CN1654854A - 混合电动车辆功率流稳定的输入扭矩最佳选择 - Google Patents

混合电动车辆功率流稳定的输入扭矩最佳选择 Download PDF

Info

Publication number
CN1654854A
CN1654854A CNA2005100090136A CN200510009013A CN1654854A CN 1654854 A CN1654854 A CN 1654854A CN A2005100090136 A CNA2005100090136 A CN A2005100090136A CN 200510009013 A CN200510009013 A CN 200510009013A CN 1654854 A CN1654854 A CN 1654854A
Authority
CN
China
Prior art keywords
power loss
input torque
torque
motor
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005100090136A
Other languages
English (en)
Other versions
CN100467914C (zh
Inventor
G·A·哈巴德
A·H·希普
T·-M·希
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motors Liquidation Co
Original Assignee
Motors Liquidation Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motors Liquidation Co filed Critical Motors Liquidation Co
Publication of CN1654854A publication Critical patent/CN1654854A/zh
Application granted granted Critical
Publication of CN100467914C publication Critical patent/CN100467914C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/448Electrical distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

根据多个动力系***约束条件,在可行输入扭矩的解决方案空间内确定混合动力系的优选输入扭矩,该优选输入扭矩可导致最小整体动力系***损失。在可行输入扭矩计算合计动力系***损失,收敛对应于最小合计动力系***损失的输入扭矩的解决方案以确定优选的输入扭矩。

Description

混合电动车辆功率流稳定的输入扭矩最佳选择
技术领域
本发明涉及对车辆动力系的控制。更具体地,本发明涉及随车(on-vehicle)确定动力系的优选操作点。
背景技术
已知的各种混合动力系结构用于管理混合车辆中各种原动机,最通常的是内燃机和电机的输入和输出扭矩。串联混合结构的特征通常是,内燃机驱动发电机,发电机又向电驱动系和电池组提供电力。在串联混合结构中,内燃机不与驱动系直接机械联接(couple)。发电机还可操作在电动机工作模式以为内燃机提供起动功能,并且电驱动系还可通过操作在发电机模式来重获车辆制动能量以为电池组再充电。并联混合结构的特征通常是,内燃机和电动机都与驱动系直接机械联接。驱动系通常包括换档变速器以为大范围操作提供必要的传动比。
已知的电子可变变速器(electrically variabletransmission)(EVT)通过组合串联和并联混合动力系结构的特征来提供连续可变速比。EVT可操作在内燃机和最终驱动单元之间的直接机械路径中,从而允许高的传输效率和实现较低成本和不太笨重的电动机硬件。EVT还可以这样的模式操作,即发动机操作与最终驱动在机械上是独立的,或者按照各种机械/电分配贡献操作以实现高扭矩连续可变速比、电力为主的起动、再生制动、发动机非空转以及多模式操作。
已知的是根据储能***(例如电池)的充电状态,从需要的路载(road-load)功率加上额外的发动机功率量来选择发动机功率。选择了发动机功率后,可利用发动机的最佳燃油经济性或者最佳排放图或二者的组合来选择发动机的扭矩/速度操作点。产生的电池功率要求与发动机功率结合起来以满足路载要求并补偿***内的功率损失。
已知的***没有优化全部推进***部件的功率流。通常只优化发动机的操作。现有技术在选择整体***的优选操作点时不考虑额外的因素,例如其它的***机械和电损失以及电池的使用因素。
在共同转让且未决的序号为10/686,508(代理人卷号GP-304193)和10/686,034(代理人卷号GP-304194)的美国专利申请中公开了一种确定输出速度的优选方法。其中,包括发动机和变速器的车辆动力系的优选操作点根据输入和输出条件的综合操作映射和对应于发动机与变速器损失的相应合计***损失来确定。在混合变速器应用中,将电动机和电池的额外损失计入***损失并在确定优选操作点中考虑电池的限制。在一组或多组最小化的数据内提供优选操作点以便随车执行。希望的输入速度由***控制器例如根据希望的发动机操作点来提供以满足各种效率和排放目标。
在共同转让且未决的序号为10/685,511(代理人卷号GP-304140)中详细描述了混合变速器的优选速度控制。其中,所述多模式混合变速器的速度控制通过作为预选变速器加速度以及受控和不受控变速器扭矩的函数导出的开环模型提供。选择电动机扭矩作为受控扭矩,选择其它预选的变速器扭矩作为不受控扭矩。该控制还采用了响应至少一个预选变速器速度误差的闭环控制。
发明内容
本发明通过在确定操作条件时将***作为一个整体进行考虑而克服了现有技术的缺点。
根据本发明的一个方面,***的优选操作是根据在确定操作条件时将***作为整体进行考虑而实现的。
根据本发明的另一个方面,最佳***操作点是通过综合考虑发动机、基于机电的分摊(contributory)***损失而确定的。
根据本发明的另一个方面,最佳***操作点是通过另外考虑与电池使用相关的主观因素而确定的。
为动力系***中预选的动力系操作参数建立优选操作点的方法包括:为预选的动力系操作参数确定可行的操作空间,为对应于最小***功率损失的值搜索可行操作空间,并建立优选操作点作为对应于最小***功率损失的值。优选的是,预选动力系操作参数是输入扭矩。***功率损失可包括一些其它的因素,这些因素与实际功率损失无关,但由于考虑了例如混合动力系中的电池使用,能够使最小功率损失偏离不太可取的输入扭矩。在静态动力系操作期间,额外的稳定性是这样实现的,即在对优选操作参数进行任何改变之前,从一个优选操作参数的确定到下一个优选操作参数的确定要求具有预定的功率损失水平的改善。搜索可行操作空间的一个优选方式包括根据黄金分割比进行的区间搜索(section search)。
附图说明
图1为机械硬件示意图,示出了特别适合实施本发明的双模式、复合分配、电子可变变速器的一个优选形式;
图2为这里公开的混合动力系的优选***结构的机电示意图;
图3为关于这里公开的示例性电子可变变速器的输入和输出速度的各种操作范围的图形展示;
图4为电动机扭矩(Ta和Tb)中的扭矩空间图,包括恒定电池功率示例线(Pbatt)、恒定输出扭矩示例线(To)和恒定发动机扭矩示例线(即输入扭矩Ti);
图5为在一组当前***速度和加速度下,用于确定最佳输入扭矩操作点的与整个输入扭矩范围上的功率相关的示例性单个子***成本和合计***成本图;
图6为收敛到输入扭矩中最小***成本操作点的优选技术的图形展示;
图7为根据本发明确定可行操作空间时使用的根据经验确定的电动机扭矩对速度特性数据的图形描述;
图8为根据本发明确定电池功率损失时使用的电池功率损失对电池功率特性数据的图形展示;
图9为归因于电池功率流的充电状态成本因素在整个电池充电状态范围上的图形展示,以及用于确定在本发明的最佳输入扭矩确定中所考虑的电池使用成本;
图10为在整个电池容许能力范围上的电池容许能力(throughput)成本因素的图形展示,用于确定在本发明的最佳输入扭矩确定中所考虑的电池使用成本;
图11示出了由基于计算机的控制器执行的一组指令中的示例性步骤的流程图,该组指令特别与根据本发明确定最佳动力系操作参数相关;
图12为根据本发明确定电动机损失时使用的根据经验确定的电动机扭矩对速度特性数据的图形描述;
图13A和13B示出了由基于计算机的控制器执行的一组指令中的示例性步骤的流程图,该组指令特别与根据本发明的功率流稳定性相关。
具体实施方式
首先参考图1和2,车辆动力系***整体以11表示。动力系11中包括一个多模式、复合分配式电子可变变速器(EVT)的典型形式,该变速器特别适合实施本发明的控制并在图1和2中整体以数字10表示。然后特别参考这些附图,EVT 10具有输入元件12,输入元件12可以具有由发动机14直接驱动的轴的性质,或者如图2中所示,具有结合在发动机14的输出元件和EVT 10的输入元件之间的瞬时扭矩缓冲器16的性质。瞬时扭矩缓冲器16可以结合或与扭矩传递装置(未示出)一起使用以允许有选择地使发动机14与EVT 10接合,但必须明白,这种扭矩传递装置不是用于改变或控制EVT 10操作的模式的。
在所示实施例中,发动机14可以是矿物燃料发动机,如柴油发动机,其非常适合以恒定的每分钟转数(RPM)提供其可用的功率输出。在图1和2所指的示例性实施例中,起动后并且在其输入的大部分范围内,发动机14可以恒定的速度操作,或者根据如可从操作者输入和驱动条件确定的希望的操作点以不同的恒定速度操作。
EVT 10使用了三个行星齿轮子组24、26和28。第一行星齿轮子组24具有外齿轮元件30,该元件通常可称为环形齿轮,其外接内齿轮元件32,该内齿轮元件通常称为太阳齿轮。多个行星齿轮元件34可旋转地安装在支架36上,使得每个行星齿轮元件34都与外齿轮元件30和内齿轮元件32啮合。
第二行星齿轮子组26也具有通常称为环形齿轮的外齿轮元件38,其外接通常称为太阳齿轮的内齿轮元件40。多个行星齿轮元件42可旋转地安装在支架44上,使得每个行星齿轮42都与外齿轮元件38和内齿轮元件40啮合。
第三行星齿轮子组28也具有通常称为环形齿轮的外齿轮元件46,其外接通常称为太阳齿轮的内齿轮元件48。多个行星齿轮元件50可旋转地安装在支架52上,使得每个行星齿轮元件50都与外齿轮元件46和内齿轮元件48啮合。
尽管所有三个行星齿轮子组24、26和28自身都是“简单的”行星齿轮子组,但第一和第二行星齿轮子组24和26是复合的,即第一行星齿轮子组24的内齿轮元件32例如通过毂衬齿轮54与第二行星齿轮子组26的外齿轮元件38联接。联接的第一行星齿轮子组24的内齿轮元件32和第二行星齿轮子组26的外齿轮38例如通过套筒轴58与第一电动机/发电机56持续相连。第一电动机/发电机56在这里还可以被不同地称作电动机A或MA。
行星齿轮子组24和26还这样复合,即第一行星齿轮子组24的支架36例如通过轴60与第二行星齿轮子组26的支架44联接。这样,第一和第二行星齿轮子组24和26的支架36和44分别相联。轴60还有选择地例如通过扭矩传递装置62与第三行星齿轮子组28的支架52相连,如后面更详细所述,其中的扭矩传递装置62用于辅助选择EVT 10的操作模式。扭矩传递装置62在这里还可被不同地称为第二离合器、离合器二或C2。
第三行星齿轮子组28的支架52与变速器输出元件64直接相连。当EVT 10用于陆地车辆时,输出元件64可与车轴(未示出)相连,车轴又终止于驱动元件(也未示出)。驱动元件可以是使用它们的车辆的前轮或后轮,或者它们可以是履带式车辆的驱动齿轮。
第二行星齿轮子组26的内齿轮元件40例如通过外接轴60的套筒轴66与第三行星齿轮子组28的内齿轮元件48相连。第三行星齿轮子组28的外齿轮元件46通过扭矩传递装置70有选择地接地,其中地以变速器外壳68表示。如后面所述,扭矩传递装置70还用于辅助选择EVT 10的操作模式。扭矩传递装置70在这里还可被不同地称为第一离合器、离合器一或C1。
套筒轴66还与第二电动机/发电机72持续相连。第二电动机/发电机72在这里还可被不同地称为电动机B或MB。所有的行星齿轮子组24、26和28以及电动机A和电动机B(56,72)都例如围绕轴向布置的轴60同轴定向。应该注意到,电动机A和B都是环形构造,这允许它们外接三个行星齿轮子组24、26和28,使得行星齿轮子组24、26和28布置在电动机A和B的径向内部。这种构造保证EVT 10的整体外壳(即圆周尺寸)最小。
从输入元件12可以有一个驱动齿轮80。如图所示,驱动齿轮80将输入元件12固定连接在第一行星齿轮子组24的外齿轮元件30上,因此驱动齿轮80接收来自发动机14和/或电动机/发电机56和/或72的动力。驱动齿轮80与空转齿轮82啮合,该空转齿轮82又与固定在轴86一端的传动齿轮84啮合。轴86的另一端可以固定在变速器冲洗液泵88上,其中泵88从槽37获得变速器冲洗液,并向调节器39输送高压液体,调节器39使一部分液体返回槽37并在管线41中提供调节的管线压力。
在所述示例性机械布置中,输出元件64通过EVT 10内的两种截然不同的齿轮系接收动力。当第一离合器C1启动以使第三行星齿轮子组28的外齿轮元件46“接地”时,就选择了第一种模式或第一种齿轮系。当释放第一离合器C1,同时启动第二离合器C2以将轴60与第三行星齿轮子组28的支架52相连时,就选择了第二种模式或第二种齿轮系。如这里所使用的,当提及与齿轮系有关的模式时,通常使用大写字母表示的名称MODE1或MODE2,或者M1或M2。
本技术领域的普通技术人员会注意到,在每种操作模式内,EVT 10都能够提供从相对较慢到相对较快的输出速度范围。在每种模式中,具有慢到快输出速度范围的两种模式的组合允许EVT 10将车辆从静止状态驱动到高速公路行驶速度。此外,其中两个离合器C1和C2同时应用的固定比率状态是可获得的,以便将输入元件与输出元件以固定的齿轮比有效地机械联接。而且,其中两个离合器C1和C2同时释放的中性状态是可获得的,以便使输出元件与变速器机械脱开。最后,EVT 10能够在两个离合器C1和C2上的转差速度基本为零的模式之间提供同步换档。有关示例性的EVT操作的附加内容可在共同转让的号码为5,931,757的美国专利中找到,其内容结合在这里作为参考。
如图2中所示,发动机14优选的是柴油发动机并且由发动机控制模块(ECM)23电子控制。ECM 23是传统的基于微处理器的柴油发动机控制器,包括一些普通的元件如微处理器、只读存储器ROM、随机存取存储器RAM、电可编程只读存储器EPROM、高速时钟、模拟-数字(A/D)和数字-模拟(D/A)电路、输入/输出电路和装置(I/O)、以及适当的信号调节和缓冲电路。ECM 23的作用是通过多个分立的线路从多种传感器获取数据并分别控制发动机14的多种致动器。简单地说,所示的ECM 23通常通过集合线(aggregate line)35与发动机14双向接口。ECM 23可检测的各种参数中包括油槽和发动机冷却液温度、发动机速度(Ne)、涡轮压力、以及周围空气温度和压力。ECM 23控制的各种致动器包括燃料喷射器、风扇控制器、发动机预热器,其中发动机预热器包括电热塞和格栅型进气加热器。优选的是,ECM响应由EVT控制***提供的扭矩命令Te_cmd为发动机14提供公知的基于扭矩的控制。对于本技术领域的普通技术人员来说,这类发动机电子设备、控制机构和量一般而言是公知的,因此这里不需要对其进行进一步的描述。
从前面的描述中可以明显看出,EVT 10有选择地接收来自发动机14的动力。下面继续参考图2进行描述,EVT还接收来自储电装置如电池组模块(BPM)21中的一个或多个电池的动力。动力系***还包括为其功率流的主要部分的这种储能装置。可以使用具有存储电能和分配电能的其它储电装置代替电池,而不会改变本发明的概念。BPM 21是通过直流线路27与双重功率变换器模块(DPIM)19联接的高压直流电。根据BPM 21是充电还是放电,电流可流入BPM 21或从其流出。DPIM 19包括一对功率变换器和各个电动机控制器,其中电动机控制器构造为接收电动机控制命令并控制变换器状态,以提供电动机驱动或再生功能。电动机控制器是基于微处理器的控制器,包括如微处理器、只读存储器ROM、随机存取存储器RAM、电可编程只读存储器EPROM、高速时钟、模拟-字(A/D)和数字-模拟(D/A)电路、输入/输出电路和装置(I/O)、以及适当的信号调节和缓冲电路等的普通元件。在电动机驱动控制时,各个变换器接收来自直流线路的电流并通过高压相位线29和31向各个电动机提供交流电。在再生控制时,各个变换器通过高压相位线29和31接收来自电动机的交流电并向直流线路27提供电流。向变换器提供的或从变换器提供的净直流电确定了BPM 21的充电还是放电操作模式。优选的是,MA和MB为三相交流电机,变换器包括互补的三相功率电子设备。MA和MB分别的各个电动机速度信号Na和Nb也由DPIM 19从电动机相位信息或传统的转动传感器得到。对于本技术领域的普通技术人员来说,这类电动机、电子设备,控制机构和量是公知的,因此这里不需要对其进行进一步的描述。
***控制器43是基于微处理器的控制器,包括如微处理器、只读存储器ROM、随机存取存储器RAM、电可编程只读存储器EPROM、高速时钟、模拟-数字(A/D)和数字-模拟(D/A)电路、输入/输出电路和装置(I/O)、以及适当的信号调节和缓冲电路等的普通元件。在示例实施例中,***控制器43包括一对基于微处理器的控制器,作为车辆控制模块(VCM)15和变速器控制模块(TCM)17。VCM和TCM可提供例如与EVT和车辆底盘有关的多种控制和诊断功能,包括例如发动机扭矩命令、输入速度控制、与再生制动配合的输出扭矩控制、防抱死制动和牵引控制。特别在EVT的功能方面,***控制器43用于从多种传感器直接获得数据并通过多个独立的线路分别直接控制EVT的多种致动器。简单地说,所示的***控制器43通常通过集合线33与EVT双向接口。特别是,***控制器43从转动传感器接收频率信号以处理成输入元件12速度Ni和输出元件64速度No,以便用于控制EVT 10。***控制器43还可从压力开关(未单独示出)接收并处理压力信号以监视离合器C1和C2的作用室压力。作为另外一种选择,还可使用监视大范围压力的压力转换器。***控制器向EVT 10提供PWM和/或二进制控制信号来控制离合器C1和C2的注入和排放,从而应用和释放离合器。此外,***控制器43可例如从传统的热电偶输入(未单独示出)接收变速器冲洗液槽37温度数据以导出槽温度Ts,并提供可从输入速度Ni和槽温度Ts导出的PWM信号以通过调节器39控制管线压力。离合器C1和C2的注入和排放是响应上述PWM和二进制控制信号,通过由螺线管线圈(solenoid)控制的滑阀实现的。优选的是使用调整阀门,利用可变泄放螺线管线圈提供线圈在阀体内的精确定位,从而在应用期间相应地精确控制离合器压力。类似地,管线压力调节器39也可以是由螺线管线圈控制类型的,以根据上述PWM信号建立调节的管线压力。对本技术领域的普通技术人员来说,这种管线压力控制是公知的。离合器C1和C2上的离合器转差速度可从输出速度No、MA速度Na和MB速度Nb导出;具体地,C1滑动是No和Nb的函数,而C2滑动是No、Na和Nb的函数。图中还示出了用户接口(UI)块13,其包括***控制器43的这类输入,其中例如车辆节流阀位置、用于可用驱动范围选择的按钮换档选择器(PBSS)、制动效果和高速空转请求。
***控制器43确定扭矩命令Te_cmd并将其提供给ECM 23。扭矩命令Te_cmd代表由***控制器确定的希望发动机提供的EVT扭矩分摊。***控制器43还确定代表希望的EVT输入速度的速度命令Ne_des,在发动机和EVT之间直接联接的布置中,它也是希望的发动机速度操作点。对于这里例举的直接联接布置,发动机扭矩和EVT输入扭矩,Te和Ti分别是等价的,并且在这里提及时可以互换。类似地,发动机速度和EVT输入速度,Ne和Ni分别是等价的,并且在这里提及时可以互换。优选的是,按照在共同转让并未决的序号为10/686,508(代理人卷号GP-304193)和10/686,034(代理人卷号GP-304194)的美国专利申请中公开的方法确定希望的输入速度操作点,这些专利申请的内容结合在这里作为参考。在共同转让并未决的序号为10/686,511(代理人卷号GP-304140)的美国专利申请中详细描述了混合变速器的优选速度控制,该专利申请结合在这里作为参考。所述各种模块(即***控制器43、DPIM 19、BPM 21、ECM 23)通过控制器区域网络(CAN)总线25通信。CAN总线25允许在各种模块之间进行控制参数和命令的通信。使用的具体通信协议是专用的。例如,优选的重型应用协议是汽车工程师协会标准(Society of AutomotiveEngineers standard)J1939。CAN总线和适当的协议使***控制器、ECM、DPIM、BPIM和其它控制器(如防抱死制动和牵引控制器)之间能够可靠地传递消息和进行多控制器接口连接。
参考图3,图中示出了EVT 10沿水平轴的输出速度No相对沿垂直轴的输入速度Ni的曲线图。同步操作,即此时两个离合器C1和C2都同时以基本为零的转差速度操作的输入速度和输出速度关系用线91表示。同样地,它也代表了这样的输入和输出速度关系,即模式之间可以进行同步换档,或者通过同时应用两个离合器C1和C2可以实现从输入到输出的直接机械联接,也称为固定比率。可产生图3中线91所示的同步操作的一个特定的齿轮组关系如下:外齿轮元件30具有91个齿,内齿轮元件32具有49个齿,行星齿轮元件34具有21齿;外齿轮元件38具有91个齿,内齿轮元件40具有49个齿,行星齿轮元件42具有21个齿;外齿轮元件46具有89个齿,内齿轮元件48具有31个齿,行星齿轮元件50具有29个齿。这里线91还可称为同步线、换档比率线或固定比率线。
换档比率线91左侧是第一模式的优选操作区域93,其中在第一模式应用C1而释放C2。在换档比率线91右侧是第二模式的优选操作区域95,其中在第二模式释放C1而应用C2。当用于在这里提及离合器C1和C2时,术语应用表示各个离合器之间实质的扭矩传递能力,而术语释放表示各个离合器之间无实质的扭矩传递能力。由于通常优选的是使从一个模式到另一个模式的换档同步发生,所以从一个模式到另一个模式的扭矩传递是通过两个离合器应用固定比率发生的,其中对于释放当前应用的离合器之前的一段有限时间,当前被释放的离合器是应用的。而且,当通过继续应用与正在进入的模式相关的离合器和释放与正在退出的模式相关的离合器来退出固定比率时,模式改变就完成了。
尽管操作区域93对于EVT在MODE 1中的操作通常是优选的,但这并不表示在这里不能或不会发生EVT的MODE 2操作。但通常来说,优选的是在区域93中进行MODE 1操作,因为MODE 1优选地使用了在各种方面(例如质量、尺寸、成本、惯性能力等等)特别适合区域93的高起动扭矩的齿轮组和电动机硬件。类似地,尽管操作区域95对于EVT在MODE 2中的操作通常是优选的,但这并不表示在这里不能或不会发生EVT的MODE 1操作。但通常来说,优选的是在区域95中进行MODE 2操作,因为MODE 2优选地使用了在各种方面(例如质量、尺寸、成本、惯性能力等等)特别适合区域93的高速度的齿轮组和电动机硬件。MODE 1操作通常是优选的区域93可以看作低速区域,而MODE2操作通常是优选的区域95可以看作高速区域。向MODE 1换档被看作是换低速档,并与和Ni/No关系一致的较高齿轮比相关。类似地,向MODE 2换档被看作是换高速档,并与和Ni/No关系一致的较低齿轮比相关。
作为本控制的起点,各种动力系参数被测量或预定。输出速度No和输入速度Ni优选的是由检测并滤波后的信号导出。电动机速度Na和Nb通过检测已知,用已知的EVT联接约束条件计算,或者通过电动机控制相位信息导出。输入加速度Ni_dot优选的是希望的变速器输入速度的变化率,其可根据共同转让且未决的序号为10/686,511(代理人卷号GP-304140)的美国专利申请所授方法进行确定。输出速度加速度No_dot优选的是根据检测并滤波的输出速度No确定,其方法也公开在共同转让且未决的序号为10/686,511(代理人卷号GP-304140)的美国专利申请中。
在电动机当前条件能力范围内的最小和最大电动机扭矩(Ta_min、Ta_max、Tb_min和Tb_max)优选的是从***控制器43中的数据结构内的以表格形式存储的数据组获得。这种数据组以预存储的表格格式提供以供程序引用,它们是根据经验,通过在各种温度和电压条件下对组合的电动机和功率电子设备(例如功率变换器)进行传统的测功试验导出的。图7中示出了这种典型的电动机扭矩对速度数据的一个示例性表示,其中对于给定的速度,最小和最大数据由与恒定温度/恒定电压示例线111、113相交的恒定速度线112表示。用表格表示的数据用电动机速度(Na,Nb)、电压和温度标注。电动机速度可根据下面已知的联接约束条件方程从输入速度Ni和输出速度No导出:
Na Nb = K 11 K 12 K 21 K 22 Ni No
其中Na是发动机A的速度,
Nb是发动机B的速度,
Ni是EVT输入速度,
No是EVT输出速度,和
Kn是2×2的由硬件齿轮和轴互连确定的参数值矩阵。
尽管电动机既用在电动机驱动模式也用在发电模式,意味着四个扭矩/速度数据象限(I,II,III,IV),但两个象限的数据收集通常就足够了,其中在相邻象限收集的数据仅仅反射在另一个未直接测量的象限中。在本实例中,所示的象限I和II具有确定的数据111,而所示的象限III和IV用从其反射的数据113填充。
在电池的当前条件能力范围内的最小和最大电池功率Pbatt_min和Pbatt_max优选的是从***控制器43中的数据结构内以表格形式存储的数据组获得。这种数据组以预存储的表格格式提供以供程序引用,它们已经与各种条件,例如充电状态、温度、电压和使用情况(安培-小时/小时)相关。在共同转让且未决的序号为10/686,180(代理人卷号GP-304119)中公开了确定最小和最大电池功率的优选方法,其内容结合在这里作为参考。
现在参考图4,电动机a(MA)扭矩沿水平轴画出,电动机a(MB)扭矩沿垂直轴画出。边界作为与最小和最大电动机A扭矩(Ta_min和Ta_max)对应的虚线画出,最小和最大值相对于在Ni、No、Ni_dot和No_dot中的某示例当前操作条件的电动机能力,对于从图4获得的教导的当前解释和当前讨论来说,不需要其精确的数值。类似的边界作为与这种最小和最大的电动机B扭矩(Tb_min和Tb_max)对应的虚线画出。封闭的空间表示在当前条件下电动机单元MA和MB的可行的解决方案空间。再次重申,这里使用的精确数值对于理解本描述和图不是关键的,但也提供了适当的上下文和减少教导的抽象性。
在该电动机扭矩解决方案空间内画出了几个其它的恒定值参数线,这些参数线类似地具有示例值,这些值对于理解本描述和图不是关键的,但也提供了适当的上下文和减少本教导的抽象性。图中画出了多条恒定电池功率线Pbatt,代表在Ta和Tb中可行解决方案空间内的恒定电池功率解决方案。在该电动机扭矩解决方案空间内也画出了恒定输出扭矩线To,它们代表在Ta和Tb中可行解决方案空间内的恒定输出扭矩解决方案。最后,在Ta和Tb中的同一可行解决方案空间内还画出了恒定输入扭矩线,它们代表其中的恒定输入扭矩解决方案。在图4的图形表示中,尽管关于Ta和Tb的空间根据各个电动机单元的能力是可行的,但恒定电池功率线(Pbatt)、恒定输出扭矩线(To)和恒定输入扭矩线(Ti)不一定代表在当前条件下关于它们各自子***能力的可行解决方案。但为使图4清楚,恒定输入扭矩线Ti被限制在输入扭矩的可行解决方案内,例如在本实例中为-400牛米到1000牛米。
继续参考图4,画出了希望的输出扭矩To_des,并在图中以粗实线表示。To_des表示由***限定的输出扭矩控制目标。它可以对应于当车辆操作者的要求处于***能力范围内时由车辆操作者所要求的扭矩。但它可以对应于根据***限制的受限输出扭矩。还可以根据除***能力以外的其它因素限制To_des,例如车辆驱动能力和稳定性的考虑。受限的输出扭矩可根据在当前操作条件下的最小和最大输入扭矩能力(Ti_min,Ti_max),在当前操作条件下的最小和最大电动机扭矩(Ta_min,Ta_max,Tb_min,Tb_max)以及在当前操作条件下的最小和最大电池功率能力(Pbatt_min,Pbatt_max)确定。
当前有关的在Ta和Tb内可行的解决方案空间就沿着该To_des线。类似地,当前有关的可行输入扭矩(-400牛米<Ti<1000牛米),也是沿该To_des线的。当前有关的可行电池功率(Pbatt_min<Pbatt<Pbatt_max),也是沿该To_des线的。因此,To_des的总体可行解决空间受到当前的能力如最小和最大电动机单元扭矩、输入扭矩和电池功率所带来的不同限制。
在该可行解决方案空间内,希望确定输入扭矩的最佳操作点。下面参考图11的流程图陈述在所述可行解决方案空间内确定输入扭矩的优选方法。流程图示出了实现本发明方法的代表性步骤,包括作为可执行计算机代码一部分执行的指令和***控制器43的数据结构。当然,由此表示的指令作为实现上述动力系的各种控制和诊断功能的大得多的指令集和程序的一部分被执行。
从步骤131开始,确定了操作者对输出扭矩的要求。优选的是,扭矩要求从多个操作者输入判定得出,所述操作者输入包括:加速器踏板位置、制动踏板位置和换档选择器位置;车辆动态条件,如加速度变化率或减速度变化率;以及EVT操作条件,如温度、电压、电流和速度。
在步骤132确定希望的输出扭矩(To_des)。来自步骤131的要求扭矩被评价并经受各种限制测试以保证最终希望的输出扭矩位于各种***约束条件内。约束条件包括如根据发动机当前操作条件确定的输入扭矩最大和最小值,其中发动机当前操作条件主要包括实际发动机速度Ne(输入速度Ni)。约束条件还包括电动机最小和最大扭矩,以及最小和最大电池功率。
优选的是,区间搜索是以快速收敛到如下所述的优选输入扭矩操作点来进行的。在已经建立的最大和最小扭矩界限Ti_min和Ti_max内,在步骤133选择评价输入扭矩Ti_n。优选的是,评价输入扭矩根据公知的黄金分割比产生,其中剩余的可行输入扭矩的全部范围(在开始迭代时是Ti_min到Ti_max)实际上相对于整个区域被分成比率为φ和1-φ的两个区域,其中
Φ = ( 5 - 1 ) / 2 , 约等于0.61803…。
在随后的迭代中,如后面结合图6的说明更完整地描述的,比例区域相对于新产生的待评价区域边界量出。
在步骤134,接着确定在选定的评价输入扭矩Ti_n时的电池功率Pbatt。对于EVT,下面的联接约束方程是已知的用于计算电动机A和电动机B的扭矩:
Ta Tb = K 11 K 12 K 13 K 14 K 21 K 22 K 23 K 24 Ti To Ni _ dot No _ dot
其中Ta是电动机A的扭矩;
Tb是电动机B的扭矩;
Ti是EVT输入扭矩;
To是EVT输出扭矩;
Ni_dos是EVT输入加速度;
No_dos是EVT输出加速度;
Kn是2×4的参数值矩阵,由硬件齿轮和轴互连以及可应用于当前驱动范围的评价硬件惯性确定,表示通常所说的工厂模型。
此外,电动机速度从下面已知的联接约束方程导出:
Na Nb = K 11 K 12 K 21 K 22 Ni No
其中Na是发动机A的速度;
Nb是发动机B的速度;
Ni是EVT输入速度;
No是EVT输出速度;
Kn是2×2的参数值矩阵,由硬件齿轮和轴互连决定。
在评价输入扭矩处的电池功率根据下面的关系确定:
Pbatt=Pmotor_A+Ploss_A+Pmotor_B+Ploss_B+Ploss_acc
其中Pmotor_A和Pmotor_B分别是单元A和单元B的电动机功率;
Ploss_A和Ploss_B分别是单元A和单元B的合计电动机和功率电子设备损失(电动机损失);和
Ploss_acc是作为直流负载建模的,例如V*I,表示功率附件或任何不直接与电动机单元A和B相关的其它负载汲取的电池。
电动机功率根据下面的关系确定:
Pmotor_A=Ta*Na,和
Pmotor_B=Tb*Nb
其中电动机速度Na和Nb以及电动机扭矩Ta和Tb从上面所示的两个联接约束方程导出。
电动机损失以预存储的表格格式提供以供程序引用,该表格格式按照电动机扭矩和电动机速度进行索引,它们是根据经验,从对组合的电动机和功率电子设备(例如功率变换器)进行的传统测功试验导出。在图12中示出了这种典型电动机扭矩对速度数据的示例性表示。用表格表示的数据用电动机扭矩(Ta,Tb)和电动机速度(Na,Nb)标注。如下所示,电功率输入(Ia*V和Ib*V)和电动机轴机械功率输出(Ta*Na和Tb*Nb)之间的差值等于电动机功率损失(Ploss_A,Ploss_B):
Ploss_A=Ia*V-Pmotor_A;和
Ploss_B=Ib*V-Pmotor_B
其中Ia和Ib分别是输送到电动机A和电动机B功率变换器的电流;以及V是提供电流时的电压。
尽管电动机既用在电动机驱动模式也用在发电模式,意味着四个扭矩/速度数据象限(I,II,III,IV),但两个象限的数据收集通常就足够了,其中在相邻象限收集的数据仅仅反射在另一个未直接测量的象限中。在本实例中,所示的象限I和II具有确定的数据151,而所示的象限III和IV用从其反射的数据153填充。
在步骤135,通过在当前条件下将电池功率与电池功率约束条件或界限Pbatt_min和Pbatt-max进行比较来评价刚确定的电池功率Pbatt。如果评价的输入扭矩的电池功率没有位于界限以内,则程序跳到步骤138,在那里当前评价输入扭矩Ti_n为待评价的剩余可行输入扭矩范围产生新的输入扭矩边界。否则,可接受的电池功率使控制转到成本评价步骤136,在那里为评价输入扭矩确定各种子***功率损失和其它的主观损失。
当前步骤136的一个目标是确定整体***功率损失,如下所示,整体***功率损失包括单个子***功率损失之和:
Ploss_total=Ploss_evt+Ploss_eng+Ploss_A+Ploss_B+Ploss_batt
其中Ploss_evt表示EVT损失,如液力泵送损失、自旋损失、离合器阻力等等;
Ploss_eng表示与远离最有效制动马力燃油消耗率(BSFC)点的操作相关的发动机损失;
Ploss_A代表电动机A的损失;
Ploss_B代表电动机B的损失;
Ploss_batt代表电池的内部功率损失。
EVT损失(Ploss_evt)以按照Ni和No索引的预存储表格格式提供以供程序引用,它们是根据经验,通过在全部的EVT单元的各种操作模式及相关的有效齿轮比率范围内对EVT单元进行传统的测功试验导出的。
发动机功率损失(Ploss_eng)也是根据预存储的表格数据确定的。发动机功率损失以按照Ti和Ni索引的预存储表格格式提供以供程序引用。产生这种表格的优选方式是通过使用下面的损失方程来计算发动机功率损失:
Ploss_eng=ηMAXLHV(kJ/g)QFUEL(g/s)-POUT
其中ηMAX是发动机的最大效率,
LHV(kJ/g)是燃料的下限发热量,
QFUEL(g/s)是在操作条件下的燃料流速,和
POUT是在操作条件下的发动机机械轴输出功率。
传统的测功试验用于建立基线ηMAX和收集相对的发动机损失并将其制表。Ploss_evt和Ploss_eng还可组合成单个机械损失项或者集合在一起称为Ploss_eng。
如前面所述,电动机损失被确定、存储和引用。
电池的内部功率损失Ploss_batt通常称为I2R损失。Ploss_batt数据以预存储的表格格式提供以供程序引用,该表格是从电池等效模型产生的并且按照电池功率Pbatt索引。图8中示出了这种典型电池功率对损失数据115的示例性表示。
在图5中示出了在示例输入扭矩区域上的示例子***功率损失。
接着步骤136并进一步参考图9和10,优选的是计算额外的主观成本并在根据本发明选择最佳输入扭矩操作点时将其作为因素计入。与在此之前所述的子***功率损失不同,主观成本是惩罚,不能从物理损失模型中导出,但代表相对于在特定点操作***时的另一种惩罚形式。但这些惩罚是以功率损失单位进行主观度量的,所以它们可与上述子***损失一起作为因素计入。第一电池成本因素项SOC_cost_Factor不利于在高充电状态进行充电(图9中的实线123)并不利于在低充电状态进行放电(图9中的虚线121)。第二电池成本因素项Throughput_Cost_Factor捕获电池寿命影响并为其规定适当的惩罚(图10中的线125)。优选的是电池寿命按照平均电池电流(安培-小时/小时)测量,置于平均电池电流操作点上的惩罚随着电池电流升高而增加。优选的是,这种成本因素从***控制器43中的数据结构内以表格形式存储的数据组获得。这种数据组还以预存储的表格格式提供以供程序引用。各个成本因素和电池功率的乘积产生了成本函数项Pcost_SOC和Pcost_throughput。在共同转让且未决的序号为60/511,456(代理人卷号GP-304118)的美国临时专利申请中公开了围绕主观成本因素的其它细节,其内容结合在这里作为参考。
在下面的SOC和容许能力惩罚的示例中,全部的主观成本是按照将单个主观成本加起来确定的:
Pcost_sub=Pcost_SOC+Pcost_throughput
其中Pcost_SOC=Pbatt*SOC_Cost_Factor;和
Pcost_throughput=Pbatt*Throughput_Cost_Factor
当然,Pcost_sub换算成和上述子***功率损失相同的单位。因此,在图5中类似地画出了在示例输入扭矩范围上的Pcost_sub。
然后,按照下面的公式将子***功率损失Ploss_total和换算后的主观成本惩罚Pcost_sub加起来就确定了全部的损失Total_loss:
Total_loss=Ploss_total+Pcost_sub
因此,在图5中类似地画出了在示例输入扭矩范围上的Total_loss。
下面是步骤137,在这里将在评价输入扭矩Ti_n确定的Total_loss与在先前评价扭矩Ti_n-1确定的Total_loss进行比较。在程序中,没有这种先前Total_loss确定值的第一步仅仅使程序返回到步骤133,而第二评价输入扭矩将根据黄金分割比率的考虑确定。
步骤138删除评价输入扭矩Ti_n和Ti_n-1中对应较大Total_loss值的一个评价输入扭矩外侧的输入扭矩中的解决方案空间。然后,与各自Total_loss值中较大的相关的评价输入扭矩Ti_n或Ti_n-1,作为待评价的剩余可行输入扭矩范围的新输入扭矩边界而建立。
下面步骤139确定在区域搜索中是否完成了预定的迭代次数。如果没有,则程序返回到步骤133选择另一个评价扭矩并在程序步骤133-139循环。当完成了预定的迭代次数后,就到了步骤140,在这里将最佳输入扭矩Ti_opt设置为当前和刚刚过去的评价输入扭矩中具有相应最小的与其相关的Total_loss的一个评价输入扭矩Ti_n或Ti_n-1。现在在设置发动机扭矩时可使用选定的输入扭矩值。但在步骤141表示了与静止条件下的稳定性考虑相关的额外的程序,它可以减少令人不快的频繁的扭矩分配变化的发生。下面参考图13A和13B解释示例的静止稳定性程序。
根据所述黄金分割比进行的区域搜索在每次随后的评价时都使可行输入扭矩范围减少1-φ倍,或近似为0.38197倍。经过11次这种评价,可使精度达到小于1.0%以内。现代发动机控制通常限制在基本为1.0%的控制精度。目前认为11次以上的评价不具有明显的优点。因此,以优选的黄金分割比搜索进行11次这种评价是优选的评价次数。
现在参考图6,沿水平轴的是换算到0和1之间的输入扭矩范围的示例连续区域。Ti中解决方案空间的初始范围对应于Ti_min值(换算为0)和Ti_max值(换算为1)。相对垂直轴画出了相应换算并移位的Total_loss数据。根据黄金分割比搜索的第一个比较对应于与线Ti_1和Ti_2相关的一对评价输入扭矩。通过直观观察可以肯定,Ti_2的Total_loss比Ti_1的Total_loss大。因此,在以后的考虑中就去除了Ti_2外侧的解决方案空间(去除A),并且新的解决方案空间对应于界限Ti_min和Ti_2(即Ti_2是新的Ti_max)。根据黄金分割比准则,相对最新的界限Ti_2在Ti_3产生了另一个评价输入扭矩。将前面迭代中与Ti_1对应的最小Total_loss与当前迭代中与最新评价输入扭矩Ti_3对应的Total_loss进行比较。再次通过直观观察可以看到,Ti_3的Total_loss比Ti_2的Total_loss大。因此,在以后的考虑中就去除了Ti_3外侧的解决方案空间(去除B),并且新的解决方案空间对应于界限Ti_3和Ti_2(即Ti_3是新的Ti_min)。再次根据黄金分割比准则,相对最新的界限Ti_3在Ti_4产生了另一个评价输入扭矩。将前面迭代中与Ti_1对应的最小Total_loss与当前迭代中与最新评价输入扭矩Ti_4对应的Total_loss进行比较。再次通过直观观察可以看到,Ti_2的Total_loss比Ti_4的Total_loss大。因此,在以后的考虑中就去除了Ti_2外侧的解决方案空间(去除C),并且新的解决方案空间对应于界限Ti_1和Ti_2(即Ti_1是新的Ti_min)。按照上面所述将该过程重复预定的迭代或比较次数,这时最佳输入扭矩点就作为最后两个评价输入扭矩中与各个Total_loss值中最小的对应的那个输入扭矩而产生了。
可以类似方式使用替代的区域搜索方法以收敛到最佳输入扭矩,但这些替代方法在已知迭代或比较次数内达到特定目标精度的效率较低并且不可靠。各种其它的解决方案收敛方法也是公知的并可用于实施本发明,包括无限的二次或其它更高阶多项式评价实例和迭代微分收敛技术。
在图13A中,通过检查静止条件标志的状态来开始静止稳定性程序。标志状态为真表示先前的循环静止条件,而标志状态为假表示没有先前的循环静止条件。这里所使用的静止条件是通过相对较低的油门踏板位置和相对较低的车辆速度确定的,优选的是这两个方面都根据可校准的阈值确定。标志为真将转到步骤144,在这里使静止计时器减少。如果静止计时器期满,那么步骤146将控制转到步骤149,在这里将静止标志设为假,从而表示在该循环静止条件管理结束。然后,当前循环的Total_loss被精确地设定为前面图11的程序所确定的值,而不带任何惩罚或偏移。如果在步骤146确定静止计时器没有到期,那么在步骤148检查限定静止状态的条件。如果静止条件不存在,那么类似地将控制转到步骤149,在这里将静止标志设为假,从而表示在该循环静止条件管理结束。然后,当前循环的Total_loss被精确地设定为前面图11的程序所确定的值,而不带任何惩罚或偏移。如果静止计时器期满或者静止条件不再存在,则步骤146和148在当前循环有效地终止静止管理。如果这些存在条件中没有一个满足,那么执行步骤151以为前面图11的程序确定的Total_loss赋以惩罚或偏移K。
回到步骤142,标志为假使控制转到步骤143,在这里检查限定静止状态的条件。如果静止条件不是当前的,那么控制转到块149,在这里将静止标志设为假。然后,当前循环的Total_loss被精确地设定为前面图11的程序所确定的值,而不带任何惩罚或偏移。但如果存在静止条件,那么步骤145和147分别将静止计时器初始化并将静止标志设为真。然后,控制转到步骤151,在这里给前面图11的程序确定的Total_loss加上惩罚或偏移K。
然后,静止条件在至少预定的期间内会导致施加到当前循环Total_loss的惩罚或偏移,而没有当前的静止条件或预定期间期满会导致加上这种惩罚或偏移。此外,如从图13A还可看到的,在块150之后,即静止计时器期满或者没有当前静止条件,程序返回并且不采取静止条件管理步骤。但如果静止计时器未到期,静止条件仍是当前的并且Total_loss加上了惩罚或偏移,那么如图13B开始所示,采取静止条件管理步骤。
对于惩罚或偏移K,选择一个常值应用在静止条件期间或静止计时器期间内执行的多重循环的Total_loss值上。但是,还可以这样设想,即在静止条件期间或静止计时器期间,添加的惩罚或偏移对于每个随后的循环可以衰减。
在图13B中,在步骤152从存储器中获取最近的前面循环的最佳输入扭矩Ti_opt_prior。然后,步骤153确定当前条件在与最近前面循环的最佳输入扭矩对应的输入扭矩时的电池功率Pbatt@Ti_opt_prior。在本程序中计算电池功率的方法与关于图11的程序所述的方法相同,更具体地是与关于图11程序的步骤134的描述相同。然后,将Pbatt@Ti_opt_prior与当前条件下的最小和最大电池功率界限进行比较。该步骤也是以与关于图11的程序所述,更具体地是与关于图11程序的步骤135的描述相同的方法完成的。如果Pbatt@Ti_opt_prior位于界限以外,则表明若使用Ti_opt_prior控制EVT就会导致不可行的电池功率条件,此时控制转到步骤157,在这里选定的控制EVT的输入扭矩是对应当前循环的最佳输入扭矩Ti_opt。但当Pbatt@Ti_opt_prior是可行的时,则进入步骤155,在这里确定当前条件在与最近前面循环的最佳输入扭矩对应的输入扭矩时的各种子***功率损失和主观成本Total_loss@Ti_opt_prior。下面在步骤156将当前循环的Total_loss与Total_loss@Ti_opt_prior进行比较,其中当前循环的Total_loss在本程序的静止条件管理步骤条件下包括惩罚或者偏移。然后在步骤157将最佳输入扭矩Ti_opt或Ti_opt_prior中与全部损失Total_loss或Total_loss@Ti_opt_prior中较小的对应的那个最佳输入扭矩选择作为要返回用于控制EVT的最佳输入扭矩。因此,如上面看到的,添加到当前循环全部损失的惩罚或偏移使***倾向于在静止条件期间不将输入扭矩改变到新的调整点,除非这样做会获得足够显著的Total_loss改善或者从最后一次输入扭矩改变开始经过了足够的时间,从而输入扭矩改变的频率不是令人不快的。
关于特定的示例混合动力系布置描述了本发明。本技术领域的普通技术人员会认识到,其它的混合和传统动力系布置也可与本发明一起使用。例如,传统的电液控制的、多速变速器可与本发明一起使用。
尽管参考一定的优选实施例和实施方法描述了本发明,但应该明白,在所述本发明概念的精神和范围内可进行无数的改变。因此,本发明不局限于公开的实施例,而是具有下面权利要求书的语言所允许的全部范围。

Claims (21)

1、为动力系***中的预选动力系操作参数建立优选操作点的方法,包括:
为预选的动力系操作参数确定可行的操作空间;
为对应于最小***功率损失的值搜索可行的操作空间;以及
建立优选的操作点作为对应于最小***功率损失的值。
2、根据权利要求1中所述的为预选动力系操作参数建立优选操作点的方法,其中所述预选动力系参数包括输入扭矩。
3、根据权利要求1中所述的为预选动力系操作参数建立优选操作点的方法,其中所述动力系***包括内燃机、变速器、电机和储能装置。
4、根据权利要求3中所述的为预选动力系操作参数建立优选操作点的方法,其中所述基本最小的***功率损失还通过考虑主观功率损失因素来确定,该主观功率损失与实际的子***功率损失无关,但有效地使所述基本最小的功率损失靠近要求较少使用储能***的预选动力系操作参数的值。
5、根据权利要求1中所述的为预选动力系操作参数建立优选操作点的方法,其中所述优选操作点根据权利要求1的方法周期性更新,并且其中在静止动力系操作过程中,只有当最近搜索的值对应于至少比对应于先前建立的优选操作点的相应最小功率损失小预定量的相应最小功率损失时,才进行这种周期性更新。
6、根据权利要求1中所述的为预选动力系操作参数建立优选操作点的方法,其中最小***功率损失是从多个子***功率损失确定的。
7、根据权利要求1中所述的为预选动力系操作参数建立优选操作点的方法,其中为一个值搜索可行的操作空间包括进行区域搜索。
8、根据权利要求7中所述的为预选动力系操作参数建立优选操作点的方法,其中所述区域搜索包括黄金分割比。
9、确定优选输入扭矩以有效操作电子可变变速器的方法,该变速器包括输入、输出和具有已知联接关系的电机以及储能***,该方法包括:
确定当前EVT操作条件,包括输入、输出和电机速度;
确定在当前EVT操作条件下电机扭矩、电池功率和输入扭矩的***约束条件;
提供可在所述***约束条件范围内产生的目标输出扭矩;
计算对应于可在所述***约束条件范围内产生目标输出扭矩的可行输入扭矩的合计功率损失;
收敛到对应于基本最小合计功率损失的可行输入扭矩;以及
选择对应于基本最小合计功率损失的可行输入扭矩作为优选输入扭矩。
10、根据权利要求9中所述的确定优选输入扭矩的方法,其中计算合计功率损失包括:
计算单个子***功率损失;以及
将单个子***功率损失加起来。
11、根据权利要求10中所述的确定优选输入扭矩的方法,其中单个子***功率损失是从包括输入源功率损失、电机功率损失、储能***功率损失和附件功率损失的组中选择的。
12、根据权利要求9中所述的确定优选输入扭矩的方法,其中计算合计功率损失包括按照储能***使用的预定函数将功率损失向高偏移。
13、根据权利要求9中所述的确定优选输入扭矩的方法,其中所述优选输入扭矩根据权利要求9的方法周期性更新,并且其中在静止动力系操作过程中,只有当最近选择的可行输入扭矩对应于至少比对应于先前选择的可行输入扭矩的相应基本最小合计功率损失小预定量的相应基本最小合计功率损失时,才进行这种周期性更新。
14、根据权利要求9中所述的确定优选输入扭矩的方法,其中收敛到可行输入扭矩包括在可行输入扭矩和对应的合计功率损失中进行区域搜索。
15、根据权利要求14中所述的确定优选输入扭矩的方法,其中所述区域搜索包括黄金分割比。
16、根据权利要求9中所述的确定优选输入扭矩的方法,其中收敛到可行输入扭矩包括进行迭代微分收敛。
17、根据权利要求9中所述的确定优选输入扭矩的方法,其中收敛到可行输入扭矩包括进行多项式评价。
18、一种混合动力系***包括:
发动机;
电机;
储能***;
输出;
其中储能***和电机可电操作地联接以在其间传递功率流,并且其中发动机、电机和输出可机械操作地联接以在其间传递功率流;
基于计算机的控制器,包括一个存储介质,该存储介质在其中具有编码的计算机程序,用于确定导致基本最小动力系功率损失的预定发动机速度和输出速度条件下的发动机扭矩,所述计算机程序包括:
用于为发动机扭矩确定可行操作空间的代码;
用于为对应于基本最小动力系***功率损失的发动机扭矩的值搜索可行操作空间的代码。
19、根据权利要求18中所述的混合动力系,其中用于为发动机扭矩确定可行操作空间的代码包括:
用于确定当前动力系***操作条件的代码,该操作条件包括发动机、输出和电机速度;以及
用于确定在当前动力系***操作条件下,电机扭矩、储能***功率和发动机扭矩中的动力系***约束条件的代码。
20、根据权利要求19中所述的混合动力系,其中用于为对应于基本最小动力系***功率损失的发动机扭矩的值搜索可行操作空间的代码包括:
用于提供可在所述动力系***约束条件范围内产生的目标输出扭矩的代码;
用于计算对应于可在所述动力系***约束条件范围内产生目标输出扭矩的发动机扭矩的合计动力系***功率损失的代码;
用于收敛到对应于基本最小计算合计动力系***功率损失的发动机扭矩的代码;
用于选择对应于基本最小计算合计动力系***功率损失的发动机扭矩作为对应于基本最小动力系***功率损失的发动机扭矩的值的代码。
21、根据权利要求3中所述的为预选动力系操作参数建立优选操作点的方法,其中所述基本最小的***功率损失还通过考虑主观功率损失因素来确定,该主观功率损失与实际的子***功率损失无关,但有效地使所述基本最小的功率损失靠近要求较多使用储能***的预选动力系操作参数的值。
CNB2005100090136A 2004-02-14 2005-02-16 混合电动车辆功率流稳定的输入扭矩最佳选择 Active CN100467914C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/779531 2004-02-14
US10/779,531 US7076356B2 (en) 2004-02-14 2004-02-14 Optimal selection of input torque with stability of power flow for a hybrid electric vehicle

Publications (2)

Publication Number Publication Date
CN1654854A true CN1654854A (zh) 2005-08-17
CN100467914C CN100467914C (zh) 2009-03-11

Family

ID=34838406

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100090136A Active CN100467914C (zh) 2004-02-14 2005-02-16 混合电动车辆功率流稳定的输入扭矩最佳选择

Country Status (3)

Country Link
US (1) US7076356B2 (zh)
CN (1) CN100467914C (zh)
DE (1) DE102005006369B4 (zh)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7641582B2 (en) 2006-11-17 2010-01-05 Gm Global Technology Operations, Inc. Control architecture and method for two-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
CN101042183B (zh) * 2006-03-22 2010-05-26 通用汽车环球科技运作公司 使用多变量主动传动系缓冲的传动系间隙估计和碰撞管理
CN101182882B (zh) * 2006-11-17 2010-06-02 通用汽车环球科技运作公司 对输入速度和输入扭矩二维优化的控制结构和方法
CN101913321A (zh) * 2009-02-24 2010-12-15 通用汽车环球科技运作公司 基于最优动力损失控制策略的动态滞后评估方法
CN101220860B (zh) * 2006-11-17 2010-12-22 通用汽车环球科技运作公司 对优化模式或齿轮及输入速度选择的控制结构
US7988591B2 (en) 2007-09-11 2011-08-02 GM Global Technology Operations LLC Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
CN101279603B (zh) * 2007-03-29 2012-12-26 通用汽车有限责任公司 用于控制混合动力***中能量流的方法和设备
CN101456417B (zh) * 2007-11-04 2012-12-26 通用汽车环球科技运作公司 输出转矩定形控制结构和混合动力系***的马达转矩确定
US8515606B2 (en) 2007-09-30 2013-08-20 Chery Automobile Co., Ltd Torque management method for hybrid electric motor
CN103906653A (zh) * 2011-11-01 2014-07-02 日产自动车株式会社 电动车辆的马达控制装置
CN103904384A (zh) * 2013-12-20 2014-07-02 浙江吉利控股集团有限公司 一种混合动力汽车车载动力电池的冷却控制方法
CN104925052A (zh) * 2014-03-21 2015-09-23 福特全球技术公司 用于自适应马达功率损耗估计的方法和***
CN105102288A (zh) * 2013-03-15 2015-11-25 艾里逊变速箱公司 用于混合动力自动变速箱中能量率平衡的***和方法
CN105253138A (zh) * 2014-07-11 2016-01-20 通用汽车环球科技运作有限责任公司 混合动力总成和用于控制其的方法

Families Citing this family (179)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7160224B2 (en) * 2004-05-14 2007-01-09 General Motors Corporation Single motor recovery for an electrically variable transmission
US7090613B2 (en) * 2004-05-15 2006-08-15 General Motors Corporation Method of providing electric motor torque reserve in a hybrid electric vehicle
US7305873B2 (en) 2004-05-15 2007-12-11 General Motors Corporation Method for dynamically determining peak output torque in an electrically variable transmission
US7149618B2 (en) * 2004-05-15 2006-12-12 General Motors Corporation Cost structure method including fuel economy and engine emission considerations
US7617893B2 (en) * 2005-08-02 2009-11-17 Ford Global Technologies, Llc Method and system for determining final desired wheel power in a hybrid electric vehicle powertrain
US7398147B2 (en) * 2005-08-02 2008-07-08 Ford Global Technologies, Llc Optimal engine operating power management strategy for a hybrid electric vehicle powertrain
US11186173B2 (en) 2005-11-17 2021-11-30 Invently Automotive Inc. Electric vehicle power management system
US11279233B2 (en) 2005-11-17 2022-03-22 Invently Automotive Inc. Electric vehicle power management system
US11345236B2 (en) 2005-11-17 2022-05-31 Invently Automotive Inc. Electric vehicle power management system
US10882399B2 (en) 2005-11-17 2021-01-05 Invently Automotive Inc. Electric vehicle power management system
US11254211B2 (en) 2005-11-17 2022-02-22 Invently Automotive Inc. Electric vehicle power management system
US11267338B2 (en) 2005-11-17 2022-03-08 Invently Automotive Inc. Electric vehicle power management system
US11390165B2 (en) 2005-11-17 2022-07-19 Invently Automotive Inc. Electric vehicle power management system
US11247564B2 (en) 2005-11-17 2022-02-15 Invently Automotive Inc. Electric vehicle power management system
US11214144B2 (en) 2005-11-17 2022-01-04 Invently Automotive Inc. Electric vehicle power management system
US11230190B2 (en) 2005-11-17 2022-01-25 Invently Automotive Inc. Electric vehicle power management system
US11370302B2 (en) 2005-11-17 2022-06-28 Invently Automotive Inc. Electric vehicle power management system
US11180025B2 (en) 2005-11-17 2021-11-23 Invently Automotive Inc. Electric vehicle power management system
KR100737003B1 (ko) * 2005-12-14 2007-07-09 현대자동차주식회사 직렬 및 병렬 하이브리드 자동차에서의 최적 운전점결정방법
DE102005062869A1 (de) * 2005-12-29 2007-07-05 Robert Bosch Gmbh Verfahren zur Vereinfachung der Momentenüberwachung, insbesondere bei Hybridantrieben
US7154236B1 (en) 2006-02-13 2006-12-26 Gm Global Technology Operations, Inc. Control system for hybrid powertrain
US7206689B1 (en) * 2006-02-20 2007-04-17 Deere & Company Method for optimizing fuel consumption in a machine powered by an internal combustion engine
DE102006012859A1 (de) * 2006-03-21 2007-09-27 Robert Bosch Gmbh Bremsstrategie für einen Hybridantrieb eines Fahrzeugs
US8010263B2 (en) * 2006-03-22 2011-08-30 GM Global Technology Operations LLC Method and apparatus for multivariate active driveline damping
US8091667B2 (en) * 2006-06-07 2012-01-10 GM Global Technology Operations LLC Method for operating a hybrid electric powertrain based on predictive effects upon an electrical energy storage device
JP4805387B2 (ja) * 2006-08-02 2011-11-02 マック トラックス インコーポレイテッド 自動車出力管理システム、自動車出力管理方法、および自動車出力管理システムの搭載方法
US20080133120A1 (en) * 2006-11-30 2008-06-05 Romanick Ian D Method for determining and outputting travel instructions for most fuel-efficient route
US7987934B2 (en) 2007-03-29 2011-08-02 GM Global Technology Operations LLC Method for controlling engine speed in a hybrid electric vehicle
US7996145B2 (en) 2007-05-03 2011-08-09 GM Global Technology Operations LLC Method and apparatus to control engine restart for a hybrid powertrain system
US7999496B2 (en) * 2007-05-03 2011-08-16 GM Global Technology Operations LLC Method and apparatus to determine rotational position of an electrical machine
US7991519B2 (en) * 2007-05-14 2011-08-02 GM Global Technology Operations LLC Control architecture and method to evaluate engine off operation of a hybrid powertrain system operating in a continuously variable mode
US8390240B2 (en) 2007-08-06 2013-03-05 GM Global Technology Operations LLC Absolute position sensor for field-oriented control of an induction motor
US7983823B2 (en) 2007-09-11 2011-07-19 GM Global Technology Operations LLC Method and control architecture for selection of optimal engine input torque for a powertrain system
US8265813B2 (en) * 2007-09-11 2012-09-11 GM Global Technology Operations LLC Method and control architecture for optimization of engine fuel-cutoff selection and engine input torque for a hybrid powertrain system
US8027771B2 (en) * 2007-09-13 2011-09-27 GM Global Technology Operations LLC Method and apparatus to monitor an output speed sensor during operation of an electro-mechanical transmission
US7867135B2 (en) 2007-09-26 2011-01-11 GM Global Technology Operations LLC Electro-mechanical transmission control system
US8062170B2 (en) * 2007-09-28 2011-11-22 GM Global Technology Operations LLC Thermal protection of an electric drive system
US8234048B2 (en) 2007-10-19 2012-07-31 GM Global Technology Operations LLC Method and system for inhibiting operation in a commanded operating range state for a transmission of a powertrain system
US8060267B2 (en) 2007-10-23 2011-11-15 GM Global Technology Operations LLC Method for controlling power flow within a powertrain system
US9140337B2 (en) 2007-10-23 2015-09-22 GM Global Technology Operations LLC Method for model based clutch control and torque estimation
US8296027B2 (en) 2007-10-25 2012-10-23 GM Global Technology Operations LLC Method and apparatus to control off-going clutch torque during torque phase for a hybrid powertrain system
US8335623B2 (en) 2007-10-25 2012-12-18 GM Global Technology Operations LLC Method and apparatus for remediation of and recovery from a clutch slip event in a hybrid powertrain system
US8187145B2 (en) 2007-10-25 2012-05-29 GM Global Technology Operations LLC Method and apparatus for clutch torque control in mode and fixed gear for a hybrid powertrain system
US8118122B2 (en) 2007-10-25 2012-02-21 GM Global Technology Operations LLC Method and system for monitoring signal integrity in a distributed controls system
US8265821B2 (en) 2007-10-25 2012-09-11 GM Global Technology Operations LLC Method for determining a voltage level across an electric circuit of a powertrain
US9097337B2 (en) 2007-10-26 2015-08-04 GM Global Technology Operations LLC Method and apparatus to control hydraulic line pressure in an electro-mechanical transmission
US8560191B2 (en) 2007-10-26 2013-10-15 GM Global Technology Operations LLC Method and apparatus to control clutch pressures in an electro-mechanical transmission
US7985154B2 (en) 2007-10-26 2011-07-26 GM Global Technology Operations LLC Method and apparatus to control hydraulic pressure for component lubrication in an electro-mechanical transmission
US8204702B2 (en) 2007-10-26 2012-06-19 GM Global Technology Operations LLC Method for estimating battery life in a hybrid powertrain
US8548703B2 (en) 2007-10-26 2013-10-01 GM Global Technology Operations LLC Method and apparatus to determine clutch slippage in an electro-mechanical transmission
US8406945B2 (en) 2007-10-26 2013-03-26 GM Global Technology Operations LLC Method and apparatus to control logic valves for hydraulic flow control in an electro-mechanical transmission
US8303463B2 (en) 2007-10-26 2012-11-06 GM Global Technology Operations LLC Method and apparatus to control clutch fill pressure in an electro-mechanical transmission
US8167773B2 (en) 2007-10-26 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control motor cooling in an electro-mechanical transmission
US8244426B2 (en) 2007-10-27 2012-08-14 GM Global Technology Operations LLC Method and apparatus for monitoring processor integrity in a distributed control module system for a powertrain system
US8428816B2 (en) 2007-10-27 2013-04-23 GM Global Technology Operations LLC Method and apparatus for monitoring software and signal integrity in a distributed control module system for a powertrain system
US8062174B2 (en) 2007-10-27 2011-11-22 GM Global Technology Operations LLC Method and apparatus to control clutch stroke volume in an electro-mechanical transmission
US8099219B2 (en) 2007-10-27 2012-01-17 GM Global Technology Operations LLC Method and apparatus for securing an operating range state mechanical transmission
US8209098B2 (en) 2007-10-29 2012-06-26 GM Global Technology Operations LLC Method and apparatus for monitoring a transmission range selector in a hybrid powertrain transmission
US8170762B2 (en) 2007-10-29 2012-05-01 GM Global Technology Operations LLC Method and apparatus to control operation of a hydraulic pump for an electro-mechanical transmission
US8282526B2 (en) 2007-10-29 2012-10-09 GM Global Technology Operations LLC Method and apparatus to create a pseudo torque phase during oncoming clutch engagement to prevent clutch slip for a hybrid powertrain system
US8112194B2 (en) 2007-10-29 2012-02-07 GM Global Technology Operations LLC Method and apparatus for monitoring regenerative operation in a hybrid powertrain system
US8290681B2 (en) 2007-10-29 2012-10-16 GM Global Technology Operations LLC Method and apparatus to produce a smooth input speed profile in mode for a hybrid powertrain system
US8489293B2 (en) 2007-10-29 2013-07-16 GM Global Technology Operations LLC Method and apparatus to control input speed profile during inertia speed phase for a hybrid powertrain system
US8095254B2 (en) * 2007-10-29 2012-01-10 GM Global Technology Operations LLC Method for determining a power constraint for controlling a powertrain system
US8078371B2 (en) 2007-10-31 2011-12-13 GM Global Technology Operations LLC Method and apparatus to monitor output of an electro-mechanical transmission
US8035324B2 (en) 2007-11-01 2011-10-11 GM Global Technology Operations LLC Method for determining an achievable torque operating region for a transmission
US8556011B2 (en) 2007-11-01 2013-10-15 GM Global Technology Operations LLC Prediction strategy for thermal management and protection of power electronic hardware
US8145375B2 (en) 2007-11-01 2012-03-27 GM Global Technology Operations LLC System constraints method of determining minimum and maximum torque limits for an electro-mechanical powertrain system
US7977896B2 (en) 2007-11-01 2011-07-12 GM Global Technology Operations LLC Method of determining torque limit with motor torque and battery power constraints
US8073602B2 (en) 2007-11-01 2011-12-06 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint range
US8287426B2 (en) 2007-11-02 2012-10-16 GM Global Technology Operations LLC Method for controlling voltage within a powertrain system
US8121765B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with two external input torque ranges
US8585540B2 (en) 2007-11-02 2013-11-19 GM Global Technology Operations LLC Control system for engine torque management for a hybrid powertrain system
US8825320B2 (en) 2007-11-02 2014-09-02 GM Global Technology Operations LLC Method and apparatus for developing a deceleration-based synchronous shift schedule
US8133151B2 (en) 2007-11-02 2012-03-13 GM Global Technology Operations LLC System constraints method of controlling operation of an electro-mechanical transmission with an additional constraint
US8170764B2 (en) 2007-11-02 2012-05-01 GM Global Technology Operations LLC Method and apparatus to reprofile input speed during speed during speed phase during constrained conditions for a hybrid powertrain system
US8131437B2 (en) 2007-11-02 2012-03-06 GM Global Technology Operations LLC Method for operating a powertrain system to transition between engine states
US8224539B2 (en) 2007-11-02 2012-07-17 GM Global Technology Operations LLC Method for altitude-compensated transmission shift scheduling
US8847426B2 (en) 2007-11-02 2014-09-30 GM Global Technology Operations LLC Method for managing electric power in a powertrain system
US8200403B2 (en) * 2007-11-02 2012-06-12 GM Global Technology Operations LLC Method for controlling input torque provided to a transmission
US8121767B2 (en) 2007-11-02 2012-02-21 GM Global Technology Operations LLC Predicted and immediate output torque control architecture for a hybrid powertrain system
US8868252B2 (en) 2007-11-03 2014-10-21 GM Global Technology Operations LLC Control architecture and method for two-dimensional optimization of input speed and input power including search windowing
US8155814B2 (en) * 2007-11-03 2012-04-10 GM Global Technology Operations LLC Method of operating a vehicle utilizing regenerative braking
US8285431B2 (en) 2007-11-03 2012-10-09 GM Global Technology Operations LLC Optimal selection of hybrid range state and/or input speed with a blended braking system in a hybrid electric vehicle
US8204664B2 (en) 2007-11-03 2012-06-19 GM Global Technology Operations LLC Method for controlling regenerative braking in a vehicle
US8224514B2 (en) 2007-11-03 2012-07-17 GM Global Technology Operations LLC Creation and depletion of short term power capability in a hybrid electric vehicle
US8068966B2 (en) 2007-11-03 2011-11-29 GM Global Technology Operations LLC Method for monitoring an auxiliary pump for a hybrid powertrain
US8260511B2 (en) 2007-11-03 2012-09-04 GM Global Technology Operations LLC Method for stabilization of mode and fixed gear for a hybrid powertrain system
US8002667B2 (en) 2007-11-03 2011-08-23 GM Global Technology Operations LLC Method for determining input speed acceleration limits in a hybrid transmission
US8406970B2 (en) 2007-11-03 2013-03-26 GM Global Technology Operations LLC Method for stabilization of optimal input speed in mode for a hybrid powertrain system
US8135526B2 (en) 2007-11-03 2012-03-13 GM Global Technology Operations LLC Method for controlling regenerative braking and friction braking
US8296021B2 (en) 2007-11-03 2012-10-23 GM Global Technology Operations LLC Method for determining constraints on input torque in a hybrid transmission
US8010247B2 (en) 2007-11-03 2011-08-30 GM Global Technology Operations LLC Method for operating an engine in a hybrid powertrain system
US8214114B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Control of engine torque for traction and stability control events for a hybrid powertrain system
US8126624B2 (en) 2007-11-04 2012-02-28 GM Global Technology Operations LLC Method for selection of optimal mode and gear and input speed for preselect or tap up/down operation
US8414449B2 (en) 2007-11-04 2013-04-09 GM Global Technology Operations LLC Method and apparatus to perform asynchronous shifts with oncoming slipping clutch torque for a hybrid powertrain system
US8112192B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for managing electric power within a powertrain system
US8118903B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for preferential selection of modes and gear with inertia effects for a hybrid powertrain system
US8897975B2 (en) * 2007-11-04 2014-11-25 GM Global Technology Operations LLC Method for controlling a powertrain system based on penalty costs
US8374758B2 (en) 2007-11-04 2013-02-12 GM Global Technology Operations LLC Method for developing a trip cost structure to understand input speed trip for a hybrid powertrain system
US8346449B2 (en) 2007-11-04 2013-01-01 GM Global Technology Operations LLC Method and apparatus to provide necessary output torque reserve by selection of hybrid range state and input speed for a hybrid powertrain system
US8396634B2 (en) 2007-11-04 2013-03-12 GM Global Technology Operations LLC Method and apparatus for maximum and minimum output torque performance by selection of hybrid range state and input speed for a hybrid powertrain system
US8002665B2 (en) 2007-11-04 2011-08-23 GM Global Technology Operations LLC Method for controlling power actuators in a hybrid powertrain system
US8092339B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus to prioritize input acceleration and clutch synchronization performance in neutral for a hybrid powertrain system
US8112206B2 (en) 2007-11-04 2012-02-07 GM Global Technology Operations LLC Method for controlling a powertrain system based upon energy storage device temperature
US8135532B2 (en) 2007-11-04 2012-03-13 GM Global Technology Operations LLC Method for controlling output power of an energy storage device in a powertrain system
US8221285B2 (en) 2007-11-04 2012-07-17 GM Global Technology Operations LLC Method and apparatus to offload offgoing clutch torque with asynchronous oncoming clutch torque, engine and motor torque for a hybrid powertrain system
US8504259B2 (en) 2007-11-04 2013-08-06 GM Global Technology Operations LLC Method for determining inertia effects for a hybrid powertrain system
US8067908B2 (en) 2007-11-04 2011-11-29 GM Global Technology Operations LLC Method for electric power boosting in a powertrain system
US9008926B2 (en) 2007-11-04 2015-04-14 GM Global Technology Operations LLC Control of engine torque during upshift and downshift torque phase for a hybrid powertrain system
US8121766B2 (en) 2007-11-04 2012-02-21 GM Global Technology Operations LLC Method for operating an internal combustion engine to transmit power to a driveline
US8145397B2 (en) * 2007-11-04 2012-03-27 GM Global Technology Operations LLC Optimal selection of blended braking capacity for a hybrid electric vehicle
US8248023B2 (en) 2007-11-04 2012-08-21 GM Global Technology Operations LLC Method of externally charging a powertrain
US7988594B2 (en) 2007-11-04 2011-08-02 GM Global Technology Operations LLC Method for load-based stabilization of mode and fixed gear operation of a hybrid powertrain system
US8214120B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method to manage a high voltage system in a hybrid powertrain system
US8214093B2 (en) 2007-11-04 2012-07-03 GM Global Technology Operations LLC Method and apparatus to prioritize transmission output torque and input acceleration for a hybrid powertrain system
US8095282B2 (en) 2007-11-04 2012-01-10 GM Global Technology Operations LLC Method and apparatus for soft costing input speed and output speed in mode and fixed gear as function of system temperatures for cold and hot operation for a hybrid powertrain system
US8630776B2 (en) 2007-11-04 2014-01-14 GM Global Technology Operations LLC Method for controlling an engine of a hybrid powertrain in a fuel enrichment mode
US8079933B2 (en) 2007-11-04 2011-12-20 GM Global Technology Operations LLC Method and apparatus to control engine torque to peak main pressure for a hybrid powertrain system
US8000866B2 (en) 2007-11-04 2011-08-16 GM Global Technology Operations LLC Engine control system for torque management in a hybrid powertrain system
US8200383B2 (en) 2007-11-04 2012-06-12 GM Global Technology Operations LLC Method for controlling a powertrain system based upon torque machine temperature
US8138703B2 (en) 2007-11-04 2012-03-20 GM Global Technology Operations LLC Method and apparatus for constraining output torque in a hybrid powertrain system
US8818660B2 (en) 2007-11-04 2014-08-26 GM Global Technology Operations LLC Method for managing lash in a driveline
US8494732B2 (en) * 2007-11-04 2013-07-23 GM Global Technology Operations LLC Method for determining a preferred engine operation in a hybrid powertrain system during blended braking
US8098041B2 (en) 2007-11-04 2012-01-17 GM Global Technology Operations LLC Method of charging a powertrain
US8594867B2 (en) 2007-11-04 2013-11-26 GM Global Technology Operations LLC System architecture for a blended braking system in a hybrid powertrain system
US8073601B2 (en) 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method for preferential selection of mode and gear and input speed based on multiple engine state fueling costs for a hybrid powertrain system
US8165777B2 (en) * 2007-11-05 2012-04-24 GM Global Technology Operations LLC Method to compensate for transmission spin loss for a hybrid powertrain system
US8155815B2 (en) 2007-11-05 2012-04-10 Gm Global Technology Operation Llc Method and apparatus for securing output torque in a distributed control module system for a powertrain system
US8112207B2 (en) * 2007-11-05 2012-02-07 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a continuously variable mode
US8160761B2 (en) 2007-11-05 2012-04-17 GM Global Technology Operations LLC Method for predicting an operator torque request of a hybrid powertrain system
US8229633B2 (en) 2007-11-05 2012-07-24 GM Global Technology Operations LLC Method for operating a powertrain system to control engine stabilization
US8448731B2 (en) 2007-11-05 2013-05-28 GM Global Technology Operations LLC Method and apparatus for determination of fast actuating engine torque for a hybrid powertrain system
US8285432B2 (en) 2007-11-05 2012-10-09 GM Global Technology Operations LLC Method and apparatus for developing a control architecture for coordinating shift execution and engine torque control
US8219303B2 (en) 2007-11-05 2012-07-10 GM Global Technology Operations LLC Method for operating an internal combustion engine for a hybrid powertrain system
US8121768B2 (en) 2007-11-05 2012-02-21 GM Global Technology Operations LLC Method for controlling a hybrid powertrain system based upon hydraulic pressure and clutch reactive torque capacity
US8249766B2 (en) * 2007-11-05 2012-08-21 GM Global Technology Operations LLC Method of determining output torque limits of a hybrid transmission operating in a fixed gear operating range state
US8099204B2 (en) 2007-11-05 2012-01-17 GM Global Technology Operatons LLC Method for controlling electric boost in a hybrid powertrain
US8135519B2 (en) 2007-11-05 2012-03-13 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque for operating a hybrid transmission in a fixed gear operating range state
US8321100B2 (en) 2007-11-05 2012-11-27 GM Global Technology Operations LLC Method and apparatus for dynamic output torque limiting for a hybrid powertrain system
US8070647B2 (en) 2007-11-05 2011-12-06 GM Global Technology Operations LLC Method and apparatus for adapting engine operation in a hybrid powertrain system for active driveline damping
US8285462B2 (en) 2007-11-05 2012-10-09 GM Global Technology Operations LLC Method and apparatus to determine a preferred output torque in mode and fixed gear operation with clutch torque constraints for a hybrid powertrain system
US8281885B2 (en) 2007-11-06 2012-10-09 GM Global Technology Operations LLC Method and apparatus to monitor rotational speeds in an electro-mechanical transmission
US8179127B2 (en) 2007-11-06 2012-05-15 GM Global Technology Operations LLC Method and apparatus to monitor position of a rotatable shaft
US8073610B2 (en) 2007-11-07 2011-12-06 GM Global Technology Operations LLC Method and apparatus to control warm-up of an exhaust aftertreatment system for a hybrid powertrain
US8195349B2 (en) 2007-11-07 2012-06-05 GM Global Technology Operations LLC Method for predicting a speed output of a hybrid powertrain system
US8005632B2 (en) * 2007-11-07 2011-08-23 GM Global Technology Operations LLC Method and apparatus for detecting faults in a current sensing device
US8267837B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus to control engine temperature for a hybrid powertrain
US8277363B2 (en) 2007-11-07 2012-10-02 GM Global Technology Operations LLC Method and apparatus to control temperature of an exhaust aftertreatment system for a hybrid powertrain
US8433486B2 (en) * 2007-11-07 2013-04-30 GM Global Technology Operations LLC Method and apparatus to determine a preferred operating point for an engine of a powertrain system using an iterative search
US8209097B2 (en) 2007-11-07 2012-06-26 GM Global Technology Operations LLC Method and control architecture to determine motor torque split in fixed gear operation for a hybrid powertrain system
US8271173B2 (en) 2007-11-07 2012-09-18 GM Global Technology Operations LLC Method and apparatus for controlling a hybrid powertrain system
US8224544B2 (en) * 2007-11-07 2012-07-17 GM Global Technology Operations LLC Method and apparatus to control launch of a vehicle having an electro-mechanical transmission
HUP0800048A2 (en) * 2008-01-25 2009-08-28 Istvan Dr Janosi Frying device for making fried cake specially for household
US8731751B2 (en) * 2008-02-07 2014-05-20 GM Global Technology Operations LLC Method and system for controlling a hybrid vehicle
DE102008053505B4 (de) 2008-10-28 2023-10-05 Volkswagen Ag Verfahren zur Steuerung eines Hybridantriebsstrangs eines Kraftfahrzeuges
US7971669B2 (en) 2009-04-02 2011-07-05 Daimler Ag Method for controlling an output torque of an electric variable transmission by battery power management
US8337352B2 (en) 2010-06-22 2012-12-25 Oshkosh Corporation Electromechanical variable transmission
CN103415992B (zh) * 2011-02-25 2016-07-27 Ntn株式会社 电动汽车
US8827865B2 (en) 2011-08-31 2014-09-09 GM Global Technology Operations LLC Control system for a hybrid powertrain system
US8801567B2 (en) 2012-02-17 2014-08-12 GM Global Technology Operations LLC Method and apparatus for executing an asynchronous clutch-to-clutch shift in a hybrid transmission
US8725335B2 (en) 2012-04-30 2014-05-13 GM Global Technology Operations LLC System and methods for torque control in an electronic all wheel drive vehicle
JP2014118079A (ja) * 2012-12-18 2014-06-30 Mitsubishi Motors Corp ハイブリッド車の充電制御装置
US8706371B1 (en) 2013-02-21 2014-04-22 GM Global Technology Operations LLC Method for predicting reactive clutch loads and preemptively adjusting line pressure
US8751087B1 (en) * 2013-03-07 2014-06-10 Toyota Motor Engineering & Manufacturing North America, Inc. Hybrid vehicle system loss learning
US9132736B1 (en) 2013-03-14 2015-09-15 Oshkosh Defense, Llc Methods, systems, and vehicles with electromechanical variable transmission
DE102013213096A1 (de) * 2013-07-04 2015-01-08 Bayerische Motoren Werke Aktiengesellschaft Verfahren und Vorrichtung zum Betreiben eines Elektro- oder Hybridfahrzeugs
US9580061B2 (en) 2015-02-06 2017-02-28 Deere & Company Combined engine and hybrid power system load control
US10584775B2 (en) 2015-02-17 2020-03-10 Oshkosh Corporation Inline electromechanical variable transmission system
US9651120B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US9656659B2 (en) 2015-02-17 2017-05-23 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10578195B2 (en) 2015-02-17 2020-03-03 Oshkosh Corporation Inline electromechanical variable transmission system
US11701959B2 (en) 2015-02-17 2023-07-18 Oshkosh Corporation Inline electromechanical variable transmission system
US9650032B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10421350B2 (en) * 2015-10-20 2019-09-24 Oshkosh Corporation Inline electromechanical variable transmission system
US10982736B2 (en) 2015-02-17 2021-04-20 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10040439B2 (en) * 2015-03-06 2018-08-07 GM Global Technology Operations LLC Method to coordinate propulsion torque actuators through torque limits
US9944269B2 (en) 2015-04-14 2018-04-17 Ford Global Technologies, Llc Input torque trim for transmission shift control during regenerative braking
US9637109B1 (en) 2016-01-27 2017-05-02 Ford Global Technologies, Llc Hybrid electric vehicle

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315521A (en) * 1992-07-29 1994-05-24 Praxair Technology, Inc. Chemical process optimization method
DE19505431B4 (de) 1995-02-17 2010-04-29 Bayerische Motoren Werke Aktiengesellschaft Leistungssteuersystem für Kraftfahrzeuge mit einer Mehrzahl von leistungsumsetzenden Komponenten
JPH1089373A (ja) 1996-09-11 1998-04-07 Koyo Seiko Co Ltd 弾性軸継手
US5820172A (en) 1997-02-27 1998-10-13 Ford Global Technologies, Inc. Method for controlling energy flow in a hybrid electric vehicle
US5910722A (en) * 1997-11-21 1999-06-08 Lockheed Martin Corp. Hybrid electric vehicle with reduced auxiliary power to batteries during regenerative braking
US5931757A (en) * 1998-06-24 1999-08-03 General Motors Corporation Two-mode, compound-split electro-mechanical vehicular transmission
DE19938623C2 (de) 1999-08-14 2001-09-06 Daimler Chrysler Ag System zur Minimierung der Verlustleistungsäquivalente eines Antriebssystems
JP3832237B2 (ja) * 2000-09-22 2006-10-11 日産自動車株式会社 ハイブリッド車の制御装置
US6449537B1 (en) * 2000-10-27 2002-09-10 Ford Motor Company Energy control strategy for a hybrid electric vehicle
US6551208B1 (en) * 2001-10-18 2003-04-22 General Motors Corporation Three-mode, compound-split, electrically-variable transmission
JP3641245B2 (ja) * 2002-03-13 2005-04-20 日産自動車株式会社 ハイブリッド変速機の変速制御装置
US7070530B2 (en) * 2003-08-26 2006-07-04 The Timken Company Method and apparatus for power flow management in electro-mechanical transmissions
US6946818B2 (en) 2003-10-14 2005-09-20 General Motors Corporation Method of determining battery power limits for an energy storage system of a hybrid electric vehicle
US6957137B2 (en) 2003-10-14 2005-10-18 General Motors Corporation Real-time operating parameter selection in a vehicular transmission
US7110871B2 (en) 2003-10-14 2006-09-19 General Motors Corporation Method for determining preferred input operating points for a vehicle transmission
US7219000B2 (en) 2003-10-14 2007-05-15 General Motors Corporation Speed control for an electrically variable transmission
US7200476B2 (en) * 2003-10-14 2007-04-03 General Motors Corporation Optimal selection of input torque considering battery utilization for a hybrid electric vehicle

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101042183B (zh) * 2006-03-22 2010-05-26 通用汽车环球科技运作公司 使用多变量主动传动系缓冲的传动系间隙估计和碰撞管理
US7641582B2 (en) 2006-11-17 2010-01-05 Gm Global Technology Operations, Inc. Control architecture and method for two-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
CN101182883B (zh) * 2006-11-17 2010-06-02 通用汽车环球科技运作公司 对输入扭矩和电动机转矩二维优化的控制结构和方法
CN101182882B (zh) * 2006-11-17 2010-06-02 通用汽车环球科技运作公司 对输入速度和输入扭矩二维优化的控制结构和方法
CN101220860B (zh) * 2006-11-17 2010-12-22 通用汽车环球科技运作公司 对优化模式或齿轮及输入速度选择的控制结构
CN101279603B (zh) * 2007-03-29 2012-12-26 通用汽车有限责任公司 用于控制混合动力***中能量流的方法和设备
US7988591B2 (en) 2007-09-11 2011-08-02 GM Global Technology Operations LLC Control architecture and method for one-dimensional optimization of input torque and motor torque in fixed gear for a hybrid powertrain system
CN101386259B (zh) * 2007-09-11 2012-12-05 通用汽车环球科技运作公司 混合动力系固定档位输入和马达转矩优化控制结构和方法
US8515606B2 (en) 2007-09-30 2013-08-20 Chery Automobile Co., Ltd Torque management method for hybrid electric motor
CN101456417B (zh) * 2007-11-04 2012-12-26 通用汽车环球科技运作公司 输出转矩定形控制结构和混合动力系***的马达转矩确定
CN101913321A (zh) * 2009-02-24 2010-12-15 通用汽车环球科技运作公司 基于最优动力损失控制策略的动态滞后评估方法
CN101913321B (zh) * 2009-02-24 2013-06-19 通用汽车环球科技运作公司 基于最优动力损失控制策略的动态滞后评估方法
CN103906653A (zh) * 2011-11-01 2014-07-02 日产自动车株式会社 电动车辆的马达控制装置
CN103906653B (zh) * 2011-11-01 2016-04-20 日产自动车株式会社 电动车辆的马达控制装置
CN105102288A (zh) * 2013-03-15 2015-11-25 艾里逊变速箱公司 用于混合动力自动变速箱中能量率平衡的***和方法
US10029672B2 (en) 2013-03-15 2018-07-24 Allison Transmission, Inc. System and method for energy rate balancing in hybrid automatic transmissions
US10166971B2 (en) 2013-03-15 2019-01-01 Allison Transmission, Inc. System and method for energy rate balancing in hybrid automatic transmissions
US10214202B2 (en) 2013-03-15 2019-02-26 Allison Transmission, Inc. System and method for energy rate balancing in hybrid automatic transmissions
US10773709B2 (en) 2013-03-15 2020-09-15 Allison Transmission, Inc. System and method for energy rate balancing in hybrid automatic transmissions
CN103904384A (zh) * 2013-12-20 2014-07-02 浙江吉利控股集团有限公司 一种混合动力汽车车载动力电池的冷却控制方法
CN103904384B (zh) * 2013-12-20 2016-02-17 科力远混合动力技术有限公司 一种混合动力汽车车载动力电池的冷却控制方法
CN104925052A (zh) * 2014-03-21 2015-09-23 福特全球技术公司 用于自适应马达功率损耗估计的方法和***
CN104925052B (zh) * 2014-03-21 2018-10-12 福特全球技术公司 用于自适应马达功率损耗估计的方法和***
CN105253138A (zh) * 2014-07-11 2016-01-20 通用汽车环球科技运作有限责任公司 混合动力总成和用于控制其的方法

Also Published As

Publication number Publication date
DE102005006369A1 (de) 2005-09-08
DE102005006369B4 (de) 2024-01-25
US20050182526A1 (en) 2005-08-18
CN100467914C (zh) 2009-03-11
US7076356B2 (en) 2006-07-11

Similar Documents

Publication Publication Date Title
CN1654854A (zh) 混合电动车辆功率流稳定的输入扭矩最佳选择
US7908064B2 (en) Optimal selection of input torque considering battery utilization for a hybrid electric vehicle
US7110871B2 (en) Method for determining preferred input operating points for a vehicle transmission
CN1757554A (zh) 在混合电动车辆中提供电动机转矩储备的方法
CN103963778B (zh) 混合动力车换挡助力的控制方法及相应的混合动力车
CN104972891B (zh) 混合动力车辆阶梯传动比变速器控制
US7305873B2 (en) Method for dynamically determining peak output torque in an electrically variable transmission
CN101618718B (zh) 一种混合动力***及其控制方法
CN1654857A (zh) 在电气可变传动中的过中性点切换控制
US7024299B2 (en) Method for dynamically determining peak output torque within battery constraints in a hybrid transmission including a parallel hybrid split
US6946818B2 (en) Method of determining battery power limits for an energy storage system of a hybrid electric vehicle
US7865287B2 (en) Method and apparatus for controlling power flow in a hybrid powertrain system
US20050080538A1 (en) Real-time operating parameter selection in a vehicular transmission
CN1715851A (zh) 在混合动力电动车中检测电动机转矩完整性的方法
CN1654858A (zh) 用于多模式混合驱动的切换禁止控制
CN1696541A (zh) 用于电动变速器扭矩控制的诊断方法
CN103347759B (zh) 对混合动力车辆提供驱动控制的驱动控制装置以及混合动力车辆
CN1695974A (zh) 在混合动力电动车辆中自动牵引力控制的方法
CN108688643A (zh) 混合动力传动***转速控制
CN1736782A (zh) 用于混合电动车辆主动发动机停机的方法
DE112008002012T5 (de) Vorrichtung zur Steuerung der Fahrzeugantriebskraft
US8006788B2 (en) Maximum output setting device, driving device including the maximum output setting device, power output apparatus including the driving device, motor vehicle mounted with the power output apparatus, and maximum output setting method
CN108454615B (zh) 一种行星混联混合动力汽车驾驶员需求转矩估计方法
KR20180002516A (ko) 하이브리드 차량을 위한 제어 장치, 및 하이브리드 차량을 위한 제어 방법
CN104118422B (zh) 控制动力总成***降低混动车辆涡轮延时的***和方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant