CN1520491A - 旋转机械及热循环 - Google Patents

旋转机械及热循环 Download PDF

Info

Publication number
CN1520491A
CN1520491A CNA028129695A CN02812969A CN1520491A CN 1520491 A CN1520491 A CN 1520491A CN A028129695 A CNA028129695 A CN A028129695A CN 02812969 A CN02812969 A CN 02812969A CN 1520491 A CN1520491 A CN 1520491A
Authority
CN
China
Prior art keywords
rotating machinery
combustion
expanding ring
product
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA028129695A
Other languages
English (en)
Other versions
CN1257345C (zh
Inventor
龙尼・J・邓肯
龙尼·J·邓肯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saddle Rock Tech LLC
Original Assignee
Saddle Rock Tech LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saddle Rock Tech LLC filed Critical Saddle Rock Tech LLC
Publication of CN1520491A publication Critical patent/CN1520491A/zh
Application granted granted Critical
Publication of CN1257345C publication Critical patent/CN1257345C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/12Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type
    • F01C1/14Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F01C1/20Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with dissimilar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C1/00Rotary-piston machines or engines
    • F01C1/08Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • F01C1/10Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member
    • F01C1/102Rotary-piston machines or engines of intermeshing engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing of internal-axis type with the outer member having more teeth or tooth-equivalents, e.g. rollers, than the inner member with a crescent shaped filler element located between the intermeshing elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B53/00Internal-combustion aspects of rotary-piston or oscillating-piston engines
    • F02B2053/005Wankel engines

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

本发明披露了一种具有一容纳旋转元件的外壳的旋转机械。该旋转机械可被构造为旋转内燃机、旋转外燃机、气体压缩机、真空泵、流体泵、驱动涡轮机、或者用于可膨胀气体或加压流体的驱动涡轮机。该燃烧发动机采用新的热循环,消除了奥托循环的作为循环一部分的燃烧产物的内部压缩。新的燃烧热循环是进气、膨胀和排气。

Description

旋转机械及热循环
技术领域
本发明通常涉及旋转机械,尤其是涉及旋转内燃机和外燃机、流体压缩机、真空泵,以及用于可膨胀气体或压缩流体及水的驱动涡轮机。
背景技术
当人类已经进化了若干个世纪时,作为人,我们已经使用我们的头脑开发了机械和工具来帮助我们实现更高的进化标准。技术进步包括从早期的杠杆和轮子的发明和发现到我们现在日常生活所享受的更复杂的通讯和计算装置。几乎各方面的技术,从非常根本的到非常复杂的,已经取得了伟大的进步,这使这个行星(地球)上的人和动物的日常生活更容易了。但是,有一种长期伴随我们的发明几乎没有技术进步,尽管它在我们的日常生活中具有非常重要的用途。
典型的四冲程往复内燃机给所述行星表面上的几乎所有车辆提供动力。同样地,相同的发动机被用来给船、发电机、压缩机、泵及各种类型和设计的机械提供动力。但是,尽管它拥有广泛的用途,内燃机或奥托循环发动机,或者在一定的情况下狄塞尔循环发动机具有非常少的技术进步。对发动机进行的改进未触及发动机的基本热循环。
普通内燃机、奥托循环和狄赛尔循环的往复运动是一种效率低的产生旋转动力的方法。典型的四冲程发动机对于它传送的每个单元的动力需要四次往复运动。首先,发动机进行进气和压缩冲程,接着进行燃烧膨胀和排气冲程。四缸发动机的往复运动需要活塞、连杆和组件的旋转质量的四次惯性变化--每次惯性变化给***带来一次能量损失。同样地,对于相关的阀、弹簧、升降杆、摇臂和推杆,内燃机的一次完整循环需要四次惯性变化,这会产生发动机的附加总损失。
普通内燃机的机械复杂性给设计整体带来了低效率。单缸四冲程发动机需要许多运动部件,包括活塞,活塞销,连杆,曲轴,若干升降杆、推杆、摇臂、阀、阀弹簧、齿轮,定时链和飞轮。这些部件中的每个都会由于疲劳或磨损而增加发动机出现故障的概率。同样地,这些大量部件增加了每循环必须改变四次的惯性质量的数量,降低了***产生的功率。各运动部件受到各相关部件之间的摩擦损失,增加了功率损耗。另外,制造并维护需要这种大量运动部件的设备是昂贵的。
典型的四冲程发动机是一种低扭矩、高转速的机械。因为曲柄的比较短的轴柄产生很低的扭矩,所以奥托循环发动机需要较高的转速来实现较高的额定功率。具体地说,奥托和狄赛尔循环发动机都在活塞循环的最低扭矩处,即上止点处达到它们的最高内部压力。因此,这种发动机循环没有使发动机的最大做功潜能-最高内部压力-和发动机利用那种潜能或将它转换为动力的最佳能力匹配。另外,扭矩不是恒定的。而是,扭矩在上止点处近似为零,在行程中部达到最大值,并在下止点处回到零。通过设计,当活塞处于接近全行程处或扩展时,出现最高内压。因此,燃烧期间产生的初始压力大部分被轴向传递到活塞和连杆,而没有转换为旋转动力。只有随后,当扭矩增加时,大部分膨胀力被转化为旋转动力。这种最终的结构需求限制了活塞组件的设计、增加了质量并限制了材料选择。另外,必需传动装置来放大往复运动产生的较低扭矩,因此增加了重量、成本、复杂性和对于整个***的额外功率需求。
原始单位体积的燃烧产物的压缩和相应的变热导致进一步的能量损失。气体膨胀取决于点火前的气体温度(所有其它变量保持恒定),气体在较低点火温度时比较高点火温度时膨胀的多,被给定空间这样做。因此,在点火之前通过压缩使燃料/空气混合物变热减少了膨胀量,因此减少了随后的膨胀冲程期间可得到的功。同样地,往复结构限制了燃烧产物作有用功的能力,这是因为膨胀容积不等于压缩容积-燃烧加热气体,因此使膨胀容积增加超过原始容积。因此,相关的高压燃烧气体被排出,而没有作任何有用功。
奥托、狄塞尔和其它旋转发动机的整体设计受到高压时交叉泄漏(crossleakage)的限制。具体地说,交叉泄漏是指,当活塞在整个行程中运动时,由从***高压侧到低压侧的溢流引起的内部压力损失。泄漏通常出现在活塞和气缸壁周围、排出和进气口处,以及气缸盖和气缸体之间。其它内燃机中过多数量的密封和连接部件产生交叉泄漏的倾向。因此,发动机的工作内部压力范围被大大降低。
当前的旋转发动机技术的另一限制是发动机的内部燃烧设计。具体地说,目前的旋转发动机仅可作为内燃机工作。当前的设计不能容许旋转发动机用作外部燃烧或外部爆燃循环发动机。因此,比起本发明的外部方式,当前状态的旋转发动机需要相当大的气体膨胀容积。
当前的发动机技术的又一限制是缺乏设计多样性。普通内燃机的多样性程度受到需要由若干往复运动驱动公共曲轴的限制。甚至其它旋转发动机设计在它们的旋转元件布置中也是单一的。替换的活塞布置,例如交叉旋转,还没有被研究。这种受限的设计多样性阻止了可能的空间节约设计的发展。
内燃机的又一设计限制是使用的单一性。内燃机仅可作为内部燃烧发动机工作。它是一种将化学能转化为机械能的动力源,机械能呈旋转轴的形式。内燃机本身没有能力通过爆燃室而不是内部燃烧室作用,例如一种成形装药(shaped charge)或其它爆燃循环装置,它们中的一些提供外部燃烧。另外,内燃机本身不能用作空气压缩机、真空泵、外燃机、水泵、用于可膨胀气体的驱动涡轮机,或者驱动涡轮机。
发明内容
本发明包括一种旋转机械,其能用作旋转内燃机或外燃机,成形的进料或爆燃进料旋转发动机,流体压缩机,真空泵,或者用于可膨胀气体或加压流体和水的驱动涡轮机。根据本发明的一些方面,旋转机械采用一种通常为环形的外壳,该外壳在周边处的形状为圆柱状。主要设置在环形外壳内并一体连接到外壳上的是若干旋转元件,包括一个具有一与密封气缸合作的膨胀环突出部的膨胀环,所述气缸具有一机械地和膨胀环突出部配合的凹槽。
根据本发明的其它方面,本发明包括进气和排气口,根据旋转机械执行的功能,这些口容许各种气体、燃料或流体进入或排出一限定在旋转发动机内的室中。
根据本发明的另外方面,当用作内燃机时,进入进气口的燃烧产物在点火之前不被燃烧室压缩。
根据本发明的其它方面,在一些实施例中,膨胀比比压缩容积大。
根据本发明的另外方面,废气被在任何理想的排气压力下排出,包括在环境压力下。
根据本方面的另外方面,环形外壳防止由交叉泄漏引起的压力损失。
根据本发明的另外方面,扭矩在整个循环中恒定,但扭矩值随压力增加而减小。
根据本发明的另外方面,恒定扭矩容许旋转机械在较低的转速下运转。
根据本发明的另外方面,最高扭矩和最高压缩或内部压力相符。
根据本发明的另外方面,扭矩值和转速是无关变量,它们可以被控制以实现所需的动力输出。
根据本发明的另外方面,压缩比是独立的,而且可以被调节以实现所需的输出。
根据本发明的另外方面,活塞和输出轴的相对运动可调节为任何配置。
根据本发明的另外方面,点火定时是可变的,以得到理想的燃烧压力。
根据本发明的另外方面,多种点火装置可以和旋转机械一起使用,例如变压放电***、电压装置、火花塞、光电管、压电和等离子电弧装置。
根据本发明的另外方面,旋转机械产生可以被单独或结合使用的双向旋转动力。
根据本发明的另外方面,可以选择地使用多个旋转机械,以得到所需的动力输出。
根据本发明的另外方面,可以选择地使用多个旋转机械,以得到所需的真空或压缩值。
据本发明的另外方面,开发一种新的热循环,其具有进气、膨胀和排气冲程,而没有燃烧产物在燃烧室内的压缩。
根据本发明的另外方面,在一些实施例中,燃烧产物在燃烧之前被压缩。
根据本发明的另外方面,燃烧和膨胀室被制成一定的形状,以容许具有最小惯性损失的燃烧产物的有效膨胀。
根据本方面的另外方面,活塞尺寸和扭矩是可变的,以实现所需的转速和动力需求。
附图简要说明
下面参照附图详细说明本发明的优选和替换实施例。
图1为旋转发动机的半分解立体图;
图2为旋转元件的正面剖视图;
图3为本发明的外燃方式的分解立体图;
图4为本发明的成形进料或其它爆燃循环外燃机的分解立体图;
图5为一些旋转元件沿图2中5-5线的立体剖视图;
图6为一些旋转元件沿图2中6-6线的立体剖视图;
图7为一些旋转元件沿图2中7-7线的立体剖视图;
图8为一些旋转元件沿图2中8-8线的立体剖视图;
图9为本发明多缸方式的立体图;
图10为本发明多点火方式的正视图;
图11为一种旋转循环状态的正视图;
图12为一种旋转循环状态的正视图;
图13为一种旋转循环状态的正视图;
图14为一种旋转循环状态的正视图;
图15为热循环的图形。
优选实施例的详细说明
图1描述了旋转机械40的一优选实施例。旋转机械40通常采用环形外壳42,该外壳在其一端具有一罩43。主要设置在环形外壳42内并一体地连接到外壳42上的是若干旋转元件。通常环形的外壳42在其周边处的形状基本为圆柱状。但是,在和罩43相对的外壳42的一端处,外壳形成一通常为环形的内壳56(见图2)。
一膨胀环44被设置在外壳42和罩43内。具体地说,膨胀环44被设置在环形外壳42和环形内壳56之间。膨胀环44通常为圆柱状,在其内表面的一部分上设有膨胀环齿轮46(见图2)。膨胀环齿轮46和膨胀环44的对应部分通常被设置在一形成在环形外壳42中的膨胀环齿轮座圈48内(最好见图5-6)。座圈48基本为圆柱状的槽,该槽的直径比膨胀环齿轮46的直径稍小。座圈48的深度主要由旋转机械40的应用场合确定。在相对的高速、低扭矩应用中,座圈深度可以比较低转速时的大。关于座圈48的指导原则是提供一导轨来帮助保持膨胀环44的旋转运动整体性。
用来进行旋转元件相对运动的轴承(未示出)类型随应用场合而变化。在优选的高速、低扭矩实施例中,采用滚柱轴承。但是,其它轴承被认为也在本发明的范围内,例如,球轴承、锥形轴承、空气轴承、液体金属轴承和磁性轴承也可以。同样地,在高扭矩、低速应用中,优选使用碳(石墨)轴套。但是,其它轴承被认为也属于本发明的范围,例如陶瓷合成物、浸油合成物和青铜、浸碳合成物、碳化物和粉末金属合成物。
另外,在优选实施例中,设置在膨胀环44内表面上的是一膨胀环突出部50(图2)。膨胀环突出部50被径向形成在膨胀环44的内表面上。突出部50基本从膨胀环44的内表面延伸到环形内壳壁60(图2)。另外,设置在膨胀环44内,并因此设置在环形外壳42内的是一密封气缸62。密封气缸62通过膨胀环齿轮46和密封气缸齿轮66机械地连接到膨胀环44。在如上所述的类似方式中,密封气缸齿轮66依托在一密封气缸座圈67中(见图5)。另外,在和密封气缸齿轮66相对的一端处,密封气缸62具有一位于其外周上的密封气缸凹槽64(图2)。密封气缸凹槽64具有一定的形状和位置,以与指定间隔处的膨胀环突出部50机械地配合。
其它的膨胀环44设计被认为是位于本发明的范围内。具体地说,膨胀环在外壳内的设置可以使环44位于空间110的内部,其中突出部50向外延伸(未示出)。同样地,所述环可以被大约设置在空间110的中央,其中突出部50向内和向外延伸(未示出)。因此,环44和突出部50的任何可能设置都被认为是位于本发明的范围内。
密封气缸62和膨胀环44之间的齿轮传动关系以及旋转元件的相对旋转运动也是可调的。在优选实施例中,对于较高扭矩的应用场合,低的齿轮传动比通常是优选的。例如,密封气缸62和膨胀环44的1∶1速度比是理想的。相反,对于较高速度、较低扭矩的应用,可以采用较高的比值,例如可以使用1∶10的膨胀环44和密封气缸62的比值。但是,上述比值仅作为该旋转机械可以采用的各种比值的例子,认为任何其它比值也位于本发明的范围内,目的是得到任何所需的输出。
本发明的另一方面是旋转元件的可变关系。在附图所示的优选实施例中,环44和气缸62在相同的平面中转动。但是,也可以采用其它的机械连接,以容许环44和气缸62在不同的平面中转动。可以采用各种齿轮传动组合(未示出)或现有技术中公知的其它机械装置,以便环44的转动可以出现在非气缸62的旋转平面的平面中。
在优选实施例中,密封气缸62在其气缸轴线处具有一从密封气缸62的各端向外轴向延伸的密封气缸突出部68。密封气缸延伸部68延伸到环形外壳42和罩43之外,以在旋转机械40外部提供顺时针和逆时针旋转。在一替换实施例中,突出部68可以仅从密封气缸62的一侧延伸。这样,可以构造更紧凑的旋转机械40,或者可以得到特定的旋转动力。
在优选实施例中,穿过环形外壳42延伸的密封气缸突出部68还控制阀口86的开启时间。阀口开启时间由高速齿轮82和低速的有齿阀84控制。高速齿轮82连接到突出部68并随突出部68的转动而转动。低速的有齿阀84也连接到高速齿轮82上,阀84具有一贯通其设置的阀口86。另外,进气口74(图2)穿过外壳42的表面设置并位于由有齿阀84包围的区域中。有齿阀84通过高速齿轮82的旋转使阀口86和进气口74间歇地对准,容许燃烧产物进入。
另外,一点火装置88设置在外壳42的表面上,其和点火口76(见图2)一体地连接。优选实施例将火花塞用作点火装置88。但是,也可以使用现有技术中公知的任何其它点火装置88。例如,变压放电***、电压装置、光电管、压电和等离子电弧装置也属于本发明的范围。另外,一排气口78穿过环形外壳的表面设置。
点火口76(见图2)和进气口74相对隔开,以提供点火和进入物质的有效相互作用。如各图中所示,点火口76相对于进气口74位于逆时针旋转的位置处。在优选实施例中,进气口位置尽可能靠近密封气缸62,包括和密封气缸62重叠。但是,在替换实施例中,进气口74和点火口76的相对位置可以变化。另外,所述口可以具有任何尺寸或形状,例如所述口可以是圆的、方的、三角形或椭圆形的。所述口的相对尺寸取决于给定应用中质量传递出现的时间和必需的质量传递量。可以使用若干口来得到所需的工作条件。另外,可以使用相对于室表面(未示出)成一角度的相对口。这样,进气和点火产物由膨胀环43沿前进方向推进。
本发明的另一设计考虑是材料选择。在优选实施例中,旋转机械40由耐高温钢或任何钢合金构成。但是,其它材料也被认为位于本发明的范围内,例如钛、镍、镍合金、碳基合成物、碳化物、粉末金属合成物、陶瓷、陶瓷合成物、铁类和非铁类金属。
图2还示出了多种元件和旋转机械40之间的关系。外壳42的内表面上的支承表面支撑膨胀环44。如上所述,一部分膨胀环44和膨胀环齿轮46由环形外壳42中的膨胀环座圈48支撑。膨胀环44的内表面、密封气缸壁70、基本环形的外壳壁60和突出部后缘52限定一内部空间71。位于内部空间71中的是进气口74、点火口76和排气口78。
径向延伸经过内部空间71的是膨胀环突出部50。膨胀环突出部50的内边缘和环形内壳壁60在其间形成一可动的、基本气密的密封部。另外,密封气缸壁70和膨胀环44在接触区域72处基本可密封地接触。接触区域72在进气口74和排气口78之间形成一基本密封的分隔部。
环形内壳壁60通过大致C形的环形内壳切口58支撑密封气缸62。C形的环形内壳切口58给旋转的密封气缸62提供支撑。如上所述,密封气缸座圈67被形成在内壳切口58的内壳壁60的相关部分中,其中密封气缸座圈67为密封气缸62提供旋转稳定性。
内壳切口58和密封气缸壁70相对于彼此隔开,以便容许密封气缸62的自由转动,同时在气缸62和外壳58之间提供基本上气密的密封。同样地,切口58的端部或终端围绕密封气缸62延伸,以分别伸到进气口和排气口74和78之外。这样,内壳切口58的几何形状有助于密封外壳58和密封气缸62之间的空间。
还示出一去掉区域65。去掉区域65具有许多功能。首先,去掉区域降低了旋转机械40的整体重量,能增加机械40的功率—重量比。另外,去掉区域65用于增加机械40的表面积,因此提高机械40的热传递性能,从而容许机械40在较低的温度下工作。去掉区域可以具有任何几何形状。例如,椭圆形、圆形、叶状或其它几何形状都位于此次公开的范围内。另外,散热片或管(未示出)可以被设置在去掉区域65中,因此进一步增加了旋转机械的冷却能力。
如上所述,所有现有的旋转机械受到侧密封问题的困扰,增压气体围绕驱动转子气缸泄漏。这种泄漏是不利地影响发动机效率的***整体能量损失。去掉区域和环形外壳42的形状一起防止从高压区域到低压区域的任何交叉泄漏。环形外壳设计有效地去掉了端部,从而使侧密封问题不可能发生。
图3示出用作外燃机的旋转机械40。外燃元件设置在和罩43相对的一端上。外燃元件和旋转机器40机械并流体地结合成一体。歧管和传动阀罩90在进气口74(见图2)、高速齿轮82和有齿阀84上方延伸并基本包围它们。歧管点火入口92位于歧管和传动阀罩90的外表面上。歧管点火入口92被机械并流体连通地连接到外燃烧室上。外燃烧室94一体地和点火装置88及燃料/空气进入装置连接。
旋转机械可以包括若干外燃烧室94。例如,歧管90可以被用来从数个外燃烧室接受膨胀的燃烧产物。多燃烧室歧管(未示出)被如此设计,以便以类似于本发明单燃烧室实施例的方式通过进气口74引导组合的燃烧产物。但是,对于多燃烧室实施例,所述歧管给产生的各冲击波整形,以便各波基本被消除。相对于单燃烧室实施例,多燃烧室实施例的整体效果是渐增空间110中的内部压力的增大。具体地说,若干外燃烧室用于增加易膨胀气体的容积,而且因此增加旋转机械40的内部压力。
图4描述了外燃旋转机械40的一替换实施例。在该实施例中,外燃烧室94由一种成形的进料或其它爆燃循环室98代替。成形的进料或其它爆燃循环室98包括燃料/空气进入装置96和点火装置88中的至少一个。在本发明的这方面中,成形的压缩波或脉冲压缩波在循环室98内传播并被流体地输送环形外壳42中,以由旋转机械40产生功。尽管图4中示出一种成形的进料或其它爆燃循环燃烧室98,和外燃烧室实施例一样,使用数个成形的进料燃烧室98也属于本发明的范围。
外燃烧室94或爆燃循环室98的形状是可变的,而且可以具有任何内部或外部几何形状。可以改变任一室的形状,以得到所需的压力或者压力/压缩波的一些其它所需特性。
图5描述了旋转机械40的剖视图。如图5所示,外壳42围绕膨胀环44并与其支承地接触。同样地,膨胀环突出部50基本与内壳壁60密封地接触。另外,密封气缸62被嵌套在C形内壳切口58中,并在密封气缸接触区域72处与膨胀环44密封地、支承地接触。密封气缸突出部68从密封气缸的相应轴向表面延伸。突出部68分别延伸穿过外壳42和罩43。
图6是一部分旋转机械40的另一剖视图。高速齿轮82被连接到密封气缸突出部68上。高速齿轮82被机械地连接到有齿阀84上。取决于应用场合,高速齿轮82和有齿阀84用作主动齿轮或从动齿轮。例如,当旋转机械被用作内燃机时,由于燃烧,膨胀环42和密封气缸被以逆时针方式驱动。密封气缸62的旋转引起突出部68的旋转,从而驱动高速齿轮82转动。作为主动齿轮的高速齿轮82将旋转位移传递到有齿轮旋转阀84,从而控制阀口86的定时。相反地,当旋转机械40用作流体泵时,有齿阀84控制流体的导入,而且因此阀动作的控制支配内部元件的相对运动。因此,有齿阀84驱动高速齿轮82。
图7提供了环形外壳42和膨胀环44之间的支承关系的另一视图。以相同的方式示出密封气缸62和内壳切口58之间的支承关系。膨胀环齿轮46和一部分膨胀环44被保持在膨胀环座圈48中。膨胀环座圈和环形外壳42的内壁一起将膨胀环保持在外壳内,同时容许环42的自由旋转运动。在内壳切口58、密封气缸62和膨胀环44之间存在类似的关系。
图8还公开了密封气缸62、膨胀环44、高速齿轮82、有齿阀84和阀口86之间的机械关系。膨胀环44和密封气缸62的相对运动分别通过膨胀环齿轮44和密封气缸齿轮66在这两个元件之间传递。同样地,密封气缸62的任何旋转运动通过密封气缸突出部68和高速齿轮82传递到有齿阀84。因此,打开和关闭阀口86的定时与密封气缸62和膨胀环的相对方位有关。
图9描述了本发明的一种多缸实施例。本发明的这方面披露了设置在公共轴线,例如一个密封气缸突出部68上的多个气缸。这样,可以连接任何数量的气缸,以得到所需的动力输出。
本发明的多缸实施例可以预料多种操作状态。例如,一个四缸旋转机械可用一个、两个、三个或所有四个气缸的点火操作-点火状态为动力需求的一种功能。不点火的气缸处于空转模式,其中它们的质量仅增加飞轮质量,而且因此增加旋转机械的角动量。
图10描述了一种旋转机械40(b),每次膨胀环44(b)的转动发生多次循环。该实施例各元件的相互关系基本上和上述的膨胀环42每转一次点火相同。
本实施例描述了膨胀环44(b)每转两个点火周期。在该优先实施例中,这通过横过膨胀环44(b)内径的两个基本相同的密封气缸62(a)和(b)。密封气缸通过密封气缸齿轮66(b)和膨胀环齿轮46(b)彼此机械地连接并和膨胀环机械地连接。各密封气缸62(b)和膨胀环44(b)形成一接触区域72(b)。接触区域72(b)将旋转机械40(b)分为基本相同的作功区域。各作功区域包括一进气口74(b)、点火口76(b)和排气口78(b)。在各作功区域发生一个完整的热循环,膨胀环每转产生两个膨胀或作功冲程。
在图10所示的优先实施例中,点火装置(未示出)的点火是顺序的。因此,当膨胀环突出部50(b)相对于各点火口76(b)到达一逆时针方向的位置时,发生点火。膨胀的燃烧产物驱动膨胀环44(b),直到它们通过排气口78(b)排出。然后膨胀环突出部50(b)通过和密封气缸凹槽64(b)的配合接触部并进入第二点火位置。
可预测,膨胀环44(b)可以具有膨胀环突出部50(b),从而允许燃烧产物的同时点火。此外,同样在本发明的范围之中,还可以增加膨胀环44(b)每转中的作功区域数量。例如,可以加入第三或第四密封气缸来相应地增加作功区域的数量。
                  循环
                 内燃机:
本发明产生一种发动机的新的热循环。这种新的热循环是进气、作功和排气。因此,新的热循环没有压缩冲程,该冲程从***回收能量,同时限制通过预热原始充气所产生的功。同样地,该循环在作功冲程期间通过在大气压力或稍高于大气压力的压力下排出气体而容许充分的气体膨胀。因此,在使循环所产生的功最大化的同时,几乎所有的功率损耗被排除。
下面所列的是关于新发动机循环的更详细说明。另外,在本发明的内燃方式之后,详细地披露本发明的其它方面。
图11披露了发动机循环中接近进气状态时的旋转机械40。示出的膨胀环突出部50相对于进气口74和点火口76处于逆时针方向的位置,限定了空间110和空间112。当所述环突出部50逆时针运动时,发生若干精确的定时事件。密封气缸62被旋转地移动,主要控制有齿阀84的旋转。在一特定的时刻处(如下所述),有齿阀84的旋转使阀口86和进气口74对准。当实现对准时,燃烧产物被引入空间110并随后通过点火装置88点火。
燃烧产物在大气压力或在一种压缩状态下被引入空间110。在优选实施例中,燃烧产物在1~25大气压下被引入。但是,任何其它燃烧产物压力被认为也位于本发明的范围内。当燃烧产物在大气压力下被引入,或者没有预压缩时,它们由通过膨胀环44的逆时针方向位移产生的真空吸入空间110。当燃烧产物在约环境压力下被引入时,旋转机械40的总效率稍降低。但是,当以这种模式操作时,进气口74的直径较大,从而降低流动阻力并容许最多的流体输送到空间110中。在类似的方式下,阀口86可以具有稍增大的尺寸,容许稍长的进气循环。
加压的燃烧产物也可以被引入空间110。在优选的加压实施例中,燃料泵给燃烧产物加压。但是,用于给流体加压的任何其它公知装置也位于本发明的范围内。将燃烧产物引入空间110的全过程基本和上面论述的相同。但是,当燃烧产物在压力下被引入时,燃烧产物的正压力驱动流体进入空间110,而不是上面所述的空间110内产生的负压力。另外,流体传送速率通常比上述真空吸入实施例的快。因此,优选的是,阀口86的相对尺寸比用在上述实施例中的阀口86的尺寸小。
进入空气可以由风扇、鼓风机或增压器(未示出)压缩,以适应较高的循环速度和燃烧压力。通过操纵废气(下面论述)或通过现有技术中公知的其它方式,可以从密封气缸突出部68的旋转得到操作这些装置的动力。和奥托循环发动机截然不同,燃烧产物的加压没有出现在燃烧区域或空间110中;加压在外部进行。这样,在加压过程中没有损失活塞动量,从而产生更有效的发动机循环。
在又一优选实施例中,通过仅通过进气阀吸入空间并使用直接的缸内喷射器(未示出)将燃料直接喷射到空间110中,可以在空间110内部混合燃料和空气。这种燃料的增压喷射和真空吸入空气的组合具有不同于其它实施例的优点。燃料和空气的比值可以被控制,以得到所需的燃烧率。可以通过调节口的尺寸或喷射压力和点火定时(下面论述)控制所述比值。通过在空间110中混合燃烧产物,消除了进气歧管点火的可能性。
进气口74的轴线相对于膨胀环44的轴线的角度可以变化,以提供膨胀环44的附加旋转激励。具体地说,在上述真空吸入实施例或加压实施例中,进气口可以被倾斜设置,以便燃烧产物直接进入膨胀环突出部50的后缘(倾斜的口未示出)。在加压实施例中,通过沿旋转方向导入燃烧产物,大部分燃烧产物和因此产生的燃烧压力波被尽可能靠近突出部50产生。因此,燃烧更有效地将燃烧产物产生的化学能通过膨胀环44转化为机械能。
在优选实施例中,阀机构为一种旋转的有齿阀84。但是,其它阀机构被认为也位于本发明的范围内,例如电磁控制的提升阀、滑阀、舌形阀、片状阀,凸轮致动的鼓形阀、簧片阀、desmobromic凸轮阀、闸门阀、单向阀和球阀。不管所采用的阀的类型,所述阀必须有效地使流体进入空间110。阀的选择主要取决于旋转机械40的应用,例如快速作用阀用于较高速度的应用场合中。
在图11示意表示的旋转状态中,燃烧产物被引入空间110。燃烧产物引入的精确定时由阀控制,但是,最重要的阀设计由相对的进气和膨胀容积-膨胀比控制。具体地说,如图11所示,引入空间110的燃烧产物的容积和通过空间112的可能膨胀值之间的比值定义了膨胀比。在优选实施例中,最好是膨胀容积约为进气容积的3~4倍。这容许可燃气体的几乎完全膨胀,因此使燃烧过程所作的功最大化。但是,独立地选择膨胀比也属于本发明的范围。在该实施例中,燃烧产物在近似大气压力下被排出。但是,由于有时理想的是具有稍加压的废气,所以可以控制膨胀比以得到所需的废气状态。
在引入燃烧产物之后的一控制时刻,进气口74关闭,点火装置88点燃渐增空间中的燃烧产物。导致的燃烧大大增加了渐增空间110内的压力,这迫使膨胀环突出部50远离密封气缸62,开始作功冲程。
燃烧产物点火的时刻也是一变量,可以被控制以得到规定的旋转机械40效率。例如,进气过程早期的点火与相对较小的空间110对应,因此空间110内的较高初始燃烧压力和稍高的膨胀比被得到。相反地,当在所述循环中,旋转机械40的点火时刻被设定得更靠前时,存在较大的空间110。因此,对于同样的机械,得到较低的燃烧压力和稍小的膨胀比。
点火定时还以进气口74和点火口76的相对位置为依据。在所有实施例中,点火口沿旋转方向远离进气口。这样,无论是加压还是未加压的燃烧产物都流经点火口74。在一优选实施例中,当燃烧产物流经点火口74时,控制点火的时间以近似在燃烧产物的中间点火。这样,发生更完全的初始燃烧,提供相对更快的压力增加。但是,可以设置点火定时,以近似在燃烧产物的前沿处点火,或者在燃烧产物的尾部处点火也可以。在各种情况中得到略有不同的燃烧率,产生不同的内部压力。另外,优选的是,点火定时在旋转机械40的操作期间是连续可调的。具体地说,可以根据发动机速度或负载需求提前或延迟定时。
点火定时和相对的口位置、设计及尺寸容许燃烧产物容积独立于密封气缸突出部68的转速需求。具体地说,如上所述,可以采用齿轮传动关系来产生一种和燃烧进料容积无关的突出部68的速度。这样,特定的燃烧进料容积与发动机的尺寸无关。另外,可以控制膨胀环44和突出部68的相对速度,以得到这两个元件之间任何理想的相对速度。
燃料的化学成分也影响旋转机械40的性能,而且因此影响阀机构和点火机构的定时。不同的燃料具有不同的燃烧率。因此,阀机构和点火机构的相对定时将变化以优化效率。优选实施例采用汽油作为燃料源。但是,现有技术中公知的任何其它燃料也可以和该装置一起使用。例如,氢、甲烷、丙烷、煤油、柴油、丁烷、乙炔、辛烷、燃油、所有爆发性气体或可燃液体、碳循环燃料(如煤尘)、可燃金属(如粉末)和其它燃料也属于本发明的范围。
图12示出膨胀环44和内密封气缸62,各自由于渐增空间110内的相关燃烧压力增加而沿逆时针方向转动。在动力阶段,渐增空间110内的内部压力随空间110容积的增加而降低。当膨胀环44旋转时,同样地,密封气缸62被沿逆时针方向驱动。因此,突出部68旋转并在外壳42外侧产生一旋转动力源。
在本发明的优选实施例中需要一种均匀且连贯的膨胀。通常,如上所述,通过控制点火定时、燃料成分和进气口74与点火口76的相对位置实现均匀膨胀或可控氧化率。但是,可以使用本发明的其它设计方面来使可燃气体的有效利用最大化,例如,使用燃烧和膨胀空间110的几何形状设计。
发生燃烧的空间110的几何形状和相应的突出部50的几何形状被如此设计,以便使化学能到机械能的转化最大化。具体地说,附图中所示的优选实施例披露的外壳42内的空间110通常为圆柱状环。设计这种环结构,以不仅容许燃烧产物的平稳进入和分散,而且容许最低限度的膨胀区域。渐增空间110的平滑膨胀区域促使了点火期间火焰的有效传播率和膨胀期间气体的理想涡流。膨胀环44的单向旋转和空间110的相对平滑内表面使膨胀燃烧产物的惯性损失最小。另外,优选实施例的几何形状通过容许燃烧期间的平滑流体移动来防止动力回收多次爆燃。空间110和突出部50的任何其它几何形状被认为属于本发明的范围。
图13披露了膨胀循环中的一阶段。在此位置,膨胀循环是几乎完整的,而且几乎所有可得到的功被从膨胀气体获得。取决于所需采用的实施例、膨胀比和使用的燃料,渐增室110中的压力近似为环境压力或高于环境压力。对于在近似环境压力下具有膨胀气体的实施例,基本所有可得到的膨胀功被通过这种新的热循环回收。
在某优选实施例中,理想的是采用一种膨胀循环,其中当排气循环开始时,燃烧产物位于环境压力之上。这样,出来驱动密封气缸突出部68的旋转运动,废气可以用来作功。例如,增压的废气可以被导入涡流增压器或其它空气泵(未示出),它们反过来将在燃烧产物进入空间110之前给燃烧产物加压。同样地,废气可以驱动涡轮(未示出)以产生电能,或者被用来和其它结构(未示出)组合成为一种热源。
自然地,在突出部50前沿之前的任何流体将通过旋转膨胀环被驱出空间112。因此,环境压力下的膨胀产物就在排出之前被稍加压。但是,可以预料,控制排气口的尺寸和几何形状来实现所需的排气压力。例如,在需要废气处于稍高于环境压力的压力下时,可以采用较大的、较少限制性的排气口78,或者采用若干口78(未示出)。相反地,当需要较大程度加压的废气时,口的尺寸可以较小。
图14示出本发明的内燃实施例的完成的热循环。此时,膨胀环突出部52和内部的密封气缸凹槽48机械地配合。从该位置,又开始新的循环。
这种新的热循环没有影响典型奥托循环发动机效率的惯性损失变化。另外,没有对燃烧产物的重要预热,从而容许该循环从燃烧过程获得最大的膨胀功。同样地,没有和燃烧产物的压缩相关的非常小的损失。
           脉动旋转燃烧发动机的分析
对新的热循环进行单独的分析,证明其提高的效率。
综述:已经在旋转脉动燃烧发动机上进行了热循环分析。在具有可燃混合物进料的预压缩和没有预压缩的实施例上进行分析。特别是,分析一种概念,即为何燃烧后的容积压缩比超过燃烧前的容积压缩比。用往复(或汪克尔)火花点火内燃机的典型奥托循环进行比较。内燃(IC)机受这种设计,即压缩容积比等于膨胀比的限制。脉动旋转燃烧发动机的固有优点是膨胀比可以超过压缩比,容许增加的热能到有用功的转化。
分析:典型的热循环分析是调查用于可燃混合物进料的压力(p)-容积(F)曲线图的轨迹。图上的轨迹线内的面积为从原始可燃混合物进料得到的功的大小。即,功W=□pdV。功和与进料相关的化学能的大小的比值为热效率(乘以100%之后)。
该循环包括图15中点1所示的进气,压缩(轨迹12),燃烧(轨迹2-3),膨胀(轨迹3-4或3-5,期间取得功),和排气(轨迹4-1或点5)。压缩期间在进料上施加功,但是它比膨胀期间得到的功小,因此净功实际上为正。在压缩和膨胀冲程期间,没有热量增加或减少,因此进行绝热过程。从而量
              pvγ                             1)
在各过程中保持不变;γ为1.36~1.40。进料中重量或容积占主要部分的主要是空气;室温下的空气具有1.40的γ值。温度增加时它会稍微减少,因此我们可以预料压缩期间它在1.40~1.36之间变化。在我们的计算中取一平均值。燃烧产物气体将具有仍较低的γ值,原因有两方面:较高的温度和三原子分子如二氧化碳和水蒸汽的存在。对于产物气体,可以预料γ的平均值约为1.3。
在模拟循环中,进气过程包括气体在标准大气压p1和容积V1下的进入。压缩(轨迹1-2)包括根据绝热定律增加压力和温度并减小容积。然后燃烧(轨迹2-3)在具有增加的压力和温度的恒定容积下出现。膨胀(轨迹3-4或3-5)包括根据绝热定律通过降低压力和温度来增加容积。最后排气以仍处于升高温度的气体出现(点4或5)。如果排气容积等于进气容积,那么排气开始时的压力比大气压力低。由于排气时的压力等于大气压力,所以排气容积必须比进气容积大得多。
在比较各种发动机循环时,我们将使用相同的燃料,在燃料和空气的化学计量比下,每m质量的可燃混合物具有化学能Q。实际值6.50被作为量Q/(mcpT1),其中cp和T1为规定的热量和进气温度。这意味着进气混合物的化学能(Q)为原始热能(mcpT1)的6.5倍。当发生燃烧时,化学能被转化为热能,因此
  Q=mcp(T3-T2)=mcp(T2′-T1)                2)
注意T1′=T1,其为大气中空气的通常温度。
我们设想一种理想气体,从而我们可以采用定律
       pV=mRT                               3)
来论述压力、容积和温度之间的关系。M为进料的质量,R为特定的气体常数。通过公式(2)和(3),我们可以确定定容过程中的相对压力增。
p 3 - p 2 p 2 = Q mc p T 2 或                 4a)
p 2 ' - p 1 p 1 = Q mc p T 1 = 6.5 - - 4 b )
公式3)、4a)和4b)可以被结合以给出
p 3 - p 2 p 2 ' - p 1 = V 1 V 2 = CR - - 5 )
其中容积比CR为通常所说的压缩比。通常,用于汽车发动机的CR值为9~11,而动力工具的CR值通常为7~8。
我们可以使用用于压缩过程的公式(1)来表示
       p1V1 γ=p2V2 γ                             6a)
或者
p 2 p 1 = CR γ - - 6 b )
注意公式(4b)和(6b)表示CR=4.22的值或者较大的值将使压力p2比值p2′大,如图15所示。公式(6a)中的p和V可以具有沿图15中轨迹1-2的任何值。
在膨胀过程中,公式(1)可以应用并产生
    p3V3 γe=p4V4 γe=p5V5 γe=pVγe               7)
其中p和V可以具有沿图15中轨迹3-4-5的任何值。γe为特定的废气热量的比值,如前所述,其可以具有和用于进气的γ值不同的值。
热循环每次进料所作的净功W为膨胀期间获得的功减去压缩期间作用在进料上的功。对于奥托循环,我们具有
W IC = ∫ V 3 V 4 pdV - ∫ V 1 V 2 pdV - - 8 )
即,净功等于图15的封闭轨迹1-2-3-4-1所围起的面积。公式(7)可以被用来表示p3、V1和V的关系。然后使用积分法计算。
我们得到的经典内燃机奥托循环的结果为
W IC p 1 V 1 = 1 γe - 1 [ 1 + Q mc p T 1 ( CR ) γ - 1 ] [ ( CR ) γ - 1 - ( CR ) γ - γe ] - 1 γ - 1 [ ( CR ) γ - 1 - 1 ] - - 9 )
对于提出的旋转发动机,净功将由下面的公式给出
W RE = ∫ V 3 V 5 pdV - ∫ V 1 V 2 pdV - p 1 ( V 5 - V 1 ) - - 10 )
即,净功等于由轨迹1-2-3-5-1围绕的图15中的面积。现在,再次使用公式7)和8),可以进行积分产生
W RE p 1 V 1 = 1 λe - 1 ( 1 + Q mc p T 1 ( CR ) γ - 1 ) ( CR ) λe - 1 - 1 ( γ - 1 ) [ ( CR ) γ - 1 - 1 ] + 1 - - 11 )
- ( 1 + Q mc p T 1 ( CR ) γ - 1 ) ( 1 - γe ) / γe CR [ γ / γe - 1 ]
显然,WRE值将超过由图15中轨迹4-5-1-4包围的面积WIC的大小。
对于经典的奥托循环,膨胀终了的容积等于进气容积;即V4=V1。对于旋转发动机循环,它可以被表示为
V 5 V 1 = ( 1 + Q m c p T 1 CR γ - 1 ) 1 γe CR γ / γe - 1 - - 12 )
因此,膨胀终了的容积可以比排气容积大得多。
可以看出,没有预压缩,通过旋转发动机得到的功为图15中由轨迹1′-2′-3′-1′包围的面积。特别是,我们得到
W NC p 1 V 2 = 1 γe - 1 [ 1 + Q mc p T 1 ] [ 1 - ( 1 + Q mc p T 1 ) ( 1 - γe ) / γe ] - [ ( 1 + Q mc p T 1 ) 1 / γe - 1 ] - - 13 )
在公式(9)、(11)和(13)中,净功以一种形式存在于公式的左侧,其中它被特定发动机的进气压力和进气容积的乘积除(或标准化)。发动机的功将和各进气充量容积成比例地增加。因此自然地,较大的发动机将作较多的功。发动机的功率通过将W乘以发动机每转的点火数(旋转发动机为1,往复四冲程发动机为1/2),然后再乘以每单位时间的发动机转数预测。如果功W以尺磅单位给出,发动机速度以rpm给出,那么通过将乘积除以33,000可以得到理论功率额定值。即
HP RE = W · rpm 33000 - - 14 a )
HP IC = W · rpm / 2 33000 - - 14 b )
注意这些为没有考虑热损失和机械损失的理想赋值。但是它们为有用的公式,用于进行首次估算,以比较不同的发动机。
公式(9),(11)和(13)右侧可以在仅指定我们已经讨论过的四个值:Q/mcpT1,CR,γ和γe之后计算。
Figure A0281296900271
结果:对于表中给出的七个例子进行计算。对于三种发动机循环进行比较:用于往复发动机的奥托循环,具有和奥托循环相同压缩比的旋转发动机循环,和没有预压缩但是具有其它两种循环的相同参数的旋转发动机循环。表中给出了各循环的输出功和旋转发动机循环的膨胀容积-进气容积比。从表中可以看出相对四种输入参数变化的结果灵敏度。
通过比较例1、2和3可以看出相对压缩比的灵敏性。虽然输出功随压缩比增加,但是旋转发动机循环(具有预压缩)的优点随压缩比增加而减少。另外,旋转发动机循环具有明显的优点。多20%的输出功优点伴随着较大容积的缺点。
对于可燃混合物进料的理想配比混合气,Q/mcpT1的值通常为6.5。非理想配比混合气被在例4种模拟。可以看到输出功的降低,但是当比较例1和4时,旋转发动机的相关优点大约相同。
通过比较例1,5,6,和7可以看出相对特定热量值的敏感度。γ和γe的增加将使两种循环的输出功都降低,但是保持旋转发动机的相关优点。
参照输出功到功率的转化,对于在大气压力下具有1升(约61立方英寸)可燃进气充量的3000rpm发动机,公式14给出值W/p1V1=13,产生88.3马力的功率。当然,这是一种没有考虑热损失和机械损失的理论值。
旋转发动机及其热循环的另一优点是机械40在不同构造下工作的能力。所述机械可用作外燃旋转发动机、流体压缩机、真空泵、驱动涡轮机,和用于可膨胀气体或压缩流体的驱动涡轮机。下面给出各种构造的详细论述。
外燃机
图3描述了一种可能的外燃发动机构造。内燃发动机和外燃发动机的唯一显著区别是燃烧室94的位置。在这种模式中,燃烧在外壳42外部的外燃室94中发生,其中由燃烧产生的膨胀气体通过进气口74进入渐增空间110。另外,由于燃烧发生在外壳之外,所以点火口76或者被塞紧或者不存在。另外,图11至14中示出的各种旋转状态和上述内部燃烧构造中的相同。另外,在所有例子中,燃料和空气可通过传统装置如化油器或口型燃料喷射器在外部混合。
具有成形的进料或爆燃循环室的外燃机
图4描述了一种具有成形的进料或爆燃循环室结构的可能外燃发动机。这种结构类似于上述的标准外燃装置。但是,这里,一种成形的进料或其它爆燃循环室98产生一种压缩波来驱动旋转机械40。由于压缩波传播所产生的极高压力,旋转机械40被以比典型的奥托循环发动机中可能的压力高的多的压力驱动。和外部燃烧结构一样,图11至14示出本发明的一完整热循环。
在上面讨论的外部燃烧例子中,可以使用不止一个燃烧室。这对于通过设置两个彼此相对的室并同时点火来消除爆燃或成形的进料冲击波是有益的。
另外,在上面所述的所有燃烧发动机中,所述发动机可以被连接其它发动机上以产生多缸发动机。所述发动机能在低负载条件下不需要时中断所述气缸,并在负载条件增大时增加气缸数-其它发动机上不可得到的一种燃料节约选择。当不点火时,未点火的发动机变成空转。
气体或空气压缩机
在该例中,主动气缸变为内密封气缸44,其通过从外部施加到密封气缸突出部68上的力旋转,而且一排气阀(未示出)控制排气口78。另外,进气口持续打开。如图11至14中所示,密封气缸62和膨胀环被逆时针方向驱动。旋转和关闭的排气阀压缩渐减空间112中的流体产物,同时在新的进料中在渐增空间110中吸入原料。在大约图13所示的时刻,排气阀打开,容许被压缩的流体从排气口78排出。在开始下一循环期间,新充入的气体通过进气口74引入。通过串联连接不止一个压缩机可以得到更大的压缩气体容积,其中一个压缩机的排气变为另一个压缩机的进气。这样,可得到非常高的压缩值。
真空泵
图11至14示出一种真空泵循环。真空泵循环类似于上述气体或空气压缩机循环,只是进气阀84位于和排气口(和空气压缩机构造中的相同)相对的进气口上。这样,进气阀84保持进气口74关闭,直到膨胀环突出部68逆时针方向经过进气口74的时刻为止,在该时刻,进气阀84打开进气口74,而且膨胀环的运动在渐增空间110中产生一真空或负压,从而通过进气口54抽入流体产物。和上述空气压缩机构造相同,通过将若干气缸连接在一起可以得到更大的容积。
流体或水泵(压力式)
这种结构以和上述空气压缩机相同的方式作用。但是,这种结构中的流体为液体,而且因此通常是不可压缩的。因此,流体将以单位容积排出气缸进入一池或室(未示出),以被液位上方的压缩气体加压。
流体或水泵(吸入式)
以和上述真空泵类似的方式,该旋转机械能用作流体或水泵(吸入式)。在这种模式下,设置进给阀,以控制流体产物(液体)进入内部空间的定时。
用于可膨胀气体或空气的驱动涡轮机
旋转机械40能被用作用于可膨胀(压缩)气体或空气的涡轮机。本发明的这方面容许旋转机械40被用作一种脉动或一种经济型驱动涡轮机。在这种模式中,当膨胀环突出部68经过进气口74时,气体或空气被引入渐增空间110中。气体通过进气阀84被引入。被引入的气体被压缩,而且每循环进入一定单元容积的气体。进入渐增空间110的压缩气体迫使膨胀环44和内部密封气缸62沿顺时针方向移动,从而当膨胀环44运动时,渐增空间110尺寸增大。当膨胀环完成一整个循环并经过排气口78时,气体或空气的容积回至大气压下。因此,实现了作用到活塞的全部功。在这种结构中,旋转动力来自密封气缸突出部68并施加到外部元件以作功。
用于液体(加压的)的驱动涡轮
这类似于上述用于可膨胀气体或空气的驱动涡轮机。当膨胀环突出部68经过进口74时,加压液体被通过进给阀84喷入。该进给阀被打开,而且由于液体的普遍不可压缩性,该阀在整个循环中保持打开。图4表示一种有齿阀84,其具有控制进入液体的细长阀口86。在这种结构中,加压液体在整个循环中推动膨胀环44,直到它被排出出口78。
上述的组合
上述结构可以被组合以产生多种结果。例如,可以组合多个密封气缸,一个为另一个的进气提供一定程度的压缩。另外,气体压缩机可以和流体压缩机组合。实际上上述结构的任何组合都被认为属于本发明的范围。
同样,本申请中的附图仅用作示例目的,而不是以任何方式限制任何旋转元件的几何形状或相对位置。任何几何形状都被认为属于本发明的范围。

Claims (51)

1.一种旋转机械,包括:
一基本环形的外壳,其在外壳外壁和外壳内壁之间限定一室,所述外壳在其端部具有一罩;
一可旋转地设置在所述室内的膨胀环;
一机械地连接到膨胀环上的密封缸,其中密封缸和膨胀环形成一基本密封的接触区域;
一进口,用于容许第一产物进入所述室中;和
一出口,用于容许第二产物从所述室排出。
2.如权利要求1所述的旋转机械,还包括一与所述室相联的点火器,用以点燃第一产物。
3.如权利要求2所述的旋转机械,还包括一膨胀环突出部,该突出部从膨胀环径向地延伸以可密封地接合内壁。
4.如权利要求3所述的旋转机械,其特征在于:密封缸形成有一接收所述膨胀环突出部的凹槽。
5.如权利要求4所述的旋转机械,其特征在于:密封缸被机械地连接到膨胀环上,以便一个的相关运动被传递给另一个。
6.如权利要求5所述的旋转机械,其特征在于:至少一个密封缸突出部通常从密封气缸穿过外壳轴向地延伸,以将旋转运动传递给密封缸或从从密封缸传递旋转运动。
7.如权利要求3所述的旋转机械,其特征在于:所述内壁、膨胀环、接触区域和膨胀环突出部的后缘限定一位于所述室内的空间。
8.如权利要求7所述的旋转机械,其特征在于:在进料时,所述空间从引入控制装置接收产物。
9.如权利要求8所述的旋转机械,其特征在于:所述空间中接收的产物是将要在该空间内被点火的燃烧产物。
10.如权利要求8所述的旋转机械,其特征在于:所述空间中接收的产物是从外部燃烧室中接收的膨胀燃烧气体。
11.如权利要求8所述的旋转机械,其特征在于:所述空间中接收的产物是由成形进料(装药)或爆燃循环燃烧室产生的压缩波。
12.如权利要求8所述的旋转机械,其特征在于:所述空间中接收的产物是可压缩流体。
13.如权利要求8所述的旋转机械,其特征在于:所述空间中接收的产物是通过膨胀环和密封缸的旋转运动导入所述空间中的真空产物。
14.如权利要求8所述的旋转机械,其特征在于:所述空间中接收的产物是被导入所述空间以驱动膨胀环和密封缸的旋转运动的加压流体。
15.一种燃烧发动机热循环,包括:
一进气冲程,其中燃烧产物被引入一空间中,点火之前在该空间中没有被压缩;
一作功冲程;和
一排气冲程。
16.如权利要求15所述的燃烧发动机热循环,其特征在于:燃烧产物约在环境压力下被引入。
17.如权利要求15所述的燃烧发动机热循环,其特征在于:燃烧产物在比环境压力大的压力下被引入。
18.如权利要求15所述的燃烧发动机热循环,其特征在于:动力冲程容积约等于进气室容积。
19.如权利要求15所述的燃烧发动机热循环,其特征在于:动力冲程容积比进气室容积大。
20.如权利要求15所述的燃烧发动机热循环,其特征在于:动力冲程容积约等于燃料空气混合物的膨胀容积或比它大。
21.如权利要求15所述的燃烧发动机热循环,其特征在于:排气冲程压力约为环境压力。
22.如权利要求15所述的燃烧发动机热循环,其特征在于:排气冲程压力高于环境压力。
23.如权利要求15所述的燃烧发动机热循环,其特征在于:所述热循环与一种内燃机对应。
24.如权利要求15所述的燃烧发动机热循环,其特征在于:所述热循环与一种外燃机对应。
25.如权利要求15所述的燃烧发动机热循环,其特征在于:所述热循环与一种成形装药或爆燃循环燃烧发动机对应。
26.一种使用旋转机械产生旋转动力的方法,包括:
点燃燃烧产物,以通过燃烧产物的膨胀产生增大的压力;
将增大的压力导入可旋转的膨胀环;
将膨胀环旋转一段和增加压力成比例的距离,以容纳膨胀的燃烧产物;和
排出燃烧产物。
27.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中所述燃烧产物约在环境压力下被引入。
28.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中所述燃烧产物约在高于环境压力的压力下被引入。
29.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中动力冲程容积约等于进气室容积。
30.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中动力冲程容积大于进气室容积。
31.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中动力冲程容积约为进气室容积的3到4倍。。
32.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中排气冲程压力约为环境压力。
33.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中排气冲程压力高于环境压力。
34.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中热循环和一种内燃机对应。
35.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中热循环和一种外燃机对应。
36.如权利要求27所述的使用旋转机械产生旋转动力的方法,其中热循环和一种成形装药或爆燃循环燃烧发动机对应。
37.一种旋转机械,包括:
一基本环形的外壳,其在外壳外壁和外壳内壁之间限定一室,所述外壳在其端部具有一罩;
一可旋转地设置在所述室内的膨胀环;
一机械地连接到膨胀环上的密封缸,其中密封缸和膨胀环形成一基本密封的接触区域;
一进口,用于容许第一产物进入所述室中,所述第一产物具有一进气容积和一膨胀容积;和
一出口,用于容许第二产物从所述室排出;
其特征在于:所述膨胀容积和进气容积的比值是这样的,以致于第二产物通过出口的排出发生在近似环境压力下。
38.如权利要求37所述的旋转机械,还包括一个与进口相联的阀,用以控制第一产物的引入。
39.如权利要求38所述的旋转机械,还包括一与所述室相联的点火器,用以点燃第一产物。
40.如权利要求39所述的旋转机械,还包括一膨胀环突出部,该突出部从膨胀环径向地延伸以可密封地接合所述内壁。
41.如权利要求40所述的旋转机械,其特征在于:所述密封缸形成有一接收所述膨胀环突出部的凹槽。
42.如权利要求41所述的旋转机械,其特征在于:所述密封缸被机械地连接到膨胀环上,以便一个的相关运动被传递给另一个。
43.如权利要求42所述的旋转机械,其特征在于:至少一个密封缸突出部从密封缸穿过外壳基本轴向地延伸,以将旋转运动传递给密封缸或从其传递旋转运动。
44.如权利要求40所述的旋转机械,其特征在于:所述内壁、膨胀环、接触区域和膨胀环突出部的后缘限定一位于所述室内的空间。
45.如权利要求44所述的旋转机械,其特征在于:在进料时,所述空间从引入控制装置接收产物。
46.如权利要求45所述的旋转机械,其特征在于:所述空间中接收的产物是将要在该空间内被点火的燃烧产物。
47.如权利要求45所述的旋转机械,其特征在于:所述空间中接收的产物是从外部燃烧室中接收的膨胀燃烧气体。
48.如权利要求45所述的旋转机械,其特征在于:所述空间中接收的产物是由成形进料或爆燃循环燃烧室产生的压缩波。
49.如权利要求45所述的旋转机械,其特征在于:所述空间中接收的产物是可压缩流体。
50.如权利要求45所述的旋转机械,其特征在于:所述空间中接收的产物是通过膨胀环和密封缸的旋转运动导入所述空间中的真空产物。
51.如权利要求45所述的旋转机械,其特征在于:所述空间中接收的产物是被导入所述空间以驱动膨胀环和密封缸的旋转运动的加压流体。
CNB028129695A 2001-05-07 2002-05-07 旋转机械 Expired - Fee Related CN1257345C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/850,937 US6484687B1 (en) 2001-05-07 2001-05-07 Rotary machine and thermal cycle
US09/850,937 2001-05-07

Publications (2)

Publication Number Publication Date
CN1520491A true CN1520491A (zh) 2004-08-11
CN1257345C CN1257345C (zh) 2006-05-24

Family

ID=25309494

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028129695A Expired - Fee Related CN1257345C (zh) 2001-05-07 2002-05-07 旋转机械

Country Status (11)

Country Link
US (8) US6484687B1 (zh)
EP (1) EP1390609A2 (zh)
JP (1) JP2004529285A (zh)
KR (1) KR20040028754A (zh)
CN (1) CN1257345C (zh)
AU (1) AU2002309658A1 (zh)
BR (1) BR0209480A (zh)
CA (1) CA2446833A1 (zh)
EA (1) EA006116B1 (zh)
MX (1) MXPA03010203A (zh)
WO (1) WO2002090738A2 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233782A (zh) * 2012-09-07 2013-08-07 胡武琼 旋塞式旋转压缩膨胀机构
CN105143614A (zh) * 2013-03-15 2015-12-09 高科能源有限公司 旋转式发动机、气体压缩机及液体泵
WO2016123930A1 (zh) * 2015-07-28 2016-08-11 刘正锋 旋转式发动机
CN107654260A (zh) * 2016-07-26 2018-02-02 艾可勒工业电子有限公司 齿轮流体机

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080000215A1 (en) * 2000-03-02 2008-01-03 Duncan Ronnie J Engine systems and methods
US6886528B2 (en) * 2002-04-16 2005-05-03 Richard G. James Rotary machine
US7314035B2 (en) 2002-09-09 2008-01-01 Ibrahim Sinan Akmandor Rotary vane engine and thermodynamic cycle
DE10258363A1 (de) * 2002-12-12 2004-06-24 Daimlerchrysler Ag Vorrichtung zur Luftversorgung von Brennstoffzellen
US20040162590A1 (en) * 2002-12-19 2004-08-19 Whitehurst Todd K. Fully implantable miniature neurostimulator for intercostal nerve stimulation as a therapy for angina pectoris
US7451738B2 (en) * 2004-05-25 2008-11-18 Perfect Motor Corp. Turbocombustion engine
US7398757B2 (en) * 2004-08-04 2008-07-15 Bowley Ryan T Toroidal engine method and apparatus
JP2008516148A (ja) * 2004-10-07 2008-05-15 ジャイロトン・インコーポレーテッド マルチローブ回転運動の非対称圧縮/膨張機関
MX2008000036A (es) * 2005-07-07 2008-03-19 Chuy-Nan Chio Dispositivo de generacion de energia cinetica.
US20090126681A1 (en) * 2005-07-29 2009-05-21 Thomas Cobb Rotary Internal Combustion Engine
US20070137609A1 (en) * 2005-12-21 2007-06-21 Morse Dewey J True rotary internal combustion engine
US7721685B2 (en) * 2006-07-07 2010-05-25 Jeffrey Page Rotary cylindrical power device
US20100236522A1 (en) * 2006-07-07 2010-09-23 Jeffrey Page Rotary Cylindrical Device With Coupled Pairs of Pistons
US7963096B2 (en) * 2006-11-02 2011-06-21 Vanholstyn Alex Reflective pulse rotary engine
US20090133664A1 (en) * 2006-12-14 2009-05-28 Robert Jackson Reid Extreme efficiency rotary engine
JP4815012B2 (ja) 2007-04-09 2011-11-16 セト、 チャンダン クマール 分離サイクル可変容量火花点火ロータリー機関
US8113805B2 (en) 2007-09-26 2012-02-14 Torad Engineering, Llc Rotary fluid-displacement assembly
BRPI0704879B1 (pt) * 2007-10-17 2012-10-16 motor de combustão interna, do tipo motor rotativo, provido de diferenciada concepção, durabilidade e desempenho, aplicado em toda sorte de veìculos automotores ou equipamentos industriais.
US20100275876A1 (en) * 2009-05-04 2010-11-04 Engines Unlimited, Inc. Extreme efficiency rotary engine
US8539931B1 (en) 2009-06-29 2013-09-24 Yousry Kamel Hanna Rotary internal combustion diesel engine
US20120067324A1 (en) * 2010-08-31 2012-03-22 Denny Cleveland Williams Toroidal internal combustion rotary engine
CN103518035B (zh) * 2011-03-23 2015-08-26 石井猛 三冲程、六冲程火箭喷气发动机
WO2014146190A1 (en) * 2013-03-21 2014-09-25 James Klassen Slurry pump
US11067076B2 (en) * 2015-09-21 2021-07-20 Genesis Advanced Technology Inc. Fluid transfer device
WO2021216367A1 (en) * 2020-04-20 2021-10-28 Duplicent, Llc Rotational engine

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US71786A (en) * 1867-12-03 Improvement in eotary pumps
DE180927C (zh) *
US1721855A (en) 1929-07-23 Motob
US230862A (en) 1880-08-10 Xx pe peters
US6962A (en) 1849-12-18 thompson
US726896A (en) * 1901-11-23 1903-05-05 Pontus Erland Fahlbeck Rotary engine.
US805552A (en) * 1904-07-02 1905-11-28 Leopold Vom Hofe Rotary pump.
US1061107A (en) 1911-12-19 1913-05-06 Carl F Nordmark Pump and prime mover.
US1235786A (en) 1916-06-27 1917-08-07 James A Fleming Rotary machine.
US1846298A (en) 1926-06-24 1932-02-23 Alcznauer Geza Rotary engine
US2018391A (en) * 1933-11-18 1935-10-22 Joseph E Whitfield Rotary compressor unit
BE546159A (zh) 1955-04-01
FR1192157A (fr) 1956-11-14 1959-10-23 Inst Francais Du Petrole Moteurs rotatifs perfectionnés
US2939438A (en) 1957-11-12 1960-06-07 Amanda Cherry Rotary internal combustion chamber
US3040530A (en) 1959-05-14 1962-06-26 Yalnizyan Puzant Rotary external combustion engine
US3137280A (en) 1961-06-01 1964-06-16 Melvin J Jacobson Rotary engine
US3256867A (en) * 1962-08-27 1966-06-21 John L Betzen Rotary combustion engines
US3311094A (en) * 1964-08-18 1967-03-28 Kehl Henry Rotary engine
US3479923A (en) 1967-06-12 1969-11-25 Guy H Tripp Hydraulic transmission
US3548789A (en) * 1969-02-13 1970-12-22 John O Creek Rotary engine
US3621820A (en) 1970-01-12 1971-11-23 Floyd F Newsom Rotary internal combustion engine
US3810721A (en) * 1971-08-16 1974-05-14 Consulta Treuhand Gmbh Rotary piston machine with bypass regulation
US3773022A (en) * 1972-01-17 1973-11-20 C Constantinou Rotary engine
US3789809A (en) 1972-05-01 1974-02-05 E Schubert Rotary internal combustion engine
US3850150A (en) * 1972-09-05 1974-11-26 J Plevyak Spur piston motion rotary combustion engine
GB1501385A (en) 1974-02-01 1978-02-15 Svenska Rotor Maskiner Ab Rotary internal combustion engine
US4235217A (en) * 1978-06-07 1980-11-25 Cox Robert W Rotary expansion and compression device
EP0020806A1 (fr) * 1979-06-29 1981-01-07 Christian Vialette Moteur 3 temps
GB2072750B (en) * 1980-03-28 1983-10-26 Miles M A P Rotary positive-displacement fluidmachines
US4516536A (en) * 1981-05-06 1985-05-14 Williams Gerald J Three cycle internal combustion engine
SE8104102L (sv) * 1981-07-01 1983-01-02 Widen K O M 3-takts kompoundmotor
EP0088288A1 (de) * 1982-03-03 1983-09-14 Wankel, Felix, Dr. h.c. Innenachsige Rotationskolbenmaschine
US4510894A (en) * 1982-04-12 1985-04-16 Williams Gerald J Cam operated engine
US4895117A (en) 1982-07-13 1990-01-23 Yang Tai Her Internal combustion engine
GB2133473B (en) 1983-01-10 1987-07-08 George Anthony Fairbairn Rotary positive displacement
US4457680A (en) 1983-04-27 1984-07-03 Paget Win W Rotary compressor
DE3321461A1 (de) 1983-06-14 1985-04-04 Arapis, Ioannis, Athen Innenververbrennungs-satellitmotor mit rotierenden kolben
CH663446A5 (de) 1983-10-10 1987-12-15 Wankel Felix Aussenachsige rotationskolbenmaschine.
GB2161860B (en) * 1984-07-19 1988-08-03 John Harres Rotary internal combustion engine
AT382690B (de) * 1984-12-14 1987-03-25 Voest Alpine Ag Innenzahnradpumpe
US4633829A (en) 1985-09-27 1987-01-06 Kollen Richard H Rotary internal combustion engine
DE3922574C1 (en) * 1989-07-08 1990-05-17 Taeuber, Josef, Dr., 7045 Nufringen, De Toroidal piston IC engine - incorporates separate chamber for preparation of fuel-air mixture
JPH03130531A (ja) * 1989-10-16 1991-06-04 Yoshihisa Hamano 2層式車型ロータリーエンジン
US5071328A (en) 1990-05-29 1991-12-10 Schlictig Ralph C Double rotor compressor with two stage inlets
US5090501A (en) * 1990-09-11 1992-02-25 Mcnulty Norbert E Rotary pump or motor apparatus
US5579733A (en) 1991-05-10 1996-12-03 Tour; Benjamin Rotary engine with abutments
GB9222227D0 (en) 1992-10-22 1992-12-02 Boc Group Plc Improvements in vacuum pumps
US5466138A (en) 1993-07-22 1995-11-14 Gennaro; Mark A. Expansible and contractible chamber assembly and method
US5364249A (en) 1993-10-28 1994-11-15 Link Donald M Rotary steam engine having rotor side plates
US5816789A (en) * 1995-07-18 1998-10-06 Johnson; David W. Rotary pump/engine
DE19606541A1 (de) * 1996-02-22 1996-07-11 Kurt Huber Drehverschluß-Bogenverbrennungsraum-Kolbenrotor-Motor (DBK-Motor)
FR2757568A1 (fr) * 1996-12-24 1998-06-26 Defarge Alexis Moteur thermique 3 temps a 4 ou 6 cylindres opposes 2 a 2 avec un vilebrequin contrarotatif excentre et une distribution automatique
US6065874A (en) 1997-08-26 2000-05-23 Tour; Benjamin Linear bearing
US5967103A (en) * 1998-04-08 1999-10-19 Kuperman; Aryeh Three-cycle stroke two internal combustion engine
WO2002063140A2 (en) * 2001-02-08 2002-08-15 Outland Technologies (Usa), Inc. Rotary positive displacement device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103233782A (zh) * 2012-09-07 2013-08-07 胡武琼 旋塞式旋转压缩膨胀机构
CN103233782B (zh) * 2012-09-07 2015-09-09 胡武琼 旋塞式旋转压缩膨胀机构
CN105143614A (zh) * 2013-03-15 2015-12-09 高科能源有限公司 旋转式发动机、气体压缩机及液体泵
CN105143614B (zh) * 2013-03-15 2019-05-28 高科能源有限公司 旋转式发动机、气体压缩机及液体泵
WO2016123930A1 (zh) * 2015-07-28 2016-08-11 刘正锋 旋转式发动机
CN106795810A (zh) * 2015-07-28 2017-05-31 刘正锋 旋转式发动机
CN107654260A (zh) * 2016-07-26 2018-02-02 艾可勒工业电子有限公司 齿轮流体机
CN107654260B (zh) * 2016-07-26 2020-06-05 艾可勒工业电子有限公司 齿轮流体机

Also Published As

Publication number Publication date
KR20040028754A (ko) 2004-04-03
US6684825B2 (en) 2004-02-03
EP1390609A2 (en) 2004-02-25
US20030084657A1 (en) 2003-05-08
US6484687B1 (en) 2002-11-26
US6782866B2 (en) 2004-08-31
US20030097831A1 (en) 2003-05-29
US20040187839A1 (en) 2004-09-30
US6672275B2 (en) 2004-01-06
US20040159306A1 (en) 2004-08-19
WO2002090738A2 (en) 2002-11-14
EA006116B1 (ru) 2005-08-25
MXPA03010203A (es) 2004-05-21
CN1257345C (zh) 2006-05-24
WO2002090738A3 (en) 2003-03-13
BR0209480A (pt) 2005-02-01
AU2002309658A1 (en) 2002-11-18
US20020179036A1 (en) 2002-12-05
JP2004529285A (ja) 2004-09-24
US20050109310A1 (en) 2005-05-26
US20030116119A1 (en) 2003-06-26
CA2446833A1 (en) 2002-11-14
US20050284440A1 (en) 2005-12-29
EA200301220A1 (ru) 2004-08-26

Similar Documents

Publication Publication Date Title
CN1257345C (zh) 旋转机械
CN100432387C (zh) 双向作动活塞组件
CN1059486C (zh) 具有高增压比的四冲程变压缩比内燃机
CN1094558C (zh) 旋转运动机构及发动机
CN109139248B (zh) 一种高增压双缸四活塞三曲轴直线完全对称二冲程发动机
CN1662732A (zh) 产生连续转矩的相反置换的非对称旋转式发动机
JPH09112289A (ja) ターボコンパウンドアークピストンエンジン
CN101205812A (zh) 四活塞缸体旋转发动机
JP2010285977A (ja) 水素専用コンプレッサー内蔵式6行程エンジン
CN1846046A (zh) 往复式内燃机
CN1049039C (zh) 一种改进型内燃机
CN1668832A (zh) 往复运动式内燃机
CN1113150C (zh) 旋转式二冲程发动机
CN201013447Y (zh) 双轴压燃分缸式旋转活塞内燃发动机
CN2416232Y (zh) 四行程引擎
CN2459446Y (zh) 四冲程发动机
RU2235214C2 (ru) Способ работы двигателя внутреннего сгорания (варианты)
CN116608042A (zh) 一种内燃机的两冲程方法
CN2426016Y (zh) 四冲程内燃机
US20050072150A1 (en) Flywheel combustion engine
CN1317631A (zh) 变压缩比绝热陶瓷燃气分配活塞发动机
CN200940513Y (zh) 对动摆塞发动机
RU63457U1 (ru) Модульный двухтактный двигатель внутреннего сгорания
CA2339315A1 (en) Delta pair combustion engine
JPS6035127A (ja) エンジン

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee