CN1708533A - 壳体用聚酯成型物 - Google Patents

壳体用聚酯成型物 Download PDF

Info

Publication number
CN1708533A
CN1708533A CNA038005174A CN03800517A CN1708533A CN 1708533 A CN1708533 A CN 1708533A CN A038005174 A CNA038005174 A CN A038005174A CN 03800517 A CN03800517 A CN 03800517A CN 1708533 A CN1708533 A CN 1708533A
Authority
CN
China
Prior art keywords
biodegradable plastic
plastic material
forming composition
acid
active hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA038005174A
Other languages
English (en)
Inventor
山田心一郎
藤平裕子
森浩之
野口勉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002121889A external-priority patent/JP4120776B2/ja
Application filed by Sony Corp filed Critical Sony Corp
Publication of CN1708533A publication Critical patent/CN1708533A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/91Polymers modified by chemical after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C39/00Shaping by casting, i.e. introducing the moulding material into a mould or between confining surfaces without significant moulding pressure; Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/44Polyester-amides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/29Compounds containing one or more carbon-to-nitrogen double bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/02Polyamines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

本发明涉及壳体用聚酯成型物,提供一种可确保长期可靠性的生物降解性塑料材料,尤其是生物降解性聚酯材料、以及由该材料制的成型物;进一步,使用可与生物降解性塑料中的活性氢反应的化合物进行处理的生物降解性塑料材料及由该材料制得的生物降解性塑料成型物。

Description

壳体用聚酯成型物
技术领域
本发明涉及提高耐久性的生物降解性塑料材料以及使用该材料制的生物降解性塑料成型物。
背景技术
目前塑料已渗透到生活和产业的各个领域,全世界塑料年产量已约达1亿吨。其中一大半在使用后废弃,人们已认识到这已成为破坏地球环境的原因之一。现在作为解决该问题最引人注目的对策是塑料再循环和生物降解性聚合物的利用。
有关塑料再循环方面,为了将用过的电器制品进行再循环,2001年4月日本颁布了家用电器再循环法,但除了电视机、冰箱、空调、洗衣机四种大型电器制品外,其他废弃品还没有实施回收再利用,而且没有法规。因此,大部分的电器制品在废弃时作为不燃垃圾丢掉。例如形状小而销售量大的场合,结果总体上产生大量的废弃物,近来废弃物处理场不足已成为深刻的社会问题。
作为现在频繁地进行处理的方法有将废弃物进行破碎处理的方法。但这种破碎处理只是减少废弃物的体积,如果填埋的话在目前状态下残留几十年、几百年,因此还不能基本上解决问题。假如把粉碎碎屑进行材料回收利用,因为所有的部件都很细地粉碎,结果例如铜等有价值的材料也与其他价值低的材料混合在一起,存在纯度降低、回收效率差等的问题。
另一方面,作为生物降解性聚合物的利用,认为具有如以下列举的两个优点。第1,使用生物降解性材料制作的占电器制品大部分体积的壳体或结构体部分,把电子元件、基板等的非生物降解性的部分,例如做成螺钉固定或嵌入结构等可简单地拆开的结构,采用一定程度的解体处理,可以将应进行循环的部分和直接可以废弃的部分分别处理,因此可期待提高回收效率。
第2,使用生物降解性的材料制作例如收音机、扩音器、袖珍TV、键盘、便携式立体声单放机、手机、盒式收录两用机、耳机等壳体的最外表面。这样通过使用生物降解性的材料制作与人体接触机会多的部分,可以提供安全性比合成树脂还高的电气制品。
然而,如上述用途中所用的生物降解性聚合物并不是那一种都好,要用作电器制品的壳体、结构材料还要求恰如其分的物性。本发明人发现,例如在温度80℃、温度80%的环境气氛中最低限要求保持48小时也不降低物性。
生物降解性聚合物是在自然界或生物的作用下进行分解代谢的有机材料,已开发出适合环境的理想材料。作为这样的生物降解性聚合物,例如,可列举纤维素、淀粉、葡聚糖、甲壳质等的多糖衍生物,例如胶原、酪蛋白、血纤维蛋白、明胶等的肽等,例如,多氨基酸,聚乙烯醇,尼龙4、尼龙2/尼龙6苄聚物等的聚酰胺,脂肪族聚酯。
作为生物降解性聚合物代表例的脂肪族聚酯树脂,一般熔点低、适于实用的成型品的物性(尤其是耐热性、耐冲击性)不充分,因此进行了种种研究,例如通过添加无机填料、结晶成核剂提高结晶化速度、与呈现玻璃化转变温度低的橡胶性能的生物降解性树脂的掺混等,有关使用这种塑料的成型物已有几件专利申请(特开平3-290461号公报、特开平4-146952号公报、特开平4-325526号公报等)。这些成型物用作薄膜或包装材料,对耐久性没有特殊要求。
然而,生物降解性脂肪族聚酯树脂在电器制品、电子设备等壳体方面的应用中,同时要求耐热性和长期可靠性(恒温恒湿条件下的耐久性)。虽然电器制品、电子设备的商品寿命各种各样,但小型音频商品在30℃、相对湿度80%的条件下,必须保持3~7年的物性。若考虑电器制品、电子设备在各种温度、湿度条件下的使用环境,目前的生物降解性聚酯,如上述,由于在长期可靠性方面还存在问题,因此还不能用于电器制品、电子设备等的壳体。现在生物降解性聚合物以脂肪族聚酯树脂为主,开始用于农林水产用材料(薄膜、栽植箱、钓鱼丝、鱼网等)、土木工程材料(保水片材、植物网、土袋等)、包装、容器领域(粘附土、食品等难循环的制品)等。
如上述,电器制品、电子设备的壳体等使用生物降解性聚酯树脂的场合,首先必须的最低限度是在恒温恒湿(例如80℃、相对湿度80%)条件下至少48小时不引起物性降低。目前的生物降解性聚酯,例如对于耐热温度最高的聚乳酸,将这种成型物在温度80℃相对湿度80%进行48小时的老化试验时,由于水解而引起分子量降低60%(参照下述比较例1),现状是很难用于家电制品的壳体材料等。这种物性降低、即作为引起水解的主要原因,众知例如聚酯的场合,高分子链末端的羧基催化性地使分子链中的酯键水解。本发明人为了确保长期可靠性,着手创制一种塑料材料,该材料在制品使用中通过生物降解性塑料中的羧基、羟基等具有活性氢的官能基中的活性氢不催化性地使主链水解,而维持物性(例如强度、耐水解性、耐热性),废弃后通过水解、及被然界一般存在的微生物所分解。
本发明的目的在于,提供可确保长期可靠性的生物降解性塑料材料,尤其是生物降解性聚酯材料,还提供由该材料制的成型物。
发明内容
本发明人为了确保具有生物降解性的聚酯作为电器制品、电子设备等的壳体材料使用的长期可靠性而潜心反复研究,结果发现除了采用可与生物降解性聚酯中活性氢反应的化合物以外,还设法减少与活性氢反应、降低活性氢量,尤其是使组成物中的残留脂肪酸量即酸值在设定量以下,达到提高可靠性。此外,还发现不仅生物降解性聚酯,即使是有胺酰基和/或酰胺键的生物降解性聚合物,也可以采用同样地处理生物降解性聚酯的方法降低活性氢量。
这里,所谓活性氢是具有反应性比碳与氢的键高的氧、氮等与氢结合的化合物,例如羧基:-COOH、羟基:-OH、氨基:-NH2、酰胺基:-NHCO-等。
更详细地讲,通过使可与这些活性氢反应的化合物,例如碳二亚胺化合物、多异氰酸酯化合物等与生物降解性塑料材料反应,例如控制脂肪酸的量即酸值在设定量以下,可以制作例如在80℃、80%、48小时的老化试验后,具有不引起物性降低的保持长期可靠性的壳体材料,进一步反复研究而完成了本发明。
即,本发明涉及下述。
(1)使用可与生物降解性塑料中活性氢反应的化合物进行处理的生物降解性塑料材料。
(2)前述(1)所述的生物降解性塑料材料,其特征在于,生物降解性塑料材料是生物降解性聚酯材料。
(3)前述(1)所述的生物降解性塑料材料,其特征在于,生物降解性塑料材料是①生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的共聚物、或者②生物降解性聚酯与具有氮基和/或酰胺键的生物降解性聚合物的混合物。
(4)前述(1)所述的生物降解性塑料材料,其特征在于,使用可与活性氢反应的化合物处理的生物降解性塑料材料的酸值是0.5以下。
(5)前述(1)所述的生物降解性塑料材料,其特征在于,在温度80℃、相对湿度80%的恒温恒湿条件下老化48小时,酸值上升0.2以下、且分子量降低在10%以内。
(6)前述(1)所述的生物降解性塑料材料,其特征在于,活性氢来源于选自生物降解性塑料材料中的羧基、羟基、氨基与酰胺键中的1种或2种以上的原子团。
(7)前述(1)所述的生物降解性塑料材料,其特征在于,可与活性氢反应的化合物是具有碳二亚胺基的交联剂。
(8)前述(7)所述的生物降解性塑料材料,其特征在于,具有碳二亚胺基的交联剂是二环己基碳二亚胺或二异丙基碳二亚胺。
(9)前述(1)所述的生物降解性塑料材料,其特征在于,含有硅酸盐类。
(10)前述(9)所述的生物降解性塑料材料,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
(11)前述(9)所述的生物降解性塑料材料,其特征在于,硅酸盐类呈平均粒径50μm以下的粒子状。
(12)将使用可与生物降解性塑料中的活性氢反应的化合物处理的生物降解性塑料材料加工成型的生物降解性塑料成型物。
(13)前述(12)所述的生物降解性塑料成型物,其特征在于,前述生物降解性塑料材料是生物降解性聚酯。
(14)前述(12)所述的生物降解性塑料成型物,其特征在于,生物降解性塑料材料是①生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的共聚物、或者②生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的混合物。
(15)前述(12)所述的生物降解性塑料成型物,其是电器制品的壳体。
(16)前述(12)所述的生物降解性塑料成型物,其特征在于,使用可与活性氢反应的化合物处理的生物降解性塑料材料的酸值在0.5以下。
(17)前述(12)所述的生物降解性塑料成型物,其特征在于,在温度80℃、相对湿度80%的恒温恒湿条件下老化48小时,酸值上升0.2以下、且分子量降低在10%以内。
(18)前述(12)所述的生物降解性塑料成型物,其特征在于,活性氢来源于选自生物降解性塑料材料中的羧基、羟基、氨基与酰胺键中的1种或2种以上的原子团。
(19)前述(12)所述的生物降解性塑料成型物,其特征在于,可与活性氢反应的化合物是具有碳二亚胺基的交联剂。
(20)前述(19)所述的生物降解性塑料成型物,其特征在于,具有碳二亚胺基的交联剂是二环己基碳二亚胺或二异丙基碳二亚胺。
(21)前述(12)所述的生物降解性塑料成型物,其特征在于,含有硅酸盐。
(22)前述(21)所述的生物降解性塑料成型物,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
(23)前述(21)所述的生物降解塑料成型物,其特征在于,硅酸盐类呈平均粒径50μm以下的粒子状。
(24)生物降解性塑料成型物的制造方法,其特征在于,在熔融前、熔融时或熔融后向生物降解性塑料材料中添加可与活性氢反应的化合物,混匀后进行成型。
(25)前述(24)所述的生物降解性塑料成型物的制造方法,其特征在于,采用薄膜成型、挤出成型或注射成型进行成型。
(26)生物降解性塑料成型物的制造方法,其特征在于,在熔融前、熔融时或熔融后向生物降解性塑料材料中同时或分别添加可与活性氢反应的化合物和硅酸盐类,混匀后进行成型。
(27)前述(26)所述的生物降解性塑料成型物的制造方法,其特征在于,采用薄膜成型、挤出成型或注射成型进行成型。
(28)前述(26)所述的生物降解性塑料成型物的制造方法,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
(29)前述(26)所述的生物降解性塑料成型物的制造方法,其特征在于,硅酸盐类呈平均粒径50μm以下的粒子状。
附图的简单说明
图1A是标绘实施例5中酸值上升0.2以下、且分子量降低为10%以内的时间(天)与温度(℃)的图。图1B是标绘实施例5中酸值上升0.2%以下、且分子量降低为10%以内的时间的对数(Log(天))与温度的倒数(1/温度:1/K)的图。
图2A是标绘实施例6中酸值上升0.2以下、且分子量降低为10%以内的时间(天)与温度(℃)的图。图2B是标绘实施例6中酸值上升0.2以下、且分子量降低为10%以内的时间的对数(log(天))与温度的倒数(1/温度:1/K)的图。
图3A是标绘实施例6中各温度下的生物降解性聚酯的酸值相对于物性保持时间(天)的变化图。图中黑方块是85℃下老化的结果,空白菱形是80℃下老化的结果,空白三角是75℃下老化的结果,空白方块是70℃下老化的结果。相对湿度是80%。图3B是标绘实施例6中各温度下的生物降解性聚酯的重均分子量减少率(%)相对物性保持时间(天)的图。图中,黑方块是85℃下的老化结果,空白菱形是80℃下老化的结果,空白三角是75℃下老化的结果,空白方块是70℃下老化的结果。
具体实施方式
本发明所用生物降解性塑料的定义是,使用后在自然界中微生物参与下分解成低分子化合物、最后分解成水与二氧化碳的塑料(生物降解性塑料研究会,ISO/IC-207/SC3)。
作为这种生物降解性塑料原料的生物降解性聚合物有许多种,例如可列举纤维素、淀粉、葡聚糖、甲壳质等的多糖衍生物,例如胶原、酪蛋白、血纤维素蛋白、明胶等的肽等,例如多氨基酸、聚乙烯醇,例如尼龙4、尼龙2/尼龙6共聚物等的聚酰胺,例如聚乙醇酸、聚乳酸、聚琥珀酸酯、聚草酸酯、聚羟基丁酸、聚二乙醇酸丁酯、聚己内酯、聚二噁酮等的聚酯等,在本发明中也可以使用。即,生物降解性聚合物是在自然界或生物的作用下分解、代谢的有机材料,是有利于环境的理想材料,只要不破坏本发明的目的,则可以是任何的材料。其中,最优选的是生物降解性聚酯。
本发明中使用的生物降解性塑料,只要是不破坏本发明的目的,也可以是生物降解性聚酯、生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的共聚物、或生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的混合物。作为具有氨基和/或酰胺键的生物降解性聚合物,例如可列举多氨基酸或尼龙等的生物降解性聚酰胺等。
所谓本发明使用的生物降解性聚酯,是主链上有酯键、-CO-O-的高分子,作为本发明使用的生物降解性聚酯,例如可列举被微生物代谢的聚酯,其中优选具有成型性、耐热性、耐冲击性的脂肪族聚酯树脂。
作为上述脂肪族聚酯树脂,例如可列举聚草酸酯、聚琥珀酸酯、聚羟基丁酸酯、聚二乙醇酸丁酯、聚己内酯、聚二噁酮、如乳酸、苹果酸或乙醇酸等的羟基羧酸的聚合物或这些共聚物等的羟基羧酸系脂肪族聚酯树脂。其中,最优选聚乳酸所代表的羟基羧酸系脂肪族聚酯树脂。
本发明使用的生物降解性聚酯可按照公知的方法合成。例如,可列举①丙交酯法、②多元醇与多元酸的缩聚、或③分子内有羟基和羧基的羟基羧酸的分子间缩聚等。
所谓丙交酯法是采用环状二酯与相应的内酯类开环聚合的方法,作为这种环状二酯的例子,例如,可列举丙交酯、乙交酯等,而作为内酯,例如可列举ε-己内酯、β-丙内酯、γ-丁内酯、δ-戊内酯等。
作为多元醇与多元酸缩聚使用的多元醇,例如可列举乙二醇、二乙二醇、三乙二醇、丙二醇、新戊二醇、1,3-丁二醇、1,4-丁二醇、1,6-己二醇等,而作为所使用的多元酸,例如可列举对苯二甲酸、间苯二甲酸、邻苯二甲酸、萘二羧酸等的芳基族二羧酸类,例如己二酸、癸二酸、乙二酸、琥珀酸、琥珀酸酐、马来酸、马来酸酐、富马酸、二聚酸等的脂肪族二羧酸类,例如1,4-环己烷二羧酸等的脂环族二羧酸类作为代表例。由于本发明优选的是脂肪族聚酯,所以作为原料的多元醇,多元酸也都优选脂肪族化合物。
作为分子内具有羟基和羧基的羟基羧酸的分子间缩聚,可采用相应的羟基羧酸的直接脱水缩合法制得。作为这样的羟基羧酸,例如,可列举乳酸、2-羟基乙酸、2-羟基丙酸、2-羟基丁酸、2-羟基戊酸、2-羟基己酸、2-羟基庚酸、2-羟基辛酸、2-羟基-2-甲基丙酸、2-羟基-2-甲基丁酸、2-羟基-2-乙基丁酸、2-羟基-2-甲基戊酸、2-羟基-2-乙基戊酸、2-羟基-2-丙基戊酸、2-羟基-2-丁基戊酸、2-羟基-2-甲基己酸、2-羟基-2-乙基己酸、2-羟基-2-丙基己酸、2-羟基-2-丁基己酸、2-羟基-2-戊基己酸、2-羟基-2-甲基庚酸、2-羟基-2-乙基庚酸、2-羟基-2-丙基庚酸、2-羟基-2-丁基庚酸、2-羟基-2-戊基庚酸、2-羟基-2-己基庚酸、2-羟基-2-甲基辛酸、2-羟基-2-乙基辛酸、2-羟基-2-丙基辛酸、2-羟基-2-丁基辛酸、2-羟基-2-戊基辛酸、2-羟基-2-己基辛酸、2-羟基-2-庚基辛酸、3-羟基丙酸、3-羟基丁酸、3-羟基戊酸、3-羟基己酸、3-羟基庚酸、3-羟基辛酸、3-羟基-3-甲基丁酸、3-羟基-3-甲基戊酸、3-羟基-3-乙基戊酸、3-羟基-3-甲基己酸、3-羟基-3-乙基己酸、3-羟基-3-丙基己酸、3-羟基-3-甲基庚酸、3-羟基-3-乙基庚酸、3-羟基-3-丙基庚酸、3-羟基-3-丁基庚酸、3-羟基-3-甲基辛酸、3-羟基-3-乙基辛酸、3-羟基-3-丙基辛酸、3-羟基-3-丁基辛酸、3-羟基-3-戊基辛酸、4-羟基丁酸、4-羟基戊酸、4-羟基己酸、4-羟基庚酸、4-羟基辛酸、4-羟基-4-甲基戊酸、4-羟基-4-甲基戊酸、4-羟基-4-乙基己酸、4-羟基-4-甲基庚酸、4-羟基-4-乙基庚酸、4-羟基-4-丙基庚酸、4-羟基-4-甲基辛酸、4-羟基-4-乙基辛酸、4-羟基-4-丙基辛酸、4-羟基-4-丁基辛酸、5-羟基戊酸、5-羟基己酸、5-羟基庚酸、5-羟基辛酸、5-羟基-5-甲基己酸、5-羟基-5-甲基庚酸、5-羟基-5-乙基庚酸、5-羟基-5-甲基辛酸、5-羟基-5-乙基辛酸、5-羟基-5-丙基辛酸、6-羟基己酸、6-羟基庚酸、6-羟基辛酸、6-羟基-6-甲基庚酸、6-羟基-6-甲基辛酸、6-羟基-6-乙基辛酸、7-羟基庚酸、7-羟基辛酸、7-羟基-7-甲基辛酸、或8-羟基辛酸等的脂肪族羟基羧酸与由这些衍生的低聚物。
作为制造羟基羧酸系脂肪族聚酯用的催化剂,可列举锡、锑、锌、钛、铁、铝化合物,其中优选锡系催化剂、铝系催化剂,最适合使用辛酸锡、乙酰丙酮铝。
上述羟基羧酸系脂肪族聚酯树脂中,采用丙交酯开环聚合制得的聚L乳酸,由于与水解形成L乳酸均确认有安全性而最优选,但本发明中使用的羟基羧酸系脂肪族聚酯树脂不限定于此,因此对这种制造中使用的丙交酯也不限定于L体。
作为可与本发明的活性氧反应的化合物,是与作为聚酯树脂末端官能基的羧基与羟基、或作为共聚物或混合物所含有的生物降解性聚合物的氨基和/或酰胺键的氢具有反应性的化合物,例如可使用碳二亚胺化合物、异氰酸酯化合物、或噁唑啉系化合物等。特别是碳二亚胺化合物可以与聚酯熔融混炼,以少量添加便可以调解水解性,所以较合适。另外,可与这些活性氢反应的化合物可以单独使用,也可以2种以上一起使用。
碳二亚胺化合物是具有碳二亚胺基的交联剂,是分子中有1个以上的碳二亚胺基:-N=C=N-的化合物(包含多碳二亚胺化合物),作为该碳二亚胺化合物的制造方法,例如可列举使用有机磷系化合物(O,O-二甲基-O-(3-甲基-4-硝基苯基)硫代磷酸酯、O,O-二甲苯-O-(3-甲基-4-(甲基硫代)苯基)硫代磷酸酯,O,O-二乙基-O-2-异丙基-6-甲基嘧啶基-4-硫代磷酸等)或有机金属化合物(铑配位体、钛配位体、钨配位体、钯配位体等)作为催化剂,使各种多异氰酸酯在大约70℃以上的温度下、无溶剂或在惰性溶剂(己烷、苯、二噁烷、氯仿等)中,由脱碳酸缩合反应进行合成。
作为上述碳二亚胺化合物所含的一碳二亚胺化合物,可列举二环己基碳二亚胺、二异丙基碳二亚胺、二甲基碳二亚胺、二异丁基碳二亚胺、二辛基碳二亚胺、叔丁基异丙基碳二亚胺、二苯基碳二亚胺、二叔丁基碳二亚胺或二-β-萘基碳二亚胺等,其中,从工业上容易获得的方面考虑,最优选二环己基碳二亚胺或二异丙基碳二亚胺。
作为多异氰酸酯化合物,例如可列举2,4-甲苯二异氰酸酯,2,6-甲苯二异氰酸酯,间苯二异氰酸酯、对苯二异氰酸酯、4,4-二苯基甲烷二异氰酸酯、2,4′-二苯基甲烷二异氰酸酯、2,2′-二苯基甲烷二异氰酸酯、3,3′-二甲基-4,4′-二亚苯基二异氰酸酯、3,3′-二甲氧基-4,4′-二亚苯基二异氰酸酯、3,3′-二氯-4,4′-二亚苯基二异氰酸酯、1,5-萘二异氰酸酯、1,5′-四氢萘二异氰酸酯、四亚甲基二异氰酸酯、1,6-六亚甲基二异氰酸酯、十二亚甲基二异氰酸酯、三甲基六亚甲基二异氰酸酯、1,3-亚环己基二异氰酸酯、1,4-亚环己基二异氰酸酯、苯二亚甲基二异氰酸酯、四甲基苯二亚甲基二异氰酸酯、氢化苯二亚甲基二异氰酸酯、赖氨酸二异氰酸酯、异佛尔酮二异氰酸酯、4,4′-二环己基甲烷二异氰酸酯或3,3′-二甲基-4,4′-二环己基甲烷二异氰酸酯等。本发明实施例中使用市售的多异氰酸酯,可以使用Coronate(日本聚氨酯公司制,氢化二苯基甲烷二异氰酸酯)或Millionate(日本聚氨酯公司制)等的芳香族异氰酸酯加成物,但熔融混合的场合,与液状相比更优选使用固体物,例如使用掩蔽剂(多元脂肪族醇、芳香族多元醇等)将异氰酸酯基封端的多异氰酸酯化合物。
作为噁唑啉系化合物,例如可列举2,2′-邻-亚苯基双(2-噁唑啉)、2,2′-间-亚苯基双(2-噁唑啉)、2,2′-对-亚苯基双(2-噁唑啉)、2,2′-对-亚苯基双(4-甲基-2-噁唑啉)、2,2′-间-亚苯基双(4-甲基-2-噁唑啉)、2,2′-对-亚苯基双(4,4′-二甲基-2-噁唑啉)、2,2′-间-亚苯基双(4,4′-二甲基-2-噁唑啉)、2,2′-亚乙基双(2-噁唑啉)、2,2′-四亚甲基双(2-噁唑啉)、2,2′-六亚甲基双(2-噁唑啉)、2,2′-八亚甲基双(2-噁唑啉)、2,2′-亚乙基双(4-甲基-2-噁唑啉)或2,2′-二亚苯基双(2-噁唑啉)等。
作为使用可与生物降解性塑料中活性氢反应的化合物处理生物降解性塑料的方法,通常采用在熔融前、熔融时或熔融后把可与活性氢反应的化合物添加到生物降解性塑料中进行熔融混合的方法。可与活性氢反应的化合物的添加量优选是生物降解性塑料的大约0.1~5重量%左右。然而,本发明用可与活性氢反应的化合物处理的生物降解性塑料材料的长期可靠性、使用后的生物降解速度,由于通过可与所配合活性氢反应化合物的种类与配合量可调节生物降解速度的延迟,因此可根据所期望的制品决定可与所配合活性氢反应的化合物的种类与配合量。另外,可与活性氢反应的化合物可以单独使用、也可以二种以上一起使用。
如上述,生物降解性塑料与可与活性氢反应的化合物的混合可以在生物降解性塑料熔融前、熔融时或熔融后的任何时候进行。即熔融后只要是与可与活性氢反应的化合物充分地混合,则可以是任何时候。
对使用可与活性氢反应的化合物处理的生物降解性塑料中的活性氢进行定量,例如可列举测定残留脂肪酸量、即酸值的方法。本发明主要以生物降解性聚酯作为材料,在该材料中存在羧基与羟基。测定酸值是定量生物降解性聚酯中羧基,为了方便起见而定量活性氢。所谓酸值是中和脂肪酸等的1g脂肪中含的游离脂肪酸所需要的氢氧化钾的mg数。以下对测定酸值的一种优选方法进行说明。
作为测定酸值用的试剂,使用0.02N KOH-EtOH(KOH表示氢氧化钾、EtOH表示乙醇、以下相同)溶液、酚酞溶液与酚红溶液。以下叙述各溶液的制备方法。
作为0.02N KOH-EtOH溶液的一种优选的制备方法,是把氢氧化钾(KOH)约0.35g溶解在离子交换水5mL中加入乙醇成250mL,放入用玻璃或橡胶塞盖封的容器中放置24小时。把上清液迅速倾倒到另外的蔽光瓶中用橡胶塞塞紧。密封在蔽光瓶中保存。然后,使用0.02N盐酸对该试剂进行标定。正确地秤量0.02N盐酸5mL,加入离子交换水10mL,例如滴加2滴酚酞试剂作为指示剂,使用调制的0.02NKOH-EtOH溶液进行滴定直到呈淡红色,算出因数。
作为酚酞溶液的一种优选的制备方法,可列举把酚酞0.025g溶解在EtOH(95%)22.5mL中,用离子交换水调成25mL的方法。该试剂在溶液的pH8.3以下时无色,在pH8.3~10.0时呈红色。
作为酚红溶液的一种优选的制备方法,可列举把酚红0.025g溶解在EtOH(95%)5mL中,用离子交换水调成25mL的方法。该试剂在溶液的pH为6.8以下时呈黄色,pH8.4以上时呈红色。
作为使用制备的试剂测定酸值的一种优选的方法,可列举例如精确秤量作为生物降解性聚酯材料的聚乳酸0.1mg,溶解在氯仿10mL中,加入苄醇10mL。使用酚红作为指示剂,把用0.02N KOH-EtOH溶液滴定从黄色变成淡红色的结果作为终点的方法。此时的体积为VmL。
同样地测定作为空白试验的苄醇10mL+氯仿10mL。此时的体积为V0mL。
按下式求出对每1g试料所含的游离脂肪酸进行中和所需的KOH的重量(mg),用下式求得。
AV(酸值)={(V-V0)×0.02×F×56.11}/S
上述式中,F表示0.02N KOH-EtOH溶液的因数、V表示测定试料所需的0.02N KOH-EtOH溶液的体积(mL)、V0表示空白滴定所需的0.02N KOH-EtOH溶液的体积(mL)、S表示试料重量(g)。
另外,作为对使用可与活性氢反应的化合物处理的生物降解性塑料的活性氢进行定量的其他方法,可列举与格利雅试剂反应的方法。该方法与以前的方法不同,不仅可定量羧基,而且还可以定量羟基、氨基等,因此还可适用于聚酯与聚酰胺的共聚物或聚酯与聚酰胺的混合物。活性氢与碘化甲基镁定量地反应产生甲烷。在活性氢定量装置的反应容器中进行该反应,产生的甲烷气收集在气体测量管中,通过测定该气体体积可以定量活性氢。作为格利雅试剂除了碘化甲基镁以外,例如可列举溴化苯基镁、氯化乙基镁、氯化丙基镁、氯化丁基镁等公知的格利雅试剂。
使用可与活性氢反应的化合物处理的生物降解性塑料材料在老化前的酸值优选是约0.5以下。在约0.5以下时,难以引起活性氢导致的生物降解性塑料的水解,可以获得能耐受在80℃、80%的恒温恒湿条件下48小时老化的生物降解性塑料材料。
使用可与活性氢反应的化合物处理的生物降解性塑料材料在老化后的酸值的上升优选在约0.2以下。此外,该材料分子量的降低优选在10%以内。若在这些的范围内则可以确保电器制品壳体使用时等的长期可靠性。
本发明的生物降解性塑料材料老化前的酸值在不超过0.5的范围内,除了可以并用增强材料、无机或有机填料、抗氧剂、热稳定剂、紫外线吸收剂等之外,也可以并用润滑剂、蜡类、着色剂,结晶化促进剂,淀粉等有分解性的有机物等。这些可以单独使用,也可以几种组合使用。
作为前述增强材料,例如可列举玻璃微细珠、碳纤维、白垩,例如novoculite之类的石英、石棉、长石、云母、滑石、硅灰石等的硅酸盐、高岭土等。另外,作为无机填充物,例如可列举碳、二氧化硅,此外还有三氧化二铝、二氧化硅、氧化镁、或铁素体等的金属氧化微粒子;滑石、云母、高岭、沸石等硅酸盐类;硫酸钡、碳酸钙、或fullerene等微粒子等。作为有机填充物,例如可列举环氧树脂、三聚氰胺树脂、尿素树脂、丙烯酸树脂、酚醛树脂、聚酰亚胺树脂、聚酰胺树脂、聚酯树脂或Teflon(商品名)树脂。其中,优选碳、二氧化硅。上述填充物可以使用1种,也可以将2种以上混合使用。作为无机填充物的硅酸盐类也起阻燃剂作用。作为这种无机填充物合适的硅酸盐类,更优选二氧化硅含有率为约50%以上的硅酸盐类。这是因为从天然矿物中获取硅酸盐类而含有某种程度的硅酸盐类以外的物质(例如,MgO,CaO、Fe2O3、Al2O3等)的缘故。但是,作为阻燃用无机填充物的效果优选不受杂质的影响。
本发明所用上述添加物的形状没有特殊限定,但优选是粒状。该粒径可根据添加物的种类适当地进行选择。例如,使用硅酸盐类作为无机填物的场合,优选采用激光衍射法求出的硅酸盐类的平均粒径为约50μm以下。该情况不考虑粒度分布。
作为前述抗氧剂,例如可列举酚系、胺系、磷系、硫系、对苯二酚系或喹啉系抗氧剂等。作为酚系抗氧剂,可列举受阻酚,例如2,6-二叔丁基对甲酚、1,3,5-三甲基-2,4,6-三(3,5-二叔丁基-4-羟基苯甲基)苯、2,2′-亚甲基二(4-甲基-6-叔丁基苯酚)、4,4′-亚甲基二(2,6-二叔丁基苯酚)、4,4′-亚丁基二(3-甲基-6-叔丁基苯酚)、二[3-(3,5-二叔丁基-4-羟基苯基)丙酸]-1,6-己二醇酯等的二[3-(3,5-二支链C3~C6亚烷基-4-羟基苯基)丙酸]C2~C10烷二醇酯,例如二[3-(3-叔丁基-5-甲基-4-羟基苯基)丙酸]三乙二醇酯等的二[3-(3,5-二支链C3~C6亚烷基-4-羟基苯基)丙酸]二或三羟基C2-4亚烷基二醇酯,例如三[3-(3,5-二叔丁基-4-羟基苯基)丙酸]丙三醇酯等的二[3-(3,5-二支链C3-6烷基-4-羟基苯基)丙酸]C3-8链烷三醇酯,例如四[3-(3,5-二叔丁基苯基-4-羟基苯基)丙酸]季戊四醇酯等的四[3-(3,5-二支链C3-6烷基-4-羟基苯基)丙酸]C4-8链烷四醇酯,例如正十八烷基-3-(4′,5′-二叔丁基酚)丙酸酯、正十八烷基-3-(4′-羟基-3′,5′-二叔丁基酚)丙酸酯、硬脂基-2-(3、5-二叔丁基-4-羟基酚)丙酸酯、二硬脂基-3,5-二叔丁基-4-羟基苯甲基磷酸酯、2-叔丁基-6-(3-叔丁基-5-甲基-2-羟基苯甲基)-4-甲基苯基丙烯酸酯、N,N′-六亚甲基双(3,5-二叔丁基-4-羟基-氢化肉桂酰胺)、3,9-双{2-[3-(3-叔丁基-4-羟基-5-甲基苯基)丙烯酰氧基]-1,1-二甲基乙基}-2,4,8,10-四噁螺[5,5]十一烷、4,4′-硫代双(3-甲基-6-叔丁基苯酚)、或1,1,3-三(2-甲基-4-羟基-5-叔丁基酚)丁烷等。作为胺系抗氧剂,例如,可列举苯基-1-萘胺、苯基-2-萘胺、N,N′-二苯基-1,4-苯二胺、或N-苯基-N′-环己基-1,4-苯二胺等。作为磷系抗氧剂,例如,可列举亚磷酸三异癸酯、亚磷酸三苯酯、亚磷酸三壬苯酯、亚磷酸二苯基异癸酯、亚磷酸苯基二异癸酯、亚磷酸-2,2-亚甲基二(4,6-二叔丁基苯基)辛酯、亚磷酸-4,4′-亚丁基二(3-甲基-6-叔丁基苯基)二(十三烷基)酯、亚磷酸三(2-4-二叔丁基苯基)酯、亚磷酸三(2-叔丁基-4-甲基苯基)酯、亚磷酸三(2,4-二叔戊基苯基)酯、亚磷酸三(2-叔丁基苯基)酯、亚磷酸二(2-叔丁基苯基)苯酯、亚磷酸三[2-(1,1-二甲基丙基)-苯基]酯、亚磷酸三[2,4-(1,1-二甲基丙基)-苯基]酯、亚磷酸三[2-环己基苯基]酯、亚磷酸三(2-叔丁基-4-苯基苯基)酯等的亚磷酸酯化合物;三乙基膦、三丙基膦、三丁基膦、三环己基膦、二苯基乙烯基膦、烯丙基二苯基膦、三苯基膦、甲基苯基-对甲氧苄基膦、对甲氧苄基二苯基膦、对甲苯基二苯基膦、二对甲氧苄基苯基膦、二对甲苯基苯基膦、三间氨基苯基膦、三-2,4-二甲基苯基膦、三-2,4,6-三甲基苯基膦、三邻甲苯基膦、三间甲苯基膦、三对甲苯基膦、三邻甲氧苄基膦、三对甲氧苄基膦、或1,4-二(二苯基膦基)丁烷等的膦化合物等。作为对苯二酚系抗氧剂,例如,可列举2,5-二叔丁基对苯二酚等。作为喹啉系抗氧剂,例如,可列举6-乙氧基-2,2,4-三甲基-1,2-二氢喹啉等。作为硫系抗氧剂,例如,可列举硫代二丙酸二月桂酯、硫代二丙酸二硬脂酯等。其中,作为优选的抗氧剂,可列举酚系抗氧剂(特别是受阻酚),例如,聚[(支链C3-6烷基与羟基取代苯基)丙酸]多元醇酯等。此外,抗氧剂可以单独使用一种或二种以上并用。
作为前述热稳定剂,例如可列举含氮化合物(聚酰胺、多-β-丙氨酸共聚物、聚丙烯酰胺、聚氨酯、三聚氰胺、氰基胍、三聚氰胺-甲醛缩合物等碱性含氮化合物等),含碱金属或碱土类金属的化合物[特别是有机羧酸金属盐(硬脂酸钙、12-羟基硬脂酸钙等)、金属氧化物(氧化镁、氧化钙、氧化铝等)、金属氢氧化物(氢氧化镁、氢氧化钙、氢氧化铝等)、金属碳酸盐等]、沸石、或水滑石等。最优选含碱金属或碱土金属的化合物(尤其是镁化合物或钙化合物等含有碱土类金属的化合物)、沸石或水滑石等。另外热稳定剂可以单独使用也可以使用二种以上。
作为上述紫外线吸收剂,可列举以往公知的二苯甲酮类、苯并***类、氰基丙烯酸酯类、水杨酸酯类或草酰替苯胺类等。例如可列举[2-羟基-4-(甲基丙烯酰氧基乙氧基)二苯甲酮]-甲基丙烯酸甲酯共聚物、[2-羟基-4-(甲基丙烯酰氧基甲氧基)二苯甲酮]-甲基丙烯酸甲酯共聚物、[2-羟基-4-(甲基丙烯酰氧基辛氧基)二苯甲酮]-甲基丙烯酸甲酯共聚物、[2-羟基-4-(甲基丙烯酰氧基癸氧基)二苯甲酮]-甲基丙烯酸甲酯共聚物、[2-羟基-4-(甲基丙烯酰氧基苄氧基)二苯甲酮]-甲基丙烯酸甲酯共聚物、[2,2′-二羟基-4-(甲基丙烯酰氧基乙氧基)二苯甲酮]-甲基丙烯酸甲酯共聚物、[2,2′-二羟基-4-(甲基丙烯酰氧基甲氧基)二苯甲酮]-甲基丙烯酸甲酯共聚物、或[2,2′-二羟基-4-(甲基丙烯酰氧基辛氧基二苯甲酮)-甲基丙烯酸甲酯共聚物等。此外,紫外线吸收剂可以单独地使用也可以使用二种以上。
作为前述润滑剂,例如,可列举液体石蜡等的石油系润滑油;卤化烃、二酯油、硅油、氟硅等的合成润滑油;各种改性硅油(环氧改性、氨基改性、烷基改性、聚醚改性等);聚氧亚烷基二醇等的有机化合物与聚硅氧烷的共聚物等的聚硅氧烷系润滑系物质;聚硅氧烷共聚物;氟烷化合物等的各种氟系表面活性剂;三氟二氯甲烷低聚物等的氟系润滑物质;石蜡、聚乙烯蜡等的蜡类;高级脂肪族醇、高级脂肪族酰胺、高级脂肪酸酯、高级脂肪酸盐、或二硫化钼等。其中,最优选使用聚硅氧烷共聚物(通过嵌段或接枝使聚硅氧烷与树脂聚合的共聚物)。作为聚硅氧烷共聚物,可以是使聚硅氧烷与丙烯酸系树脂、聚苯乙烯系树脂、聚丙烯腈系树脂、聚酰胺系树脂、聚烯烃系树脂、环氧树脂、聚乙烯醇缩丁醛系树脂、三聚氰胺系树脂、聚氯乙烯系树脂、聚氨酯系树脂或聚乙烯基醚系树脂进行嵌段或接枝聚合的共聚物,优选使用聚硅氧烷接枝共聚物。这些的润滑物质可以使用1种,也可以将2种以上组合使用。
作为上述蜡类,例如,可列举聚丙烯蜡、聚乙烯蜡等的烯烃系蜡或石蜡、费-托(Fischer-Tropsch)合成蜡、微晶蜡、褐煤蜡、脂肪酰胺系蜡、高级脂肪族醇系蜡、高级脂肪酸系蜡、脂肪酸酯系蜡、巴西棕榈蜡、米糠蜡等。这些蜡可以单独使用,也可以将2种以上组合并用。
作为前述着色剂,例如、可列举无机颜料、有机颜料或染料等。作为无机颜料,例如可列举铬系颜料、镉系颜料、铁系颜料、钴系颜料、群青或普鲁士蓝等。另外,作为有机颜料或染料的具体例,例如可列举炭黑;例如酞菁铜之类的酞菁颜料;例如喹吖酮品红、喹吖酮红之类的喹吖酮颜料;例如汉撒黄、二重氮黄、永久黄、永久红、纳夫妥红之类的偶氮颜料;例如醇溶黑SB、尼格洛辛苯胺黑、石油炭黑BW之类的尼格洛辛染料、油溶性蓝或碱性蓝等。另外,着色剂可以单独地使用或使用二种以上。
作为前述结晶化促进剂,例如、可列举对-叔丁基苯甲酸钠、褐煤酸钠、褐煤酸钙、棕榈酸钠、硬脂酸钙等的有机酸盐类;例如碳酸钙、硅酸钙、硅酸镁、硫酸钙、硫酸钡、滑石等的无机盐类;例如氧化锌、氧化镁、氧化钛等的金属氧化物等。这些结晶化促进剂可使用1种,也可以将2种以上组合使用。
通过将本发明使用的生物降解性塑料材料进行加工成型,可以制得生物降解性塑料成型物。作为生物降解性塑料成型物,例如可用于收音机、扩音器、电视机、键盘、携带型音乐播放机、个人电脑等电器制品的壳体。
使用本发明的生物降解塑料材料作为原料,按照已知的制造方法、例如可以制造电器制品的壳体。为了成型而使用的各种公知的方法可按照成型品的种类进行选择。作为成型方法,例如,可列举薄膜成型、挤出成型或注射成型等,其中最优选注射成型。挤出成型或注射成型按照通常方法可采用公知的例如单螺杆挤出机、多螺杆挤出机、串联式挤出机等的挤出成型机,或者,例如同轴螺杆式注射成型机、多层注射成型机、双头式注射成型机等的注射成型机进行加工,制成所期望的形状。
作为成型的一种优选的方法,是使用约20L左右的高速亨舍尔混合机在大约500rpm左右条件下,将该生物降解性塑料与可与活性氢反应的化合物混合大约2分钟左右,然后使用调节到大约220℃左右的双螺杆挤出机进行熔融混炼制得粒料。使用该粒料,例如按照通常方法制造电器制品的壳体。
实施例
这里,实际上作为有关本发明的生物降解性聚酯进行实施例,但本发明不限于该实施例。
另外,实施例的分子量是重均分子量(聚苯乙烯换算分子量),使用凝胶渗透色谱法(GPC)进行测定。
装置:MILLPORE Waters 6ooE System Controller检测器;
UV(waters 484)与RI(waters 410)标准样品:聚苯乙烯
使试料溶解于氯仿中,使浓度为0.15重量%,大约搅拌2小时后,将溶液通入中φ0.25μm的过滤器,作为样品。
[实施例1]
向聚乳酸(商品名:Lacea H100T,三井化学公司制)中添加作为可与活性氢反应的化合物碳二亚胺(商品名:Carbodilite 10B,日清纺公司制)1重量%,在185℃的混炼温度下混炼5分钟。酸值从1.8降到0.1。把混炼物加工成5cm正方形、厚度1mm的板状,在80℃、湿度80%的条件下老化48小时。酸值上升0.2以下,分子量降低在10%以内。
[实施例2]
与实施例1同样地把碳二亚胺的添加量变为0.5重量%或0.8重量%,进行混炼,制作试验片。添加碳二亚胺0.5重量%时酸值为0.8,添加0.8重量%时酸值为0.5。在80℃、湿度80%下老化48小时的结果,添加碳二亚胺0.8重量%的试料酸值上升0.2以下,分子量降低在10%以内。而添加碳二亚胺0.5重量%的试料的情况,酸值从0.8增到5.2,分子量降低了60%。
[实施例3]
对聚己内酯(商品名:Celgreen,等级:PH,Dicel化学公司制)、聚琥珀酸丁酯(商品名:BIONOLLE#1000,昭和高分子制),添加碳二亚胺(商品名:Carbodilite 10B、日清纺公司制)1重量%,与实施例1同样地制得混炼物。混炼物的酸值分别是0.4和0.2。在80℃、湿度80%下老化48小时,两者酸值上升均在0.2以下,分子量降低均在10%以内。
[实施例4]
添加封端型聚氨酯(日本聚氨酯公司制,Millionate MS50,异氰酸酯基量:15%)1重量%代替碳二亚胺,然后与实施例1同样地制作试验片。酸值降到0.20在与实施例1相同条件下进行老化,酸值升高0.2以下,分子量降低在10%以内。
[实施例5]
对实施例1的试验片,使湿度恒定为80%,改变温度为85℃、80℃、75℃、70℃、65℃进行老化,测定酸值与分子量变化。在85℃下,老化48小时不发生变化,经过72小时时酸值增到0.8,96小时后酸值增到5.1,分子量降低60%。因此,在85℃下老化3天酸值上升0.2以下,分子量降低在10%以内。同样地在80℃老化5天、75℃老化8天、70℃老化14天、65℃老化20天,酸值上升0.2以下,分子量降低在10%以内。
以实施例5的结果为基准,把酸值上升0.2以下且分子量降低10%以内的时间(天)与温度标绘的图示于图1A。另外,已知反应速度的对数与温度的倒数(1/温度)成正比(阿列纽斯(Arrhenius)式),图1B按照该法则标绘了温度的倒数(1/温度)与时间的对数(阿列纽斯曲线图)。该曲线呈直线关系,由斜率和切片利用下式可得出观测到酸值与分子量变化的时间与温度的关系式。
t=(105070×(1/273.15+温度(℃)-13.664)/365
(式中,t是观测到酸值与分子量变化的时间(年)。)由该式预测在30℃、湿度80%下老化时,观测到酸值上升和分子量降低的时间为3.2年。因此,加入可与活性氢反应的化合物,若控制酸值在0.5以下,预计在30℃、相对湿度80%的环境下至少可确保3年物性。
[实施例6]
与实施例5同样地把碳二亚胺的添加量变成2重量%,进行同样的实验,与图1A乃至图1B同样地把标绘酸值上升0.2以下且分子量降低10%以内的时间(天)与温度的图示于图2A。另外,把阿列纽斯曲线图示于图2B。与前述同样地,该曲线图呈直线关系,由斜率和切片,可由下式得出观测到酸值与分子量变化的时间与温度的关系式。
t=(105312×(1/273.15+温度(℃)-14.065)/365
(式中,t是观测到酸值与分子量变化的时间(年)。)。由此式可预测在30℃、湿度80%下老化时,观测到酸值上升与分子量降低的时间为7.9年。使初期的酸值为0.5以下,若使可与活性氢反应的化合物添加量为实施例5的2倍,在实施例1的老化条件下,预计可保持8年物性,通过调节可与活性氢反应的化合物添加量,便可按照商品的寿命设定物性的保质期。
有关实施例6各温度的样品,把在各温度、湿度80%下酸值相对于老化时时间的变化示于图3A,把分子量的变化示于图3B。由实施例6可以发现通过调节添加剂的量可按照商品的寿命设定物性的保质期。此外,由图3A乃至图3B可知,经过一定的保持时间后,水解加速、呈现良好的生物降解性。另外,该水解性与不加入可与活性氢反应的化合物的场合(生物降解性聚酯)相同、即,说明使用期中保持物性,物性保持期结束后,可发现与生物降解性聚酯同等的生物降解性。
[比较例1]
与实施例1同样地,不向两种聚乳酸(三井化学制与岛津制作所制)添加可与活性氢反应的化合物,在与实施例1相同条件下进行老化。各酸值均为1.8。老化后分子量均降低60%,由于弯曲强度降到1/10,绝不能作为壳体使用。
[比较例2]
对实施例3使用的聚己内酯(商品名:Celgreen,等级:PH,Dicel化学公司制)、聚琥珀酸丁酯(商品名:BIOWOLLE#1000,昭和高分子制),不添加可与活性氢反应的化合物,与实施例1同样地制作混炼物。在与实施例1相同条件(80℃、湿度80%、48小时)下进行老化的结果,由于分子量降低80%,故绝对不能作为壳体使用。
本发明的生物降解性塑料材料是不使用化石原料的具有生物降解性的塑料、尤其是确保生物降解性聚酯保存稳定性(30℃、湿度80%下3年)的组成,可在电器制品或计算机壳体等耐久材料用途方面使用。该生物降解性塑料成型物经过保存稳定期时,其后呈现与不添加可与活性氢反应的化合物的状态大致同等的水解性,在含微生物的培养液中或土壤中分解、消失。因此,可以减少废弃物的体积。另外,由于可采用简单的操作制造,故很有用。
权利要求书
(按照条约第19条的修改)
1.生物降解性塑料材料,其使用可与生物降解性塑料中的聚合物分子的末端官能基含有的活性氢反应的化合物进行处理。
2.权利要求1所述的生物降解性塑料材料,其特征在于,生物降解性塑料材料是生物降解性聚酯材料。
3.权利要求1所述的生物降解性塑料材料,其特征在于,生物降解性塑料材料是①生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的共聚物、或者②生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的混合物。
4.权利要求1所述的生物降解性塑料材料,其特征在于,使用可与活性氢反应的化合物处理的生物降解生塑料材料的酸值在0.5以下。
5.权利要求1所述的生物降解性塑料材料,其特征在于,在温度80℃、相对湿度80%的恒温恒湿条件下老化48小时,酸值上升在0.2以下,且分子量降低在10%以内。
6.权利要求1所述的生物降解性塑料材料,其特征在于,活性氢来源于选自生物降解性塑料材料中的羧基、羟基、氨基与酰胺键中的1个或2个以上的原子团。
7.权利要求1所述的生物降解性塑料材料,其特征在于,可与活性氢反应的化合物是具有碳二亚胺基的交联剂。
8.权利要求7所述的生物降解性塑料材料,其特征在于,具有碳二亚胺基的交联剂是二环己基碳二亚胺或二异丙基碳二亚胺。
9.权利要求1所述的生物降解性塑料材料,其特征在于,含有硅酸盐类。
10.权利要求9所述的生物降解性塑料材料,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
11.权利要求9所述的生物降解性塑料材料,其特征在于,硅酸盐类呈现平均粒径50μm以下的粒子状。
12.生物降解性塑料成型物,其是将使用可与生物降解性塑料中的聚合物分子的末端官能基含有的活性氢反应的化合物进行处理的生物降解性塑料进行成型的。
13.权利要求12所述的生物降解性塑料成型物,其特征在于,生物降解性塑料材料是生物降解性聚酯材料。
14.权利要求12所述的生物降解性塑料成型物,其特征在于,生物降解性塑料材料是①生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的共聚物,或者②生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的混合物。
15.权利要求12所述的生物降解性塑料成型物,其是电器制品的壳体。
16.权利要求12所述的生物降解性塑料成型物,其特征在于,使用可与活性氢反应的化合物处理的生物降解性塑料材料的酸值在0.5以下。
17.权利要求12所述的生物降解性塑料成型物,其特征在于,在温度80℃、相对湿度80%的恒温恒湿条件下老化48小时,酸值上升在0.2以下,且分子量降低在10%以内。
18.权利要求12所述的生物降解性塑料成型物,其特征在于,活性氢来源于选自生物降解性塑料材料中的羧基、羟基、氨基与酸胺键中的1个或2个以上的原子团。
19.权利要求12所述的生物降解性塑料成型物,其特征在于,可与活性氢反应的化合物是具有碳二亚胺基的交联剂。
20.权利要求19所述的生物降解性塑料成型物,其特征在于,具有碳二亚胺基的交联剂是二环己基碳二亚胺或二异丙基碳二亚胺。
21.权利要求12所述的生物降解性塑料成型物,其特征在于,含有硅酸盐类。
22.权利要求21所述的生物降解性塑料成型物,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
23.权利要求21所述的生物降解性塑料成型物,其特征在于,硅酸盐类呈现平均粒径50μm以下的粒子状。
24.生物降解性塑料成型物的制造方法,其特征在于,在熔融前、熔融时或熔融后向生物降解性塑料材料中添加可与生物降解性塑料中的聚合物分子的末端官能基含有的活性氢反应的化合物,混合后进行成型。
25.权利要求24所述的生物降解性塑料成型物的制造方法,其特征在于,成型采用薄膜成型、挤出成型或注射成型进行。
26.生物降解性塑料成型物的制造方法,其特征在于,在熔融前、熔融时或熔融后向生物降解性塑料材料中,同时或分别添加可与生物降解性塑料中的聚合物分子的末端官能基含有的活性氢反应的化合物和硅酸盐类,混合后进行成型。
27.权利要求26所述的生物降解性塑料成型物的制造方法,其特征在于,成型采用薄膜成型、挤出成型或注射成型进行。
28.权利要求26所述的生物降解性塑料成型物的制造方法,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
29.权利要求26所述的生物降解性塑料成型物的制造方法,其特征在于,硅酸盐类呈现平均粒径50μm以下的粒子状。

Claims (29)

1.使用可与生物降解性塑料中的活性氢反应的化合物进行处理的生物降解性塑料材料。
2.权利要求1所述的生物降解性塑料材料,其特征在于,生物降解性塑料材料是生物降解性聚酯材料。
3.权利要求1所述的生物降解性塑料材料,其特征在于,生物降解性塑料材料是①生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的共聚物、或者②生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的混合物。
4.权利要求1所述的生物降解性塑料材料,其特征在于,使用可与活性氢反应的化合物处理的生物降解生塑料材料的酸值在0.5以下。
5.权利要求1所述的生物降解性塑料材料,其特征在于,在温度80℃、相对湿度80%的恒温恒湿条件下老化48小时,酸值上升在0.2以下,且分子量降低在10%以内。
6.权利要求1所述的生物降解性塑料材料,其特征在于,活性氢来源于选自生物降解性塑料材料中的羧基、羟基、氨基与酰胺键中的1个或2个以上的原子团。
7.权利要求1所述的生物降解性塑料材料,其特征在于,可与活性氢反应的化合物是具有碳二亚胺基的交联剂。
8.权利要求7所述的生物降解性塑料材料,其特征在于,具有碳二亚胺基的交联剂是二环己基碳二亚胺或二异丙基碳二亚胺。
9.权利要求1所述的生物降解性塑料材料,其特征在于,含有硅酸盐类。
10.权利要求9所述的生物降解性塑料材料,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
11.权利要求9所述的生物降解性塑料材料,其特征在于,硅酸盐类呈现平均粒径50μm以下的粒子状。
12.将使用可与生物降解性塑料中的活性氢反应的化合物进行处理的生物降解性塑料进行加工成型的生物降解性塑料成型物。
13.权利要求12所述的生物降解性塑料成型物,其特征在于,生物降解性塑料材料是生物降解性聚酯材料。
14.权利要求12所述的生物降解性塑料成型物,其特征在于,生物降解性塑料材料是①生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的共聚物,或者②生物降解性聚酯与具有氨基和/或酰胺键的生物降解性聚合物的混合物。
15.权利要求12所述的生物降解性塑料成型物,其是电器制品的壳体。
16.权利要求12所述的生物降解性塑料成型物,其特征在于,使用可与活性氢反应的化合物处理的生物降解性塑料材料的酸值在0.5以下。
17.权利要求12所述的生物降解性塑料成型物,其特征在于,在温度80℃、相对湿度80%的恒温恒湿条件下老化48小时,酸值上升在0.2以下,且分子量降低在10%以内。
18.权利要求12所述的生物降解性塑料成型物,其特征在于,活性氢来源于选自生物降解性塑料材料中的羧基、羟基、氨基与酸胺键中的1个或2个以上的原子团。
19.权利要求12所述的生物降解性塑料成型物,其特征在于,可与活性氢反应的化合物是具有碳二亚胺基的交联剂。
20.权利要求19所述的生物降解性塑料成型物,其特征在于,具有碳二亚胺基的交联剂是二环己基碳二亚胺或二异丙基碳二亚胺。
21.权利要求12所述的生物降解性塑料成型物,其特征在于,含有硅酸盐类。
22.权利要求21所述的生物降解性塑料成型物,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
23.权利要求21所述的生物降解性塑料成型物,其特征在于,硅酸盐类呈现平均粒径50μm以下的粒子状。
24.生物降解性塑料成型物的制造方法,其特征在于在熔融前、熔融时或熔融后向生物降解性塑料材料中添加可与活性氢反应的化合物混合后进行成型。
25.权利要求24所述的生物降解性塑料成型物的制造方法,其特征在于,成型采用薄膜成型、挤出成型或注射成型进行。
26.生物降解性塑料成型物的制造方法,其特征在于在熔融前、熔融时或熔融后向生物降解性塑料材料中,同时或分别添加可与活性氢反应化的化合物与硅酸盐,混合后进行成型。
27.权利要求26所述的生物降解性塑料成型物的制造方法,其特征在于,成型采用薄膜成型、挤出成型或注射成型进行。
28.权利要求26所述的生物降解性塑料成型物的制造方法,其特征在于,硅酸盐类的二氧化硅含有率在50%以上。
29.权利要求26所述的生物降解性塑料成型物的制造方法,其特征在于,硅酸盐类呈现平均粒径50μm以下的粒子状。
CNA038005174A 2002-04-24 2003-03-27 壳体用聚酯成型物 Pending CN1708533A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP121889/2002 2002-04-24
JP2002121889A JP4120776B2 (ja) 2001-07-09 2002-04-24 生分解性プラスチック素材及び生分解性プラスチック成形物、並びにこの生分解性プラスチック成形物の製造方法

Publications (1)

Publication Number Publication Date
CN1708533A true CN1708533A (zh) 2005-12-14

Family

ID=29267420

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA038005174A Pending CN1708533A (zh) 2002-04-24 2003-03-27 壳体用聚酯成型物

Country Status (5)

Country Link
US (1) US20050054810A1 (zh)
EP (1) EP1502928A1 (zh)
KR (1) KR20040100842A (zh)
CN (1) CN1708533A (zh)
WO (1) WO2003091310A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015889B (zh) * 2008-04-28 2013-02-06 花王株式会社 聚乳酸树脂组合物的制造方法
CN104797626A (zh) * 2012-11-21 2015-07-22 三星精密化学株式会社 用于制备可生物降解的聚酯共聚物的方法和由此制备的聚酯共聚物
CN114213822A (zh) * 2021-12-09 2022-03-22 厦门建霖健康家居股份有限公司 一种改性绿色可降解材料及其制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1860153B1 (en) * 2005-03-08 2011-04-06 Kureha Corporation Aliphatic polyester resin composition
US20100059715A1 (en) * 2006-10-23 2010-03-11 Sony Corporation Resin composition, shaped article and method of manufacturing the same, and electronic device
CN101294372A (zh) * 2007-04-27 2008-10-29 东丽株式会社 沙移动防止施工法及柱状沙囊用筒状针织物
WO2023229216A1 (ko) * 2022-05-21 2023-11-30 에코밴스 주식회사 생분해성 성형품 및 생분해성 폴리에스테르 수지 조성물

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000143781A (ja) * 1998-11-13 2000-05-26 Daicel Chem Ind Ltd 脂肪族ポリエステル及びその製造方法
JP4655342B2 (ja) * 2000-07-14 2011-03-23 東レ株式会社 ポリ乳酸樹脂組成物および成形品
US6573340B1 (en) * 2000-08-23 2003-06-03 Biotec Biologische Naturverpackungen Gmbh & Co. Kg Biodegradable polymer films and sheets suitable for use as laminate coatings as well as wraps and other packaging materials

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102015889B (zh) * 2008-04-28 2013-02-06 花王株式会社 聚乳酸树脂组合物的制造方法
CN104797626A (zh) * 2012-11-21 2015-07-22 三星精密化学株式会社 用于制备可生物降解的聚酯共聚物的方法和由此制备的聚酯共聚物
CN114213822A (zh) * 2021-12-09 2022-03-22 厦门建霖健康家居股份有限公司 一种改性绿色可降解材料及其制备方法

Also Published As

Publication number Publication date
WO2003091310A1 (fr) 2003-11-06
EP1502928A1 (en) 2005-02-02
US20050054810A1 (en) 2005-03-10
KR20040100842A (ko) 2004-12-02

Similar Documents

Publication Publication Date Title
CN100338126C (zh) 抑制黄变的碳化二亚胺组合物、耐水解稳定剂及热塑性树脂组合物
JP4120776B2 (ja) 生分解性プラスチック素材及び生分解性プラスチック成形物、並びにこの生分解性プラスチック成形物の製造方法
CN1603357A (zh) 具有酯基的树脂用耐水解稳定剂及热塑性树脂组合物
CN1071342C (zh) 可生物降解的聚合物、其制备方法及其用于生产可生物降解模制品的用途
CN1898325A (zh) 具有提高的切口冲击强度的聚合物共混物
Lu et al. Biodegradation behavior of poly (lactic acid)(PLA)/distiller’s dried grains with solubles (DDGS) composites
JP2003313436A (ja) 生分解性プラスチック組成物とその成形品及び生分解速度制御方法
CN101223239B (zh) 生物降解性树脂组合物、其制备方法、使用它的成型体
CN1898323A (zh) 脂族-芳族共聚酯与乙烯-醋酸乙烯酯共聚物的共混物
CN1919906A (zh) 复合材料组合物及采用它的模塑物
CN1902267A (zh) 用于聚酯压延的方法
CN1170419A (zh) 可生物降解的聚合物、其制备方法及其用于生产可生物降解模制品的用途
JPH1180522A (ja) 生分解性プラスチック組成物及び生分解性プラスチックの生分解速度調節方法
WO2008102919A1 (ja) ポリ乳酸組成物
CN103339195A (zh) 聚酯树脂组合物
EP1854837A2 (en) Biodegradable plastics composition, molded article of the composition, and method of controlling biodegradation rate
JP2015518908A (ja) リグニンの化学修飾およびリグニン誘導体
CN114514289B (zh) 生物降解性树脂用降解促进剂、生物降解性树脂组合物、生物降解性树脂成型体、以及生物降解性树脂用降解促进剂的制造方法
JP2015518907A (ja) リグニンの化学修飾およびリグニン誘導体
CN102952384B (zh) 包含生物聚合物的阻燃材料
CN1708533A (zh) 壳体用聚酯成型物
EP3045500A1 (en) Biodegradable resin composition having a porous structure and method for surface treatment of same
JP2009051210A (ja) 生分解性樹脂積層体およびその製造方法
CN115926128A (zh) 一种脂肪族-芳香族聚酯组合物、聚酯纤维及其制备方法和应用
CN100343321C (zh) 树脂组合物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication