CN1427919A - 粘弹性表面活性剂基流体的粘度的降低 - Google Patents

粘弹性表面活性剂基流体的粘度的降低 Download PDF

Info

Publication number
CN1427919A
CN1427919A CN01809200A CN01809200A CN1427919A CN 1427919 A CN1427919 A CN 1427919A CN 01809200 A CN01809200 A CN 01809200A CN 01809200 A CN01809200 A CN 01809200A CN 1427919 A CN1427919 A CN 1427919A
Authority
CN
China
Prior art keywords
fluid
surfactant
viscoelastic surfactant
precursor
viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN01809200A
Other languages
English (en)
Other versions
CN1288327C (zh
Inventor
埃里克·B·纳尔逊
伯恩哈德·伦维茨
基思·迪斯穆克
马修·塞缪尔
特雷弗·L·休斯
迈克尔·帕里斯
戈尔奇·萨拉马特
杰西·C·李
菲利普·弗莱彻
付淀奎
理查德·哈钦斯
加里·J·塔斯廷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Services Petroliers Schlumberger SA
Prad Research and Development Ltd
Original Assignee
Sofitech NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sofitech NV filed Critical Sofitech NV
Publication of CN1427919A publication Critical patent/CN1427919A/zh
Application granted granted Critical
Publication of CN1288327C publication Critical patent/CN1288327C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/92Compositions for stimulating production by acting on the underground formation characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/52Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning
    • C09K8/536Compositions for preventing, limiting or eliminating depositions, e.g. for cleaning characterised by their form or by the form of their components, e.g. encapsulated material
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/74Eroding chemicals, e.g. acids combined with additives added for specific purposes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2208/00Aspects relating to compositions of drilling or well treatment fluids
    • C09K2208/26Gel breakers other than bacteria or enzymes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/921Specified breaker component for emulsion or gel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Detergent Compositions (AREA)
  • Colloid Chemistry (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了降低粘弹性表面活性剂流体粘度的组分的受控加入,或者电解质浓度的受控改变,或者粘弹性表面活性剂流体组成的方法和组合物。一方面,本发明涉及具有延迟活化作用的内部破乳剂的使用。另一方面,本发明涉及释放例如醇等破乳剂体系的前体的使用,所述破乳剂体系的释放是通过熔化,缓慢溶解,与流体中存在的化合物反应或者在注入步骤期间或之后加到流体中,包胶涂层的破裂以及吸附在固体颗粒中的破乳剂的解吸等方法来进行。再一方面,本发明的醇包含在缓冲液中,以减小低-剪切粘度,并在所期望的处理阶段降低处理流体的流动阻力。

Description

说明书 粘弹性表面活性剂基流体的粘度的降低
                          技术领域
本发明涉及用于降低粘弹性表面活性剂(VES)流体粘度的组合物和方法,特别是用于处理地层和油气井的组合物和方法。
                           背景技术
粘弹性表面活性剂流体通常是通过混合适量的合适的表面活性剂如阴离子,阳离子,非离子和两性离子表面活性剂。粘弹性表面活性剂流体的粘度归因于流体中的组分所形成的三维结构。当粘弹性流体中的表面活性剂的浓度大大超过临界浓度时,并且在存在电解质的多数情况下,表面活性剂分子聚集成胶束等物质,其相互作用形成具有弹性性能的网状物。在本说明书的其余部分中,术语“胶束”将用作有机结合起来的相互作用的物质的通称。
粘弹性表面活性剂溶液一般是通过向表面活性剂的浓溶液中加入某些试剂而形成的,通常包括长链的季铵盐如十六烷基三甲基溴化铵(CTAB)。在表面活性剂溶液中产生粘弹性的普通试剂是盐如氯化铵,氯化钾,水杨酸钠和异氰酸钠以及非离子有机分子如氯仿。表面活性剂溶液的电解质含量对于控制其粘弹性行为也是重要的。
巨大的兴趣是利用这种粘弹性表面活性剂作为井眼维护液。例如,参照美国专利No.4,695,389,No.4,725,372,No.5,551,516,No.5,964,295和No.5,979,557。
在流体中加入其它组分可以显著地降低流体的粘度,这被称之为“破乳”。这甚至可以因为流体中可能已经存在的组分如水或电解质而发生。例如,在油田应用中,粘弹性表面活性剂流体的粘度一经暴露于地层流体(例如原油、冷凝物和/或水)就会降低或丧失;而且这种粘度降低或丧失完成了储集层、断口或其它处理区域的清除。
但是,在某些情况下,应该很好地控制这种破乳,例如,当需要在特定时间或特定条件下对该流体进行破乳时,当需要加速降低粘度时,或者当储集层流体(如干气储集层中的流体)的自然流入未破乳或完全破乳了粘弹性表面活性剂流体时。该公开描述了用于粘弹性表面活性剂流体破乳的组合物和方法。
凝胶破乳剂的普通用途是用于油井增产措施等所使用的常规聚合物基流体,因为与粘弹性表面活性剂基流体不同,当常规的聚合物基流体与烃或含水的地层流体不能自发地破乳,在地层中留下高粘度的流体,导致地层的渗透性降低,进而导致产量降低。使用最广泛的破乳剂是氧化剂和酶。破乳剂可以溶解或悬浮在处理流体的液相中(含水的,不含水的或乳状液),并且在整个处理中暴露于聚合物(“内部”加入),或者在处理之后的特定时间暴露于流体(“外部”加入)。对于常规的聚合物基体系而言,最普通的内部方法和组合物涉及可溶性的氧化剂或者酶;最普通的外部方法和组合物涉及包胶的酶或包胶的氧化剂;或者涉及采用包含破乳剂的前冲洗或后冲洗。破乳可以发生在井眼,砾石充填,滤饼,岩石基体中,发生在断口中,或者在另外添加或造成的环境中发生。
Hughes,Jones和Tustin的英国专利GB 2,332,223,“用作井眼维护液的粘弹性表面活性剂基胶凝组合物”,描述了延迟和控制粘弹性表面活性剂基胶凝组合物的粘度和凝胶化的方法。利用这些方法促进延迟的(“预凝胶”)流体进入多孔介质,然后触发粘弹性凝胶就地形成。
在美国专利No.4,735,731中,Rose等人描述了几种通过表面干预可逆地打破VES溶液粘度的方法。这些方法包括解热/冷却流体,调节pH或者使流体与有效量可混溶或不混溶的烃接触,然后使流体经受流体粘度基本得到恢复的条件。Rose的可逆处理可用于钻井液,使泵入井中的流体足够粘,以便将钻屑携带至地表面,并且能够在地表面破乳以除去固体。Rose所描述的破乳方法不能用于井下粘弹性溶液的破乳,而且似乎还对流体的粘度带来直接的影响。
因此,在地下油气井处理之后的预定时间或条件下和/或当粘弹性表面活性剂流体未被自然流入的储集层流体破乳时,需要使粘弹性表面活性剂流体破乳的方法。
                          发明内容
本发明所公开的是引发、控制和增强用破乳剂清除粘弹性表面活性剂流体的组合物和方法。所述破乳剂可以是内部破乳剂,外部破乳剂,或者它们的组合。这些组合物和方法主要集中于但不限于基于阳离子表面活性剂如瓢儿菜基甲基二(2-羟乙基)氯化铵(下文中称为“EMHAC”)和两性离子表面活性剂甜菜碱表面活性剂的粘弹性表面活性剂体系的破乳剂。但是,也给出了使基于阴离子,阳离子,非离子和两性离子表面活性剂的粘弹性表面活性剂流体破乳的方法和组合物。
已知各种类型的醇、有机酸和盐可以降低粘弹性凝胶的粘度—甚至使凝胶完全“破乳”。对于试验的组合物,发现这些破乳剂具有如下效果:
本发明一方面提供延迟这种粘弹性表面活性剂胶凝组合物破乳的方法和组合物,同时又不损害压裂操作期间支撑剂悬浮和迁移所需的初始流体性能。因此,本发明涉及通过向井下注入含水流体来处理地层的方法,所述含水流体包含浓缩量的粘弹性表面活性剂,该粘弹性表面活性剂提供致使流体加入后粘度降低但不显著影响加入时流体在地表面时的粘度的破乳剂体系或破乳剂体系的前体。优化的剂型确保粘弹性凝胶在地表条件下迅速形成,并在传输和进入裂缝的过程中保持稳定。然后,在随后的时间,凝胶粘度通过凝胶破乳剂体系的受控释放而显著地降低。
下面的简化程序描述了本发明的组合物的优选应用方案:
(A) 在地表面,于传输和支撑性裂缝形成过程中
混合并传输已知的粘弹性表面活性剂凝胶+展开于粘弹性表面活性剂凝胶中的添加剂A。
(B) 在逆转传输方向之后(回流方式)
添加剂A(或者是通过内部法或者是在加入第二添加剂之后加入)释放至少一种组分B,其降低粘弹性表面活性剂凝胶的凝胶强度。设计两种过程来延迟粘弹性表面活性剂凝胶出现于裂缝和地层中的各时间点时凝胶强度的降低作用。
因此,本发明一方面提供通过下列至少一种方法释放破乳剂体系的前体:熔化,缓慢溶解,与流体中存在的化合物反应或者在注入步骤期间或之后加到流体中包胶涂层的破裂,以及吸附在固体颗粒中的破乳剂的解吸。
当以内部破乳剂的形式应用时,初始的添加剂A优选为水溶性的化合物。A的性质,特别是亲水亲油平衡值(HLB)和电荷特性,使粘弹性表面活性剂凝胶的性质不会因为A的存在而受到严重的影响,直到在回流过程中发生反应,产生足够浓度的B(以及更多的反应产物),破坏胶束并降低流体的凝胶强度和流体粘度为止。
最优选的A的实例是酯,异硫代硫酸盐,肌氨酸盐,醇硫酸盐,醇醚硫酸盐,醇酚醚硫酸盐,羧酸根阴离子、乙氧基羧酸根阴离子和羧酸酯。这些产物将发生反应,通过例如水解释放醇或羧酸破乳剂。
本发明的另一方面涉及包胶的盐。粘弹性表面活性剂流体通过在电解质的存在下形成胶束获得粘度。胶束可以呈多种形式,包括蠕虫状、棒状、球状、薄片状或多孔状的胶束。最适宜的粘度仅在电解质浓度落入给定范围时才能实现。例如,对于EMHAC,最佳范围通常为0.6M~0.8M(摩尔)。在布置油井压裂液时,其中存在包胶的盐不会影响其流变性能。裂缝闭合时,支撑剂颗粒将压碎胶囊,释放出额外的盐;结果,电解质的浓度将落在最佳范围之外,流体的粘度将会降低。包胶的过硫酸铵特别有用。其他包胶的物质可以包括有机盐如水杨酸钠,无机盐如NaPF6(六氟磷酸钠)和KCl(氯化钾),以及液态烃或表面活性剂如十二烷基硫酸钠。事实上,能够充分溶解于处理液中并且可以破坏胶束结构的任何盐均是适宜的。
该额外的盐还可以通过延迟产生氯化物的化合物的分解来释放。类似的作用也可以通过延迟水杨酸盐发生剂如水杨酸甲酯和水杨酸乙酯等的分解来实现。后面的化合物的分解释放醇,其可以诱发进一步的粘度降低。
此外,可以将上述进一步的实施方案中所指出的其它物质,例如固体或液体有机化合物如醇(例如十二烷醇等)或者表面活性剂(十二烷基硫酸钠)进行包胶,并以该方式使用。Walles等人的美国专利No.4,741,401公开了包胶物质的受控释放,其中包胶的物质至少部分是以压碎胶囊的形式释放的。美国专利No.3,956,173公开了包胶的钾盐,包括氯化钾,其中包胶的钾盐至少部分是通过将包胶的物质溶解于水中而释放的。其它机制,如渗透性或化学性扩散,也已经报导过。在所有的情况下,破乳剂均是通过包胶涂层的破裂释放的。
本发明的再一方面是涉及缓慢发挥作用的破乳剂。一种类型的缓慢发生作用的破乳剂为未固化或者部分固化的树脂涂布的支撑剂。当包括支撑剂的地层处理中包含这些破乳剂时,涂布于支撑剂上的树脂将在一定的时间或温度下固化,使支撑剂颗粒互相粘附。通常需要防止颗粒回流到井中。我们发现,在大多数树脂涂布的支撑剂中,固化剂(一般为酚或胺)与粘弹性表面活性剂流体不相容。可以将树脂配制成迅速或缓慢地释放固化剂,致使长时间或短时间地延迟粘弹性表面活性剂流体的降解。
一种类型的可溶性破乳剂包含其亲水性端基所携带的电荷与构成某些粘弹性表面活性剂流体的阴离子或阳离子表面活性剂的亲水性端基相反的表面活性剂,换言之,其带有与形成粘弹性表面活性剂流体的表面活性剂相反的电荷。已经清楚,C18~C20硫酸盐可以非常有效地降低阳离子粘弹性表面活性剂流体的粘度。作为实例,阴离子表面活性剂十二烷基硫酸钠(C12硫酸盐)使基于季铵盐(如EMHAC等)的粘弹性表面活性剂流体破乳,但是硫酸盐的这种作用还需要延迟剂或延迟方法。其它的实例包括烷基或芳基磷酸盐或者羧酸如脂肪酸等肥皂。当这种物质不自然地缓慢溶解时,它们将需要进行包胶或吸附,以便如本文其它实施方案中所描述的缓慢地释放。例如,可以吸附在碳陶瓷支撑剂或沸石中。
其它缓慢溶解的破乳剂选自开始时在地表温度下既不溶解也不与粘弹性表面活性剂流体混溶的固体或液体物质。此时,特别是在升温时,破乳剂分子缓慢地释放到流体中并破坏胶束的结构。实例之一是在粘弹性表面活性剂流体形成乳状液的不混溶的流体。更具体的实例是烷基胺;优选的实例是十二烷基胺。其它实例包括具有适宜溶解速度的固体烃,如烷烃、链烯烃和芳香烃及其被取代的化合物。
本发明的再一方面涉及在熔点下释放的破乳剂。当粘弹性表面活性剂流体破乳剂为液体行使时,可以使用任何具有适宜熔点的物质。粘度的降低是可逆的;后来冷却流体不恢复流体的性能。C12~C18醇具有较高的熔点。其它的实例包括具有适宜熔点的烃,如烷烃、链烯烃和芳香烃及其被取代的化合物。也可以按本文其它实施方案中所描述的,使用具有较高熔点的固体包胶破乳剂。
本发明的再一方面涉及破乳剂的内含物,其为小颗粒形式或者多孔或无孔的天然或合成的小颗粒上的浸渍材料,例如通过吸附作用吸附在碳陶瓷支撑剂或沸石上。优选直径为1/1000~10/1000微米的颗粒(纳米颗粒),因为它们小到足以随部分的活化或其它处理流体一起进入基质中。如果活化的纳米颗粒或他们释放的破乳剂存在于流体中,则将它们称为内部型破乳剂,如果他们在开始时进入基质然后释放出来或者释放破乳剂,紧接着流入要破乳的流体中,则将它们称为外部型破乳剂。这种体系可以在处理期间的任何时候加到整个活化或其它处理液中,例如加到缓冲液(pad)或者前冲洗液或后冲洗液中。
本发明的再一具体方面涉及在引入主流体之前引入第一流体缓冲液或前冲洗液中的醇的内含物。在各种处理液中,缓冲液使状况得到改善或优化,以便增强主流体的效率;例如,在压裂中,缓冲液可以是非支撑剂,其所包含的流体的组成不同于包含支撑剂的主流体。
如上所述,向粘弹性表面活性剂流体中引入醇可以降低其粘度。更准确地,醇降低低剪切速度(通常小于1s-1)时的粘度,同时基本上不改变中等剪切速度(大约100s-1)时的粘度。携带支撑剂的流体在低低剪切速度下必须是粘性的。另一方面,压裂的创造和保持主要取决于中等至高剪切粘度。计划的压裂工作大多数包括使用无支撑剂的油井压裂液的第一缓冲阶段,然后是使用支撑剂的阶段。因此,在该缓冲阶段加入醇对该初始阶段不会产生显著的影响。对于余下的压裂工作来说,支撑剂在醇的加入停止时加入,以使流体传输支撑剂。
应当注意,醇还增加油井压裂液的泄漏行为。对于低渗透性的地层,尤其是当地层的渗透性小于1毫达西时,这种行为不是缺点,因为裂缝周围的地层将会被流体浸湿,提高清洗性能。因此,一旦压力得到释放,流体更容易从基质中流出,导致对裂缝的整个长度进行更好的清洗。由于大量的流体损失,因此,对于高渗透性的地层一般不推荐加醇。
在本发明的另一变体中,醇可以包含在预缓冲流体中。预缓冲流体通常包含水、溶剂和盐如KCl,其一般在压裂处理的最开始阶段注入地层中。
应当理解,本发明的各种方法及其组合可以结合起来,以便例如相同或不同类型的破乳剂可以依次或同时使用。破乳剂还可以包含在部分流体中,例如包含在头流体或尾流体中。举例来说,快速活化的破乳剂通常包含在尾流体中,以避免初始注入的流体过早地破乳。某些情况下,本发明的组合物即使在存在自然可利用的流体并最终使粘弹性表面活性剂流体破乳的情况下也是可以使用的,以便提高对破乳的控制。
还应当理解,本发明的压裂组合物还可以包含水、电解质表面活性剂和破乳剂之外的组分。例如,这种额外的组分为酸、碱、缓冲液、控制多价阳离子的螯合剂、冰点抑制剂等。
尽管本应用集中于烃类井的处理,但是本发明的方法和组合物还可以用于使用相同类型流体的其它应用,例如用于水井,用于煤层甲烷回收的处理中,以及用于地面或地下水污染的围堵或补救中。
                          附图说明
图1示出了添加各种醇对典型的基于凝胶化组合物的粘弹性表面活性剂的流变学特性的影响;
图2示出了甲醇浓度对各种基于凝胶化组分的粘弹性表面活性剂在60℃和80℃下的归一化粘度的影响;
图3示出了加入各种甲基二酯对粘弹性凝胶的影响;
图4分别示出了己二酸根和己二酸在中性或低pH条件下对流体粘度的影响;
图5分别示出了戊二酸根和戊二酸在中性或低pH条件下对流体粘度的影响;
图6说明了在低或中性pH条件下支链烷烃羧酸的使用;
图7示出了相对于支撑剂装填时间的流体阻力,所述支撑剂被具有或没有包胶的过硫酸铵破乳剂的粘弹性表面活性剂流体处理过;
图8示出了包含较高熔点固体醇的粘弹性表面活性剂流体的粘度,先加热然后冷却该流体;
图9示出了在可固化支撑剂的存在下粘弹性表面活性剂流体粘度下降的动力学;
图10示出了粘度作为分别包含2.25%重量和4.5%重量EMHAC表面活性剂的溶液的氯化物浓度的函数。
                         具体实施方式
下面描述使浓缩的粘弹性表面活性剂凝胶破乳的各种实施例:
实施例1:醇的加入
通过加醇降低包含由长链季铵盐组成的粘弹性表面活性剂的水溶液的粘度。图1示出了添加各种醇对典型的基于凝胶化组合物的粘弹性表面活性剂的流变学特性的影响,该组合物包含3%重量的瓢儿菜基甲基二(2-羟乙基)氯化铵(EMHAC),1%重量的异丙醇和3%重量的氯化铵。
所有的试验醇均显著地减小低剪切速度时的粘度,并且效率随着链长度(C1~C5)的增加而增加。
对于链长度较小的醇(特别是甲醇和乙醇),在较高剪切速度下,流体粘度基本上与没有醇的参照流体的测量值相同。据信,在裂缝制造过程中,多数油井压裂液经受约20~150s-1的剪切速度,因而醇的添加可以减小低剪切速度时的粘度(如同冲洗过程一样)同时基本上不降低裂缝中的有效粘度。
图2示出了60℃和80℃时甲醇浓度对基于凝胶化组合物的粘弹性表面活性剂的归一化粘度(具有甲醇的η1s-1)/(没有甲醇的η1s-1)的影响。在60℃时,凝胶A(3%重量的表面活性剂,1%重量的异丙醇,3%重量的NH4Cl)被约0.5%重量的甲醇破乳,而使凝胶B(3.375%重量的表面活性剂,1.125%重量的异丙醇,0.75%重量的均聚-聚丙烯酰胺,即疏水改性的聚丙烯酰胺,3%重量的NH4Cl)破乳则需要小于或等于2%重量的甲醇。在60℃下,凝胶C(3.375%重量的表面活性剂,0.75%重量的均聚的聚丙烯酰胺,3%重量的NH4Cl)允许的甲醇浓度比溶胶B高,但在80℃时,凝胶C可以很容易地被仅约0.5%重量的甲醇破乳。因此,使凝胶破乳所需的醇临界浓度取决于醇的类型,流体组成和温度。
实施例2:醚的加入
该方法依靠酯(R′COOR″)的使用,该酯对粘弹性凝胶的流变学特性影响很小,但却可以在浓度大于或等于凝胶破乳所需的临界浓度时分解产生醇(R″OH),其中R′和R″为芳香性、饱和或不饱和的烃链。
          
有某些有机酸也足以使包含VES的凝胶破乳(见实施例3),所以加酯实际上是非常有效的,只要水解在适宜的时间发生。利用适宜的二元或三元酯也可以取得类似的效果。
图3示出了加入不同的甲基二酯对实施例1中所定义的凝胶B的影响。与更亲水的二酯(戊二酸二甲酯,己二酸二甲酯,丙二酸二甲基二乙基酯和壬二酸二甲酯)相比,更亲水的酯(衣康酸二甲酯,丙二酸二甲酯,苹果酸二甲酯和草酸二甲酯)以3~4%重量的浓度加入时对凝胶的低剪切粘度几乎没有影响。当完全分解时,4%重量的草酸二甲酯产生2.2%重量的甲醇,其如图2所示,足以使凝胶B在60℃破乳或者使凝胶C在80℃破乳。
同样,可以使用更亲水的乙基二酯如草酸二乙酯或者甲基单酯如乙酸甲酯或甲酸甲酯实现类似的凝胶延迟破乳。
实施例3:有机酸盐的加入
一些有机酸是有效的凝胶破乳剂。该有机酸可以包胶或盐的形式提供。然后在酸性条件下发生下列反应:
                
盐的选择应当使RCOO-对粘弹性凝胶中的平衡离子具有很小或者没有影响。适宜的阴离子的实例为:
    水杨酸根/水杨酸:
    己二酸根/己二酸:
    支链烷基羧酸根/链烷基羧酸:
    戊二酸根/戊二酸:
在该实施例中,初始流体的pH大于羧酸的pKa,所以RCOO-的浓度大于RCOOH的浓度。在合适的时间时,产生较低的pH条件,致使RCOOH的浓度增加,并且变得大于RCOO-的浓度。较低的pH条件可以通过酯的水解来产生,如实施例1中所阐述的。此外,选择酯的类型和浓度,使其对粘弹性表面活性剂凝胶的流变学特性的影响很小或没有。
图4示出了在不同pH条件下添加己二酸对凝胶组合物的粘度(在剪切速度为1s-1和25℃下的测量结果)的影响,所述凝胶组合物包含3.375%重量的瓢儿菜基甲基二(2-羟乙基)氯化铵(EMHAC),1.125%重量的异丙醇,0.75%重量的均聚-聚丙烯酰胺和4%重量的氯化钾。己二酸根是有效的平衡离子,其可在中性pH下增强流体粘度,但是等浓度的己二酸在低pH条件下降低粘度。
同样,图5示出了不同浓度的戊二酸在不同pH条件下对相同凝胶组合物的粘度(在剪切速度为1s-1和25℃下的测量结果)的影响。在中性pH下戊二酸根仅使流体粘度略微降低,但是相同浓度的戊二酸却在低pH条件下降低流体粘度。
最后,图6表明支链烷烃羧酸在低pH条件下是有效的破乳剂,但在中性pH下,即支链烷烃羧酸根与支链烷烃羧酸的浓度大约相同的条件下,凝胶保持高粘度。图6中的试验是对包含4.5%重量瓢儿菜基甲基二(2-羟乙基)氯化铵(EMHAC),1.5%重量异丙醇,0.5%重量均聚-聚丙烯酰胺和3%重量氯化铵的凝胶组合物进行的。
优选具有两性离子表面活性剂如甜菜碱表面活性剂,柠檬酸HOC(CH2CO2H)2COOH的破乳剂体系。
实施例4:有机硫酸盐的加入
长链醇可以通过加酸水解下列有机硫酸盐而产生:(i)R-OSO3X,其中R为饱和的直链形烃链且X为碱金属(例如十二烷基硫酸钠,C12H25SO4Na)或者(ii)RO(CH2CH2O)nSO4X(醇醚硫酸盐),其中R为饱和的直链形烃链,通常具有10~15个碳原子,n为2~10,X通常为钠、镁或者铵。
R-OSO3X或者RO(CH2CH2O)nSO4X在升温(一般大于>50℃)下的加酸水解可以释放催化水解的硫酸,例如在酸性条件下, 。一定浓度的烷基硫酸盐(例如十二烷基硫酸钠,C12H25SO4Na)或者醇醚硫酸盐(例如C14H29O(CH2CH2O)2-3SO4NH4)是粘弹性表面活性剂凝胶组合物中有效的辅助表面活性剂,在所述粘弹性表面活性剂凝胶组合物中,粘弹性表面活性剂组分为阳离子,例如瓢儿菜基甲基二(2-羟乙基)氯化铵(EMHAC)。
因而,在压裂处理的应用中,低浓度的有机硫酸盐辅助表面活性剂可以用来加强泵送和支撑性裂缝形成期间凝胶的强度和粘度,然后能够释放足够浓度的长链醇,以使回流阶段的凝胶破乳。
实施例5:聚合物的加入
在基于凝胶组合物的粘弹性表面活性剂的应用中,所述凝胶组合物包含粘弹性表面活性剂及与之混合的疏水改性的水溶性聚合物,破乳剂化合物的延迟释放可以通过聚合物上疏水基团的水解来实现。例如,醇破乳剂可以利用下列反应,通过与丙烯酰胺的共聚物中的丙烯酸烷基酯或甲基丙烯酸烷基酯基团的加酸水解来产生:
式中R′为氢或甲基,R″为直链或支链的饱和烃链。
在可供选择的方法中,羧酸破乳剂可以通过与丙烯酰胺的共聚物中的乙烯基链烷酸酯基团的下列加酸水解来产生:
式中R″为直链或支链的饱和烃链。
例如,新癸酸乙烯酯/丙烯酰胺共聚物的加酸水解产生支链烷烃羧酸,其如图6所示,在低pH下是有效的破乳剂。在图6中报导的试验是针对含有4.5%重量瓢儿菜基甲基二(2-羟乙基)氯化铵(EMHAC),1.5%重量异丙醇,0.5%重量均聚-聚丙烯酰胺和3%重量的氯化铵的凝胶组合物而进行的;所述粘度是在25℃和1s-1剪切速度下测量的。
实施例6:包胶
基础粘弹性表面活性剂流体是通过向水中加入3%体积的EMHAC和3%重量的氯化铵而制备的。然后利用该流体在43℃下进行二支撑剂装填的传导性试验。在这些试验中,将粘性流体与支撑剂的混合物加到井中。然后在压力下封井。然后向井中泵入盐水,并随着时间测量保持一定流速所需的压力。流动阻力的降低表明,粘性流体正在破乳。粘性流体的移动称为冲洗。将浓度为10磅/1000加仑的包胶过硫酸铵加到流体中作为传导性试验之一的破乳剂,将浓度为15磅/1000加仑的包胶过硫酸铵加到流体中作为另一传导性试验的破乳剂。没有添加剂的流体用作空白传导性试验。支撑剂为20/40目的渥太华(Ottawa)砂子。比较结果示于图7中,其中将流动阻力或回流压力(在压力传感器上以伏特表示)对时间作图,APS代表过硫酸铵。
在传导性试验期间一旦关闭,包胶的过硫酸铵胶囊就会破裂,并释放使粘弹性表面活性剂流体破乳的过硫酸铵。显然,破乳剂存在时的初始冲洗压力基本上较小,而且完成冲洗所需的时间也很短。
实施例7:六氟磷酸钠的加入
通过向水中加入2%体积的EMHAC和3%重量的氯化铵制备基础的粘弹性表面活性剂流体。向部分该流体中加入不同量的六氟磷酸钠NaPF6。然后在室温(约21℃)或在60℃测定流体的粘度。结果示于下面的表1中。
                             1
NaPF6的重量百分数     cP/21℃     cP/60℃
    0.00     165     96
    0.03     45
    0.04     33
    0.05     12     33
    0.06     6     15
    0.07     6     12
    0.08     6     9
    0.10     6     3
这表明,六氟磷酸钠可以有效地使凝胶破乳,而且破乳的程度可以通过改变盐量来控制。如果包胶,则盐将通过裂缝关闭(压碎胶囊)和/或渗透作用和/或溶解作用释放。
实施例8:在熔点下释放的醇
通过向水中加入2%体积的EMHAC和3%重量的氯化铵制备基础的粘弹性表面活性剂流体。向该流体中加入5磅/1000加仑熔点为45±3℃的C16~C18醇破乳剂。将空白流体(未加醇)和试验流体置于往复式毛细管粘度计中,并随着流体温度的升高监测流体的粘度。结果如图8所示。Y轴左边的标记是以华氏度表示的温度;表明在约2小时后达到最大温度的温度曲线由粗线表示。空白流体的粘度由黑三角表示;试验流体的粘度曲线由点划线表示(未提供粘度测量值的标度)。
随着流体温度穿越醇的熔点,流体粘度显著地降低。试验后期,流体温度降低至醇熔点以下。流体粘度未能恢复,表明体系形成胶束的能力被永久性地破坏。
实施例9:树脂涂布的支撑剂
利用200ml标有刻度的量筒在室温下进行沉降试验。所有试验的基础粘弹性表面活性剂流体均为3%体积的EMHAC和4%重量的氯化钾,其在170s-1剪切速度下于Fann 35粘度计上测得的初始粘度为168cP。所有试验中使用的支撑剂的尺寸为20/40目,以确保具有可比性的表面积。根据制造商的说明书,在这些研究中使用的可固化支撑剂的树脂含量在1.8~4.0%重量之间变化,但对于每种支撑剂而言为常数。采用下列混合步骤:在大口烧杯中剧烈摇晃200ml混有100g支撑剂(相当于装填4.2ppg(每加仑的磅数)的支撑剂)的流体,得到均匀的悬浮液,并将其转移至200ml标有刻度的量筒中。然后观测可见的分离和支撑剂完全沉降所需的时间。通过Fann 35粘度计测量铺开的流体的粘度,并与流体的初始粘度相比较。表2首先给出了可固化树脂涂布的支撑剂的沉降时间,然后给出了用于对照的未涂布的支撑剂的典型沉降时间。“Visc.[cP]@170s-1”表示剪切速度为170s-1时以厘泊表示的粘度。以(Borden)表示的支撑剂为得自得克萨斯休斯敦Borden Chemical公司的油田产品;以(Santrol)表示的支撑剂得自得克萨斯弗雷斯诺的Santrol;以(CARBO)表示的支撑剂得自得克萨斯Irving的CARBO Ceramics公司。
                        表2
  树脂涂布的支撑剂   看得见的分离     完全沉降 粘度[cP]@170s-1
    SBU(Borden)   3小时14分钟   4小时28分钟     33
  SBU 6000(Borden)   7小时16分钟   21小时53分钟     33
  CR4000 D(Borden)   3小时40分钟   4小时37分钟     39
    opti-prop   3小时54分钟   5小时23分钟     33
    SHS(Santrol)     20分钟     40分钟     30
    SDC(Santrol)   2小时2分钟   2小时55分钟     36
  Super-LC(Santrol)   1小时8分钟   1小时47分钟     33
  Super TF(Santrol)   4小时4分钟   7小时18分钟     87
    CR4000 D   3小时40分钟   4小时37分钟     39
    AcFrac(Borden)   5小时42分钟   7小时23分钟     36
  未涂布的支撑剂   看得见的分离     完全沉降 粘度[cP]@170s-1
CarboPROP(CARBO) <23小时23分钟   30小时8分钟     159
  CarboHSP(CARBO)   1小时51分钟   4小时22分钟     153
  CarboECONOPROP(CARBO)   6小时6分钟   28小时50分钟     156
 CarboLITE(CARBO)   21小时39分钟   27小时57分钟     153
图9给出了在可固化支撑剂(装填4.2ppg的支撑剂)的存在下VES流体粘度下降的动力学。为了清楚地理解该图,图9已经被分割开来。图9基于上述试验的结果,并且得到表2中所示的结果的支持。
实施例10:缓慢溶解的化合物
通过向水中加入3%体积的EMHAC和3%重量的氯化铵制备基础的粘弹性表面活性剂流体。向该流体中加入1%体积的液体十二烷胺,其不能混溶并与基础流体形成乳状液。然后将该流体在60℃下储存。观察到该粘弹性表面活性剂流体在4小时之后破乳。
实施例11:化合物的缓慢分解
图10表明氯化物的释放是如何影响粘弹性表面活性剂的粘度的。下部的曲线(以菱形标记的)对应于2.25%重量的EMHAC浓度,上部的曲线(实心的正方形)对应于4.5%重量的EMHAC浓度,显示出随着氯化物含量增加的粘度展开。该图表明,该溶液的粘度在0.6~0.8%重量的盐浓度时达到最大值,并在氯化物浓度超过1.5%重量时迅速下降。为了实现所需盐浓度的变化,试图将烷基卤化物优选烷基氯化物加到VES溶液中。
前述有关本发明具体实施方案的描述不是为了完全列举出本发明的各种可能的实施方案。本领域的技术人员应当意识到,可以对本文所述的具体实施方案作出修改,这种修改也将落入本发明的范围。

Claims (36)

1.一种通过向井下注入含水流体处理地层的方法,所述含水流体包含浓缩量的粘弹性表面活性剂,该方法包括提供一种破乳剂体系或破乳剂体系的前体,所述破乳剂体系或破乳剂体系的前体导致流体注入后其粘度降低,但又不显著地影响其于地表注入时的粘度。
2.权利要求1的方法,包括通过下列方法中的至少一种方法提供释放破乳剂体系的前体:熔化,缓慢溶解,与流体中存在的化合物反应或者在注入步骤期间或之后加到流体中,包胶涂层的破裂以及吸附在固体颗粒中的破乳剂的解吸。
3.权利要求2的方法,其中所述破乳剂体系为选自下列各种盐中的至少一种:过硫酸铵,氯化钾,六氟磷酸钠和水杨酸钠,其中所述的盐是以包胶形式提供的。
4.权利要求2的方法,其中所述破乳剂体系为树脂涂布的支撑剂的反应的副产物。
5.权利要求2的方法,其中所述破乳剂体系包含下列前体中的至少一种前体所释放的醇:酯,羧酸根,有机硫酸酯基盐,以及十二烷基硫酸钠。
6.权利要求1的方法,其中该破乳剂体系包含羧酸。
7.权利要求6的方法,其中该粘弹性表面活性剂为两性离子表面活性剂,且该破乳剂体系为柠檬酸。
8.权利要求2的方法,其中该破乳剂体系包含由含有羧酸根离子的前体所释放的羧酸,所述释放是在降低粘弹性表面活性剂的pH之后通过酯的水解来进行的。
9.权利要求2的方法,其中该破乳剂体系是通过熔化前体释放的,所述前体为下列前体中的至少一种:C12~C18的醇,烷基胺,烷烃,链烯烃,芳香烃,以及它们的混合物。
10.权利要求2的方法,其中该粘弹性表面活性剂为阴离子的和/或阳离子的表面活性剂,且该破乳剂体系是通过溶解至少一种表面活性剂而释放的,这种表面活性剂的亲水性端基所带有的电荷与粘弹性表面活性剂流体的阴离子或阳离子表面活性剂的亲水性端基相反。
11.权利要求5的方法,其中该破乳剂体系为下列破乳剂体系中的至少一种:烷基硫酸盐,烷基卤化物,羧酸,羧酸盐,烷基磷酸盐,芳基磷酸盐,或者它们的混合物。
12.权利要求11的方法,其中所述破乳剂为C18~C20的烷基硫酸盐或者它们的混合物。
13.权利要求9的方法,其中该破乳剂体系是通过缓慢溶解释放的,并且为下列破乳剂体系中的至少一种:烷基胺,烷烃,链烯烃及芳烃。
14.权利要求13的方法,其中该破乳剂体系为十二烷基胺。
15.权利要求1的方法,其中该破乳剂体系或者破乳剂体系的前体是以纳米颗粒的形式提供的。
16.权利要求1的方法,其中该破乳剂体系包含醇。
17.权利要求16的方法,其中所述的醇为甲醇或乙醇。
18.权利要求1的方法,其中该破乳剂体系减小低剪切粘度。
19.权利要求18的方法,其中该破乳剂体系基本上不降低高剪切粘度。
20.权利要求18的方法,其中该破乳剂体系是在缓冲液或前置液阶段加到粘弹性流体中的。
21.权利要求19的方法,其中该破乳剂体系是在缓冲液或前置液阶段加到粘弹性流体中的。
22.一种处理地层的方法,包括首先向井下注入无固体的含水流体,该无固体的含水流体包含浓缩量的阳离子粘弹性表面活性剂和选自甲醇和乙醇的醇,然后注入含有支撑剂的含水流体,该含有支撑剂的含水流体包含浓缩量的所述阳离子粘弹性表面活性剂。
23.权利要求22的方法,其中该阳离子粘弹性表面活性剂为瓢儿菜基甲基二(2-羟乙基)氯化铵。
24.权利要求1的方法,其中所述的处理包括下列处理中的至少一种:砾石充填,流体压裂,酸压裂和酸化。
25.权利要求1的方法,其中所述破乳剂仅加到部分的所述粘弹性表面活性剂流体中。
26.权利要求1的方法,其中所述粘弹性表面活性剂为阴离子表面活性剂,阳离子表面活性剂,非离子表面活性剂,两性离子表面活性剂,或者它们的组合。
27.一种包括含水流体的处理地层的组合物,其中含有浓缩量的粘弹性表面活性剂和致使流体粘度降低的破乳剂体系的前体。
28.权利要求27的组合物,其中该破乳剂体系的前体为选自下列盐中的至少一种:过硫酸铵,氯化钾,六氟磷酸钠和水杨酸钠,而且所述的盐是以包胶形式提供的。
29.权利要求27的组合物,其中该破乳剂体系的前体包含树脂涂布的支撑剂。
30.权利要求27的组合物,其中该破乳剂体系的前体包含下列中的至少一种:酯,羧酸根,有机硫酸盐基盐,及十二烷基硫酸钠。
31.一种包括含水流体的处理地层的组合物,其中含有浓缩量的两性离子表面活性剂和柠檬酸。
32.权利要求27的组合物,其中该破乳剂体系的前体包含羧酸根离子。
33.权利要求27的组合物,其中该破乳剂体系的前体包含下列中的至少一种:C12~C18的醇,烷基胺,烷烃,链烯烃,芳香烃,以及它们的混合物。
34.权利要求27的组合物,其中该粘弹性表面活性剂为阴离子和/或阳离子表面活性剂,且该破乳剂体系的前体为可以缓慢溶解的表面活性剂,其亲水性端基所带有的电荷与粘弹性表面活性剂流体的阴离子或阳离子表面活性剂的亲水性端基相反。
35.权利要求27的组合物,其中该破乳剂体系的前体是以纳米颗粒的形式提供的。
36.权利要求27的组合物,其中该阳离子粘弹性表面活性剂为瓢儿菜基甲基二(2-羟乙基)氯化铵。
CNB018092004A 2000-04-05 2001-04-03 用于地层处理的组合物和方法 Expired - Fee Related CN1288327C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US19475500P 2000-04-05 2000-04-05
US60/194,755 2000-04-05
US21168400P 2000-06-15 2000-06-15
US60/211,684 2000-06-15

Publications (2)

Publication Number Publication Date
CN1427919A true CN1427919A (zh) 2003-07-02
CN1288327C CN1288327C (zh) 2006-12-06

Family

ID=26890374

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018092004A Expired - Fee Related CN1288327C (zh) 2000-04-05 2001-04-03 用于地层处理的组合物和方法

Country Status (13)

Country Link
US (1) US6881709B2 (zh)
EP (1) EP1268976B1 (zh)
CN (1) CN1288327C (zh)
AR (1) AR028910A1 (zh)
AT (1) ATE527434T1 (zh)
AU (2) AU2001260178B2 (zh)
CA (2) CA2649056C (zh)
EA (1) EA004093B1 (zh)
EG (1) EG22559A (zh)
MX (1) MXPA02009684A (zh)
MY (1) MY131256A (zh)
NO (1) NO336379B1 (zh)
WO (1) WO2001077487A2 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925124A (zh) * 2012-10-12 2013-02-13 中国石油化工股份有限公司 一种油层暂堵组合物及应用方法
CN107001924A (zh) * 2014-11-24 2017-08-01 阿克苏诺贝尔化学品国际有限公司 用于粘弹性表面活性剂基流体的内部聚合物破坏剂
CN107691475A (zh) * 2017-11-21 2018-02-16 安徽省伟业净化设备有限公司 一种手术室墙体消毒液的制备方法
CN109563735A (zh) * 2016-04-07 2019-04-02 钢筋分子设计有限责任公司 用于油田应用的降解化学物质的纳米管介导
CN110628407A (zh) * 2019-09-30 2019-12-31 中国石油集团渤海钻探工程有限公司 滑溜水用洗油剂及其制备方法及滑溜水体系

Families Citing this family (170)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2365464B (en) 2000-08-07 2002-09-18 Sofitech Nv Scale dissolver fluid
AU2001270798A1 (en) 2000-08-07 2002-02-18 Schlumberger Canada Limited Viscoelastic wellbore treatment fluid
US6762154B2 (en) * 2000-09-21 2004-07-13 Schlumberger Technology Corporation Viscoelastic surfactant fluids stable at high brine concentrations
GB2372058B (en) * 2001-02-13 2004-01-28 Schlumberger Holdings Viscoelastic compositions
US8785355B2 (en) 2001-02-13 2014-07-22 Schlumberger Technology Corporation Viscoelastic compositions
GB2372518B (en) 2001-02-21 2003-04-16 Schlumberger Holdings Powder composition
US7084095B2 (en) * 2001-04-04 2006-08-01 Schlumberger Technology Corporation Methods for controlling the rheological properties of viscoelastic surfactants based fluids
US6908888B2 (en) * 2001-04-04 2005-06-21 Schlumberger Technology Corporation Viscosity reduction of viscoelastic surfactant based fluids
CA2443977A1 (en) * 2001-04-10 2002-10-24 Bj Services Company Well service fluid and method of making and using the same
US7326670B2 (en) 2001-04-10 2008-02-05 Bj Services Company Well service fluid and method of making and using the same
US8273693B2 (en) 2001-12-12 2012-09-25 Clearwater International Llc Polymeric gel system and methods for making and using same in hydrocarbon recovery
US7183239B2 (en) * 2001-12-12 2007-02-27 Clearwater International, Llc Gel plugs and pigs for pipeline use
US7119050B2 (en) * 2001-12-21 2006-10-10 Schlumberger Technology Corporation Fluid system having controllable reversible viscosity
US6929070B2 (en) 2001-12-21 2005-08-16 Schlumberger Technology Corporation Compositions and methods for treating a subterranean formation
GB2383355A (en) * 2001-12-22 2003-06-25 Schlumberger Holdings An aqueous viscoelastic fluid containing hydrophobically modified polymer and viscoelastic surfactant
US6691780B2 (en) * 2002-04-18 2004-02-17 Halliburton Energy Services, Inc. Tracking of particulate flowback in subterranean wells
AU2003229032A1 (en) * 2002-05-24 2003-12-12 3M Innovative Properties Company Use of surface-modified nanoparticles for oil recovery
US6840318B2 (en) 2002-06-20 2005-01-11 Schlumberger Technology Corporation Method for treating subterranean formation
US7219731B2 (en) * 2002-08-26 2007-05-22 Schlumberger Technology Corporation Degradable additive for viscoelastic surfactant based fluid systems
US7677311B2 (en) * 2002-08-26 2010-03-16 Schlumberger Technology Corporation Internal breaker for oilfield treatments
RU2276675C2 (ru) * 2002-10-09 2006-05-20 Физический факультет Московского государственного университета им. М.В. Ломоносова Способ селективного ингибирования гелеобразования гидрофобно ассоциирующих веществ
US7378378B2 (en) * 2002-12-19 2008-05-27 Schlumberger Technology Corporation Rheology enhancers
US7345012B2 (en) * 2004-12-15 2008-03-18 Schlumberger Technology Corporation Foamed viscoelastic surfactants
US7115546B2 (en) * 2003-01-31 2006-10-03 Bj Services Company Acid diverting system containing quaternary amine
US7090882B2 (en) * 2003-06-12 2006-08-15 Cargill, Incorporated Antimicrobial salt solutions for food safety applications
US7658959B2 (en) 2003-06-12 2010-02-09 Cargill, Incorporated Antimicrobial salt solutions for food safety applications
US7883732B2 (en) * 2003-06-12 2011-02-08 Cargill, Incorporated Antimicrobial salt solutions for cheese processing applications
US7588696B2 (en) * 2003-06-12 2009-09-15 Cargill, Incorporated Antimicrobial water softener salt and solutions
US7148184B2 (en) 2003-07-22 2006-12-12 Schlumberger Technology Corporation Self-diverting foamed system
US8167045B2 (en) 2003-08-26 2012-05-01 Halliburton Energy Services, Inc. Methods and compositions for stabilizing formation fines and sand
US7766099B2 (en) 2003-08-26 2010-08-03 Halliburton Energy Services, Inc. Methods of drilling and consolidating subterranean formation particulates
US7271133B2 (en) * 2003-09-24 2007-09-18 Halliburton Energy Services, Inc. Methods and compositions for treating subterranean formations
US7341107B2 (en) * 2003-12-11 2008-03-11 Schlumberger Technology Corporation Viscoelastic acid
US7156174B2 (en) * 2004-01-30 2007-01-02 Halliburton Energy Services, Inc. Contained micro-particles for use in well bore operations
US7036586B2 (en) * 2004-01-30 2006-05-02 Halliburton Energy Services, Inc. Methods of cementing in subterranean formations using crack resistant cement compositions
US7204312B2 (en) * 2004-01-30 2007-04-17 Halliburton Energy Services, Inc. Compositions and methods for the delivery of chemical components in subterranean well bores
US7086466B2 (en) * 2004-02-10 2006-08-08 Halliburton Energy Services, Inc. Use of substantially hydrated cement particulates in drilling and subterranean applications
US8183186B2 (en) 2004-02-10 2012-05-22 Halliburton Energy Services, Inc. Cement-based particulates and methods of use
US20060166834A1 (en) * 2004-02-10 2006-07-27 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising substantially hydrated cement particulates
US7341104B2 (en) * 2004-02-10 2008-03-11 Halliburton Energy Services, Inc. Methods of using substantially hydrated cement particulates in subterranean applications
US20050173116A1 (en) 2004-02-10 2005-08-11 Nguyen Philip D. Resin compositions and methods of using resin compositions to control proppant flow-back
US9512346B2 (en) * 2004-02-10 2016-12-06 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-hydraulic cement
US7211547B2 (en) 2004-03-03 2007-05-01 Halliburton Energy Services, Inc. Resin compositions and methods of using such resin compositions in subterranean applications
US7172022B2 (en) * 2004-03-17 2007-02-06 Halliburton Energy Services, Inc. Cement compositions containing degradable materials and methods of cementing in subterranean formations
US20050215516A1 (en) * 2004-03-29 2005-09-29 Claudio Bucolo New free-radical scavenger containing viscoelastic composition, methods of use and package
US7534745B2 (en) * 2004-05-05 2009-05-19 Halliburton Energy Services, Inc. Gelled invert emulsion compositions comprising polyvalent metal salts of an organophosphonic acid ester or an organophosphinic acid and methods of use and manufacture
US8226830B2 (en) 2008-04-29 2012-07-24 Baker Hughes Incorporated Wastewater purification with nanoparticle-treated bed
US9029299B2 (en) * 2004-05-13 2015-05-12 Baker Hughes Incorporated Methods and compositions for delayed release of chemicals and particles
US8196659B2 (en) * 2004-05-13 2012-06-12 Baker Hughes Incorporated Multifunctional particles for downhole formation treatments
US7703531B2 (en) * 2004-05-13 2010-04-27 Baker Hughes Incorporated Multifunctional nanoparticles for downhole formation treatments
US8499832B2 (en) * 2004-05-13 2013-08-06 Baker Hughes Incorporated Re-use of surfactant-containing fluids
US7723272B2 (en) * 2007-02-26 2010-05-25 Baker Hughes Incorporated Methods and compositions for fracturing subterranean formations
US8567502B2 (en) * 2004-05-13 2013-10-29 Baker Hughes Incorporated Filtration of dangerous or undesirable contaminants
US7344345B2 (en) * 2004-05-27 2008-03-18 Southco, Inc. Captive shoulder nut having spring tie-down
US7939472B2 (en) 2004-06-07 2011-05-10 Baker Hughes Incorporated Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants
US7595284B2 (en) * 2004-06-07 2009-09-29 Crews James B Metal-mediated viscosity reduction of fluids gelled with viscoelastic surfactants
US7299875B2 (en) 2004-06-08 2007-11-27 Halliburton Energy Services, Inc. Methods for controlling particulate migration
US7244694B2 (en) 2004-09-02 2007-07-17 Schlumberger Technology Corporation Viscoelastic fluids containing nanotubes for oilfield uses
US7757768B2 (en) 2004-10-08 2010-07-20 Halliburton Energy Services, Inc. Method and composition for enhancing coverage and displacement of treatment fluids into subterranean formations
US7237608B2 (en) * 2004-10-20 2007-07-03 Schlumberger Technology Corporation Self diverting matrix acid
US7279446B2 (en) * 2004-11-15 2007-10-09 Rhodia Inc. Viscoelastic surfactant fluids having enhanced shear recovery, rheology and stability performance
US7341980B2 (en) * 2004-11-22 2008-03-11 Schlumberger Technology Corporation Viscoelastic surfactant rheology modification
US7883740B2 (en) 2004-12-12 2011-02-08 Halliburton Energy Services, Inc. Low-quality particulates and methods of making and using improved low-quality particulates
US8044106B2 (en) 2005-03-16 2011-10-25 Baker Hughes Incorporated Saponified fatty acids as viscosity modifiers for viscoelastic surfactant-gelled fluids
US7645724B2 (en) * 2005-03-16 2010-01-12 Baker Hughes Incorporated Compositions and use of mono- and polyenoic acids for breaking VES-gelled fluids
US7696135B2 (en) 2005-03-16 2010-04-13 Baker Hughes Incorporated Use of oil-soluble surfactants as breaker enhancers for VES-gelled fluids
US7728044B2 (en) 2005-03-16 2010-06-01 Baker Hughes Incorporated Saponified fatty acids as breakers for viscoelastic surfactant-gelled fluids
US7696134B2 (en) 2005-03-16 2010-04-13 Baker Hughes Incorporated Unsaturated fatty acids and mineral oils as internal breakers for VES-gelled fluids
US7347266B2 (en) * 2005-09-15 2008-03-25 Baker Hughes Incorporated Use of mineral oils, hydrogenated polyalphaolefin oils and saturated fatty acids for breaking ves-gelled fluids
US7673686B2 (en) 2005-03-29 2010-03-09 Halliburton Energy Services, Inc. Method of stabilizing unconsolidated formation for sand control
US7655603B2 (en) * 2005-05-13 2010-02-02 Baker Hughes Incorported Clean-up additive for viscoelastic surfactant based fluids
US7318474B2 (en) 2005-07-11 2008-01-15 Halliburton Energy Services, Inc. Methods and compositions for controlling formation fines and reducing proppant flow-back
US20070042913A1 (en) 2005-08-17 2007-02-22 Hutchins Richard D Wellbore treatment compositions containing foam extenders and methods of use thereof
US7261160B2 (en) * 2005-09-13 2007-08-28 Halliburton Energy Services, Inc. Methods and compositions for controlling the viscosity of viscoelastic surfactant fluids
US20070060482A1 (en) * 2005-09-13 2007-03-15 Halliburton Energy Services, Inc. Methods and compositions for controlling the viscosity of viscoelastic surfactant fluids
US8921285B2 (en) 2005-09-15 2014-12-30 Baker Hughes Incorporated Particles slurried in oil for viscoelastic surfactant gelled fluids
US7967068B2 (en) * 2005-09-15 2011-06-28 Baker Hughes Incorporated Particles in oil for viscoelastic surfactant gelled fluids
US7615517B2 (en) * 2005-09-15 2009-11-10 Baker Hughes Incorporated Use of mineral oils to reduce fluid loss for viscoelastic surfactant gelled fluids
US9034806B2 (en) * 2005-12-05 2015-05-19 Schlumberger Technology Corporation Viscoelastic surfactant rheology modification
US7588085B2 (en) 2005-12-07 2009-09-15 Schlumberger Technology Corporation Method to improve the injectivity of fluids and gases using hydraulic fracturing
US20070125542A1 (en) * 2005-12-07 2007-06-07 Akzo Nobel N.V. High temperature gellant in low and high density brines
US8486472B2 (en) * 2006-01-18 2013-07-16 Cargill, Incorporated Antimicrobial salt solutions for food safety applications
US7819192B2 (en) 2006-02-10 2010-10-26 Halliburton Energy Services, Inc. Consolidating agent emulsions and associated methods
US7926591B2 (en) 2006-02-10 2011-04-19 Halliburton Energy Services, Inc. Aqueous-based emulsified consolidating agents suitable for use in drill-in applications
US8613320B2 (en) * 2006-02-10 2013-12-24 Halliburton Energy Services, Inc. Compositions and applications of resins in treating subterranean formations
US8735178B2 (en) 2006-03-27 2014-05-27 University Of Kentucky Research Foundation Withanolides, probes and binding targets and methods of use thereof
US7798224B2 (en) 2006-07-03 2010-09-21 Schlumberger Technology Corporation Rheology controlled heterogeneous particle placement in hydraulic fracturing
US8567503B2 (en) * 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US9127194B2 (en) 2006-08-04 2015-09-08 Halliburton Energy Services, Inc. Treatment fluids containing a boron trifluoride complex and methods for use thereof
US8567504B2 (en) * 2006-08-04 2013-10-29 Halliburton Energy Services, Inc. Composition and method relating to the prevention and remediation of surfactant gel damage
US9027647B2 (en) 2006-08-04 2015-05-12 Halliburton Energy Services, Inc. Treatment fluids containing a biodegradable chelating agent and methods for use thereof
US9120964B2 (en) 2006-08-04 2015-09-01 Halliburton Energy Services, Inc. Treatment fluids containing biodegradable chelating agents and methods for use thereof
US8067342B2 (en) * 2006-09-18 2011-11-29 Schlumberger Technology Corporation Internal breakers for viscoelastic surfactant fluids
US8481462B2 (en) * 2006-09-18 2013-07-09 Schlumberger Technology Corporation Oxidative internal breaker system with breaking activators for viscoelastic surfactant fluids
US7287590B1 (en) 2006-09-18 2007-10-30 Schlumberger Technology Corporation Internal breaker for oilfield fluids
US7635028B2 (en) 2006-09-18 2009-12-22 Schlumberger Technology Corporation Acidic internal breaker for viscoelastic surfactant fluids in brine
US8012914B2 (en) * 2006-10-27 2011-09-06 Halliburton Energy Services, Inc. Ortho ester breakers for viscoelastic surfactant gels and associated methods
US8008236B2 (en) * 2006-10-27 2011-08-30 Halliburton Energy Services, Inc. Ortho ester breakers for viscoelastic surfactant gels and associated methods
US9018146B2 (en) * 2006-11-22 2015-04-28 Baker Hughes Incorporated Method of treating a well with viscoelastic surfactant and viscosification activator
US7727935B2 (en) * 2006-12-29 2010-06-01 Halliburton Energy Services, Inc. Dual-function additives for enhancing fluid loss control and stabilizing viscoelastic surfactant fluids
US7939471B2 (en) * 2006-12-29 2011-05-10 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising viscoelastic surfactant gels
US7718584B2 (en) 2006-12-29 2010-05-18 Halliburton Energy Services, Inc. Dual-function additives for enhancing fluid loss control and stabilizing viscoelastic surfactant fluids
US7997342B2 (en) * 2006-12-29 2011-08-16 Halliburton Energy Services, Inc. Subterranean treatment fluids comprising viscoelastic surfactant gels
US8815785B2 (en) * 2006-12-29 2014-08-26 Halliburton Energy Services, Inc. Utilization of surfactant as conformance materials
US20080169103A1 (en) * 2007-01-12 2008-07-17 Carbajal David L Surfactant Wash Treatment Fluids and Associated Methods
US8220548B2 (en) * 2007-01-12 2012-07-17 Halliburton Energy Services Inc. Surfactant wash treatment fluids and associated methods
US7942215B2 (en) * 2007-01-23 2011-05-17 Baker Hughes Incorporated Drilling fluids for oil and gas reservoirs with high carbonate contents
US7992640B2 (en) * 2007-01-23 2011-08-09 Baker Hughes Incorporated Organic acid treating fluids with viscoelastic surfactants and internal breakers
US8544565B2 (en) 2007-01-23 2013-10-01 Baker Hughes Incorporated Lost circulation control fluids for naturally fractured carbonate formations
US7934557B2 (en) 2007-02-15 2011-05-03 Halliburton Energy Services, Inc. Methods of completing wells for controlling water and particulate production
US8695708B2 (en) * 2007-03-26 2014-04-15 Schlumberger Technology Corporation Method for treating subterranean formation with degradable material
US8476203B2 (en) 2007-05-10 2013-07-02 Halliburton Energy Services, Inc. Cement compositions comprising sub-micron alumina and associated methods
US9199879B2 (en) 2007-05-10 2015-12-01 Halliburton Energy Serives, Inc. Well treatment compositions and methods utilizing nano-particles
US8685903B2 (en) * 2007-05-10 2014-04-01 Halliburton Energy Services, Inc. Lost circulation compositions and associated methods
US9206344B2 (en) 2007-05-10 2015-12-08 Halliburton Energy Services, Inc. Sealant compositions and methods utilizing nano-particles
US8586512B2 (en) 2007-05-10 2013-11-19 Halliburton Energy Services, Inc. Cement compositions and methods utilizing nano-clay
US9512351B2 (en) 2007-05-10 2016-12-06 Halliburton Energy Services, Inc. Well treatment fluids and methods utilizing nano-particles
US9145510B2 (en) 2007-05-30 2015-09-29 Baker Hughes Incorporated Use of nano-sized phyllosilicate minerals in viscoelastic surfactant fluids
US8099997B2 (en) 2007-06-22 2012-01-24 Weatherford/Lamb, Inc. Potassium formate gel designed for the prevention of water ingress and dewatering of pipelines or flowlines
US8065905B2 (en) 2007-06-22 2011-11-29 Clearwater International, Llc Composition and method for pipeline conditioning and freezing point suppression
US7431089B1 (en) * 2007-06-25 2008-10-07 Schlumberger Technology Corporation Methods and compositions for selectively dissolving sandstone formations
WO2009014697A2 (en) * 2007-07-23 2009-01-29 Hoag George E Enhanced biodegradation of non-aqueous phase liquids using surfactant enhanced in-situ chemical oxidation
WO2009042228A1 (en) * 2007-09-26 2009-04-02 Verutek Technologies, Inc. System for soil and water remediation
US8114818B2 (en) * 2008-01-16 2012-02-14 Halliburton Energy Services, Inc. Methods and compositions for altering the viscosity of treatment fluids used in subterranean operations
US8895483B2 (en) * 2008-05-05 2014-11-25 Schlumberger Technology Corporation Disproportionate permeability reduction using a viscoelastic surfactant
US7906464B2 (en) 2008-05-13 2011-03-15 Halliburton Energy Services, Inc. Compositions and methods for the removal of oil-based filtercakes
CA2728987C (en) 2008-05-16 2018-12-04 Verutek Technologies, Inc. Green synthesis of nanometals using plant extracts and use thereof
EP2135914A1 (en) * 2008-06-18 2009-12-23 Schlumberger Holdings Limited Method for providing thixotropy to fluids downhole
US7833943B2 (en) 2008-09-26 2010-11-16 Halliburton Energy Services Inc. Microemulsifiers and methods of making and using same
US7762329B1 (en) 2009-01-27 2010-07-27 Halliburton Energy Services, Inc. Methods for servicing well bores with hardenable resin compositions
US9315712B2 (en) * 2009-04-07 2016-04-19 Halliburton Energy Services, Inc. Viscoelastic surfactants and methods of making and using same
US9121674B2 (en) 2009-05-13 2015-09-01 Milmark Technologies, Inc. Armor
US9290689B2 (en) * 2009-06-03 2016-03-22 Schlumberger Technology Corporation Use of encapsulated tracers
US8393395B2 (en) * 2009-06-03 2013-03-12 Schlumberger Technology Corporation Use of encapsulated chemical during fracturing
US20110017457A1 (en) * 2009-07-21 2011-01-27 Samuel Mathew M Environmental compositions and methods for well treatment
US8881820B2 (en) * 2009-08-31 2014-11-11 Halliburton Energy Services, Inc. Treatment fluids comprising entangled equilibrium polymer networks
US8813845B2 (en) * 2009-08-31 2014-08-26 Halliburton Energy Services, Inc. Polymeric additives for enhancement of treatment fluids comprising viscoelastic surfactants and methods of use
WO2011041458A1 (en) * 2009-09-29 2011-04-07 Varma Rajender S Green synthesis of nanometals using fruit extracts and use thereof
RU2009137265A (ru) * 2009-10-09 2011-04-20 Шлюмберже Текнолоджи Б.В. (NL) Способ формирования изолирующей пробки
US20110091283A1 (en) * 2009-10-14 2011-04-21 University Of Connecticut Oxidation of environmental contaminants with mixed valent manganese oxides
US8207096B2 (en) * 2009-12-30 2012-06-26 Halliburton Energy Services Inc. Compressible packer fluids and methods of making and using same
US8347960B2 (en) * 2010-01-25 2013-01-08 Water Tectonics, Inc. Method for using electrocoagulation in hydraulic fracturing
US8148303B2 (en) 2010-06-30 2012-04-03 Halliburton Energy Services Inc. Surfactant additives used to retain producibility while drilling
US8418761B2 (en) 2010-07-29 2013-04-16 Halliburton Energy Services, Inc. Stimuli-responsive high viscosity pill
US8453741B2 (en) 2010-09-23 2013-06-04 Halliburton Energy Services, Inc. Tethered polymers used to enhance the stability of microemulsion fluids
AU2010363701B2 (en) * 2010-11-12 2016-03-10 Schlumberger Technology B. V. Method to enhance fiber bridging
US8881823B2 (en) 2011-05-03 2014-11-11 Halliburton Energy Services, Inc. Environmentally friendly low temperature breaker systems and related methods
US9163173B2 (en) 2011-12-15 2015-10-20 Halliburton Energy Services, Inc. Wellbore servicing compositions and methods of making and using same
US8778852B2 (en) * 2012-01-24 2014-07-15 Baker Hughes Incorporated Breaking viscoelastic surfactant gelled fluids using breaker nanoparticles
US9334716B2 (en) 2012-04-12 2016-05-10 Halliburton Energy Services, Inc. Treatment fluids comprising a hydroxypyridinecarboxylic acid and methods for use thereof
CN103849372A (zh) * 2012-11-30 2014-06-11 亿利资源集团有限公司 一种压裂支撑剂及其制备方法
MX2015007069A (es) * 2012-12-03 2016-01-20 Schlumberger Technology Bv Composicion y metodo para tratamiento de formacion subterranea.
WO2014138445A1 (en) 2013-03-08 2014-09-12 Baker Hughes Incorporated Method of enhancing the complexity of a fracture network within a subterranean formation
US9670399B2 (en) 2013-03-15 2017-06-06 Halliburton Energy Services, Inc. Methods for acidizing a subterranean formation using a stabilized microemulsion carrier fluid
MX2016002657A (es) 2013-09-26 2016-06-06 Baker Hughes Inc Metodo para optimizar la conductividad en una operacion de fracturacion hidraulica.
US11352553B2 (en) * 2014-11-18 2022-06-07 Powdermet, Inc. Polymer coated proppant
US10017685B2 (en) 2014-07-21 2018-07-10 Akzo Nobel Chemicals International B.V. Controlled release granule with water resistant coating
RU2712896C2 (ru) * 2014-11-24 2020-01-31 Акцо Нобель Кемикалз Интернэшнл Б.В. Разжижитель замедленного действия для текучих сред на основе вязкоупругого поверхностно-активного вещества
CN104549077B (zh) * 2014-12-25 2016-08-17 中国石油大学(北京) 一种阴阳离子表面活性剂混合体系凝胶及其制备方法
US10047279B2 (en) * 2016-05-12 2018-08-14 Saudi Arabian Oil Company High temperature viscoelastic surfactant (VES) fluids comprising polymeric viscosity modifiers
WO2019094014A1 (en) * 2017-11-09 2019-05-16 Halliburton Energy Services, Inc. Methods and compositions for acidizing and stabilizing formation of fracture faces in the same treatment
US11220624B2 (en) 2018-07-30 2022-01-11 Championx Usa Inc. Salt-tolerant, fast-dissolving, water-soluble rheology modifiers
WO2020028154A1 (en) 2018-07-30 2020-02-06 Ecolab Usa Inc. Fast dissolving, water soluble, hydrophobically-modified polyelectrolytes
US11319478B2 (en) 2019-07-24 2022-05-03 Saudi Arabian Oil Company Oxidizing gasses for carbon dioxide-based fracturing fluids
WO2021138355A1 (en) 2019-12-31 2021-07-08 Saudi Arabian Oil Company Viscoelastic-surfactant fracturing fluids having oxidizer
US11352548B2 (en) 2019-12-31 2022-06-07 Saudi Arabian Oil Company Viscoelastic-surfactant treatment fluids having oxidizer
BR102020006183A2 (pt) * 2020-03-26 2021-09-28 Universidade Estadual De Campinas - Unicamp Composição de fluido ácido divergente para estimulação de reservatório por acidificação matricial
US11542815B2 (en) 2020-11-30 2023-01-03 Saudi Arabian Oil Company Determining effect of oxidative hydraulic fracturing
US12025589B2 (en) 2021-12-06 2024-07-02 Saudi Arabian Oil Company Indentation method to measure multiple rock properties
US12012550B2 (en) 2021-12-13 2024-06-18 Saudi Arabian Oil Company Attenuated acid formulations for acid stimulation

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3292698A (en) 1964-06-26 1966-12-20 Mobil Oil Corp Treating permeable formations with aqueous positive nonsimple flooding liquids
US3342261A (en) 1965-04-30 1967-09-19 Union Oil Co Method for recovering oil from subterranean formations
US3361213A (en) 1965-09-13 1968-01-02 Mobil Oil Corp Method of decreasing friction loss in turbulent liquids
US3760881A (en) 1971-05-24 1973-09-25 Exxon Production Research Co Treatment of wells with fluids containing complexes
CA997547A (en) 1972-01-03 1976-09-28 Marathon Oil Company Temperature-inverted fracturing fluid
US3830302A (en) 1973-06-25 1974-08-20 Marathon Oil Co Method for improving oil-water ratios in oil producing wells
US3928215A (en) 1973-06-29 1975-12-23 Marathon Oil Co High fluidity cutting oils which exhibit retro-viscous properties
US3956173A (en) 1974-07-05 1976-05-11 Hercules Incorporated Preparation of gels based on carrageenan
US4113631A (en) 1976-08-10 1978-09-12 The Dow Chemical Company Foaming and silt suspending agent
US4061580A (en) 1976-09-08 1977-12-06 The Lubrizol Corporation Thickened aqueous compositions for well treatment
US4120356A (en) 1976-09-30 1978-10-17 Phillips Petroleum Company Well-cleaning process using viscosified surfactant solutions
CA1109356A (en) 1978-01-23 1981-09-22 Lewis R. Norman Gelled aqueous inorganic acid solutions and methods of using the same
US4418755A (en) 1979-02-14 1983-12-06 Conoco Inc. Methods of inhibiting the flow of water in subterranean formations
US4324669A (en) 1979-11-19 1982-04-13 Halliburton Company Foamed high viscosity aqueous inorganic acid solutions and methods of using the same
US4725372A (en) 1980-10-27 1988-02-16 The Dow Chemical Company Aqueous wellbore service fluids
US4432881A (en) 1981-02-06 1984-02-21 The Dow Chemical Company Water-dispersible hydrophobic thickening agent
US4615825A (en) 1981-10-30 1986-10-07 The Dow Chemical Company Friction reduction using a viscoelastic surfactant
US4591447A (en) 1984-03-16 1986-05-27 Dowell Schlumberger Incorporated Aqueous gelling and/or foaming agents for aqueous acids and methods of using the same
US4695389A (en) 1984-03-16 1987-09-22 Dowell Schlumberger Incorporated Aqueous gelling and/or foaming agents for aqueous acids and methods of using the same
US4735731A (en) 1984-06-15 1988-04-05 The Dow Chemical Company Process for reversible thickening of a liquid
US4806256A (en) 1984-06-18 1989-02-21 The Dow Chemical Company Water-based hydraulic fluids
WO1994009852A1 (en) 1992-03-09 1994-05-11 The Dow Chemical Company Viscoelastic surfactant based foam fluids
US5258137A (en) 1984-12-24 1993-11-02 The Dow Chemical Company Viscoelastic surfactant based foam fluids
US4790958A (en) 1986-02-21 1988-12-13 The Dow Chemical Company Chemical method of ferric ion removal from acid solutions
US4741401A (en) * 1987-01-16 1988-05-03 The Dow Chemical Company Method for treating subterranean formations
US5093448A (en) 1987-12-21 1992-03-03 Exxon Research And Engineering Company Polymerizable cationic visco-elastic monomer fluids
US5036136A (en) 1987-12-21 1991-07-30 Exxon Research And Engineering Company Mixtures of colloidal rod-like viscoelastic fluids and anionic-alkyl containing copolymers
US5009799A (en) 1988-02-16 1991-04-23 Nalco Chemical Company Inorganic acid solution viscosifier and corrosion inhibitor and method
US4975482A (en) 1989-08-18 1990-12-04 Exxon Research & Engineering Company Viscoelastic fluids formed through the interaction of polymerizable vesicles and alkyl-containing polymers (C-2381)
SU1724859A1 (ru) 1989-10-27 1992-04-07 Государственный институт по проектированию и исследовательским работам в нефтяной промышленности "Гипровостокнефть" Состав дл регулировани разработки нефт ных месторождений
US5102559A (en) * 1989-12-14 1992-04-07 Exxon Research And Engineering Company Encapsulated breaker chemical with a multi-coat layer urea
US5101903A (en) 1990-09-04 1992-04-07 Akzo Nv Method for modifying the permeability of an underground formation
US5164099A (en) * 1990-12-06 1992-11-17 The Western Company Of North America Encapsulations for treating subterranean formations and methods for the use thereof
US5203411A (en) 1992-03-11 1993-04-20 The Dow Chemical Company Oil recovery process using mobility control fluid comprising alkylated diphenyloxide sulfonates and foam forming amphoteric surfactants
US5310002A (en) 1992-04-17 1994-05-10 Halliburton Company Gas well treatment compositions and methods
US5551516A (en) * 1995-02-17 1996-09-03 Dowell, A Division Of Schlumberger Technology Corporation Hydraulic fracturing process and compositions
GB9506806D0 (en) 1995-04-01 1995-05-24 Univ Leeds Improvements relating to polymers
US6435277B1 (en) * 1996-10-09 2002-08-20 Schlumberger Technology Corporation Compositions containing aqueous viscosifying surfactants and methods for applying such compositions in subterranean formations
US5964295A (en) 1996-10-09 1999-10-12 Schlumberger Technology Corporation, Dowell Division Methods and compositions for testing subterranean formations
US6258859B1 (en) * 1997-06-10 2001-07-10 Rhodia, Inc. Viscoelastic surfactant fluids and related methods of use
US6035936A (en) * 1997-11-06 2000-03-14 Whalen; Robert T. Viscoelastic surfactant fracturing fluids and a method for fracturing subterranean formations
US5979555A (en) 1997-12-02 1999-11-09 Akzo Nobel Nv Surfactants for hydraulic fractoring compositions
GB2332224B (en) 1997-12-13 2000-01-19 Sofitech Nv Gelling composition for wellbore service fluids
GB2332223B (en) 1997-12-13 2000-01-19 Sofitech Nv Viscoelastic surfactant based gelling composition for wellbore service fluids
GB2335679B (en) 1998-03-27 2000-09-13 Sofitech Nv Gelling composition based on monomeric viscoelastic surfactants for wellbore service fluids
GB2335680B (en) 1998-03-27 2000-05-17 Sofitech Nv Method for water control
US6192985B1 (en) * 1998-12-19 2001-02-27 Schlumberger Technology Corporation Fluids and techniques for maximizing fracture fluid clean-up
CA2257699C (en) 1998-12-31 2003-07-22 Fracmaster Ltd. Fluids for fracturing subterranean formations
US6140277A (en) * 1998-12-31 2000-10-31 Schlumberger Technology Corporation Fluids and techniques for hydrocarbon well completion
CA2257697C (en) 1998-12-31 2003-05-20 Fracmaster Ltd. Foam-fluid for fracturing subterranean formations
US6432885B1 (en) * 1999-08-26 2002-08-13 Osca, Inc. Well treatment fluids and methods for the use thereof
AU5793600A (en) 1999-09-22 2001-03-29 Baker Hughes Incorporated Hydraulic fracturing using non-ionic surfactant gelling agent
US6399546B1 (en) * 1999-10-15 2002-06-04 Schlumberger Technology Corporation Fluid system having controllable reversible viscosity
US6908888B2 (en) * 2001-04-04 2005-06-21 Schlumberger Technology Corporation Viscosity reduction of viscoelastic surfactant based fluids

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102925124A (zh) * 2012-10-12 2013-02-13 中国石油化工股份有限公司 一种油层暂堵组合物及应用方法
CN107001924A (zh) * 2014-11-24 2017-08-01 阿克苏诺贝尔化学品国际有限公司 用于粘弹性表面活性剂基流体的内部聚合物破坏剂
CN109563735A (zh) * 2016-04-07 2019-04-02 钢筋分子设计有限责任公司 用于油田应用的降解化学物质的纳米管介导
CN107691475A (zh) * 2017-11-21 2018-02-16 安徽省伟业净化设备有限公司 一种手术室墙体消毒液的制备方法
CN110628407A (zh) * 2019-09-30 2019-12-31 中国石油集团渤海钻探工程有限公司 滑溜水用洗油剂及其制备方法及滑溜水体系

Also Published As

Publication number Publication date
MXPA02009684A (es) 2003-04-22
NO20024685L (no) 2002-10-04
CA2649056A1 (en) 2001-10-18
CA2405256A1 (en) 2001-10-18
US6881709B2 (en) 2005-04-19
US20020004464A1 (en) 2002-01-10
CA2405256C (en) 2009-06-02
MY131256A (en) 2007-07-31
AU6017801A (en) 2001-10-23
EP1268976A2 (en) 2003-01-02
EP1268976B1 (en) 2011-10-05
EA004093B1 (ru) 2003-12-25
AU2001260178B2 (en) 2005-12-15
ATE527434T1 (de) 2011-10-15
CA2649056C (en) 2010-10-26
WO2001077487A3 (en) 2002-03-28
WO2001077487A2 (en) 2001-10-18
NO336379B1 (no) 2015-08-10
EG22559A (en) 2003-04-30
CN1288327C (zh) 2006-12-06
AR028910A1 (es) 2003-05-28
NO20024685D0 (no) 2002-09-30
EA200201067A1 (ru) 2003-04-24

Similar Documents

Publication Publication Date Title
CN1427919A (zh) 粘弹性表面活性剂基流体的粘度的降低
EP1534926B1 (en) Viscosity reduction of viscoelastic surfactant based fluids
US8188015B2 (en) Methods and compositions for fracturing subterranean formations
US10526529B2 (en) Treatment fluids comprising viscosifying agents and methods of using the same
AU2001260178A1 (en) Viscosity reduction of viscoelastic surfactant based fluids
AU2001260178A2 (en) Viscosity reduction of viscoelastic surfactant based fluids
US7527102B2 (en) Methods and compositions for diverting acid fluids in wellbores
US9243181B2 (en) Dual-functional breaker for hybrid fluids of viscoelastic surfactant and polymer
CN1666007A (zh) 用于处理地下地层的组合物和方法
EP3390569A1 (en) Targeting enhanced production through deep carbonate stimulation; stabilized acid emulsions containing insoluble solid materials with desired wetting properties
US20190367800A1 (en) Lost Circulation Pill for Severe Losses using Viscoelastic Surfactant Technology
WO2011092637A2 (en) Use of reactive solids and fibers in wellbore clean-out and stimulation applications
US11820934B2 (en) Microsphere compositions and methods for production in oil-based drilling fluids

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: PETROLEUM RES AND DEV N. V.

Free format text: FORMER OWNER: SOFITECH N.V.

Effective date: 20081031

C41 Transfer of patent application or patent right or utility model
C56 Change in the name or address of the patentee

Owner name: PRADER RESEARCH AND DEVELOPMENT CORPORATION.

Free format text: FORMER NAME OR ADDRESS: PETROLEUM RES AND DEV N. V.

CP03 Change of name, title or address

Address after: Virgin Islands (British)

Patentee after: PRAD RESEARCH AND DEVELOPMENT Ltd.

Address before: The Netherlands Antilles

Patentee before: SERVICES PETROLIERS SCHLUMBERGER

TR01 Transfer of patent right

Effective date of registration: 20081031

Address after: The Netherlands Antilles

Patentee after: SERVICES PETROLIERS SCHLUMBERGER

Address before: Brussels

Patentee before: SCHLUMBERGER CANADA LTD.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20061206

Termination date: 20170403

CF01 Termination of patent right due to non-payment of annual fee