CN1423694A - 大肠杆菌肌醇六磷酸酶的定点突变 - Google Patents

大肠杆菌肌醇六磷酸酶的定点突变 Download PDF

Info

Publication number
CN1423694A
CN1423694A CN00818448A CN00818448A CN1423694A CN 1423694 A CN1423694 A CN 1423694A CN 00818448 A CN00818448 A CN 00818448A CN 00818448 A CN00818448 A CN 00818448A CN 1423694 A CN1423694 A CN 1423694A
Authority
CN
China
Prior art keywords
phytase
acid phosphatase
leu
mutant
yeast
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN00818448A
Other languages
English (en)
Inventor
X·雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cornell Research Foundation Inc
Original Assignee
Cornell Research Foundation Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cornell Research Foundation Inc filed Critical Cornell Research Foundation Inc
Publication of CN1423694A publication Critical patent/CN1423694A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/030264-Phytase (3.1.3.26), i.e. 6-phytase
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y301/00Hydrolases acting on ester bonds (3.1)
    • C12Y301/03Phosphoric monoester hydrolases (3.1.3)
    • C12Y301/030083-Phytase (3.1.3.8)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Fodder In General (AREA)

Abstract

本发明是关于一种分离的具有改善的酶学特性的突变体酸性磷酸酶/肌醇六磷酸酶。这种突变体酸性磷酸酶/肌醇六磷酸酶特别适用于动物饲料组合物。

Description

大肠杆菌肌醇六磷酸酶的定点突变
本发明要求1999年11月18日申请的临时专利申请序号为US60/166179的优先权。
                     发明领域
本发明涉及大肠杆菌(Escherichia coli)磷酸酶/肌醇六磷酸酶的定点突变。
                     发明背景
肌醇六磷酸酶是一组特殊的磷酸单酯酶,对于从肌醇六磷酸盐上引发磷酸盐(“P”)的释放是必需的,而肌醇六磷酸盐又是谷物食品或饲料中磷酸盐的主要储存形式(Reddy,N.R.等,“豆科植物和谷物中的肌醇六磷酸盐”, Advances in Food Research(食品研究进展),28:1(1982))。由于诸如猪和家禽以及人一类的单胃动物的胃肠道内仅有很小的肌醇六磷酸酶活性,几乎所有摄食的肌醇六磷酸P都不能被吸收。这导致需要给这些动物的食物中补充无机P,它是一种昂贵而不可再生的营养物质。更不希望的是,由这些动物***出的粪肥中的无法利用的肌醇六磷酸盐中的磷酸盐造成环境中的磷酸盐污染(Cromwell,G.L.等,“P—一种重要的必须营养素,也可能是主要的污染物—它在动物营养中的中心作用”, Biotechnology In the Feed Industry(饲料工业中的生物技术);第七届Alltech年会论文集,第133页(1991))。另外,肌醇六磷酸盐同象锌一类的必须微量元素形成螯合物,从而在以不去除肌醇六磷酸盐的植物为主要食物来源的儿童中造成诸如生长和智力迟缓等营养缺陷。
由黑曲霉(Aspergillus niger)NRRL3115中获得的两种肌醇六磷酸酶phyA和phyB已经被克隆并测序(Ehrlich,K.C.等.,“来自黑曲霉的第二种肌醇六磷酸酶基因(phyS)的鉴定与克隆”, Biochem.Riophys.Res.Commun. (生物化学和生物物理研究通讯),195:53-57(1993);Piddington,C.S.等,“编码肌醇六磷酸酶(phy)的基因的克隆与测序以及来自黑曲霉awamori变种的最适酸度为pH2.5的磷酸酶(aph)”, Gene(基因),133:56-62(1993))。最近,从以下之中分离出了新肌醇六磷酸酶基因:土曲霉(Aspergillus terreus)和嗜热毁丝霉(Myceliophthora thermophila)(Mitchell等,“组氨酸磷酸酶的肌醇六磷酸酶亚科:从真菌土曲霉和嗜热毁丝霉中分离出的两个新肌醇六磷酸酶基因”, Microbiology(微生物学),143:245-52,(1997));烟曲霉(Aspergillus fumigatus)(Pasamontes等,“来自真菌烟曲霉的热稳定的肌醇六磷酸酶基因的克隆、纯化和鉴定”, Appl.Environ.Microbiol.(应用环境 微生物学),63:1696-700(1997));翅孢巢曲霉(Emericella nidulans)和嗜热踝节菌(Talaromyces thermophilus)(Pasamontes等,“从翅孢巢曲霉和嗜热真菌嗜热踝节菌中克隆肌醇六磷酸酶”,Biochim.Biophys.Acta. (生物化学生 物物理学报),1353:217-23(1997)),和玉米(Maugenest等,“编码玉米种子肌醇六磷酸酶的cDNA的克隆和鉴定”, Biochem.J.(生物化学杂志),322:511-17(1997))。
从下列之中已经分离和/或提纯了各种类型的肌醇六磷酸酶:肠杆菌属(Enterobacter sp.4)(Yoon等,“生产肌醇六磷酸酶的细菌和肠杆菌sp.4的分离和鉴定,以及肌醇六磷酸酶的酶学性质”, Enzyme and Microbial Technology(酶与微生物技术)18:449-54(1996));土生克雷白氏菌(Klebsiellaterrigena)(Greiner等,“来自土生克雷白氏菌的肌醇六磷酸酶的纯化和性质”, Arch.Biochem.Biophys.(生物化学与生物物理学文献)341:201-06(1997)),和芽孢杆菌(Bacillus)DS11种(“来自芽孢杆菌DS11种的热稳定肌醇六磷酸酶的纯化的性质”, Enzyme and Microbial Technology(酶与微 生物技术)22:2-7(1998))。已经研究了这些酶的特性。另外,来自无花果曲霉(Aspergillus ficuum)的phyA的晶体结构已经被报道(Kostrewa等,“在2.5A分辨率下的来自无花果曲霉的肌醇六磷酸酶的晶体结构”, Nature Structure Biology(天然结构生物学)4:185-90(1997))。
Hartingsveldt等将phyA基因引入到黑曲霉中而获得的肌醇六磷酸酶活性比野生型增加了10倍。(“黑曲霉中编码肌醇六磷酸酶的基因(phyA)的克隆、鉴定和超量表达”, Gene(基因),127:87-94(1993))。在猪和家禽的食物中添加这种来源的微生物肌醇六磷酸酶已经显示出对改善肌醇六磷酸盐P和锌的利用的效果(Simons等,“用微生物肌醇六磷酸酶提高肉用仔鸡和猪的磷的供给”, Br.J.Nutr.(英国营养学 杂志),64:525(1990);Lei,X.G.等,“在谷物-大豆粉饲料中添加微生物肌醇六磷酸酶线性提高了幼猪的肌醇六磷酸盐磷的利用率”, J. Anim.Sci.(动物科学杂志),71:3359(1993);Lei,X.G.等,“在谷物-大豆粉饲料中添加微生物肌醇六磷酸酶最大化了幼猪的肌醇六磷酸盐磷的利用率”, J.Anim.Sci.(动物科学杂志),71:3368(1993);Cromwell,G.L.等,“磷一一种重要的必须营养素,也可能是主要的污染物—它在动物营养中的中心作用”, Biotechnology In the Feed Industry(饲料工 业中的生物技术);第七届Alltech年会论文集,第133页(1991))。然而,有限的市售肌醇六磷酸酶的成本和饲喂丸片时对热的不稳定性都妨碍了它在动物工业中的实践应用(Jongbloed,A.W.等,“压丸混合饲料对肌醇六磷酸酶活性及对猪的磷、钙表观吸收能力的影响”, Animal Feed Science and Technology(动物饲料科技),28:233-42(1990))。此外,由黑曲霉生产的肌醇六磷酸酶大概不是人类食品制造的最安全的来源。
因此,在食品和饲料工业中需要改进肌醇六磷酸酶产品。
                     发明概述
本发明涉及通过使具有SEQ.ID.No.1的氨基酸序列的野生型大肠杆菌酸性磷酸酶/肌醇六磷酸酶上发生多个氨基酸取代而生产的分离的突变体酸性磷酸酶/肌醇六磷酸酶。这些氨基酸取代发生在SEQ.ID.No.1的第200、207和211位上。本发明还涉及分离的突变体酸性磷酸酶/肌醇六磷酸酶,它同具有SEQ.ID.No.1的氨基酸序列的野生型菌酸性磷酸酶/肌醇六磷酸酶至少有一个氨基酸取代不同,该取代破坏了第200和210位的半胱氨酸残基之间的二硫键的形成。本发明的突变体酸性磷酸酶/肌醇六磷酸酶可用于动物饲料组合物。
本发明还涉及改善具有SEQ.ID.No.1的氨基酸序列的野生型大肠杆菌酸性磷酸酶/肌醇六磷酸酶的酶学特性的方法。这种方法涉及到通过在SEQ.ID.No.1的200、207和211位引入氨基酸取代而改变野生型酸性磷酸酶/肌醇六磷酸酶的氨基酸序列。
这种方法的另一个实施方案涉及到通过引入至少一个氨基酸取代而破坏第200和210位的半胱氨酸残基之间的二硫键的形成,使具有SEQ.ID.No.1的野生型酸性磷酸酶/肌醇六磷酸酶的氨基酸序列发生改变。
本发明的另一方面涉及编码本发明中突变体酸性磷酸酶/肌醇六磷酸酶的一个分离的DNA分子。还公开了重组DNA表达***和含有本发明DNA分子的宿主细胞。这些构建体可以用来重组生产本发明的突变体酸性磷酸酶/肌醇六磷酸酶。
本发明还提供了一种基本的分子方法,它可以被广泛应用于设计从不同来源的生物获取的突变体酸性磷酸酶/肌醇六磷酸酶,结果导致具有提高的酶学特性例如更高的热稳定性和催化效率的突变体的产生。这一方法包括一种野生型酶基因的鉴定和分离以及用该基因作为定点突变物以增强酶的功能和/或稳定性。本发明的一个方面是用定点突变来使野生型基因发生定向突变,以在野生型酶上加入N-糖基化位点和/或改变酶的物理化学特性(例如提高酶的净正电荷)。另外,对野生型基因定向突变,以去除在最终蛋白质产物中发现的某些二硫键,结果导致热稳定性和催化功能的增强。
                     附图的简要说明
图1显示了大肠杆菌酸性磷酸酶/肌醇六磷酸酶(appA)的核苷酸序列(SEQ.ID.No.2)和推测的氨基酸序列(SEQ.ID.No.1)。引物有下划线并且由箭头说明。GH环状域(202-211)是黑体字并且C200(在G螺旋中)和C210(在GH环中)在α-区形成了特别的二硫键。取代的氨基酸(A131、V134N、C200、D207和S211)被下划线而且是黑体。
图2显示了巴斯德毕赤氏酵母(Pichia pastoris)表达的纯化的重组蛋白的SDS-凝胶电泳(15%)分析。每个泳道加30微克蛋白质。泳道M,预先染色标记物(Biorad,千道尔顿)(磷酸化酶b,103;牛血清清蛋白,76;卵清蛋白,49;碳酸酐酶,33.2;大豆胰蛋白酶抑制剂,28);泳道1,Endo Hf(内切糖苷酶Hf);泳道2,r-AppA(巴斯德毕赤氏酵母的appA生产的重组蛋白);泳道3,r-AppA+Endo Hf,泳道4,突变体U;泳道5,突变体U+Endo Hf;泳道6,突变体R;泳道7,突变体R+EndoHf;泳道8,突变体Y;泳道9,突变体Y+Endo Hf
图3表明在37℃下以肌醇六磷酸钠为底物时,纯化的r-AppA(●)和突变体(U,■;Y,▲;R,◆)的酶活性与pH的相关性。每种突变体和r-AppA的最大活性被定义为100%。缓冲液:pH 1.5-3.5,0.2M的甘氨酸-盐酸;pH 4.5-7.5,0.2M的柠檬酸钠,pH 8.5-11,0.2M的三盐酸。星号表示r-AppA和其它突变体之间的有效差异(P<0.05)。每个结果都以三次实验的平均值±标准差表示。
图4表明在所示温度下暴露15分钟后纯化的r-AppA(●)和突变体(U,■;Y,▲;R,◆)残留的酶活性。纯化的酶在0.2M的甘氨酸-盐酸、pH 2.5下培养15分钟。加热后,将反应混合物在冰上冷却30分钟。每种重组酶对肌醇六磷酸钠的初始活性被定义为100%。星号表示r-AppA和其它突变体之间的有效差异(P<0.05)。每个结果都以三次实验的平均值±标准差表示。
                     发明详述
本发明是关于一个分离的突变体酸性磷酸酶/肌醇六磷酸酶的,它是通过对野生型大肠杆菌酸性磷酸酶/肌醇六磷酸酶进行定点突变而产生的。根据一个实施方案,突变体酸性磷酸酶/肌醇六磷酸酶是通过在野生型大肠杆菌酸性磷酸酶/肌醇六磷酸酶中引入多个定点氨基酸取代而制备的。在另外一个实施方案中,突变体酸性磷酸酶/肌醇六磷酸酶是通过向野生型酸性磷酸酶/肌醇六磷酸酶中引入至少一个氨基酸取代以破坏突变体磷酸酶/肌醇六磷酸酶的半胱氨酸残基之间二硫键的形成而制备的。野生型酸性磷酸酶/肌醇六磷酸酶具有相应于SEQ.ID.No.1的如下氨基酸序列:Met Lys Ala Ile Leu Ile Pro Phe Leu Ser Leu Leu Ile Pro Leu Thr1               5                  10                  15Pro Gln Ser Ala Phe Ala Gln Ser Glu Pro Glu Leu Lys Leu Glu Ser
         20                  25                  30Val Val Ile Val Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr
     35                  40                  45Gln Leu Met Gln Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val
 50                  55                  60Lys Leu Gly Trp Leu Thr Pro Arg Gly Gly Glu Leu Ile Ala Tyr Leu65                  70                  75                  80Gly His Tyr Gln Arg Gln Arg Leu Val Ala Asp Gly Leu Leu Ala Lys
             85                  90                  95Lys Gly Cys Pro Gln Pro Gly Gln Val Ala Ile Ile Ala Asp Val Asp
        100                 105                 110Glu Arg Thr Arg Lys Thr Gly Glu Ala Phe Ala Ala Gly Leu Ala Pro
    115                 120                 125Asp Cys Ala Ile Thr Val His Thr Gln Ala Asp Thr Ser Ser Pro Asp
130                 135                 140Pro Leu Phe Asn Pro Leu Lys Thr Gly Val Cys Gln Leu Asp Asn Ala145                 150                 155                 160Asn Val Thr Asp Ala Ile Leu Ser Arg Ala Gly Gly Ser Ile Ala Asp
            165                 170                 175Phe Thr Gly His Arg Gln Thr Ala Phe Arg Glu Leu Glu Arg Val Leu
        180                 185                 190Asn Phe Pro Gln Ser Asn Leu Cys Leu Lys Arg Glu Lys Gln Asp Glu
    195                 200                 205Ser Cys Ser Leu Thr Gln Ala Leu Pro Ser Glu Leu Lys Val Ser Ala
210                 215                 220Asp Asn Val Ser Leu Thr Gly Ala Val Ser Leu Ala Ser Met Leu Thr225                 230                 235                 240Glu Ile Phe Leu Leu Gln Gln Ala Gln Gly Met Pro Glu Pro Gly Trp
            245                 250                 255Gly Arg Ile Thr Asp Ser His Gln Trp Asn Thr Leu Leu Ser Leu His
        260                 265                 270Asn Ala Gln Phe Tyr Leu Leu Gln Arg Thr Pro Glu Val Ala Arg Ser
    275                 280                 285Arg Ala Thr Pro Leu Leu Asp Leu Ile Lys Thr Ala Leu Thr Pro His
290                 295                 300Pro Pro Gln Lys Gln Ala Tyr Gly Val Thr Leu Pro Thr Ser Val Leu305                 310                 315                 320Phe Ile Ala Gly His Asp Thr Asn Leu Ala Asn Leu Gly GIy Ala Leu
            325                 330                 335Glu Leu Asn Trp Thr Leu Pro Gly Gln Pro Asp Asn Thr Pro Pro Gly
        340                 345                 350Gly Glu Leu Val Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gln
    355                 360                 365Trp Ile Gln Val Ser Leu Val Phe Gln Thr Leu Gln Gln Met Arg Asp
370                 375                 380Lys Thr Pro Leu Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr385                 390                 395                 400Leu Ala Gly Cys Glu Glu Arg Asn Ala Gln Gly Met Cys Ser Leu Ala
            405                 410                 415Gly Phe Thr Gln Ile Val Asn Glu Ala Arg Ile Pro Ala Cys Ser Leu *
        420                 425                 430
具有按照SEQ.ID.No.1的氨基酸序列的野生型酸性磷酸酶/肌醇六磷酸酶是由如下所示的SEQ.ID.No.2的核苷酸序列的第187-1486的碱基所编码的:1     taa gga gca gaa aca ATG TGG TAT TTA CTT TGG TTC GTC GGC ATT46    TTG TTG ATG TGT TCG CTC TCC ACC CTT GTG TTG GTA TGG CTG GAC91    CCG CGA TTG AAA AGT T aac gaa cgt agg cct gat gcg gcg cat134   tag cat cgc atc agg caa tca ata atg tca gat atg aaa agc gga179   aac ata tcg ATG AAA GCG ATC TTA ATC CCA TTT TTA TCT CTT CTG224   ATT CCG TTA ACC CCG CAA TCT GCA TTC GCT CAG AGT GAG CCG GAG269   CTG AAG CTG GAA AGT GTG GTG ATT GTC AGC CGT CAT GGT GTG CGT314   GCC CCA ACC AAG GCC ACG CAA CTG ATG CAG GAT GTC ACC CCA GAC359   GCA TGG CCA ACC TGG CCG GTA AAA CTG GGT TGG CTG ACA CCA CGC404   GGT GGT GAG CTA ATC GCC TAT CTC GGA CAT TAC CAA CGC CAG CGT449   CTG GTG GCC GAC GGA TTG CTG GCG AAA AAG GGC TGC CCG CAG CCT494   GGT CAG GTC GCG ATT ATT GTC GAT GTC GAC GAG CGT ACC CGT AAA539   ACA GGC GAA GCC TTC GCC GCC GGG CTG GCA CCT GAC TGT GCA ATA584   ACC GTA CAT ACC CAG GCA GAT ACG TCC AGT CCC GAT CCG TTA TTT629   ATT CCT CTA AAA ACT GGC GTT TGC CAA CTG GAT AAC GCG AAC GTG674   ACT GAC GCG ATC CTC AGC AGG GCA GGA GGG TCA ATT GCT GAC TTT719   ACC GGG CAT CGG CAA ACG GCG TTT CGC GAA CTG GAA CGG GTG CTT764   AAT TTT CCG CAA TCA AAC TTG TGC CTT AAA CGT GAG AAA CAG GAC809   GAA AGC TGT TCA TTA ACG CAG GCA TTA CCA TCG GAA CTC AAG GTG854   AGC GCC GAC AAT GTT TCA TTA ACC GGT GCG GTA AGC CTC GCA TCA899   ATG CTG ACG GAA ATA TTT CTC CTG CAA CAA GCA CAG GGA ATG CCG944   GAG CCG GGG TGG GGA AGG ATC ACT GAT TCA CAC CAG TGG AAC ACC989   TTG CTA AGT TTG CAT AAC GCG CAA TTT TAT TTA CTA CAA CGC ACG1034  CCA GAG GTT GCC CGC AGT CGC GCC ACC CCG TTA TTG GAT TTG ATC1079  AAG ACA GCG TTG ACG CCC CAT CCA CCG CAA AAA CAG GCG TAT GGT1124  GTG ACA TTA CCC ACT TCA GTG CTG TTT ATT GCC GGA CAC GAT ACT1169  AAT CTG GCA AAT CTC GGC GGC GCA CTG GAG CTC AAC TGG ACG CTT1214  CCA GGT CAG CCG GAT AAC ACG CCG CCA GGT GGT GAA CTG GTG TTT1259  GAA CGC TGG CGT CGG CTA AGC GAT AAC AGC CAG TGG ATT CAG GTT1304  TCG CTG GTC TTC CAG ACT TTA CAG CAG ATG CGT GAT AAA ACG CCG1349  CTA TCA TTA AAT ACG CCG CCC GGA GAG GTG AAA CTG ACC CTG GCA1394  GGA TGT GAA GAG CGA AAT GCG CAG GGC ATG TGT TCG TTG GCC GGT1439  TTT ACG CAA ATC GTG AAT GAA GCG CGC ATA CCG GCG TGC AGT TTG1484  TAA
这种酸性磷酸酶/肌醇六磷酸酶是从大肠杆菌中获得的。
在生产本发明的突变体酸性磷酸酶/肌醇六磷酸酶时,在SEQ.ID.No.1的第200、207和211位的氨基酸被取代。在酸性磷酸酶/肌醇六磷酸酶的SEQ.ID.No.1中的特别优选的氨基酸取代如下:在第200位,天冬酰胺氨基酸残基取代半胱氨酸氨基酸残基;在第207位,天冬酰胺氨基酸残基取代天冬氨酸氨基酸残基;在第211位,天冬酰胺氨基酸残基取代丝氨酸氨基酸残基。结果,突变体酸性磷酸酶/肌醇六磷酸酶的氨基酸序列SEQ.ID.No.3如下所示(取代的氨基酸有下划线并且是黑体):Met Lys Ala Ile Leu Ile Pro Phe Leu Ser Leu Leu Ile Pro Leu Thr1               5                  10                  15Pro Gln Ser Ala Phe Ala Gln Ser Glu Pro Glu Leu Lys Leu Glu Ser
         20                  25                  30Val Val Ile Val Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr
     35                  40                  45Gln Leu Met Gln Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val
 50                  55                  60Lys Leu Gly Trp Leu Thr Pro Arg Gly Gly Glu Leu Ile Ala Tyr Leu65                  70                  75                  80Gly His Tyr Gln Arg Gln Arg Leu Val Ala Asp Gly Leu Leu Ala Lys
                     85          90                  95Lys Gly Cys Pro Gln Pro Gly Gln Val Ala Ile Ile Ala Asp Val Asp
        100                 105                 110Glu Arg Thr Arg Lys Thr Gly Glu Ala Phe Ala Ala Gly Leu Ala Pro
    115                 120                 125Asp Cys Ala Ile Thr Val His Thr Gln Ala Asp Thr Ser Ser Pro Asp
130                 135                 140Pro Leu Phe Asn Pro Leu Lys Thr Gly Val Cys Gln Leu Asp Asn Ala145                 150                 155                 160Asn Val Thr Asp Ala Ile Leu Ser Arg Ala Gly Gly Ser Ile Ala Asp
            165                 170                 175Phe Thr Gly His Arg Gln Thr Ala Phe Arg Glu Leu Glu Arg Val Leu
        180                 185                 190Asn Phe Pro Gln Ser Asn Leu  Asn Leu Lys Arg Glu Lys Gln  Asu Glu195           200           205Ser Cys  Asn Leu Thr Gln Ala Leu Pro Ser Glu Leu Lys Val  Ser Ala210         215                 220Asp Asn Val Ser Leu Thr Gly Ala Val Ser Leu Ala Ser Met Leu Thr225                 230                 235                 240Glu Ile Phe Leu Leu Gln Gln Ala Gln Gly Met Pro Glu Pro Gly Trp
            245                 250                 255Gly Arg Ile Thr Asp Ser His Gln Trp Asn Thr Leu Leu Ser Leu His
        260                 265                 270Asn Ala Gln Phe Tyr Leu Leu Gln Arg Thr Pro Glu Val Ala Arg Ser
    275                 280                 285Arg Ala Thr Pro Leu Leu Asp Leu Ile Lys Thr Ala Leu Thr Pro His
290                 295                 300Pro Pro Gln Lys Gln Ala Tyr Gly Val Thr Leu Pro Thr Ser Val Leu305                 310                 315                 320Phe Ile Ala Gly His Asp Thr Asn Leu Ala Asn Leu Gly Gly Ala Leu
            325                 330                 335Glu Leu Asn Trp Thr Leu Pro Gly Gln Pro Asp Asn Thr Pro Pro Gly
        340                 345                 350Gly Glu Leu Val Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gln
    355                 360                 365Trp Ile Gln Val Ser Leu Val Phe Gln Thr Leu Gln Gln Met Arg Asp
370                 375                 380Lys Thr Pro Leu Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr385                 390                 395                 400Leu Ala Gly Cys Glu Glu Arg Asn Ala Gln Gly Met Cys Ser Leu Ala
                405             410                 415Gly Phe Thr Gln Ile Val Asn Glu Ala Arg Ile Pro Ala Cys Ser Leu *
        420                 425                 430
SEQ.ID.No.3所示的突变体酸性磷酸酶/肌醇六磷酸酶去糖基化后的分子量为45到48kDa,并且肌醇六磷酸酶的比活力为63U/mg。SEQ.ID.No.3的第21-432位的氨基酸序列代表的是成熟蛋白。
本发明的另一个方面涉及通过在SEQ.ID.No.1的氨基酸序列中***至少一个氨基酸取代,以破坏突变体磷酸酶/肌醇六磷酸酶中的二硫键的形成,从而制备出突变体酸性磷酸酶/肌醇六磷酸酶。特别地,对SEQ ID No.1的第200和/或210位的半胱氨酸残基的定点取代能够消除这些残基之间的二硫键。
具有SEQ.ID.No.3的氨基酸序列的突变体酸性磷酸酶/肌醇六磷酸酶是由如下的SEQ.ID.No.4的核苷酸序列的第187-1486位的碱基编码序列所编码的(在氨基酸第200、207和211位取代的天冬酰胺残基的密码子有下划线并且是黑体):1    taa gga gca gaa aca ATG TGG TAT TTA CTT TGG TTC GTC GGC ATT46   TTG TTG ATG TGT TCG CTC TCC ACC CTT GTG TTG GTA TGG CTG GAC91   CCG CGA TTG AAA AGT T aac gaa cgt agg cct gat gcg gcg cat134  tag cat cgc atc agg caa tca ata atg tca gat atg aaa agc gga179  aac ata tcg ATG AAA GCG ATC TTA ATC CCA TTT TTA TCT CTT CTG224  ATT CCG TTA ACC CCG CAA TCT GCA TTC GCT CAG AGT GAG CCG GAG269  CTG AAG CTG GAA AGT GTG GTG ATT GTC AGC CGT CAT GGT GTG CGT314  GCC CCA ACC AAG GCC ACG CAA CTG ATG CAG GAT GTC ACC CCA GAC359  GCA TGG CCA ACC TGG CCG GTA AAA CTG GGT TGG CTG ACA CCA CGC404  GGT GGT GAG CTA ATC GCC TAT CTC GGA CAT TAC CAA CGC CAG CGT449  CTG GTG GCC GAC GGA TTG CTG GCG AAA AAG GGC TGC CCG CAG CCT494  GGT CAG GTC GCG ATT ATT GTC GAT GTC GAC GAG CGT ACC CGT AAA539  ACA GGC GAA GCC TTC GCC GCC GGG CTG GCA CCT GAC TGT GCA ATA584  ACC GTA CAT ACC CAG GCA GAT ACG TCC AGT CCC GAT CCG TTA TTT629  ATT CCT CTA AAA ACT GGC GTT TGC CAA CTG GAT AAC GCG AAC GTG674  ACT GAC GCG ATC CTC AGC AGG GCA GGA GGG TCA ATT GCT GAC TTT719  ACC GGG CAT CGG CAA ACG GCG TTT CGC GAA CTG GAA CGG GTG CTT764  AAT TTT CCG CAA TCA AAC TTG 
Figure A0081844800151
 CTT  AAA CGT GAG AAA CAG 
Figure A0081844800152
809  GAA AGC TGT   TTA  ACG CAG GCA TTA CCA TCG GAA  CTC AAG GTG854   AGC GCC GAC AAT GTT TCA TTA ACC GGT GCG GTA AGC CTC GCA TCA899   ATG CTG ACG GAA ATA TTT CTC CTG CAA CAA GCA CAG GGA ATG CCG944   GAG CCG GGG TGG GGA AGG ATC ACT GAT TCA CAC CAG TGG AAC ACC989   TTG CTA AGT TTG CAT AAC GCG CAA TTT TAT TTA CTA CAA CGC ACG1034  CCA GAG GTT GCC CGC AGT CGC GCC ACC CCG TTA TTG GAT TTG ATC1079  AAG ACA GCG TTG ACG CCC CAT CCA CCG CAA AAA CAG GCG TAT GGT1124  GTG ACA TTA CCC ACT TCA GTG CTG TTT ATT GCC GGA CAC GAT ACT1169  AAT CTG GCA AAT CTC GGC GGC GCA CTG GAG CTC AAC TGG ACG CTT1214  CCA GGT CAG CCG GAT AAC ACG CCG CCA GGT GGT GAA CTG GTG TTT1259  GAA CGC TGG CGT CGG CTA AGC GAT AAC AGC CAG TGG ATT CAG GTT1304  TCG CTG GTC TTC CAG ACT TTA CAG CAG ATG CGT GAT AAA ACG CCG1349  CTA TCA TTA AAT ACG CCG CCC GGA GAG GTG AAA CTG ACC CTG GCA1394  GGA TGT GAA GAG CGA AAT GCG CAG GGC ATG TGT TCG TTG GCC GGT1439  TTT ACG CAA ATC GTG AAT GAA GCG CGC ATA CCG GCG TGC AGT TTG1484  TAA
本发明的一个实施方案涉及用现有技术中公知的重组DNA技术将突变体酸性磷酸酶/肌醇六磷酸酶基因***到一个表达载体***中。这样人们就能够在宿主细胞中表达该基因,便于酸性磷酸酶/肌醇六磷酸酶的生产和纯化以用于组合物中,例如用于动物饲料。
利用DNA杂交技术能够分离和/或鉴定突变体酸性磷酸酶/肌醇六磷酸酶基因的DNA。本发明的核酸(DNA或RNA)探针在严谨条件下能够同互补的核酸杂交。也可以选择次严谨条件。一般地,严谨条件选择在确定的离子强度和pH值下,大约低于特定序列解链温度(Tm)50℃以下。Tm是50%的靶序列同完全匹配的探针杂交时的温度(在确定的离子强度和pH值下)。Tm值取决于溶液的条件和探针的碱基组成,而对于DNA:RNA杂交可以用下面的公式计算:
Tm=79.8℃+(18.5×Log[Na+]
            +(58.4℃×%[G+C])
            -(820/双螺旋碱基对数目)
            -(0.5×%甲酰胺)
Promega Protocols and Applications Guide第二版,Promega公司,Madison,WI(1991),特此引入作为参考。用已知技术中的任何一种也可以控制非特异性结合,例如用含有蛋白质的溶液阻断膜,向杂交缓冲液中加入异源RNA、DNA和SDS,以及用核糖核酸酶处理。
一般地,核酸杂交试验或基因扩增检测步骤的合适的严谨条件如上所示或者如Southern在“凝胶电泳分离的DNA片段中的特定序列的检测”, J.Mol.Biol.(分子生物学杂志),98:503-17(1975)中所确定,特此引入作为参考。例如,杂交条件为42℃下用5X SSPE和50%的甲酰胺,且在50℃下用0.5X SSPE洗涤,这可以用于含有至少20个碱基的核酸探针,优选至少25个碱基或者更优选至少30个碱基。可以提高严谨性,例如在55℃下或者更优选在60℃下用适当选择的具有提高的钠离子浓度(例如,1X SSPE,2X SSPE,5X SSPE,等等)的洗涤介质洗涤。如果仍然存在交叉杂交问题,还可以选择进一步提高温度,例如在65℃、70℃、75℃或80℃下洗涤。通过调整杂交条件,就能够鉴定出具有所需的由缺省设置下的TBLASTN程序(Altschul,S.F.等,“基本的本机序列对比检索工具”, J.Mol.Biol.(分子生物学杂志)215:403-410(1990),在此引人入作为参考)所确定的同源程度(即,大于80%、85%、90%或95%)的序列。
检测本发明的突变体酸性磷酸酶/肌醇六磷酸酶的一种优选的方法是通过用现有技术中已知的方法,例如象Barany在“利用克隆热稳定性连接酶进行遗传疾病的检测和DNA扩增”, Proc.Natl.Acad.Sci. USA(美国科学院学报)88(1):189-193(1991)中所描述的连接酶检测反应(LDR)和连接酶链式反应(LCR),在此引入作为参考。
当DNA分子以合适的取向和正确的阅读框掺入到表达***中,本发明的DNA分子可以在任何真核或原核表达***中表达。许多宿主-载体***都可以用来表达蛋白质编码序列(一种或多种)。优选的载体包括病毒载体、质粒、粘粒或寡核苷酸。首先,载体***和所用的宿主细胞之间一定要有相容性。宿主-载体***包括但是不限于如下各类:用嗜菌体DNA、质粒DNA或粘粒DNA转化的细菌;含有酵母载体的微生物如酵母;用病毒(例如痘苗病毒、腺病毒等等)感染的哺乳动物细胞***;用病毒(例如杆状病毒)感染的昆虫细胞***;用细菌感染的植物细胞。这些载体的表达元件的强度和特性不同。根据所用的宿主-载体***,可以使用一些合适的转录和翻译元件中的任何一种。例如,根据本发明的DNA分子在读框中同一个转录增强子元件接合。
用于表达本发明DNA分子的优选的宿主包括真菌细胞,这些真菌细胞包括可以根据本发明用作宿主细胞的各种酵母或丝状真菌。优选的酵母宿主细胞包括啤酒糖酵母(Saccharomyces cerevisiae)的各种菌株。也可以用其它的酵母,例如象克鲁维氏酵母属(Kluyveromyces)、圆孢酵母属(Torulaspora)以及裂殖糖酵母属(Schizosaccharomyces)。在一优选实施方案中,用于超量表达蛋白质的酵母菌株是啤酒糖酵母菌株。优选的丝状真菌宿主细胞包括曲霉属(Aspergillus)和链孢霉属(Neurospora)。更优选的曲霉属菌株是黑曲霉。
在本发明的另一个优选实施方案中,酵母菌株是甲基营养型酵母菌株。甲基营养型酵母是那些能够利用甲醇作为碳源以产生保持细胞功能的必要能源,并含有表达醇氧化酶基因的酵母属。典型的甲基营养型酵母成员包括毕赤氏酵母属(Pichia)、汉逊氏酵母属(Hansenula)、球拟酵母属(Torulopsis)、假丝酵母属(Candida)和Karwinskia属。这些酵母属能够利用甲醇作为唯一的碳源。在一个更优选的实施方案中,甲基营养型酵母菌株是巴斯德毕赤氏酵母。
可以用许多方法纯化蛋白质。优选的是,本发明的蛋白质或多肽是用常规技术生产的纯化形式(优选的是至少约80%、更优选的是90%的纯度)。典型地,本发明的蛋白质或多肽是分泌到重组宿主细胞的培养基中。或者本发明生产的蛋白质或多肽也可不分泌到生长培养基中。这种情况下,为分离蛋白质,将带有重组质粒的宿主细胞增殖,用超声处理、加热或化学处理裂解增殖细胞,并离心匀浆以去除细胞残渣。然后对上清液进行连续的硫酸铵沉淀。用合适型号的葡聚糖或聚丙烯酰胺柱对含有本发明多肽或蛋白质的组分进行凝胶过滤,以分离蛋白质。如果需要,可以用HPLC对蛋白质组分进一步纯化。
本发明还提供了带有编码具有肌醇六磷酸酶活性的蛋白质或多肽的异源基因的酵母菌株。该异源基因应当功能性地与能够在酵母中表达肌醇六磷酸酶的启动子连接。
本发明的另一个方面是在酵母中表达肌醇六磷酸酶的载体。该载体带有一个来自非酵母生物且编码具有肌醇六磷酸酶活性的蛋白质或多肽的基因。肌醇六磷酸酶基因可以克隆到任何能够自我复制的载体上或整合到酵母基因组中。自我复制质粒例如YEp质粒的拷贝数可能很多,但是其有丝***的稳定性可能不够(Bitter等,“用于酵母的表达和分泌载体”, Meth.Enzymol.(酶学方法),153:516-44(1987),在此引入作为参考)。它们可以含有决定自我复制的2μ-质粒序列和决定在大肠杆菌中复制的大肠杆菌序列。这些载体优选含有一个用于筛选酵母转化子的遗传标记,以及用于在大肠杆菌中筛选的抗生素抗性基因。含有ARS和CEN序列的附加型载体在每个细胞中以单一拷贝出现,并且它们比YEp载体更加稳定。当DNA片段以一个或多个拷贝整合到酵母基因组中时,就用整合载体。在这种情况下,重组DNA是稳定的并且不需要选择(Struhl等,“酵母的高频转化:杂合DNA分子的自主复制”, Proc.Natl.Acad.Sci.USA(美国科学院学报)76:1035-39(1979);Powels等,Cloning Vectors(克隆载体),I-IV, 以及下列等等,Elsevier,(1985);和Sakai等,“用高级δ-整合***促进啤酒糖酵母分泌人神经生长因子”, Biotechnology(生物技术)9:1382-85(1991),在此引入作为参考)。有些载体具有一个复制起点,在筛选的宿主细胞中起作用。合适的复制起点包括2μ、ARS1和25μM。这些载体具有融合基因***的限制性内切核酸酶位点以及启动子序列和选择性标记。这些载体可以通过去掉或者加入限制性位点、或者去除其它不想要的核苷酸来修饰。
肌醇六磷酸酶基因可以处于任何启动子的控制之下(Stetler等,“由啤酒糖酵母分泌的活性全长和半长的人分泌性白细胞蛋白酶抑制剂”, Biotechnology(生物技术)7:55-60,(1989),在此引入作为参考)。人们可以选择组成型或调节型的酵母启动子。对酵母载体合适的启动子序列尤其包括:金属硫蛋白启动子,3-磷酸甘油酸激酶启动子(Hitzeman等, J.Biol.Chem(生物化学杂志),255:2073(1980),在此引入作为参考)或者其它糖酵解酶类的启动子(Hess等, J.Adv. Enzyme Reg.7:149(1968);以及Holland等, Biochem.(生物化学)17:4900,(1978),在此引入作为参考),所述糖醇解酶类例如烯醇化酶、3-磷酸甘油醛脱氢酶、己糖激酶、丙酮酸脱羧酶、磷酸果糖激酶、6-磷酸葡萄糖异构酶、3-磷酸甘油酸变位酶、丙酮酸激酶、磷酸丙糖异构酶、磷酸葡萄糖异构酶和葡萄糖激酶。其它用于酵母表达的合适的载体和启动子在Hitzeman的EP A-73,657中有进一步描述,在此引入作为参考。另一个可选择的是Russell等在 J.Biol.Chem(生物化学杂志)258:2674(1982)和Beier等在 自然300:724(1982)中描述的葡萄糖抑制ADH2启动子,在此引入作为参考。
可以选择组成型或调节型酵母启动子。强启动子,例如磷酸甘油酸激酶(PGK)基因、其它编码糖酵解酶类的基因、α-因于基因都是组成型的。当使用组成型启动子时,产物在细胞生长中合成。ADH2启动子用乙醇和葡萄糖调节,GAL-1-10和GAL7启动子用半乳糖和葡萄糖调节,PHO5启动子用磷酸盐调节,而金属硫蛋白启动子用铜调节。热休克启动子(HSP150启动子属于热休克启动子)用温度调节。也可以用杂合启动子。当所需产物的持续表达对宿主细胞有害时,使用调节型启动子。除了酵母启动子外,也可以用强原核启动子,例如T7启动子,但是在这种情况下应当用编码各自的聚合酶的基因转化酵母菌株。为了终止转录,可使用HSP150终止子或任何其他功能性终止子。这里,启动子和终止子被称作控制元件。本发明并不限于任何特定的载体、启动子或终止子。
所述载体也可以带有一个选择性标记。选择性标记通常是抗生素抗性基因或者具有很好的代谢缺陷特征的酵母菌株的互补菌种的基因,例如色氨酸或组氨酸缺陷型突变体。优选的选择性标记包括URA3、LEU2、HIS3、TRP1、HIS4、ARG4或抗生素抗性基因。
载体也可具有能够在细菌细胞中复制的复制起点。在细菌菌株中对载体的操作更为有效。优选的细菌复制起点是ColE1、Ori或oriT。
优选的是,具有肌醇六磷酸酶活性的蛋白质或多肽是由细胞分泌到生长培养基中。这就使得产物表达量高并且易于分离。可把具有肌醇六磷酸酶活性的蛋白质或多肽连接到能够使蛋白质分泌到细胞外的信号序列上。优选该信号序列是从蛋白质上被切除的。
来自酵母或来自肌醇六磷酸酶基因或其它来源的前导序列可以用于帮助将表达的肌醇六磷酸酶分泌到培养基中。本发明并不限于任何特定类型的前导序列或信号肽。
合适的前导序列包括酵母α-因子前导序列,它可以用于指导肌醇六磷酸酶的分泌。α-因子前导序列通常***到启动子序列和结构基因序列之间(Kurjan等, Cell(细胞)30:933,(1982);Bitter等, Proc.Natl. Acad.Sci.USA(美国科学院学报)81:5330,(1984);美国专利4,546,082;和欧洲出版的专利申请No.324,274;在此引入作为参考)。另一个合适的前导序列是啤酒糖酵母MFα1(α-因子),它是以165个氨基酸的前导形式合成的,它含有19个氨基酸的信号或前肽,再加上一个“前导区”或64个氨基酸的前肽,包含有三个N-连接的糖基化位点再加上(LysArg(Asp/Glu,Ala)2-3α-因子)4(Kurjan等, Cell(细胞)30:933-43(1982),在此引入作为参考)。前导MFα1的信号-前导区部分已经被广泛应用于啤酒糖酵母中,以获得合成的和分泌的异源蛋白。在酵母中所用的同源信号/前导肽可以从以下获知:美国专利4,546,082;欧洲专利申请116,201、123,294、123,544、163,529和123,289;以及德国专利申请DK 3614/83,在此引入作为参考。在此引入作为参考的欧洲专利申请123,289中,描述了啤酒糖酵母α-因子前体的利用,而在此引入作为参考的WO 84/01153说明了啤酒糖酵母转化酶信号肽的利用,在此引入作为参考的德国专利申请DK 3614/83,说明了利用啤酒糖酵母PH05信号肽分泌外源蛋白。
啤酒糖酵母的α-因子信号-前导区(MFα1或MFα2)也可以用于在酵母中表达异源蛋白的分泌方法中(美国专利4,546,082;欧洲专利申请16,201、123,294、123,544和163,529,在此引入作为参考)。通过将编码啤酒糖酵母MFα1信号/前导序列的DNA序列与所需蛋白的基因的5′端融合,证明了所需蛋白的分泌和对蛋白的处理。利用小鼠唾液淀粉酶信号肽(或其突变体)提供在酵母中表达分泌异源蛋白已经在出版的PCT申请WO 89/02463和WO 90/10075中作了描述,在此引入作为参考。
美国专利5,726,038描述了利用能够提高酵母表达蛋白的分泌的酵母天冬氨酸蛋白酶3的信号肽。其它适于促进酵母宿主细胞分泌重组多肽的前导序列对于本领域技术人员来说是熟知的。可以对前导序列在靠近3′端处进行修饰,以使其含有一个或多个限制性位点。这将有助于前导序列和结构基因的融合。
酵母转化的方案对于本领域技术人员来说是熟知常识。Hinnen等在 Proc.Natl.Acad.Sci.USA(美国科学院学报)75:1929(1978)中描述了一种这样的方案,在此引入作为参考。Hinnen等人的方案在选择性培养基中筛选Trp转化子,其中,选择性培养基由0.67%的酵母氮碱基、0.5%的酪蛋白氨基酸、2%的葡萄糖、10μg/ml腺嘌呤和20μg/ml的尿嘧啶组成。
基因可以保持在稳定的表达载体(人工染色体)中,或整合到酵母宿主细胞染色体上。可以通过将肌醇六磷酸酶基因克隆到将要被重组到酵母染色体的载体上完成到染色体的整合。合适的载体可包括同酵母染色体核苷酸序列同源的核苷酸序列。或者,肌醇六磷酸酶基因可以位于重组位点之间,例如能够将该基因转移到染色体上的转座子。
本发明的另一方面是关于改善野生型酸性磷酸酶/肌醇六磷酸酶的酶学特性。这可以通过改变如上所述野生型酸性磷酸酶/肌醇六磷酸酶的氨基酸序列的第200、207和211位点而理想地获得。例如,这些修饰导致酸性磷酸酶/肌醇六磷酸酶的热稳定性提高。或者,改善的酶学特性是肌醇六磷酸酶活性范围大约在pH 3.5到pH 5.5之间。
虽然酵母***产生的肌醇六磷酸酶释放的来自玉米和大豆的磷酸肌醇六磷酸盐上的P同现在的商品肌醇六磷酸酶一样有效,但是酵母***中产生的肌醇六磷酸酶显示出更好的热稳定性。酵母的肌醇六磷酸酶超量表达***能够提供用于食品和饲料工业的热稳定性肌醇六磷酸酶。
本发明的改善的酸性磷酸酶/肌醇六磷酸酶可以用于动物饲料中,以提高单胃动物如家禽、猪、前反刍牛(pre-ruminant calves)、动物园动物和宠物(例如猫和狗)对磷酸盐的消化。本发明将减少在动物饲料中添加大量无机磷酸盐的需要,因此得到更便宜的动物饲料并且较少涉及不可再生的磷酸盐形式。由于本发明促进了单胃动物对磷酸盐的吸收,这些动物的粪便***物将含有更少的不能利用的磷酸肌醇六磷酸盐-磷酸盐,降低了磷酸盐污染物的数量。
在制备本发明的动物饲料组合物中,突变体酸性磷酸酶/肌醇六磷酸酶同未加工的植物材料结合,然后处理成颗粒状或粉状形式。未加工的植物材料可以包括各种植物的组合和/或通常用于动物饲料的植物副产品,包括的植物例如玉米、大豆、小麦、稻、棉花种子、油菜籽、高梁和马铃薯。另外,这些动物饲料组合物中可添加各种维生素、矿物质、动物蛋白和抗生素。这种动物饲料组合物的一个实施方案包括适当浓度的突变体酸性磷酸酶/肌醇六磷酸酶、能源物质(例如玉米、小麦)、蛋白质源物质(例如大豆、稻、棉花种子粉、油菜籽粉、高梁粉)和维生素/矿物质添加剂的混合物。尤其是,突变体酸性磷酸酶/肌醇六磷酸酶的量应当是300-1,000单位/公斤饲料。典型的动物饲料组合物的实例应当包括50%-70%的玉米、20%-30%的大豆、大约1%的维生素和矿物质添加剂以及适量的突变体酸性磷酸酶/肌醇六磷酸酶。
另外,本发明的突变体酸性磷酸酶/肌醇六磷酸酶可以用于增强人的营养,尤其是通过增加象锌和铁一类的矿物质的摄取。通过在人的食物中加入突变体酸性磷酸酶/肌醇六磷酸酶可以治疗或避免各种由于营养缺乏造成的问题,比如儿童的发育障碍和精神发育迟缓。
本发明也提供能够广泛地应用于设计来自于不同来源生物的突变体酸性磷酸酶/肌醇六磷酸酶的基本分子方法,以生成具有增强的酶特性的突变体,例如更强的热稳定性和催化效力。这种方法包括野生型酶基因的鉴定和分离以及用该基因作为定点突变物来增强该酶的功能和/或稳定性。本发明的一个方面是用定点突变在野生型基因中定向突变,以在野生型酶中加入N-糖基化位点和/或改变酶的物理化学特性(例如,提高酶的净正电荷)。另外,也能够在野生型基因中定点突变,以去除在最终蛋白产物中发现的某些二硫键,以使热稳定性和催化功能提高。
                       实施例实施例1-为设计突变进行序列分析
设计突变以促进AppA酶的糖基化的条件是:1)潜在的糖基化位点应当具有25%或更高的溶剂可及度,和2)该位点应当易于设计成为通过一个残基变化便可得到一个N-连接的糖基化基元(Asn-X-Ser或Asn-X-Thr,其中X不是脯氨酸)。最初,在缺少AppA酶的晶体结构时,鼠的酸性磷酸酶的晶体结构(35%的序列同一性)(Schneider,G.等,EMBO J.,12:2609-15(1993),在此引入作为参考)用于如下计算可及度。首先,用多序列序列对比软件PIMA对AppA酶和鼠酸性磷酸酶同其它密切相关的磷酸酶/肌醇六磷酸酶进行序列对比(Smith,R.等,Protein Engineering(蛋白质工程),5:35-41(1992),在此引入作为参考)。对比的序列包括:人***酸性磷酸酶前体(GeneBank序列登记号P15309);美丽新杆状线虫(Caenorhabditis elegans)组氨酸酸性磷酸酶(GeneBank登记号Z68011);烟曲霉肌醇六磷酸酶(GeneBank登记号U59804);狭叶毕赤氏酵母,(Pichia angusta)抑制性酸性磷酸酶(GeneBank登记号AF0511611);鼠酸性磷酸酶(GeneBank登记号576257);和大肠杆菌appA(GeneBank登记号M58708)。然后,用DSSP软件确定鼠磷酸酶的所有氨基酸的溶剂可及表面(蛋白质二级结构的鉴定)(Kabsch,W.等,Biopolymers(生物聚合物),22:2577-637(1983),在此引入作为参考),除以上述相应氨基酸的总表面积,从而将这些值转换成百分比可及度(Eisenberg,D.等, Chemica Scrinta,29A,217-221(1989),在此引入作为参考)。只有大于25%的溶剂的残基才被认为是可及的。以上面描述的序列对比为基础,在假设鼠酸性磷酸酶和AppA酶的全部结构是恒定的情况下,给AppA酶中的相应氨基酸赋值。最后,检测推定的溶剂可及性残基,以确定哪些能够通过点突变而容易地转化为N-糖基化位点。在31个潜在可能的位点中选择出5个最符合所需条件的位点。用为另一个appA突变研究而设计的引物P2将另外的突变C200N掺入。从进行的序列对比中,突变C200N在间隙区并且C200和C210(Lim等标记为C178/C188, Nat.Struct.Biol.(天然结构 生物学),7:108-13(2000),在此引入作为参考)参与在该蛋白质的α-区的螺旋G和GH环(G螺旋和H螺旋之间的未定型构型)之间形成独特的二硫键(Lim等, Nat.Struct.Biol.(天然结构生物学),7:108-13(2000),在此引入作为参考)。相应地,设计6个PCR引物:用于野生型appA序列(Dassa,J.等, J.Bacteriol.(细菌学杂志),172:5497-500(1990),在此引入作为参考)扩增的E2和K2,以及其它用于制备4个突变体(表1和图1)。所有引物都是由康乃尔大学寡核苷酸合成机构合成的(Ithaca,NY)。
表1
用于突变的修饰引物以及表面溶剂可及度指数引物1   位点2   引物序列3                        修饰4  可及度5
                                                          (%)E2(f)    241-  5′GGAATTCGCTCAGAGCCGGA 3′           EcoRI    ------
     264   (SEQ.ID.No.5)                         限制性
                                                 位点A1(r)    565-  5′CTGGGTATG GTTGGTTAT ATTACAG      A131N    1.05
     592 TCAGGT 3′
     (SEQ.ID.No.6)
                                                 VI34N    0.55P2(f)    772-  5′CAAACTTG AACCTTAAACGTGAG 3′      C200N    nd
     795  (SEQ.ID.No.7)P3(r)    796-  5′CCTGCGTTAA GTTACAGCTTTC AT T    D207N    0.63
     825   CTGTTT 3′
           (SEQ.ID.No.8)
                                                 S211N    0.65K2(r)    1469-5′GGGGTACCTTACAAACTGCACG 3′          Kpnl     ------
     1491  (SEQ.ID.No.9)                         限制性
                                                 位点1:f,正向;r,反向2:根据大肠肝菌周质的pH 2.5的酸性磷酸酶(GenBank登记号M58708)的核苷酸位点。3:下划线的核苷酸被取代。4:加入氨基酸突变或限制性位点。编码区起始于第20个密码子,终止于第432个密码子。Lim等将氨基酸A131、V134、C200、D207以及S211标记为A109、V112、C178、D185和S189(Lim等, Nat.Struct.Biol.(天然结构生物学),7:108-13(2000),在此引入作为参考)。5:氨基酸表面溶剂可及度百分比(Simth,R等, Protein Engineering(蛋白质工程),5:35-41(1992);Kabsch,W.等,Biopolymers(生物聚合物),22:2577-637(1983),在此引入作为参考);nd表示来确定。                                     实施例2-用PCR构建突变体
用根据以前的研究改进的大引物定点突变方法构建大肠杆菌appA突变体(Seraphin,B.等, Nucl.Acid.Res.(核酸研究),24:3276-77(1996);Smith,A.M.等, BioTechniques(生物技术),22:438-39(1997),在此引入作为参考)。为了扩增appA的完整编码区,PCR在含有以下成分的终体积为50μl的溶液中进行:200ng的从大肠杆菌BL21菌株分离的***pAPPA1质粒的appA DNA(Dassa,J.等, J.Bacteriol.(细菌 学杂志),172:5497-500(1990),在此引入作为参考),引物E2和K2各50pmol,AmpliTaq DNA聚合酶5个单位(Perkin Elmer,Norwalk,CT),10mM pH 8.3的三盐酸,50mM KCl,12.5mM MgCl2和dNTP各200mM(Promega公司,Madison,WI)。用GeneAmp PCR***2400(Perkin Elmer)实施反应,并且包括94℃的一个循环(3分钟)、[94℃(0.5分钟)、54℃(1分钟)和72℃(1.5分钟)]的30个循环以及72℃下的一个循环(10分钟)。用于突变体的大引物在另一个PCR的循环中制成(表2)。
表2
大肠杆菌appA突变体的名称和构建
              构建体1         bp大小    糖基化数目突变体    R       E2A1P3K2         1350      7
      U       E2P2P3K2         1350      5
      Y       E2A1P2P3K2       1350      7野生型    r-AppA  E2K2             1350      31见表1的引物名称
用4μl完整的appA PCR反应混合物以及表1中相应的修饰引物按如上所述进行第一个致突变PCR反应(100μl)。所有的大引物PRC产物被在1.5%的低熔点琼脂糖(Gibco BRL,Grand Island,NY)凝胶电泳中分析。切下所要的片段并用GENECLEAN II试剂盒(Bio101,Vista,CA)洗脱。用4μl的appA PCR产物和取决于其大小的不同浓度的纯化的大引物(50ng到4μg)按照上面的描述进行最终的致突变PCR反应(100μl)。五个热循环在94℃下进行1分钟和70℃下进行2分钟。在70℃时,加入1μmol的正向引物和2单位的AmpliTaq DNA聚合酶,同反应物温和混和,在94℃下1分钟、56℃下1分钟和70℃下1.5分钟持续进行热循环25次。实施例3-亚克隆和表达
用大肠杆菌菌株TOP10F′(Invitrogen,San Diego,CA)作为最初的宿主。纯化PCR片段,并根据制造商的说明克隆到pGEMT-Easy载体(Promega)中。用EcoRI消化分离的质粒DNA,以筛选阳性转化子。所得到的***片段被克隆到pPICZαA(Kit Easy-Select,Invitrogen)的EcoRI位点中,并转化到覆盖在含有25μg/ml Zeocin的LB培养基(Luria-Bertani)上的TOP 10F’细胞中。用SalI或BstXI限制性消化质粒DNA筛选出带有所期望的正确取向***片段的菌落。用巴斯德毕赤氏酵母菌株X33(Mut+His+)作为宿主以表达蛋白质(Invitrogen),并在电穿孔前生长在YPD(酵母提取蛋白胨葡聚糖培养基)液体培养基中。用限制性酶BglII orPmeI使2μg的质粒DNA线性化,然后根据制造商的说明(Invitrogen)转化到X33中。筛选出的转化子在含有甘油的基本培养基(GMGY)中培养24小时后,用含有0.5%甲醇的培养基(GMMY)诱导蛋白质表达。实施例4-酶的纯化及其生物化学特性
如上所描述(Rodriguez,E.等, Biochem.Biopyys.Res.Commun.(生 物化学生物物理研究通讯),257:117-23(1999),在此引入作为参考),在培养基上清液中表达的r-AppA和突变酶经过两步硫酸铵沉淀(25%和75%)。第一轮的悬浮液在4℃、25,000×g下离心20分钟。将第二轮的颗粒物悬浮到10毫升,并对25mM pH 7三盐酸透析过夜。透析后,蛋白质提取物被加到用25mM pH 7三盐酸平衡了的DEAE(二乙氨基乙基)琼脂糖凝胶柱(Sigma,St.Louis,MO)上。用含1M NaCl的pH725mM三盐酸溶液洗脱结合的蛋白。显示出最高活性的三个级分被收集并对pH 7.5 25mM三盐酸透析,以用作下面的分析。用肌醇六磷酸钠作为底物测定肌醇六磷酸酶的活性(Rodriguez,E.等, Biochem. Biopyys.Res.Commun.(生物化学生物物理研究通讯),257:117-23(1999);Piddington,C.S.等, Gene(基因),133:55-62(1993),在此引入作为参考)。将酶在pH 2.5,0.25M甘氨酸-盐酸中稀释,并加入等体积的含有11mM的肌醇六磷酸钠的底物溶液(Sigma)。将样品在37℃下温浴15分钟后,加入等体积的15%三氯乙酸终止反应。将0.2ml的样品同1.8ml的水以及含有0.6M H2SO4、2%的抗坏血酸和0.5%的钼酸铵的2ml的溶液相混和,接着在50℃温浴20分钟,然后在820nm下检测游离无机磷的数量。一个肌醇六磷酸酶单位的定义是37℃下每分钟从肌醇六磷酸钠上释放1μmol无机磷的活性量。用于酶动力学的肌醇六磷酸钠的最终浓度为:0.1,0.25,0.5,0.75,1,2.5,10和25mM。以最终浓度为25mM的pNPP(Sigma)测定酸性磷酸酶的活性(Smith,R.等, Protein Engineering(蛋白质工程),5:35-41(1992),在此引入作为参考)。向50μl酶(40nmol)中加入pH 2.5 250mM的甘氨酸-盐酸850μl。在37℃温浴5分钟后,加入100μl的pNPP。将0.1ml样品与0.9ml 1M NaOH混合并温浴10分钟后,在405nm下测定释放的对硝基苯酚。用于酶动力学的pNPP的最终浓度为:0.1,0.2,0.75,1,2.5,10和25mM。一个单位的酸性磷酸酶/肌醇六磷酸酶活性被定义为每分钟催化形成1μmol对硝基苯酚所需的酶量。在分析热稳定性前,将酶(2mg/ml)以1∶400的比例用pH 2.5 0.2M甘氨酸-盐酸稀释。稀释的样品在25、55、80和90℃下温浴15分钟。将样品在冰浴中冷却30分钟后,按上面的描述测定残留的肌醇六磷酸酶活性。按照制造商的说明(新英格兰生物实验室,Beverly,MA)将100μg的总蛋白和0.5IU的内切糖苷酶Hf(Endo Hf)在37℃下温浴4个小时,完成对纯酶的去糖基化。按以前的描述用15%(重量/体积)凝胶进行十二烷基硫酸钠-聚丙烯酰胺凝胶电泳(SDS-PAGE),(Laemmli,U.K., Nature(自然),227:680-85(1970),在此引入作为参考)。用Lowry法(Lowry,O.H.等, J.Biol.Chem.(生 物化学杂志),193:265-75(1951),在此引入作为参考)测定蛋白质浓度。
用SAS(颁布的6.04版本,SAS研究院Cary,NC,美国)分析数据。实施例5-定点突变对肌醇六磷酸酶表达和糖基化的影响
提取每一个酵母转化子的基因组DNA,通过PCR(聚合酶链式反应)用E2和K2引物扩增所需的突变appA。通过测序确定所需的突变作用。对于每一个突变体,分析24个菌落在诱导后不同时间段的肌醇六磷酸酶活性。所有这三种突变体,突变体R,突变体U,和突变体Y以及r-AppA一起表达和分泌,导致与时间相关的胞外肌醇六磷酸酶活力的积累在甲醇诱导后96小时活性达到平衡。在培养基上清液的稳定值活性分别是35、175、57和117U/mL(表3)。用表达载体pPICZαA转化的酵母X33作为对照并且在SDS-PAGE中没有显示出任何活性或肌醇六磷酸酶蛋白。以纯化的蛋白质为基础,突变体U的肌醇六磷酸酶比活性最高为63U/mg,接着是突变体Y、r-AppA和突变体R(分别是51、41 and 32U/mg蛋白质)。对于突变体U和Y、rAppA和突变体R,纯化后的蛋白质回收率分别是654、324、688和425mg/L(表3)。
表3
肌醇六磷酸酶的收率和r-AppA和三个突变体的比活性蛋白质  肌醇六磷酸酶活性1蛋白质收率2      比活性3
                                  -Endo Hf   +Endo Hfr-AppA    117±15    688±44          41±3       37±4R         35±4      425±26          32±2       29±2U         175±19    654±39          63±4*     65±5*Y         57±8      324±18          51±5       46±61:在GMMY培养基中培养96小时后的肌醇六磷酸酶活性(U/ml)。2:蛋白质收率(每升培养物中纯化蛋白质的毫克数)。3:肌醇六磷酸酶的比活性(每毫克纯蛋白的单位数)。*:相对于r-AppA对照显示出有效差异(P<0.05)。结果表示三次试验。
在SDS-PAGE中,纯化的r-AppA带的大小为50-56kDa,而突变体R为68-70kDa,并且突变体Y为86-90kDa(图2)。这说明了提高的糖基化程度,从r-AppA的14%到突变体R的48%再到突变体Y的89%。突变体U的糖基化水平显示同r-AppA的相同。用Endo Hf去糖基化后,所有这些重组酶显示出相近的分子量,为45-48kDa。对所有的突变体或r-AppA的去糖基化并没有明显影响其比活性(表3)。但是,用β-巯基乙醇和Endo Hf处理这些纯化蛋白可导致肌醇六磷酸酶活性的完全丧失。实施例6-定点突变对肌醇六磷酸酶最适pH值和最适温度及热稳定性的影响
虽然突变体R、U和Y具有和r-AppA相同的最适pH值(2.5),而当pH值为3.5、4.5和5.5时,突变体U的活性比r-AppA大(p<0.05),而突变体Y的活性比r-AppA小(p<0.05)(图3)。突变体U的最适温度为65℃,而其它两个突变体和r-AppA的最适温度为55℃。经过在80和90℃加热15分钟后,在pH 2.5 0.2M的甘氨酸-盐酸中,突变体U显示出比r-AppA具有较高的(p<0.05)残留的肌醇六磷酸酶活性(图4)。实施例7-定点突变对酶动力学的影响
相对于r-AppA,突变体U对pNPP(对硝基苯基磷酸盐)的Km值降低了1/2,而对肌醇六磷酸钠的Km值减少了70%(P<0.05)(表4)。所以,证明了相比于r-AppA,突变体U对pNPP的表观催化率kcat/Km提高了1.9倍,而对肌醇六磷酸钠提高了5.2倍。虽然突变体Y的kcat/Km值和r-AppA对肌醇六磷酸钠的kcat/Km值有着明显的不同,但是实际的提高相当小。相反,证明了突变体R对两种底物的催化率明显低于r-AppA。
表4
r-AppA和三个突变体的催化特性1
                                 底物酶               pNPP                                肌醇六磷酸钠
     Km     kcat     kcat/Km      Km     kcat    kcat/Km
    (mM)     (min-1) (min-1M-1)    (mM)    (min-1) (min-1M-1)r-AppA  3.66±       752±          (2.0±0.18)     1.95±      2148±       (1.11±0.13)
    0.44     7.9      ×105          0.25    33       ×106R       7.87±       390±          (0.5±0.07)     3.07±      1657±       (0.54±0.09)
    0.84*   5.9*    ×105*         0.26*  23*    ×106*U       1.86±       1073±         (5.8±0.37)     0.58±      4003±       (6.90±0.70)
    35*     13*     ×105*         0.08*  56*    ×106*Y       3.18±       787±          (2.5±0.17)      2.03±      3431±       (1.69±0.21)
    0.39     6.7      ×105          0.19     41*    ×106* 1如这里所描述的,以一式三份进行反应速率的测定。用Lineweaver-Burk绘图法计算Km值。所有反应均在pH 2.50.25M甘氨酸-HCl中测定。*表明相对于r-AppA对照的有效差异(P<0.05)。结果表 5个独立试验。
上面的结果表明,可以通过定点突变在AppA酶中加入另外的N-糖基化位点和/或其它氨基酸改变。与用完整的appA基因生产的r-AppA相比较,正如在去糖基化前后分子量的差别所显示的,显然证明了突变体酶R和Y增加的糖基化。所以,在这两个突变体中的工程化的N-糖基化位点的确被巴斯德毕赤氏酵母所识别并正确加工。由于在突变体R和Y中有多重突变,所以这些结果不能用来评价在特定工程化位点的糖基化程度,但是通过对突变体和r-AppA的比较可以得到有用的信息。首先,虽然相对于r-AppA突变体R和Y有附加的四个N-糖基化位点,突变体Y显示出了比突变体R多40%的N-糖基化位点(89%对48%)。由于突变体Y的取代C200N是这两个变异体之间的唯一差别,并且这一突变作用没有另外增加推想的N-糖基化位点,似乎C200N自身的改变会在某些位点增强N-糖基化作用。其次,虽然突变体U有两个额外的N-糖基化位点(Asn 207和Asn 211),但是它的表观分子量与r-AppA相同,这暗示突变体U的两个工程化糖基化位点是沉默的。这说明尽管糖基化需要存在这样一个信号序列,但是它并不一定导致糖基化发生(Meldgaard,M.等, Microbiol.(微生物学),140:159-66(1994),在此引入作为参考)。就突变体U的残基突变的情况来说,它的溶剂可及度不如以结构为基础的序列对比,这可能更令人信服。最近发表的AppA酶的晶体结构可以帮助解答这一问题(Lim等, Nat.Struct.Biol.(天然结构生物学),7:108-13(2000);Jia,Z.等, Acta Crystallogr.D Biol.Crystallogr.(结晶学报D辑生物结晶学),54:647-49(1998),在此引入作为参考)。最后,突变体R的糖基化作用比突变体U有明显的增加。这种差异可能是由于突变体R在A131N和V134N增加了两个N-糖基化位点所造成的。鉴于上述结果,可以得到如下观测:1)A131N和V134N的取代导致AppA酶的糖基化增多;2)D207N和S211N的取代是沉默的;3)看起来就突变体Y的情况而言,C200N的取代能够促进其它位点的糖基化,但是在突变体U中则不行。
一般来说,增加蛋白质的糖基化已经显示出能够促进折叠并提高稳定性(Haraguchi,M.等, Biochem.J.(生物化学杂志),312:273-80(1995);Imperiali,B.等, Proc.Natl.Acad.Sci.USA(美国科学院学报),92:97-112(1995),在此引入作为参考)。与预期相反,尽管糖基化水平提高,但是突变体R和Y并没有显示出提高的热稳定性。令人惊奇的是,尽管同r-AppA的糖基化水平相同,突变体U仍然显示出更高的热稳定性。虽然C200N的进行并不意味着在其它位点发生了N-糖基化,但是在特定位点增加糖基化作用却是可能的。看来,是突变本身而不是糖基化对这一效果作出了贡献。最近的一项研究描述了用黑曲霉或多形汉逊氏酵母(Hansenula polymorpha)表达的六种不同的肌醇六磷酸酶产物(Wyss,M.等, Appl.Environ.Microbiol.(应用环境微生物学),65:359-66(1999),在此引入作为参考)。结果表明糖基化程度取决于所选择的宿主,但是对于热稳定性,特异性活性或蛋白质的再折叠没有显著影响(Wyss,M.等, Appl. Environ.Microbiol.(应用环境微生物 学),65:359-66(1999),在此引入作为参考)。
动力学数据表明,所有三个突变体以及r-AppA对于肌醇六磷酸钠比对于pNPP具有更低的Km和更高的Kcat/Km。很明显,这些重组酶对于前者比对于后者有更高的表观效率,说明AppA酶更象是一种肌醇六磷酸酶而不是酸性磷酸酶(Lim等, Nat.Struct.Biol.(天然结构生物 学),7:108-13(2000):Rodriguez,E.等, Biochem.Biophys.Res.Commun. (生物化学生物物理研究通讯),257:117-23(1999),在此引入作为参考)。突变体U对于两种底物比r-AppA在表观效率上显示出最大的增高。Kcat/Km的增高很可能是由于Km的大幅度下降(对于pNPP是1.86对3.66mM,而对于肌醇六磷酸钠是0.58对1.95mM)。这意味着同r-AppA相比,突变体U在更低的底物浓度下达到饱和。另外,对于两种底物,这两种形式的肌醇六磷酸酶之间的Kcat也有显著的差异。根据鼠酸性磷酸酶的结构(Schneider,G.等,EMBO J.( 欧洲分子生物学组织 杂志),12:2609-15(1993),在此引入作为参考),这些突变似乎没有参与到酶活性部位或者酸性磷酸酶二聚体的形成。大概,这些突变作用单一地或联合地影响该酶的构象柔性,就象前面描述过的另一个蛋白质一样(Schneider,G.等, Protein Sci.(蛋白质科学),2:1862-68(1993),在此引入作为参考)。根据最近解决的大肠杆菌肌醇六磷酸酶的晶体结构(Lim等, Nat.Struct.Biol.(天然结构生物学)7:108-13(2000);Jia,Z等, Acta Crystallogr.D Biol.Crystallogr.(结晶学报D辑生物结晶 学),54:647-49(1998),在此引入作为参考),所有的突变都不直接参与到底物-结合袋中。但是,被Lim等标记为C178和C188的C200和C210(Lim等, Nat.Struct.Biol.(天然结构生物学),7:108-13(2000),在此引入作为参考)则参与蛋白质α-结构域中的螺旋G和GH环之间二硫键的形成(Lim等, Nat.Struct.Biol.(天然结构生物学),7:108-13(2000),在此引入作为参考)。对于突变C200N,进入到α-结构域的特定二硫键在GH环中不再存在。这种变化会导致α-结构域柔性增强,以便于形成酶的中央腔或“底物结合位点”(Lim等, Nat.Struct.Biol. (天然结构生物学),7:108-13(2000),在此引入作为参考)。这种内在的柔性也可以通过突变体U及突变体Y(程度更小的)对肌醇六磷酸钠水解催化效率提高的事实得到支持。由于突变体U没有糖基化程度的提高,Lim等标记为D185和S189的工程化糖基化位点N207和N211(Lim等, Nat.Struct.Biol.(天然结构生物学),7:108-13(2000),在此引入作为参考)可能被外露表面所遮掩。所以突变体U的热稳定性的改进也可以通过突变体Y或突变体R中不存在的疏水相互作用的数量增多来解释。
值得一提的是,去糖基化作用对于所有三个突变体和r-AppA的肌醇六磷酸酶的比活性没有显著影响。但是,糖蛋白激素(Terashima,M.等, Eur.J.Biochem.(欧洲生物化学杂志),226:249-54(1994),在此引入作为参考)或由啤酒糖酵母表达的西方许旺氏酵母(Schwanniomyces occidentalis)α-淀粉酶(Han,Y.等, Appl.Environ. Microbiol.(应用环境微生物学),65:1915-18(1999),在此引入作为参考)的去糖基化说明去糖基化大概伴有可能的构象变化,而这种变化在可调节底物结合和(或)其利用速度。用β-巯基乙醇和去糖基化处理可以使所有的突变体和完整的对照完全失活。这说明四个二硫键在保持这些重组肌醇六磷酸酶的催化功能中共同起到重要作用(Ullah,A.H.J.等, Biochem.Biophys.Res.Commun.(生物化学生物物理研究通讯),227:311-17(1996),在此引入作为参考)。
总之,当突变体U中的G螺旋和GH环不含二硫键C200/C210时,α-结构域的柔性会稍稍变得更强,从而导致正向调节酶的催化效率和热稳定性。由于近期将公布大肠杆菌肌醇六磷酸酶的晶体结构(Lim等, Nat.Struct.Biol.(天然结构生物学),7:108-13 (2000),在此引入作为参考),更多的定向突变研究会阐明能够改善酶特性的构象改变。
尽管已经在此详细描述了优选的实施方案,作出各种修饰、添加、替代等等对于相关领域技术人员来说是显而易见的,并且没有背离本发明的精神,并且因此认为是在如下的权利要求所限定的本发明的范围之内。
                               序列表
                               序列表<110> 康奈尔研究基金公司<120> 大肠杆菌肌醇六磷酸酶的定点突变<130> 19603/4033<140><141><150> 60/166,179<151> 1999-11-18<160> 9<170> 专利2.1版<210> 1<211> 432<212> PRT<213> 大肠杆菌<400> 1Met Lys Ala Ile Leu Ile Pro Phe Leu Ser Leu Leu Ile Pro Leu Thr1               5                  10                  15Pro Gln Ser Ala Phe Ala Gln Ser Glu Pro Glu Leu Lys Leu Glu Ser
         20                  25                  30Val Val Ile Val Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr
     35                  40                  45Gln Leu Met Gln Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val
 50                  55                  60Lys Leu Gly Trp Leu Thr Pro Arg Gly Gly Glu Leu Ile Ala Tyr Leu65                  70                  75                  80Gly His Tyr Gln Arg Gln Arg Leu Val Ala Asp Gly Leu Leu Ala Lys
            85                  90                   95Lys Gly Cys Pro Gln Pro Gly Gln Val Ala Ile Ile Ala Asp Val Asp
        100                 105                 110Glu Arg Thr Arg Lys Thr Gly Glu Ala Phe Ala Ala Gly Leu Ala Pro
    115                 120                 125Asp Cys Ala Ile Thr Val His Thr Gln Ala Asp Thr Ser Ser Pro Asp
130                 135                 140Pro Leu Phe Asn Pro Leu Lys Thr Gly Val Cys Gln Leu Asp Asn Ala145                 150                 155                 160Asn Val Thr Asp Ala Ile Leu Ser Arg Ala Gly Gly Ser Ile Ala Asp
            165                  170                175Phe Thr Gly His Arg Gln Thr Ala Phe Arg Glu Leu Glu Arg Val Leu
        180                 185                 190Asn Phe Pro Gln Ser Asn Leu Cys Leu Lys Arg Glu Lys Gln Asp Glu
    195                 200                 205Ser Cys Ser Leu Thr Gln Ala Leu Pro Ser Glu Leu Lys Val Ser Ala
210                 215                 220Asp Asn Val Ser Leu Thr Gly Ala Val Ser Leu Ala Ser Met Leu Thr225                 230                 235                 240Glu Ile Phe Leu Leu Gln Gln Ala Gln Gly Met Pro Glu Pro Gly Trp
        245                     250                 255Gly Arg Ile Thr Asp Ser His Gln Trp Asn Thr Leu Leu Ser Leu His
        260                 265                 270Asn Ala Gln Phe Tyr Leu Leu Gln Arg Thr Pro Glu Val Ala Arg Ser
    275                 280                 285Arg Ala Thr Pro Leu Leu Asp Leu Ile Lys Thr Ala Leu Thr Pro His
290                 295                 300Pro Pro Gln Lys Gln Ala Tyr Gly Val Thr Leu Pro Thr Ser Val Leu305                 310                 315                 320Phe Ile Ala Gly His Asp Thr Asn Leu Ala Asn Leu Gly Gly Ala Leu
            325                 330                 335Glu Leu Asn Trp Thr Leu Pro Gly Gln Pro Asp Asn Thr Pro Pro Gly
        340                 345                 350Gly Glu Leu Val Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gln
    355                 360                 365Trp Ile Gln Val Ser Leu Val Phe Gln Thr Leu Gln Gln Met Arg Asp
370                 375                 380Lys Thr Pro Leu Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr385                 390                 395                 400Leu Ala Gly Cys Glu Glu Arg Asn Ala Gln Gly Met Cys Ser Leu Ala
            405                 410                 415Gly Phe Thr Gln Ile Val Asn Glu Ala Arg Ile Pro Ala Cys Ser Leu
        420                 425                 430<210>2<211>1486<212>DNA<213>大肠杆菌<400>2taaggagcag aaacaatgtg gtatttactt tggttcgtcg gcattttgtt gatgtgttcg 60ctctccaccc ttgtgttggt atggctggac ccgcgattga aaagttaacg aacgtaggcc 120tgatgcggcg cattagcatc gcatcaggca atcaataatg tcagatatga aaagcggaaa 180catatcgatg aaagcgatct taatcccatt tttatctctt ctgattccgt taaccccgca 240atctgcattc gctcagagtg agccggagct gaagctggaa agtgtggtga ttgtcagccg 300tcatggtgtg cgtgccccaa ccaaggccac gcaactgatg caggatgtca ccccagacgc 360atggccaacc tggccggtaa aactgggttg gctgacacca cgcggtggtg agctaatcgc 420ctatctcgga cattaccaac gccagcgtct ggtggccgac ggattgctgg cgaaaaaggg 480ctgcccgcag cctggtcagg tcgcgattat tgtcgatgtc gacgagcgta cccgtaaaac 540aggcgaagcc ttcgccgccg ggctggcacc tgactgtgca ataaccgtac atacccaggc 600agatacgtcc agtcccgatc cgttatttat tcctctaaaa actggcgttt gccaactgga 660taacgcgaac gtgactgacg cgatcctcag cagggcagga gggtcaattg ctgactttac 720cgggcatcgg caaacggcgt ttcgcgaact ggaacgggtg cttaattttc cgcaatcaaa 780cttgtgcctt aaacgtgaga aacaggacga aagctgttca ttaacgcagg cattaccatc 840ggaactcaag gtgagcgccg acaatgtttc attaaccggt gcggtaagcc tcgcatcaat 900gctgacggaa atatttctcc tgcaacaagc acagggaatg ccggagccgg ggtggggaag 960gatcactgat tcacaccagt ggaacacctt gctaagtttg cataacgcgc aattttattt 1020actacaacgc acgccagagg ttgcccgcag tcgcgccacc ccgttattgg atttgatcaa 1080gacagcgttg acgccccatc caccgcaaaa acaggcgtat ggtgtgacat tacccacttc 1140agtgctgttt attgccggac acgatactaa tctggcaaat ctcggcggcg cactggagct 1200caactggacg cttccaggtc agccggataa cacgccgcca ggtggtgaac tggtgtttga 1260acgctggcgt cggctaagcg ataacagcca gtggattcag gtttcgctgg tcttccagac 1320tttacagcag atgcgtgata aaacgccgct atcattaaat acgccgcccg gagaggtgaa 1380actgaccctg gcaggatgtg aagagcgaaa tgcgcagggc atgtgttcgt tggccggttt 1440tacgcaaatc gtgaatgaag cgcgcatacc ggcgtgcagt ttgtaa                1486<210>3<211>432<212>PRT<213>大肠杆菌<400>3Met Lys Ala Ile Leu Ile Pro Phe Leu Ser Leu Leu Ile Pro Leu Thr1               5                  10                  15Pro Gln Ser Ala Phe Ala Gln Ser Glu Pro Glu Leu Lys Leu Glu Ser
         20                  25                  30Val Val Ile Val Ser Arg His Gly Val Arg Ala Pro Thr Lys Ala Thr
     35                  40                  45Gln Leu Met Gln Asp Val Thr Pro Asp Ala Trp Pro Thr Trp Pro Val
 50                  55                  60Lys Leu Gly Trp Leu Thr Pro Arg Gly Gly Glu Leu Ile Ala Tyr Leu65                  70                  75                  80Gly His Tyr Gln Arg Gln Arg Leu Val Ala Asp Gly Leu Leu Ala Lys
             85                  90                  95Lys Gly Cys Pro Gln Pro Gly Gln Val Ala Ile Ile Ala Asp Val Asp
        100                 105                 110Glu Arg Thr Arg Lys Thr Gly Glu Ala Phe Ala Ala Gly Leu Ala Pro
    115                 120                 125Asp Cys Ala Ile Thr Val His Thr Gln Ala Asp Thr Ser Ser Pro Asp
130                 135                 140Pro Leu Phe Asn Pro Leu Lys Thr Gly Val Cys Gln Leu Asp Asn Ala145                 150                 155                 160Asn Val Thr Asp Ala Ile Leu Ser Arg Ala Gly Gly Ser Ile Ala Asp
            165                 170                 175Phe Thr Gly His Arg Gln Thr Ala Phe Arg Glu Leu Glu Arg Val Leu
        180                 185                 190Asn Phe Pro Gln Ser Asn Leu Asn Leu Lys Arg Glu Lys Gln Asn Glu
    195                 200                 205Ser Cys Asn Leu Thr Gln Ala Leu Pro Ser Glu Leu Lys Val Ser Ala
210                 215                 220Asp Asn Val Ser Leu Thr Gly Ala Val Ser Leu Ala Ser Met Leu Thr225                 230                 235                 240Glu Ile Phe Leu Leu Gln Gln Ala Gln Gly Met Pro Glu Pro Gly Trp
            245                 250                 255Gly Arg Ile Thr Asp Ser His Gln Trp Asn Thr Leu Leu Ser Leu His
        260                 265                 270Asn Ala Gln Phe Tyr Leu Leu Gln Arg Thr Pro Glu Val Ala Arg Ser
    275                 280                 285Arg Ala Thr Pro Leu Leu Asp Leu Ile Lys Thr Ala Leu Thr Pro His
290                 295                 300Pro Pro Gln Lys Gln Ala Tyr Gly Val Thr Leu Pro Thr Ser Val Leu305                 310                 315                 320Phc Ile Ala Gly His Asp Thr Asn Leu Ala Asn Leu Gly Gly Ala Leu
            325                 330                 335Glu Leu Asn Trp Thr Leu Pro Gly Gln Pro Asp Asn Thr Pro Pro Gly
        340                 345                 350Gly Glu Leu Val Phe Glu Arg Trp Arg Arg Leu Ser Asp Asn Ser Gln
    355                 360                 365Trp Ile Gln Val Ser Leu Val Phe Gln Thr Leu Gln Gln Met Arg Asp
370                 375                 380Lys Thr Pro Leu Ser Leu Asn Thr Pro Pro Gly Glu Val Lys Leu Thr385                 390                 395                 400Leu Ala Gly Cys Glu Glu Arg Asn Ala Gln Gly Met Cys Ser Leu Ala
            405                 410                 415Gly Phe Thr Gln Ile Val Asn Glu Ala Arg Ile Pro Ala Cys Ser Leu
        420                 425                 430<210>4<211>1486<212>DNA<213>大肠杆菌<400>4taaggagcag aaacaatgtg gtatttactt tggttcgtcg gcattttgtt gatgtgttcg 60ctctccaccc ttgtgttggt atggctggac ccgcgattga aaagttaacg aacgtaggcc 120tgatgcggcg cattagcatc gcatcaggca atcaataatg tcagatatga aaagcggaaa 180catatcgatg aaagcgatct taatcccatt tttatctctt ctgattccgt taaccccgca 240atctgcattc gctcagagtg agccggagct gaagctggaa agtgtggtga ttgtcagccg 300tcatggtgtg cgtgccccaa ccaaggccac gcaactgatg caggatgtca ccccagacgc 360atggccaacc tggccggtaa aactgggttg gctgacacca cgcggtggtg agctaatcgc 420ctatctcgga cattaccaac gccagcgtct ggtggccgac ggattgctgg cgaaaaaggg 480ctgcccgcag cctggtcagg tcgcgattat tgtcgatgtc gacgagcgta cccgtaaaac 540aggcgaagcc ttcgccgccg ggctggcacc tgactgtgca ataaccgtac atacccaggc 600agatacgtcc agtcccgatc cgttatttat tcctctaaaa actggcgttt gccaactgga 660taacgcgaac gtgactgacg cgatcctcag cagggcagga gggtcaattg ctgactttac 720cgggcatcgg caaacggcgt ttcgcgaact ggaacgggtg cttaattttc cgcaatcaaa 780cttgaacctt aaacgtgaga aacagaatga aagctgtaac ttaacgcagg cattaccatc 840ggaactcaag gtgagcgccg acaatgtttc attaaccggt gcggtaagcc tcgcatcaat 900gctgacggaa atatttctcc tgcaacaagc acagggaatg ccggagccgg ggtggggaag 960gatcactgat tcacaccagt ggaacacctt gctaagtttg cataacgcgc aattttattt 1020actacaacgc acgccagagg ttgcccgcag tcgcgccacc ccgttattgg atttgatcaa 1080gacagcgttg acgccccatc caccgcaaaa acaggcgtat ggtgtgacat tacccacttc 1140agtgctgttt attgccggac acgatactaa tctggcaaat ctcggcggcg cactggagct 1200caactggacg cttccaggtc agccggataa cacgccgcca ggtggtgaac tggtgtttga 1260acgctggcgt cggctaagcg ataacagcca gtggattcag gtttcgctgg tcttccagac 1320tttacagcag atgcgtgata aaacgccgct atcattaaat acgccgcccg gagaggtgaa 1380actgaccctg gcaggatgtg aagagcgaaa tgcgcagggc atgtgttcgt tggccggttt 1440tacgcaaatc gtgaatgaag cgcgcatacc ggcgtgcagt ttgtaa                1486<210>5<211>20<212>DNA<213>人工序列<220><223>人工序列描述:寡核苷酸<400>5ggaattcgct cagagccgga                                             20<210>6<211>31<212>DNA<213>人工序列<220><223>人工序列描述:寡核苷酸<400>6ctgggtatgg ttggttatat tacagtcagg t                                31<210>7<211>23<212>DNA<213>人工序列<220><223>人工序列描述:寡核苷酸<400>7caaacttgaa cc ttaaacgt gag                                        23<210>8<211>31<212>DNA<213>人工序列<220><223>人工序列描述:寡核苷酸<400>8cctgcgttaa gttacagctt tcattctgtt t                                31<210>9<211>22<212>DNA<213>人工序列<220><223>人工序列描述:寡核苷酸<400>9ggggtacctt acaaactgca cg                                          22

Claims (52)

1.一种分离的突变体酸性磷酸酶/肌醇六磷酸酶,它是在由具有SEQ.ID.No.1的氨基酸序列的野生型大肠杆菌酸性磷酸酶/肌醇六磷酸酶中制造许多氨基酸取代而产生的,所述的氨基酸取代包括第200、207和211位的取代。
2.根据权利要求1的分离的突变体酸性磷酸酶/肌醇六磷酸酶,其中,在第200位的氨基酸取代是用天冬酰胺氨基酸残基取代半胱氨酸氨基酸残基,在第207位的氨基酸取代是用天冬酰胺氨基酸残基取代天冬氨酸氨基酸残基,而在第211位的氨基酸取代是用天冬酰胺氨基酸残基取代丝氨酸氨基酸残基,所述的分离的突变体酸性磷酸酶/肌醇六磷酸酶具有SEQ.ID.No.3氨基酸序列。
3.根据权利要求1的分离的突变体酸性磷酸酶/肌醇六磷酸酶,其中,分离的突变体酸性磷酸酶/肌醇六磷酸酶是纯化形式。
4.根据权利要求1的分离的突变体酸性磷酸酶/肌醇六磷酸酶,其中,分离的突变体酸性磷酸酶/肌醇六磷酸酶是重组体。
5.一种改善具有SEQ.ID.No.1的氨基酸序列的野生型大肠杆菌酸性磷酸酶/肌醇六磷酸酶酶学性质的方法,所述方法包括:通过在SEQ.ID.No.1的第200、207和211位引入氨基酸取代以改变所述野生型酸性磷酸酶/肌醇六磷酸酶的氨基酸序列。
6.根据权利要求5的方法,其中第200位的氨基酸取代是用天冬酰胺氨基酸残基取代半胱氨酸氨基酸残基,在第207位的氨基酸取代是用天冬酰胺氨基酸残基取代天冬氨酸氨基酸残基,而在第211位的氨基酸取代是用天冬酰胺氨基酸残基取代丝氨酸氨基酸残基,所述氨基酸取代产生具有SEQ.ID.No.3的氨基酸序列的突变体酸性磷酸酶/肌醇六磷酸酶。
7.根据权利要求5的方法,其中,改善的酶学特性是增强的热稳定性。
8.权利要求5的方法,其中,改善的酶学特性是在pH范围为大约pH 3.5到大约pH 5.5之间的更高的肌醇六磷酸酶活性。
9.一种分离的DNA分子,其编码权利要求1的突变体酸性磷酸酶/肌醇六磷酸酶。
10.权利要求9的分离的DNA分子,其中,野生型酸性磷酸酶/肌醇六磷酸酶是从大肠杆菌中分离的。
11.权利要求10的分离的DNA分子,其中,该DNA分子含有SEQ.ID.No.4的核苷酸序列或者在严谨条件下杂交成含有SEQ.ID.No.4的核苷酸序列的DNA分子,该严谨条件包括在42℃下在含有5X SSPE和50%甲酰胺的杂交介质中杂交和在50℃下用0.5X SSPE洗涤。
12.权利要求9的分离的DNA分子,其中,第200位的氨基酸取代是用天冬酰胺氨基酸残基取代半胱氨酸氨基酸残基,在第207位的氨基酸取代是用天冬酰胺氨基酸残基取代天冬氨酸氨基酸残基,而在第211位的氨基酸取代是用天冬酰胺氨基酸残基取代丝氨酸氨基酸残基,所述氨基酸取代产生具有SEQ.ID.No.3的氨基酸序列的突变体酸性磷酸酶/肌醇六磷酸酶。
13.一种重组DNA表达***,含有权利要求9的DNA分子。
14.权利要求13的表达***,其中,DNA分子是在异源表达载体中。
15.权利要求13的表达***,其中,DNA分子以适当的取向和正确的阅读框***到表达***中。
16.一种宿主细胞,含有权利要求9的异源DNA分子。
17.权利要求16的宿主细胞,其中,所述的异源DNA分子具有SEQ.ID.No.4的核苷酸序列。
18.根据权利要求16的宿主细胞,其中,所述的异源DNA分子在重组DNA表达***中。
19.根据权利要求16的宿主细胞,其中,所述的宿主细胞是酵母细胞。
20.根据权利要求19的宿主细胞,其中,所述的酵母细胞选自糖酵母属、克鲁维氏酵母属、圆孢酵母属和裂殖糖酵母属菌株。
21.权利要求19的宿主细胞,其中,所述酵母细胞是甲基营养型酵母菌株。
22.权利要求21的宿主细胞,其中,所述甲基营养型酵母菌株选自毕赤氏酵母属、汉逊氏酵母属、球拟酵母属、假丝酵母属和Karwinskia菌株。
23.一种突变体酸性磷酸酶/肌醇六磷酸酶的重组生产方法,包括在适于突变体酸性磷酸酶/肌醇六磷酸酶表达的条件下,用至少一种根据权利要求9的异源DNA分子转化宿主细胞,以及分离突变体酸性磷酸酶/肌醇六磷酸酶。
24.权利要求23的方法,其中,宿主细胞是酵母细胞。
25.权利要求24的方法,其中,酵母细胞选自糖酵母属、克鲁维氏酵母属、圆孢酵母属和裂殖糖酵母属菌株。
26.权利要求24的方法,其中,酵母细胞是甲基营养型酵母菌株。
27.权利要求26的宿主细胞,其中,甲基营养型酵母菌株选自毕赤氏酵母属、汉逊氏酵母属、球拟酵母属、假丝酵母属和Karwinskia菌株。
28.一种动物饲料组合物,含有权利要求1的分离的突变体酸性磷酸酶/肌醇六磷酸酶。
29.一种动物饲料的生产方法,包括:在能够有效生产动物饲料组合物的条件下,将权利要求1的分离的突变体酸性磷酸酶/肌醇六磷酸酶引入到动物饲料中。
30.一种分离的突变体酸性磷酸酶/肌醇六磷酸酶,它由于至少有一个氨基酸取代而与具有SEQ.ID.No.1氨基酸序列的野生型大肠杆菌酸性磷酸酶/肌醇六磷酸酶不同,该取代破坏第200和210位的半胱氨酸残基之间二硫键的形成。
31.权利要求30的分离的突变体酸性磷酸酶/肌醇六磷酸酶,其中,分离的突变体酸性磷酸酶/肌醇六磷酸酶是纯化形式。
32.权利要求30的分离的突变体酸性磷酸酶/肌醇六磷酸酶,其中,分离的突变体酸性磷酸酶/肌醇六磷酸酶是重组体。
33.一种改进具有SEQ.ID.No.1氨基酸序列的野生型大肠杆菌酸性磷酸酶/肌醇六磷酸酶的酶学性质的方法,该方法包括:通过引入至少一个破坏200和210位的半胱氨酸残基之间二硫键形成的氨基酸取代而改变所述野生型酸性磷酸酶/肌醇六磷酸酶的氨基酸序列。
34.权利要求33的方法,其中,改进的酶学特性是增强的热稳定性。
35.权利要求33的方法,其中,改进的酶学特性是在pH范围为大约pH 3.5到大约pH 5.5之间的更高的肌醇六磷酸酶活性。
36.一种分离的DNA分子,其编码权利要求30的突变体酸性磷酸酶/肌醇六磷酸酶。
37.一种重组DNA表达***,含有权利要求36的DNA分子。
38.权利要求37的表达***,其中的DNA分子在异源表达载体中。
39.权利要求37的表达***,其中的DNA分子以合适的取向和正确的阅读框***到表达***中。
40.一种含有权利要求36的异源DNA分子的宿主细胞。
41.权利要求40的宿主细胞,其中,所述的异源DNA分子是在一个重组DNA表达载体中。
42.权利要求40的宿主细胞,其中所述的宿主细胞是酵母细胞。
43.权利要求42的宿主细胞,其中的酵母细胞选自糖酵母属、克鲁维氏酵母属、圆孢酵母属和裂殖糖酵母属菌株。
44.权利要求42的宿主细胞,其中的酵母细胞是甲基营养型酵母菌株。
45.权利要求44的宿主细胞,其中的甲基营养型酵母菌株选自毕赤氏酵母属、汉逊氏酵母属、球拟酵母属、假丝酵母属和Karwinskia菌株。
46.一种突变体酸性磷酸酶/肌醇六磷酸酶的重组生产方法,包括在适于突变体酸性磷酸酶/肌醇六磷酸酶表达的条件下,用至少一种权利要求36的异源DNA分子转化宿主细胞,以及分离突变体酸性磷酸酶/肌醇六磷酸酶。
47.权利要求46的方法,其中的宿主细胞是酵母细胞。
48.权利要求47的方法,其中的酵母细胞选自糖酵母属、克鲁维氏酵母属、圆孢酵母属和裂殖糖酵母属菌株。
49.权利要求47的方法,其中的酵母细胞是甲基营养型酵母菌株。
50.权利要求49的宿主细胞,其中的甲基营养型酵母菌株选自毕赤氏酵母属、汉逊氏酵母属、球拟酵母属、假丝酵母属和Karwinskia菌株。
51.一种动物饲料组合物,含有权利要求30的分离的突变体酸性磷酸酶/肌醇六磷酸酶。
52.一种生产动物饲料的方法,包括:在能够有效生产动物饲料组合物的条件下,将权利要求30的分离的突变体酸性磷酸酶/肌醇六磷酸酶引入到动物饲料中。
CN00818448A 1999-11-18 2000-11-17 大肠杆菌肌醇六磷酸酶的定点突变 Pending CN1423694A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16617999P 1999-11-18 1999-11-18
US60/166,179 1999-11-18

Publications (1)

Publication Number Publication Date
CN1423694A true CN1423694A (zh) 2003-06-11

Family

ID=22602133

Family Applications (1)

Application Number Title Priority Date Filing Date
CN00818448A Pending CN1423694A (zh) 1999-11-18 2000-11-17 大肠杆菌肌醇六磷酸酶的定点突变

Country Status (11)

Country Link
EP (1) EP1230350B1 (zh)
JP (1) JP2003531574A (zh)
KR (1) KR100790918B1 (zh)
CN (1) CN1423694A (zh)
AU (1) AU1618801A (zh)
CA (1) CA2391739C (zh)
CZ (1) CZ20021701A3 (zh)
HU (1) HUP0203259A2 (zh)
MX (1) MXPA02004989A (zh)
PL (1) PL354805A1 (zh)
WO (1) WO2001036607A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631855B (zh) * 2006-11-10 2014-08-06 Ab酶有限公司 具有肌醇六磷酸酶活性且该酶活性的温度稳定性增强的多肽及编码所述多肽的核苷酸序列
WO2015070372A1 (zh) * 2013-11-12 2015-05-21 中国农业科学院饲料研究所 一种产生热稳定性改良的植酸酶变体的方法、以及植酸酶变体及其应用

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451572B1 (en) 1998-06-25 2002-09-17 Cornell Research Foundation, Inc. Overexpression of phytase genes in yeast systems
CA2465202C (en) 2001-10-31 2014-01-21 Phytex, Llc Phytase-containing animal food and method
SE0200911D0 (sv) 2002-03-22 2002-03-22 Chalmers Technology Licensing Phytase active yeast
CN101792749B (zh) * 2002-08-12 2012-09-05 金克克国际有限公司 大肠杆菌AppA肌醇六磷酸酶突变体
DE60335497D1 (de) 2002-09-13 2011-02-03 Cornell Res Foundation Inc Ergillus-phytasen
US7276362B2 (en) 2004-01-30 2007-10-02 Roche Diagnostics Operations, Inc. Recombinant histidine-tagged inosine monophosphate dehydrogenase polypeptides
DE102004050410A1 (de) * 2004-10-15 2006-06-08 Ab Enzymes Gmbh Polypeptid mit Phytaseaktivität und dieses codierende Nucleotidsequenz
US7919297B2 (en) 2006-02-21 2011-04-05 Cornell Research Foundation, Inc. Mutants of Aspergillus niger PhyA phytase and Aspergillus fumigatus phytase
EP2001999B1 (en) 2006-04-04 2012-05-16 Novozymes A/S Phytase variants
US8540984B2 (en) 2006-08-03 2013-09-24 Cornell Research Foundation, Inc. Phytases with improved thermal stability
PT2617823E (pt) * 2006-09-21 2015-11-23 Basf Enzymes Llc Fitases, ácidos nucleicos que as codificam e métodos para as preparar e utilizar
US8192734B2 (en) 2007-07-09 2012-06-05 Cornell University Compositions and methods for bone strengthening
VN30065A1 (en) 2009-05-21 2012-06-25 Verenium Corp Phytases, nucleic acids encoding them and methods for making and using them
CN102102094B (zh) * 2009-12-16 2013-03-27 福建福大百特科技发展有限公司 热稳定脂肪酶,其编码基因的表达及其用途
EP2812429B1 (en) * 2012-02-07 2020-07-29 Danisco US Inc. Glycosylation as a stabilizer for phytase
KR101695397B1 (ko) * 2016-02-29 2017-01-13 주식회사 비즈모델라인 가맹점의 고유코드를 이용한 결제 방법
CN107353327A (zh) * 2017-03-30 2017-11-17 南京百斯杰生物工程有限公司 植酸酶在黑曲霉中表达
EP3453719A1 (en) 2017-09-07 2019-03-13 Huvepharma Eood New thermostable phytases with high catalytic efficacy
CN110484520B (zh) * 2018-05-14 2023-08-04 广东溢多利生物科技股份有限公司 比活提高的植酸酶appa突变体及其基因和应用
CN111218436B (zh) * 2018-11-27 2022-08-30 青岛蔚蓝生物集团有限公司 一种植酸酶突变体
BR112022012615A2 (pt) * 2019-12-23 2022-09-06 Cargill Inc Método de fermentação, micro-organismo manipulado capaz de fermentar um meio, mistura, e, método de fermentação para produzir pelo menos cerca de 10 g/l de etanol e um ou mais polipeptídeos heterólogos

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2231948C (en) * 1997-03-25 2010-05-18 F. Hoffmann-La Roche Ag Modified phytases

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631855B (zh) * 2006-11-10 2014-08-06 Ab酶有限公司 具有肌醇六磷酸酶活性且该酶活性的温度稳定性增强的多肽及编码所述多肽的核苷酸序列
WO2015070372A1 (zh) * 2013-11-12 2015-05-21 中国农业科学院饲料研究所 一种产生热稳定性改良的植酸酶变体的方法、以及植酸酶变体及其应用

Also Published As

Publication number Publication date
WO2001036607A1 (en) 2001-05-25
CA2391739A1 (en) 2001-05-25
EP1230350A1 (en) 2002-08-14
HUP0203259A2 (hu) 2003-02-28
CA2391739C (en) 2013-04-09
JP2003531574A (ja) 2003-10-28
EP1230350A4 (en) 2003-02-19
PL354805A1 (en) 2004-02-23
AU1618801A (en) 2001-05-30
EP1230350B1 (en) 2014-01-22
KR20020061619A (ko) 2002-07-24
MXPA02004989A (es) 2003-01-28
KR100790918B1 (ko) 2008-01-03
CZ20021701A3 (cs) 2003-06-18

Similar Documents

Publication Publication Date Title
CN1423694A (zh) 大肠杆菌肌醇六磷酸酶的定点突变
US8540984B2 (en) Phytases with improved thermal stability
US6974690B2 (en) Phosphatases with improved phytase activity
CN1146658C (zh) 修饰的植酸酶
CN1163596C (zh) 共有植酸酶
CN100475051C (zh) 含有肌醇六磷酸酶的动物食物和方法
CN1058524C (zh) 热耐受性肌醇六磷酸酶
DK1688500T3 (en) Overexpression of phytase genes in yeast systems
CN1195846C (zh) 隔孢伏革菌植酸酶
CN1228120A (zh) 来自枯草芽孢杆菌的植酸酶,编码所述植酸酶的基因,该基因产物的生产方法及其用途
CN1099841C (zh) 磷脂酶在动物饲料中的应用
CN1622824A (zh) 微生物表达的用于动物饲料的耐热植酸酶
US6841370B1 (en) Site-directed mutagenesis of Escherichia coli phytase
CN101035893A (zh) 弗氏柠檬酸杆菌肌醇六磷酸酶及同源物
CN1309699A (zh) 植酸酶变体
CN101631855B (zh) 具有肌醇六磷酸酶活性且该酶活性的温度稳定性增强的多肽及编码所述多肽的核苷酸序列
CN101080491A (zh) 具有植酸酶活性的多肽和编码多肽的核苷酸序列
CN1610746A (zh) 高温水解复杂混合物中的含半乳糖的低聚糖的方法
CN101063113A (zh) 一种新的植酸酶的克隆和表达
Sharma et al. A review on enzymology, uses and biotechnology of phytase
Rizwanuddin et al. Journal of Agriculture and Food Research
Makhode Enzymatic and molecular characterization of phytase producing yeasts isolated from soil in the Limpopo Province
CN101035898A (zh) 具有肌醇六磷酸酶活性的多肽和编码它的多核苷酸

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication