CN1677627A - 制造半导体器件的方法 - Google Patents

制造半导体器件的方法 Download PDF

Info

Publication number
CN1677627A
CN1677627A CN200510062526.3A CN200510062526A CN1677627A CN 1677627 A CN1677627 A CN 1677627A CN 200510062526 A CN200510062526 A CN 200510062526A CN 1677627 A CN1677627 A CN 1677627A
Authority
CN
China
Prior art keywords
mos transistor
layer
nisi layer
nisi
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200510062526.3A
Other languages
English (en)
Other versions
CN100377322C (zh
Inventor
松田友子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Publication of CN1677627A publication Critical patent/CN1677627A/zh
Application granted granted Critical
Publication of CN100377322C publication Critical patent/CN100377322C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28518Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table the conductive layers comprising silicides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823835Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

提供一种能够抑制NiSi层转变为二硅化物的制造半导体器件的方法。在P-MOS晶体管和N-MOS晶体管二者中的栅极电极和源极/漏极区上形成NiSi层,硅化物层形成步骤。在包括NiSi层的整个区域上形成直接氮化物层,氮化物层形成步骤。然后将能够增加NiSi层的耐热温度的元素注入到NiSi层中,元素注入步骤。结果,能够增加NiSi层的耐热特性,并且由此能够抑制NiSi层转变为二硅化物。

Description

制造半导体器件的方法
本申请基于日本专利申请2004-104041,其内容在此作为参考引进。
技术领域
本发明涉及制造半导体器件的方法。
背景技术
在例如日本未决专利申请1993-90293中描述了制造半导体器件的常规方法。在该文件中公开的制造方法包括在MOS晶体管的栅极电极和源极/漏极电极上形成NiSi制成的单硅化物层,用来降低芯片的寄生电阻。
发明内容
但是,现在已经发现在采用上述制造方法的情况下,由于后续工艺中的热处理,NiSi层可以转变为二硅化物。一旦NiSi层转变为二硅化物,MOS晶体管的寄生电阻易于增加。
考虑到前述问题,以如下目的构思了本发明,即增加半导体器件中形成的NiSi层的耐热特性并抑制NiSi层被转变成二硅化物,以由此提高半导体器件的性能。
根据本发明,提供具有MOS晶体管的制造半导体器件的方法,包括:硅化物层形成步骤,在MOS晶体管的栅极电极和源极/漏极区中的至少一个上形成NiSi层;以及元素注入步骤,将抑制NiSi层转变为二硅化物的抑制元素注入到NiSi层中。
在该制造方法中,在元素注入工艺中,抑制NiSi层转变为二硅化物的抑制元素被引入到NiSi层中。结果,增加了NiSi层的耐热特性,并且因而抑制了NiSi层被后续工艺中的热处理转变为二硅化物。
根据本发明,建立了能够抑制NiSi层转变为二硅化物的制造半导体器件的方法。
附图说明
从结合附图的下面的描述中,本发明的上述和其它目的、优点和特征将更加明显,其中:
图1是用于说明根据本发明实施例的制造半导体器件的方法的示意性剖面图;
图2是用于说明根据本发明实施例的制造半导体器件的方法的示意性剖面图;
图3是用于说明根据本发明实施例的制造半导体器件的方法的示意性剖面图;
图4是用于说明根据本发明实施例的制造半导体器件的方法的示意性剖面图;
图5是用于说明根据本发明实施例的制造半导体器件的方法的示意性剖面图;
图6是用于说明根据本发明实施例的制造半导体器件的方法的示意性剖面图;以及
图7是用于说明根据本发明实施例的制造半导体器件的方法有利效果的线形图。
具体实施方式
现在将参考说明性实施例在此描述本发明。本领域技术人员将认识到使用本发明的讲解可以完成多个可变换的实施例并且本发明并不局限于用于说明性目的所示的实施例。
制造半导体器件的方法可以包括如下步骤:氮化物层形成步骤,在NiSi层上形成直接氮化物层;以及元素注入步骤可以包括通过直接氮化物层注入元素,使得元素到达NiSi层。该方法除了抑制NiSi层转变为二硅化物之外,还能够缓和直接氮化物层中的应力。
在本发明中,半导体器件可以具有P-MOS晶体管和N-MOS晶体管,并且直接氮化物层可以具有张应力。这里,在元素注入工艺中,元素可以仅被注入到P-MOS晶体管和N-MOS晶体管中形成的NiSi层中的在P-MOS晶体管上形成的NiSi层上。在直接氮化物层具有张应力的情况下,P-MOS晶体管的驱动电流降低,而N-MOS晶体管的驱动电流增加。因此,在元素注入工艺中仅在P-MOS晶体管的区域中进行元素注入能够缓和张应力,并且由此抑制了P-MOS晶体管中的驱动电流的降低。
在本发明中,半导体器件可以具有P-MOS晶体管和N-MOS晶体管,并且直接氮化物层可以具有压缩应力。这里,在元素注入工艺中,元素可以仅被注入到P-MOS晶体管和N-MOS晶体管中形成的NiSi层中的在N-MOS晶体管上形成的NiSi层上。在直接氮化物层具压缩应力的情况下,N-MOS晶体管的驱动电流降低,而P-MOS晶体管的驱动电流增加。因此,在元素注入工艺中仅在N-MOS晶体管的区域中进行元素注入能够缓和压缩应力,并且由此抑制了N-MOS晶体管中的驱动电流的降低。
NiSi层可以由NiSi制成。由于NiSi具有低阻,所以NiSi可以适合地作为硅化物层。
要注入的元素可以为从Ge、N、F、O和C组成的组中选出的至少一种。这些元素具有通过增加NiSi层的耐热温度来抑制转变为二硅化物和通过增加NiSi层的耐热温度来缓和直接氮化物层的应力的作用。
下文中,将参考附图,详细说明根据本发明的制造半导体器件的方法的优选实施例。这里,在所有附图中相同的组成部分被给予相同的标号,并且省略其重复的说明。
参考图1到6,将说明根据本发明制造半导体器件的方法的实施例。在该实施例中要制造的半导体器件是具有P-MOS晶体管和N-MOS晶体管的CMOS晶体管器件。
首先,如图1所示,在硅衬底上形成P-MOS晶体管10和N-MOS晶体管20。P-MOS晶体管10包括栅极电极12、栅极氧化层13、源极/漏极区14、LDD(轻掺杂漏极)区16和隔离物18。同样地,N-MOS晶体管20包括栅极电极22、栅极氧化层23、源极/漏极区24、LDD区26和隔离物28。P-MOS晶体管10和N-MOS晶体管20通过作为隔离区的STI(浅沟道隔离)区30彼此隔离。
然后如图2所示,在P-MOS晶体管10和N-MOS晶体管20二者中的栅极电极12、22和源极/漏极区14、24上形成作为单硅化物层的NiSi层42(硅化物层形成步骤)。这里,NiSi层42可以仅形成在栅极电极12、22和源极/漏极区14、24中的任何一个上。
然后,如图3所示,在包括NiSi层42的整个区域上形成作为层间氮化物膜的直接氮化物层44(氮化物层形成步骤)。直接氮化物层44意欲和随后所述的层间氧化物膜46一起构成层间介质膜。此外,在本实施例中,直接氮化物层44具有张应力。例如,直接氮化物层44可以由SiN制成。
然后,如图4所示,用光致抗蚀剂在整个N-MOS晶体管20上形成掩模M。
参考图5,可以增加NiSi层42的耐热温度的元素(下文中称作“抑制元素”)被注入到NiSi层42中(元素注入步骤)。在该阶段,由于N-MOS晶体管20的区域用掩模M覆盖,所以抑制元素仅被注入到P-MOS晶体管10的区域中。注入条件被设置为使得抑制元素到达NiSi层42。抑制元素的例子包括Ge、N、F、O和C。这些元素可以增加NiSi层42的耐热温度,从而抑制NiSi层42转变为二硅化物,并且还缓和直接氮化物层的应力。这里,可以注入抑制元素中仅仅一种,同时也可以组合地注入多种抑制元素。
最后,如图6所示,在直接氮化物层44上形成层间氧化物膜46。例如,可以采用SiO2作为层间氧化物膜46。
现在,将描述根据前述实施例的制造半导体器件的方法的有利效果。
在制造半导体器件的上述方法中,在元素注入工艺中,抑制元素被注入到NiSi层42中。由此,NiSi层42的耐热特性增加,从而能够抑制NiSi层42由于在后续工艺中的热处理而转变为二硅化物。由于NiSi2具有比NiSi更高的表面电阻,所以为了降低芯片的寄生电阻而抑制NiSi转变为二硅化物是十分重要的。此外,尽管NiSi转变为二硅化物导致漏电流的增加,所提出的制造方法也能够抑制这种漏电流的增加。
此外,在NiSi层42形成之后,通过注入步骤进行抑制元素到NiSi层42的引入。此后,易于独立地控制向P-MOS晶体管10的注入量以及向N-MOS晶体管20的注入量。例如,在该实施例中,由于采用掩模M,所以在P-MOS晶体管10和N-MOS晶体管20中形成的NiSi层42之中,能够十分容易地进行仅在形成在P-MOS晶体管10中的NiSi层42上的注入。
同时,为了将抑制元素引入到NiSi层中,抑制元素可以混和在用于淀积Ni层的溅射气体中。但是,由于不能够独立地控制在P-MOS晶体管10的区域中的NiSi层42和在N-MOS晶体管20的区域中的NiSi层42的注入量,该方法不理想。例如,在例如As被作为杂质引入到N-MOS晶体管20中的情况下,由于As还用来增加NiSi层的耐热温度,所以在P-MOS晶体管10和在N-MOS晶体管20二者中通过溅射引入相同量的抑制元素,导致了增加N-MOS晶体管20的区域中NiSi层的耐热温度的引入元素的量比增加P-MOS晶体管10的区域中NiSi层的耐热温度的引入元素的量大。因而,当形成NiSi层时,难于设置P-MOS晶体管10和N-MOS晶体管20之间的完全等效的反应温度。
另一方面,由于在形成NiSi层42的步骤时还没有引入抑制元素,所以根据该实施例的方法,也就是说,在NiSi层42的形成之后执行抑制元素注入能够防止上述问题。
此外,在元素注入步骤中,注入条件设置为使得抑制元素到达NiSi层42。这里,考虑到由于对栅极氧化层的冲击或注入可能损坏衬底,所以理想的是抑制元素不被注入到衬底和栅极氧化层。在这个方面中,由于注入的物质易于停留在金属中,所以易于确定注入条件使得抑制元素停留在NiSi层42中。
特别在该实施例中,抑制元素通过直接氮化物层44注入。这不仅提供了抑制NiSi层42转变为二硅化物的优点,而且提供了缓和直接氮化物层44中的应力的优点。
此外,仅在P-MOS晶体管10中形成的NiSi层42上进行抑制元素的注入。由于直接氮化物层44具有张应力,所以直接氮化物层44增加了N-MOS晶体管的驱动电流,而降低P-MOS晶体管的驱动电流。因此,仅在P-MOS晶体管10的区域中执行元素注入能够抑制P-MOS晶体管10的驱动电流的降低。
此外,尽管该实施例描述了采用具有张应力的直接氮化物层并且仅在P-MOS晶体管10的区域中注入抑制元素的情况,在这种情况中,抑制元素仅被注入到N-MOS晶体管20的区域中,也可以采用具有压缩应力的直接氮化物层。
此外,在该实施例中,形成层间介质膜,该层间介质膜具有形成为直接氮化物层44和层间氧化膜46的结构。该结构的优点是在通过蚀刻剥离层间介质膜以形成接触等时,直接氧化物层44可以作为蚀刻停止物。但是,不是必需提供直接氮化物层44。在不提供直接氮化物层44的情况下,也就是,当跳过形成氮化物层的步骤时,在硅化物层形成步骤之后可以立即执行元素注入步骤。在这种情况下,可以在P-MOS晶体管10和N-MOS晶体管20的两个区域中,或者仅在这两个区域之一中,注入抑制元素。
图7是在NiSi层中已经注入抑制元素和没有注入抑制元素的各情况下,以NiSi层的温度界限的形式示出了耐热温度的变化的线形图。通过直接氮化物层进行抑制元素的注入。在此所说的温度界限是指NiSi层转变为二硅化物,也就是NiSi2层的温度。图的纵轴表示表面电阻值(Ω/□),横轴表示温度(摄氏度)。基于当转变为二硅化物时镍的表面电阻值增加的事实,从图中明显看出当注入抑制元素时,温度界限上升到500摄氏度之上,而在不执行注入的情况下,温度界限是大约450摄氏度。因此,注入抑制元素能够增加NiSi层的耐热温度,并由此抑制了NiSi层转变为二硅化物。
很明显本发明并不限于上述实施例,而是在不偏离本发明的范围和精神下可以修改和变化。

Claims (5)

1.一种制造具有MOS晶体管的半导体器件的方法,包括:
硅化物层形成步骤,在所述MOS晶体管的栅极电极和源极/漏极区中的至少一个上形成NiSi层;以及
元素注入步骤,将抑制所述NiSi层转变为二硅化物的抑制元素注入到所述NiSi层中。
2.根据权利要求1的方法,进一步包括:
氮化物层形成步骤,在所述NiSi层上形成层间氮化物膜,
其中所述元素注入步骤包括通过所述层间氮化物膜注入所述元素,使得所述元素到达所述NiSi层。
3.根据权利要求2的方法,所述半导体器件具有P-MOS晶体管和N-MOS晶体管,并且所述层间氮化物膜具有张应力,
其中所述元素注入步骤包括在所述P-MOS晶体管和所述N-MOS晶体管上形成的所述NiSi层中,仅在所述P-MOS晶体管上形成的所述NiSi层上注入所述元素。
4.根据权利要求2的方法,所述半导体器件具有P-MOS晶体管和N-MOS晶体管,并且所述层间氮化物膜具有压缩应力,
其中所述元素注入步骤包括在所述P-MOS晶体管和所述N-MOS晶体管上形成的所述NiSi层中,仅在所述N-MOS晶体管上形成的所述NiSi层上注入所述元素。
5.根据权利要求1的方法,其中所述抑制元素注入步骤包括注入从Ge、N、F、O和C组成的组中选出的至少一种元素。
CNB2005100625263A 2004-03-31 2005-03-29 制造半导体器件的方法 Expired - Fee Related CN100377322C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004104041 2004-03-31
JP2004104041A JP2005294360A (ja) 2004-03-31 2004-03-31 半導体装置の製造方法

Publications (2)

Publication Number Publication Date
CN1677627A true CN1677627A (zh) 2005-10-05
CN100377322C CN100377322C (zh) 2008-03-26

Family

ID=35050044

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100625263A Expired - Fee Related CN100377322C (zh) 2004-03-31 2005-03-29 制造半导体器件的方法

Country Status (3)

Country Link
US (1) US7348273B2 (zh)
JP (1) JP2005294360A (zh)
CN (1) CN100377322C (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7297584B2 (en) * 2005-10-07 2007-11-20 Samsung Electronics Co., Ltd. Methods of fabricating semiconductor devices having a dual stress liner
WO2007055095A1 (ja) * 2005-11-14 2007-05-18 Nec Corporation 半導体装置およびその製造方法
JP4755894B2 (ja) * 2005-12-16 2011-08-24 株式会社東芝 半導体装置およびその製造方法
JPWO2007074775A1 (ja) * 2005-12-26 2009-06-04 日本電気株式会社 Nmosfet及びその製造方法並びにcmosfet及びその製造方法
JPWO2007077814A1 (ja) * 2006-01-06 2009-06-11 日本電気株式会社 半導体装置及びその製造方法
US7776695B2 (en) * 2006-01-09 2010-08-17 International Business Machines Corporation Semiconductor device structure having low and high performance devices of same conductive type on same substrate
JP5262711B2 (ja) * 2006-03-29 2013-08-14 富士通セミコンダクター株式会社 半導体装置及びその製造方法
JP2007294496A (ja) * 2006-04-21 2007-11-08 Renesas Technology Corp 半導体装置及びその製造方法
US7473623B2 (en) * 2006-06-30 2009-01-06 Advanced Micro Devices, Inc. Providing stress uniformity in a semiconductor device
WO2008035490A1 (fr) * 2006-09-20 2008-03-27 Nec Corporation Dispositif à semi-conducteur et son procédé de fabrication
JP5310722B2 (ja) * 2008-06-26 2013-10-09 富士通セミコンダクター株式会社 半導体装置の製造方法
US8470700B2 (en) 2010-07-22 2013-06-25 Globalfoundries Singapore Pte. Ltd. Semiconductor device with reduced contact resistance and method of manufacturing thereof

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0590293A (ja) 1991-07-19 1993-04-09 Toshiba Corp 半導体装置およびその製造方法
US5937315A (en) * 1997-11-07 1999-08-10 Advanced Micro Devices, Inc. Self-aligned silicide gate technology for advanced submicron MOS devices
US6180469B1 (en) * 1998-11-06 2001-01-30 Advanced Micro Devices, Inc. Low resistance salicide technology with reduced silicon consumption
US6274511B1 (en) * 1999-02-24 2001-08-14 Advanced Micro Devices, Inc. Method of forming junction-leakage free metal silicide in a semiconductor wafer by amorphization of refractory metal layer
US6255214B1 (en) * 1999-02-24 2001-07-03 Advanced Micro Devices, Inc. Method of forming junction-leakage free metal silicide in a semiconductor wafer by amorphization of source and drain regions
JP4780818B2 (ja) * 2000-03-03 2011-09-28 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
JP2001352058A (ja) * 2000-06-09 2001-12-21 Toshiba Corp 半導体装置の製造方法
JP3676276B2 (ja) * 2000-10-02 2005-07-27 松下電器産業株式会社 半導体装置及びその製造方法
US6586333B1 (en) * 2000-10-05 2003-07-01 Advanced Micro Devices, Inc. Integrated plasma treatment and nickel deposition and tool for performing same
AU2001267880A1 (en) * 2000-11-22 2002-06-03 Hitachi Ltd. Semiconductor device and method for fabricating the same
US6890854B2 (en) * 2000-11-29 2005-05-10 Chartered Semiconductor Manufacturing, Inc. Method and apparatus for performing nickel salicidation
US6605513B2 (en) * 2000-12-06 2003-08-12 Advanced Micro Devices, Inc. Method of forming nickel silicide using a one-step rapid thermal anneal process and backend processing
US6444578B1 (en) * 2001-02-21 2002-09-03 International Business Machines Corporation Self-aligned silicide process for reduction of Si consumption in shallow junction and thin SOI electronic devices
US6689688B2 (en) * 2002-06-25 2004-02-10 Advanced Micro Devices, Inc. Method and device using silicide contacts for semiconductor processing
EP1602125B1 (en) * 2003-03-07 2019-06-26 Taiwan Semiconductor Manufacturing Company, Ltd. Shallow trench isolation process
US20050090067A1 (en) * 2003-10-27 2005-04-28 Dharmesh Jawarani Silicide formation for a semiconductor device
US6977194B2 (en) * 2003-10-30 2005-12-20 International Business Machines Corporation Structure and method to improve channel mobility by gate electrode stress modification
US7262105B2 (en) * 2003-11-21 2007-08-28 Freescale Semiconductor, Inc. Semiconductor device with silicided source/drains
US7105429B2 (en) * 2004-03-10 2006-09-12 Freescale Semiconductor, Inc. Method of inhibiting metal silicide encroachment in a transistor
US7078285B1 (en) * 2005-01-21 2006-07-18 Sony Corporation SiGe nickel barrier structure employed in a CMOS device to prevent excess diffusion of nickel used in the silicide material

Also Published As

Publication number Publication date
US20050250326A1 (en) 2005-11-10
US7348273B2 (en) 2008-03-25
CN100377322C (zh) 2008-03-26
JP2005294360A (ja) 2005-10-20

Similar Documents

Publication Publication Date Title
CN1677627A (zh) 制造半导体器件的方法
US9502305B2 (en) Method for manufacturing CMOS transistor
US6930007B2 (en) Integration of pre-S/D anneal selective nitride/oxide composite cap for improving transistor performance
CN100336186C (zh) 形成硅化镍层以及半导体器件的方法
CN101950756B (zh) n型场效应晶体管、其金属栅极及其制造方法
CN1173389C (zh) 一种金属氧化物半导体器件及其制造方法
US7569896B2 (en) Transistors with stressed channels
US8470662B2 (en) Semiconductor device and method of manufacturing the same
CN101069281A (zh) 在cmos技术中形成自对准双重硅化物的方法
US20070278541A1 (en) Spacer engineering on CMOS devices
US20060172556A1 (en) Semiconductor device having a high carbon content strain inducing film and a method of manufacture therefor
US20080237734A1 (en) Complementary metal-oxide-semiconductor transistor and method of fabricating the same
US7947547B2 (en) Method for manufacturing a semiconductor device
US7723220B2 (en) Method of forming compressive channel layer of PMOS device using gate spacer and PMOS device having a compressed channel layer
CN1873921A (zh) 半导体元件制造方法及电容器的制造方法
US20070066041A1 (en) Fabricating method for a metal oxide semiconductor transistor
US6891232B2 (en) Semiconductor device having an injection substance to knock against oxygen and manufacturing method of the same
CN1819267A (zh) 半导体器件及其制造方法
US7172936B2 (en) Method to selectively strain NMOS devices using a cap poly layer
US7211481B2 (en) Method to strain NMOS devices while mitigating dopant diffusion for PMOS using a capped poly layer
CN1206711C (zh) 金属-氧化物-半导体晶体管的自对准硅化物的制备方法
US6939770B1 (en) Method of fabricating semiconductor device having triple LDD structure and lower gate resistance formed with a single implant process
CN1612307A (zh) 半导体装置的制造方法
TW201214575A (en) Metal gate transistor and method for fabricating the same
KR100598284B1 (ko) 반도체 소자 제조방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee

Owner name: RENESAS ELECTRONICS CO., LTD.

Free format text: FORMER NAME: NEC CORP.

CP01 Change in the name or title of a patent holder

Address after: Kanagawa, Japan

Patentee after: Renesas Electronics Corporation

Address before: Kanagawa, Japan

Patentee before: NEC Corp.

C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080326

Termination date: 20140329