CN1507665A - 流场板以及在流场板之间形成密封的方法 - Google Patents

流场板以及在流场板之间形成密封的方法 Download PDF

Info

Publication number
CN1507665A
CN1507665A CNA028093097A CN02809309A CN1507665A CN 1507665 A CN1507665 A CN 1507665A CN A028093097 A CNA028093097 A CN A028093097A CN 02809309 A CN02809309 A CN 02809309A CN 1507665 A CN1507665 A CN 1507665A
Authority
CN
China
Prior art keywords
flow
field plate
protuberance
fuel cell
membrane electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA028093097A
Other languages
English (en)
Inventor
M・C・图尔平
M·C·图尔平
波夫
J·C·波夫
比尔顿
B·M·比尔顿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Morgan Crucible Co PLC
Original Assignee
Morgan Crucible Co PLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GBGB0110920.6A external-priority patent/GB0110920D0/en
Application filed by Morgan Crucible Co PLC filed Critical Morgan Crucible Co PLC
Publication of CN1507665A publication Critical patent/CN1507665A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0247Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/60Constructional parts of cells
    • C25B9/65Means for supplying current; Electrode connections; Electric inter-cell connections
    • C25B9/66Electric inter-cell connections including jumper switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0226Composites in the form of mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0273Sealing or supporting means around electrodes, matrices or membranes with sealing or supporting means in the form of a frame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0276Sealing means characterised by their form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/0286Processes for forming seals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0297Arrangements for joining electrodes, reservoir layers, heat exchange units or bipolar separators to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/242Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes comprising framed electrodes or intermediary frame-like gaskets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0204Non-porous and characterised by the material
    • H01M8/0223Composites
    • H01M8/0228Composites in the form of layered or coated products
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

具有多个整体形成在至少一个表面上的突出部的流场板,所述突出部适合用来将流场板连接在相邻的流场板上。流场板的材料可以是导电聚合物,该聚合物包括导电填料和碳微纤维。流场板可通过超声波焊接来焊接在一起。

Description

流场板以及在流场板之间形成密封的方法
技术领域
本发明涉及用于燃料电池或电解装置的流场板,特别是、但不唯一地的是用于质子交换膜燃料电池或电解装置的流场板。
背景技术
燃料电池是其中燃料和氧化物以受控方式组合以便直接产生电的装置。通过直接产生电,而没有中间燃烧和发生的步骤,燃料电池的电效率高于传统发生器中使用燃料的电效率。这广泛地为人所知。燃料电池看起来简单并令人满足需要,但是近年来已经花费许多人力试图制造实用的燃料电池***。
商业性生产的一个类型的燃料电池是所谓的质子交换膜(PEM)燃料电池(有时称为聚合物电解质或固体聚合物燃料电池(PEFC))。这种电池使用氢作为燃料并包括电绝缘(但传导离子)的聚合物膜,该聚合物膜具有布置在两个表面上的多孔电极。该薄膜通常是氟化磺酸盐聚合物,并且电极通常包括布置在碳质粉末衬底上的贵金属催化剂。这种电极和薄膜的组合经常称为膜电极组件(EMA)。
燃料(通常是氢)供应到一个电极(阳极)上,其中燃料氧化以便释放电子到阳极上,以及释放氢离子到阴极上。氧化剂(通常是空气或氧)供应到另一电极(阴极)上,其中来自阴极的电子与氧和氢离子组合以便产生水。
次级质子交换膜燃料电池是直接甲醇燃料电池,其中供应甲醇作为燃料。本发明打算包括这种燃料电池以及使用质子交换膜的任何其他燃料电池。
在市场上的PEM燃料电池中,许多这种膜电极组件由流场板(也称为双极板)分开并串联叠置在一起(流场板和薄膜以及相关的燃料和氧化剂供应歧管的组合体经常称为燃料电池组)。流场板通常由金属或石墨制成,使得一个薄膜的阳极和相邻薄膜的阴极之间进行良好的电子传递。
在US-A-3134696中披露一种金属流场板。尽管具有高导电性,这种流场板处于被燃料电池内的化学品腐蚀的危险。
在US-A-4214969中披露一种碳/碳氟聚合物合成物的使用方法。但是,导电颗粒含量低的聚合物存在许多问题,因此,如US-A-4339322所述,需要添加例如碳纤维的另一种成分以便提供足够的材料性能。
还可使用可压缩的石墨,如WO 95/16287所述。WO 00/41260中要求的是特别适合通过例如模制、滚压或压花形成细小的表面特征。这种材料的低导电性对于其使用是一个缺陷,并且该材料的可压缩性导致机械强度低。另外,可压缩石墨材料受到与其压缩性相关问题的困扰。当电池组组装时,电池在非常高的负载(200N/cm2)下压实。这种材料在此压力下尺寸不稳定并且气体通道趋于闭合。
已经提出使用碳/聚合物的组合物。US-A-6039852指出的合成材料包括石墨或导电粉末和热塑聚合物的混合物。但是,这种材料强度较低并需要支承框架。
对于薄膜电解工艺,US-A-455063还披露了利用导电石墨粉末和碳纤维以及碳氟聚合物粘合剂制造多孔电极。通过使用碳纤维加强电极,使得这些材料的强度提高,但没有改善其导电性。但是,大量添加颗粒和纤维导致流场板处理的问题,由于流场板一侧上的反应物可与另一侧上的反应物混合,所形成的多孔材料不适合用作燃料电池中的流场板。
碳氟聚合物还非常昂贵,因此需要成本更低的解决方法。
所有所述的材料和工艺具有不同类型的缺陷。有利的是提供一种尺寸稳定、导电性高、机械强度高的材料,使其可以通过传统技术处理,从而制成具有细微特征的流场板。如果这种材料可通过例如注射模制的大批量、低成本工艺制成,将更加有利。
要考虑的另一方面是流场板和膜电极组件连接在一起以便形成燃料电池组的方式。需要在每个部件之间形成非多孔密封件以便防止任何气体逸出。这可通过在每个流场板的周边设置垫片组件来实现,由此流场板和薄膜可密封在一起。
EP0933826披露一种形成燃料电池组的方法,该电池组包括一系列具有正电极、电解质板、负电极并由分隔板分开的电池,其中弹性体层通过粘合剂层粘接在分隔板上。这种方法实施起来比较费时,并且这种密封件的作用受到防止任何气体逸出的粘合剂性能的限制。
US5298342披露一种密封电池的方法,其中膜电解质组件的金属片还形成弹性材料的周边密封件的一部分。这里密封件通过延伸通过金属片的弹性材料形成,并形成不渗透的密封件。
WO00/54352描述了燃料电池密封***,其中硅橡胶密封件通过模制直接形成在质子交换膜上,并粘接到阳极和阴极上。再者,该方法涉及将弹性材料施加在薄膜上。
WO00/30203披露一种制造燃料电池收集板的方法,该收集板包括使用聚合物粘接的高含量石墨材料(含有45~95%重量百分比的石墨粉末、5~50%重量百分比的聚合物树脂以及0~20%重量百分比的纤维填料,该纤维填料可以是细纤维)。由于石墨含量高,需要高的成形压力。没有披露如何形成焊接突出部或密封结构。
WO97/50139披露一种用于聚合物电解质膜燃料电池的双极板,其中导电插件模制在可熔化处理的框架内,并且气体通道设置在导电插件内。
WO01/80339披露一种用于聚合物电解质膜燃料电池的双极板,其中导电聚合物插件模制在非导电聚合物框架上,并且气体通道设置在非导电插件内。使用特殊工具在围绕穿过板的孔的区域内进行焊接。WO01/80339披露使用超声波焊接将相邻流场板焊接在一起,但没有披露如何使用焊接突出部或成形的密封结构来提供密封。
对于此问题,令人注意的解决方法是通过形成不透气的密封件的方法,而不需要任何类型的垫片,其中处理步骤最少。
GB2006101披露在燃料电池中使用超声波焊接密封结构,燃料电池包括聚合物框架,其中金属丝网电极围绕一个空间,但该专利没有涉及密封流场板分隔器,也没有披露焊接点的使用。就本申请人所知还没有披露如何使用焊接点和密封结构以有助于超声波焊接流场板分隔器。
发明内容
本申请人认识到流场板需要由导电性能好的材料制成,该材料可连接和密封在一起,而不需要垫片或其他外部密封装置。
因此,本发明提供一种具有多个突出部的流场板,该突出部整体形成在至少一表面上,所述突出部使用中进行调整以便将流场板连接在相邻的流场板上。
该突出部包括密封结构。
有利的是,流场板的材料使其可以焊接到相邻的流场板上。
流场板可包括整体形成的突出部或凹入部,以便与相邻流场板上的互补突出部接合。
流场板可在非导电框架内包括一个或多个导电插件,并且流体歧管可形成在一个或多个导电插件内,或形成在非导电框架内,或两者情况。导电插件可包括导电聚合物合成材料,或可以是任何其他的适合导电材料。
本发明还提供一种在至少两个这种流场板之间形成密封的方法,其包括将流场板叠置在一起并最好使用超声波装置将其焊接在一起。
本发明该提供一种燃料电池的子组件,其包括一个这样的流场板、至少一个气体扩散层和至少一个膜电极组件。
附图说明
本发明参考附图通过实例在下面说明书中进行描述,附图中:
图1是用于本发明材料的示意图;
图2是按照本发明的流场板的示意图;
图3是按照本发明的燃料电池子组件的截面示意图。
具体实施方式
用来形成流场板的可注射模制的材料需要高度的导电性。可以使用本身导电的聚合物或加有导电填料以便提供所需导电性的聚合物(导电或不导电)。
合成物可包括聚合母体、导电填料(例如石墨)和碳微管。这种材料的导电性通过微纤维和导电颗粒之间的相互电连接来提高。
图1中,导电颗粒1和导电微纤维2分布在母体3内。导电颗粒1浓度的足够低,使其不相互接触。微纤维2有足够含量,使其形成导电网络,任何给定的微纤维2与几个其他的微纤维2接触,并可能与一个或多个颗粒1接触。
根据合成物所需应用场合,聚合物可以是热固性或热塑性的。
在市场上可例如从Hyperion Catalysis International,Cambridge,Boston,MA,USA购得含有15~25%碳微管的聚合物母料。
基本上任何聚合物可通过添加微纤维来制造。通常,使用时,母料将稀释,使得微纤维的浓度为1~25%重量百分比,最好是3~10%重量百分比。微纤维的直径通常是10nm~15nm的等级,其中长宽比通常是100~1000。
单独添加微管显著地调整聚合物的性能。添加微管使得聚丁烯对苯二酸脂(PBT)在5%重量百分比的水平,从而如表1调整基体聚合物的性能。
表1
基体聚合物 含有微管的基体聚合物
强度(Mpa) 55 66
模数(Gpa) 2.7 3.2
体积电阻率(Ωcm) 1014 101
这些变化有利于增加材料强度和导电性,但本身不必提供导电性高的材料。当与导电颗粒组合时,微管和导电颗粒的导电网络使得双极板所需的电性能提高。为了只通过微管实现导电性高的网络,需要大量地添加微管,这将使得成本过高。根据微管和导电颗粒之间的相互作用,本发明使得两个组分的添加量保持很低,同时提供可成形和导电性高的材料。
所需导电颗粒量通常在50%重量百分比以下,通常是从3~50%重量百分比,最好从10~40%重量百分比。为此,典型的材料例如是石墨、片状剥落石墨和碎的碳纤维。
导电颗粒的尺寸大于微管直径至少100倍,优选地大于微管直径1000倍,最好大于微管直径10000倍。导电颗粒的尺寸在1μm到2μm,通常从100μm到500μm。对于应用来说最适合的颗粒尺寸通常在足够大以便湿润和结合在聚合物中以及足够小以便进行可接受的光洁度的注射模制之间达到平衡。
碳黑也可作为导电颗粒添加剂。碳黑具有小尺寸,但其尺寸落入所述导电颗粒尺寸范围之外。
可以使用的其他材料包括不与膜电极组件材料起消极反应的任何导电聚合物,例如WO 01/80339,WO 01/60593,GB2198734,US6180275,WO 00/30202,WO 00/30203,WO 00/25372和WO 00/44005所述的材料。
在图2中,流场板5表示成具有形成在其表面上的流场6和位于其表面上并与流场板5的材料形成整体的密封边缘7、8、9。通过注射模制或压制适合导电塑料材料来形成流场板。为了形成密封单元,两个或多个流场板叠置在一起,并且在其中夹有一个或多个膜电极组件。只要膜电极组件的材料可经受处理温度,流场板即可通过热处理连接在一起。但是,流场板可有利地通过超声波焊接在一起,从而可以使用范围很广的薄膜材料。流场板包括一个或多个导电插件和非导电框架。这种结构可通过在导电插件上注射模制非导电框架、或通过将导电插件注射模制在框架内、或通过将部件焊接在一起、或通过任何其他方式来形成。流体歧管(用于反应气体和冷却剂)可定位在一个或多个导电插件内,或定位在非导电框架内,或定位在两者情况中。
流场可以是传统的曲折、线性或交叉形式或有效地将反应气体输送到膜电极组件上的任何其他的形式(例如分支的流场)。
膜电极组件12在焊接之前介于两个流场板之间。突出部11设置成与薄膜的周边接合,其中两个流场板有效地通过薄膜材料连接。
图3表示燃料电池子组件,该组件包括气体扩散层13、带有密封边缘7的流场板5和膜电极组件12。流场6形成在流场板的两侧的表面上。气体扩散层设置在流场板的任一侧上以便将气体从流场输送到膜电极组件上,反之亦然。膜电极组件安装在突出部11上,该突出部配合在薄膜的开口14内,以便于将薄膜定位在流场板的密封边缘内。现有技术的燃料电池形成通过膜电极组件的垫片密封件。由于薄膜材料是多孔的,因此这是不需要的,从而薄膜的位置对于密封件的有效性来说很关键。本发明流场板使得薄膜的位置不与流场板之间的密封件干涉,因此确保该密封件不可渗透。
多个燃料电池子组件可放置在一起并进行焊接以便形成燃料电池组,该子组件包括至少一个气体扩散层、流场板和至少一个膜电极组件。如果流场的几何形状允许,气体扩散层可以省略。
本发明的方法使得不透气的密封件形成在流场板之间,而不需要任何垫片组件,因此降低处理时间和制造成本。由此方法形成的密封件同样是高效率的。本发明不应局限于聚合物电解质燃料电池,用于气体类型的燃料电池的电极和分隔板可使用此方法进行连接和密封。

Claims (16)

1.一种具有多个整体形成在至少一个薄膜上的突出部的流场板,所述突出部适合用来将流场板连接在相邻的流场板上。
2.如权利要求1所述的流场板,其特征在于,该突出部包括密封结构。
3.如权利要求1和2所述的流场板,其特征在于,该流场板还包括与相邻流场板上的互补突出部接合的突出部或凹入部。
4.如上述权利要求任一项所述的流场板,其特征在于,该流场板的材料使其可以焊接在相邻的流场板上。
5.如权利要求4所述的流场板,其特征在于,该流场板的材料是导电聚合物。
6.如权利要求5所述的流场板,其特征在于,该导电聚合物材料包括:
a)聚合母体;
b)导电填料;以及
c)碳微纤维。
7.如权利要求1~4任一项所述的流场板,其特征在于,该流场板在非导电框架内包括一个或多个导电插件。
8.如权利要求7所述的流场板,其特征在于,流体歧管形成在非导电框架内。
9.如上述权利要求任一项所述的流场板,其特征在于,该流场是分支的。
10.一种在两个如上述权利要求任一项所述的流场板之间形成密封件的方法,该方法包括将流场板叠置在一起并将其焊接在一起。
11.如权利要求10所述的方法,其特征在于,该焊接通过超声波焊接进行。
12.如权利要求10或11所述的方法,其特征在于,一个或多个膜电极组件夹在流场板之间。
13.如权利要求12所述的方法,其特征在于,该膜电极组件包括布置成与该流场板上的突出部接合的开口。
14.一种包括如权利要求1~8任一项所述的流场板、至少一个气体扩散层和至少一个膜电极组件的燃料电池子组件。
15.一种包括至少两个如权利要求14所述的燃料电池子组件的燃料电池组。
16.一种包括将至少两个焊接在一起并如权利要求1~8任一项所述的流场板和一个或多个布置在流场板之间的膜电极组件的燃料电池组。
CNA028093097A 2001-05-03 2002-04-16 流场板以及在流场板之间形成密封的方法 Pending CN1507665A (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
GB0110920.6 2001-05-03
GBGB0110920.6A GB0110920D0 (en) 2001-05-03 2001-05-03 Flow field plates and a method for forming a seal between them
GB0127522A GB2375224B (en) 2001-05-03 2001-11-16 Flow field plates and a method for forming a seal between them
GB0127522.1 2001-11-16

Publications (1)

Publication Number Publication Date
CN1507665A true CN1507665A (zh) 2004-06-23

Family

ID=26246035

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA028093097A Pending CN1507665A (zh) 2001-05-03 2002-04-16 流场板以及在流场板之间形成密封的方法

Country Status (7)

Country Link
US (1) US20040151972A1 (zh)
EP (1) EP1386367A2 (zh)
JP (1) JP2004536424A (zh)
CN (1) CN1507665A (zh)
CA (1) CA2445282A1 (zh)
TW (1) TW583782B (zh)
WO (1) WO2002091506A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7901714B2 (en) 2001-06-20 2011-03-08 Metaproteomics, Llp Treatment modalities for autoimmune diseases
US20070072026A1 (en) * 2003-03-25 2007-03-29 Peter Andrin Integrated electrically conductive electrochemical cell component
GB2437767B (en) * 2006-05-05 2010-11-17 Intelligent Energy Ltd Fuel cell fluid distribution plates
KR100793636B1 (ko) 2007-02-14 2008-01-10 삼성전기주식회사 연료전지용 유닛 셀, 그 제조방법 및 연료전지 시스템
GB201022043D0 (en) 2010-12-24 2011-02-02 Atraverda Ltd Method of assembling a battery
JP5361953B2 (ja) * 2011-05-16 2013-12-04 キヤノン株式会社 流路構成体およびその製造方法、インクジェット記録ヘッド、ならびに記録装置
US20140093804A1 (en) * 2012-09-28 2014-04-03 Primus Power Corporation Metal-halogen flow battery with shunt current interruption and sealing features
JP6383203B2 (ja) * 2014-07-25 2018-08-29 Nok株式会社 プレート一体ガスケットの製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4314745C1 (de) * 1993-05-04 1994-12-08 Fraunhofer Ges Forschung Brennstoffzelle
US5798187A (en) * 1996-09-27 1998-08-25 The Regents Of The University Of California Fuel cell with metal screen flow-field
US6207312B1 (en) * 1998-09-18 2001-03-27 Energy Partners, L.C. Self-humidifying fuel cell
US6180275B1 (en) * 1998-11-18 2001-01-30 Energy Partners, L.C. Fuel cell collector plate and method of fabrication
US6451471B1 (en) * 1999-07-15 2002-09-17 Teledyne Energy Systems, Inc. Conductivity fuel cell collector plate and method of fabrication
US20020110719A1 (en) * 2001-02-09 2002-08-15 Pien Shyhing M Multipart separator plate for an electrochemical cell

Also Published As

Publication number Publication date
WO2002091506A9 (en) 2003-08-21
EP1386367A2 (en) 2004-02-04
WO2002091506A1 (en) 2002-11-14
JP2004536424A (ja) 2004-12-02
CA2445282A1 (en) 2002-11-14
US20040151972A1 (en) 2004-08-05
TW583782B (en) 2004-04-11

Similar Documents

Publication Publication Date Title
US6572997B1 (en) Nanocomposite for fuel cell bipolar plate
KR101041697B1 (ko) 연료전지 분리판 성형재료 및 이로부터 제조된 연료전지 분리판
CN1298070C (zh) 燃料电池
JP4051076B2 (ja) 高分子電解質型燃料電池
CN1405906A (zh) 高分子电解质型燃料电池及其导电性隔板
JP5486549B2 (ja) 膜電極接合体の製造方法及び燃料電池の製造方法
CN1950963A (zh) 混合式双极板组件和结合它的装置
CN100352097C (zh) 平板型燃料电池及其制造方法
CN101057353A (zh) 具有微孔双层的气体扩散介质
CN1177385C (zh) 高分子电解质型燃料电池
CN1507665A (zh) 流场板以及在流场板之间形成密封的方法
CN1659736A (zh) 液体燃料供给型燃料电池
CN1538546A (zh) 燃料电池元件、燃料电池、燃料电池发电***及它们的制造方法
US20050181260A1 (en) Elastomeric separator plates and mehtod of fabrication
CN1881653A (zh) 燃料电池密封结构
JP4650673B2 (ja) 燃料電池用セパレータ材とその製造方法
CN1288785C (zh) 电源装置及其操作方法
JP2006318790A (ja) 固体高分子型燃料電池用ガス拡散電極とその製造方法、および固体高分子型燃料電池
KR100612306B1 (ko) 연료전지의 바이폴러 플레이트용 복합재료
CN1379918A (zh) 高分子电解质型燃料电池
JP2001250566A (ja) 燃料電池用セパレータおよびその製造方法
JP2005108777A (ja) 燃料電池用セパレータおよびこれを用いた燃料電池
CN117673392A (zh) 一种碳纤维复合膨胀石墨柔性板材
GB2375224A (en) Flow field plates and a method for forming a seal between them
JP2014035797A (ja) 膜電極接合体及び燃料電池、及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication