reduction and cancellation in amplifiers
KR20070091963A (ko) * 2006-03-08 2007-09-12 인티그런트 테크놀로지즈(주) 적응적 선형 증폭기
JP2007295234A (ja) * 2006-04-25 2007-11-08 Hitachi Kokusai Electric Inc 増幅装置
TWI332749B (en) * 2006-08-14 2010-11-01 Realtek Semiconductor Corp Power amplifier circuit having a bias signal inputted into an input terminal and method thereof
JP2010506514A (ja) * 2006-10-06 2010-02-25 ビダール クリシュナマーシー ヴィクラム 動作電力の広い範囲にわたるオンチップim3低減のためのシステムおよび方法
JPWO2009013814A1 (ja) * 2007-07-24 2010-09-24 富士通株式会社 半導体装置
EP2040299A1 (en) * 2007-09-12 2009-03-25 Forschungsverbund Berlin e.V. Electrical devices having improved transfer characteristics and method for tailoring the transfer characteristics of such an electrical device
US7936217B2 (en) * 2007-11-29 2011-05-03 Qualcomm, Incorporated High-linearity complementary amplifier
US7936214B2 (en) * 2008-03-28 2011-05-03 Medtronic, Inc. Third order derivative distortion cancellation for ultra low power applications
WO2009155010A2 (en) * 2008-05-27 2009-12-23 Rayspan Corporation Rf power amplifiers with linearization
JP5694035B2 (ja) * 2011-03-31 2015-04-01 富士通株式会社 電力増幅器および通信装置
US8643101B2 (en) 2011-04-20 2014-02-04 United Microelectronics Corp. High voltage metal oxide semiconductor device having a multi-segment isolation structure
US8581338B2 (en) 2011-05-12 2013-11-12 United Microelectronics Corp. Lateral-diffused metal oxide semiconductor device (LDMOS) and fabrication method thereof
US8501603B2 (en) 2011-06-15 2013-08-06 United Microelectronics Corp. Method for fabricating high voltage transistor
US8592905B2 (en) 2011-06-26 2013-11-26 United Microelectronics Corp. High-voltage semiconductor device
US20130043513A1 (en) 2011-08-19 2013-02-21 United Microelectronics Corporation Shallow trench isolation structure and fabricating method thereof
US8729599B2 (en) 2011-08-22 2014-05-20 United Microelectronics Corp. Semiconductor device
US8921937B2 (en) 2011-08-24 2014-12-30 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device and method of fabricating the same
US8742498B2 (en) 2011-11-03 2014-06-03 United Microelectronics Corp. High voltage semiconductor device and fabricating method thereof
WO2013071959A1 (en) 2011-11-15 2013-05-23 X-Fab Semiconductor Foundries Ag A mos device assembly
US8482063B2 (en) 2011-11-18 2013-07-09 United Microelectronics Corporation High voltage semiconductor device
US8587058B2 (en) 2012-01-02 2013-11-19 United Microelectronics Corp. Lateral diffused metal-oxide-semiconductor device
US8492835B1 (en) 2012-01-20 2013-07-23 United Microelectronics Corporation High voltage MOSFET device
US9093296B2 (en) 2012-02-09 2015-07-28 United Microelectronics Corp. LDMOS transistor having trench structures extending to a buried layer
TWI523196B (zh) 2012-02-24 2016-02-21 聯華電子股份有限公司 高壓金氧半導體電晶體元件及其佈局圖案
US8890144B2 (en) 2012-03-08 2014-11-18 United Microelectronics Corp. High voltage semiconductor device
US9236471B2 (en) 2012-04-24 2016-01-12 United Microelectronics Corp. Semiconductor structure and method for manufacturing the same
US9159791B2 (en) 2012-06-06 2015-10-13 United Microelectronics Corp. Semiconductor device comprising a conductive region
US8836067B2 (en) 2012-06-18 2014-09-16 United Microelectronics Corp. Transistor device and manufacturing method thereof
US8674441B2 (en) 2012-07-09 2014-03-18 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device
US8643104B1 (en) 2012-08-14 2014-02-04 United Microelectronics Corp. Lateral diffusion metal oxide semiconductor transistor structure
US8729631B2 (en) 2012-08-28 2014-05-20 United Microelectronics Corp. MOS transistor
US8854144B2 (en) 2012-09-14 2014-10-07 General Atomics High voltage amplifiers and methods
US9196717B2 (en) 2012-09-28 2015-11-24 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device
US8829611B2 (en) 2012-09-28 2014-09-09 United Microelectronics Corp. High voltage metal-oxide-semiconductor transistor device
US8704304B1 (en) 2012-10-05 2014-04-22 United Microelectronics Corp. Semiconductor structure
US20140110777A1 (en) 2012-10-18 2014-04-24 United Microelectronics Corp. Trench gate metal oxide semiconductor field effect transistor and fabricating method thereof
US9224857B2 (en) 2012-11-12 2015-12-29 United Microelectronics Corp. Semiconductor structure and method for manufacturing the same
US9035425B2 (en) 2013-05-02 2015-05-19 United Microelectronics Corp. Semiconductor integrated circuit
US8896057B1 (en) 2013-05-14 2014-11-25 United Microelectronics Corp. Semiconductor structure and method for manufacturing the same
US8786362B1 (en) 2013-06-04 2014-07-22 United Microelectronics Corporation Schottky diode having current leakage protection structure and current leakage protecting method of the same
US8941175B2 (en) 2013-06-17 2015-01-27 United Microelectronics Corp. Power array with staggered arrangement for improving on-resistance and safe operating area
US9136375B2 (en) 2013-11-21 2015-09-15 United Microelectronics Corp. Semiconductor structure
US9490360B2 (en) 2014-02-19 2016-11-08 United Microelectronics Corp. Semiconductor device and operating method thereof
US9252715B2 (en) 2014-03-14 2016-02-02 Freescale Semiconductor, Inc. System and method for adaptive linearization of RF amplifiers
US9356564B1 (en) * 2014-03-27 2016-05-31 Hrl Laboratories, Llc Broadband linear amplifier architecture by combining two distributed amplifiers
CN110199479B (zh) 2016-09-26 2023-10-31 天工方案公司 用于射频应用的主辅场效应晶体管配置
US12009788B2 (en) * 2019-03-28 2024-06-11 Macom Technology Solutions Holdings, Inc. In-transistor load modulation

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3392335A (en) * 1963-06-12 1968-07-09 Magnavox Co Antenna multicoupler
JPS5385143A (en) * 1977-01-06 1978-07-27 Nippon Telegr & Teleph Corp <Ntt> Power synthesizing amplifier
JPS57135370A (en) * 1981-02-16 1982-08-20 Matsushita Electric Ind Co Ltd Level detecting circuit
DE69028803T2 (de) * 1989-05-31 1997-03-20 Toshiba Kawasaki Kk Linearisierter Differenzverstärker
JP2915440B2 (ja) * 1989-09-12 1999-07-05 株式会社東芝 線形化差動増幅器
JP2888923B2 (ja) * 1989-05-31 1999-05-10 株式会社東芝 線形化差動増幅器
KR100388573B1 (ko) * 1994-10-28 2003-10-04 코닌클리케 필립스 일렉트로닉스 엔.브이. 이득-제어가능한증폭기및이득-제어가능한증폭기를포함하는수신기
US5694085A (en) * 1996-02-14 1997-12-02 Glenayre Electronics, Inc. High-power amplifier using parallel transistors
JPH1041762A (ja) * 1996-07-24 1998-02-13 Toshiba Corp トランスコンダクタンスアンプ回路
US5903185A (en) * 1996-12-20 1999-05-11 Maxim Integrated Products, Inc. Hybrid differential pairs for flat transconductance
US6384688B1 (en) * 1998-07-08 2002-05-07 Hitachi, Ltd. High-frequency power amplifier module
US6233440B1 (en) 1998-08-05 2001-05-15 Triquint Semiconductor, Inc. RF power amplifier with variable bias current
JP3641184B2 (ja) * 2000-03-28 2005-04-20 株式会社東芝 バイポーラトランジスタを用いた高周波電力増幅器
SE516847C2 (sv) * 2000-07-07 2002-03-12 Ericsson Telefon Ab L M Sammansatt förstärkare samt sändare som innefattar en sådan förstärkare
SE520760C2 (sv) * 2000-06-06 2003-08-19 Ericsson Telefon Ab L M Doherty-förstärkare av flerstegstyp
US6317002B1 (en) * 2000-06-27 2001-11-13 International Business Machines Corporation Circuit for efficiently producing low-power radio frequency signals
US6429742B1 (en) 2001-06-29 2002-08-06 Intel Corporation Gain-controlled tuned differential adder
US6614308B2 (en) * 2001-10-22 2003-09-02 Infineon Technologies Ag Multi-stage, high frequency, high power signal amplifier
US7564273B2 (en) 2007-02-06 2009-07-21 Massachusetts Institute Of Technology Low-voltage comparator-based switched-capacitor networks

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101401299B (zh) * 2006-03-09 2010-10-06 联发科技股份有限公司 用于偏置晶体管的装置及方法
CN101656514B (zh) * 2009-09-07 2011-09-28 东南大学 一种基于匹配共享增益可控的并联型射频功率放大器
CN106298766A (zh) * 2015-05-27 2017-01-04 中国科学院苏州纳米技术与纳米仿生研究所 一种功率器件及优化功率器件的方法

Also Published As

Publication number Publication date
US6819184B2 (en) 2004-11-16
WO2004045070A1 (en) 2004-05-27
US20040085132A1 (en) 2004-05-06
JP2006506020A (ja) 2006-02-16
JP4977320B2 (ja) 2012-07-18
CN1711679B (zh) 2010-04-28
KR101056889B1 (ko) 2011-08-12
AU2003291339A1 (en) 2004-06-03
KR20050084630A (ko) 2005-08-26
TWI337450B (en) 2011-02-11
DE60332868D1 (de) 2010-07-15
EP1573908A1 (en) 2005-09-14
EP1573908B1 (en) 2010-06-02
ATE470264T1 (de) 2010-06-15
CA2504979A1 (en) 2004-05-27
CA2504979C (en) 2011-10-18
TW200414671A (en) 2004-08-01
EP1573908A4 (en) 2006-01-11

Similar Documents

Publication Publication Date Title
CN1711679B (zh) 利用抑制三阶跨导改进rf晶体管放大器的线性度
EP2339746B1 (en) Doherty amplifier with composed transfer characteristic having multiple peak amplifiers
JP4024762B2 (ja) 高周波スイッチ
KR100276041B1 (ko) 전계 효과 트랜지스터 및 이를 포함하는 전력 증폭기
JP7383041B2 (ja) トランジスタ内負荷変調
CN1443371A (zh) 功率金属氧化物半导体场效晶体管中的配置
US6433640B1 (en) Methods and apparatus for amplifying a telecommunication signal
CN1783427A (zh) 温度补偿电阻器及其制造方法
Sharma et al. On the efficiency and AM/AM flatness of inverse class-F power amplifiers
US5977823A (en) Semiconductor amplifier circuit
US20060231905A1 (en) Electronic device comprising a field effect transistor for high-frequency aplications
CN1193845A (zh) 含有增强型晶体管电路的偏压电路的集成电路器件
Pengelly et al. Improving the linearity and efficiency of RF power amplifiers
US20030094994A1 (en) Method and device for reducing influence of early effect
US11652449B2 (en) Radio frequency transistor amplifiers having engineered intrinsic capacitances for improved performance
CN1636317A (zh) 具有自动偏置电源控制的可变增益放大器
US5808332A (en) Field-effect semiconductor device
US5539228A (en) Field-effect transistor with high breakdown voltage provided by channel recess offset toward drain
US6037830A (en) Tailored field in multigate FETS
CN1383262A (zh) 互补式金氧半导体ab类放大器
KR100331044B1 (ko) 단일 전압형 phemt
Raut et al. Design and Comparison of Wideband Cascode Low Noise Amplifier using GAA-JLFET and GAA-NC-JLFET for RFIC Applications
TW202425536A (zh) 固態開關以及電路
EP0610564A2 (en) Dual gate fet and circuits using dual gate fet
Cheng et al. High linearity AlGaAs/InGaAs pseudomorphic HEMT driver amplifier using tunable field-plate voltage technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: CREE RESEARCH, INC.

Free format text: FORMER OWNER: CREE MICROWAVE INC.

Effective date: 20110816

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20110816

Address after: North Carolina

Patentee after: CREE, Inc.

Address before: California, USA

Patentee before: Cree Microwave, Inc.

CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20100428