CN101792749B - 大肠杆菌AppA肌醇六磷酸酶突变体 - Google Patents

大肠杆菌AppA肌醇六磷酸酶突变体 Download PDF

Info

Publication number
CN101792749B
CN101792749B CN2010101238485A CN201010123848A CN101792749B CN 101792749 B CN101792749 B CN 101792749B CN 2010101238485 A CN2010101238485 A CN 2010101238485A CN 201010123848 A CN201010123848 A CN 201010123848A CN 101792749 B CN101792749 B CN 101792749B
Authority
CN
China
Prior art keywords
phytase
sequence
appa
acid
enzyme
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010101238485A
Other languages
English (en)
Other versions
CN101792749A (zh
Inventor
B·O·布拉特曼
A·达津斯
J·M·戴维斯
L·P·恩塞尔
T·B·莫里森
G·T·姆拉齐科
V·谢尔伦伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Danisco US Inc
Original Assignee
Genencor International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genencor International Inc filed Critical Genencor International Inc
Publication of CN101792749A publication Critical patent/CN101792749A/zh
Application granted granted Critical
Publication of CN101792749B publication Critical patent/CN101792749B/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8243Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine
    • C12N15/8245Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits involving biosynthetic or metabolic pathways, i.e. metabolic engineering, e.g. nicotine, caffeine involving modified carbohydrate or sugar alcohol metabolism, e.g. starch biosynthesis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nutrition Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Saccharide Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

本发明提供了一种产生具有改良活性的肌醇六磷酸酶突变体的细胞,以及其所产生的大肠杆菌AppA肌醇六磷酸酶突变体。还提供了制备和生产该肌醇六磷酸酶的方法以及所表达的肌醇六磷酸酶蛋白质在饲料中作为添加物的应用。

Description

大肠杆菌AppA肌醇六磷酸酶突变体
本申请是申请日为2003年8月11日、发明创造名称为“大肠杆菌AppA肌醇六磷酸酶突变体”、申请号为03824125.0的分案申请。
技术领域
本发明涉及分离于不同微生物来源的大肠杆菌AppA肌醇六磷酸酶天然变异体,大肠杆菌的AppA肌醇六磷酸酶突变体,编码肌醇六磷酸酶的核酸序列以及大肠杆菌AppA肌醇六磷酸酶突变体的生产和应用。
参考文献
al-Batshan等,Poultry Science 73(10):1590-1596(1994).
Altschul,S.F.,Gish,W.,Miller,W.,Myers,E.W.&Lipman,D.J.(1990)″Basiclocal alignment search tool.″J.Mol.Biol.215:403-410.
Altschul,S.F.,Madden,T.L.,
Figure GSA00000031829700011
A.A.,Zhang,J.,Zhang,Z.,Miller,W.&Lipman,D.J.(1997)″Gapped BLAST andPSI-BLAST:a new generation of protein database search programs.″Nucleic Acids Res.25:3389-3402.
Aplin and Wriston,Crit.Rev.Biochem.,pp.259-306(1981).
ASC Symposium Series 580,″Carbohydrate Modifications inAntisense Research″,Chapters 2,3,6 and 7,Ed.Y.S.Sanghuiand P.Dan Cook.
Ausubel等(eds.)(1995)Current Protocols In Molecular Biology,3rd edition,John Wiley & Sons,Inc.
Baker等,美国专利NO.5,571,706(1996).
Beaucage等(1993)Tetrahedron 49(10):1925.
Benner,Steven A.,美国专利NO.5,216,141(1993).
Bennett & Lasure,More Gene Manipulations in Fungi,AcademicPress,San Diego,pp.70-76(1991).
Benton,W.和Davis,R.,1977,Science 196:180.
Berger和Kimmel,(1987),Guide to Molecular Cloning Techniques,Methods inEnzymology,Vol.152,Academic Press,San Diego CA.
Birnboim,H.C.和Doly,J.(1979).Nucleic Acids Research 7:1513-23.
Botstein,D.和Shortle,D.(1985)Science 229:1193-1201.
Bowen等,美国专利NO.5,736,369(1998).
Bremel等,美国专利NO.6,291,740(2001).
Bremel等,美国专利NO.6,080,912(2000).
Brisson等(1984)Nature 310:511-514.
Briu等(1989)J.Am.Chem.Soc.111:2321.
Broglie等(1984)Science 224:838-843).
Cadwell,R.C.和Joyce,G.F.,1992,PCR Methods Applic.2:28-33.
Canadian Journal of Animal Science  75(3):439-444(1995).
Committee on Food Chemicals Codex,Institute of Medicine,FoodChemicals  Codex,4th Edition,National Academy Press,Washington,DC,1996.
Carlsson等,Nature 380:207(1996).
Clark,H.Fred,美国专利NO.5,610,049(1997).
Common等,Nature 143:370-380(1989)
Conklin等,美国专利NO.5,750,386(1998).
Cook等,U.S.专利号.5,637,684(1997).
Coruzzi等(1984)EMBO J 3:1671-1680.
Creighton,T.E.,Proteins:Structure and Molecular Properties,W.H.Freeman & Co.,San Francisco,pp.79-86(1983).
Cromwell等.,″P-a key essential nutrient,yet a possible majorpollutant-its central role in animal nutrition″,InBiotechnology in the Feed Industrv,(T.P.Lyons,ed.)AlltechTechnical Publications,Nicholasville,KY(1991)p.133.
Cromwell,G.L.T.,T.S.Stahly,R.D.Coffey,H.J.Monegue,和J.H.Randolph.1993.Efficacy of phytase in improvingbioavailability of phosphorus in soybean and corn-soybean mealdiets for Plgs.J.Anim.Sci.71:1831.
Damron等,Poultry Science 74(5):784-787(1995).
Dassa等,J.Bacteriol.172:5497-5500(1990).
Dayhoff,M.O.,Schwartz,R.M.&Orcutt,B.C.(1978)″A modelof evolutionary change in proteins.″In″Atlas of ProteinSequence and Structure,vol.5,suppl.3.″M.O.Dayhoff(ed.),pp.345-352,Natl.Biomed.Res.Found.,Washington,DC.Deutscher,Methods in Enzymology,182(1990).
DeBoer等,美国专利NO.6,066,725(2000).
De Clercq等,美国专利NO.5,589,615(1996).
De Mesmaeker等,美国专利NO.5,602,240(1997).
De Mesmaeker等,Bioorganic & Medicinal Chem.Lett.4:395(1994).
Denpcy等,Proc.Natl.Acad.Sci.USA 92:6097(1995).
Devlin,Robert H.,美国专利NO.5,998,697(1999).
Dieffenbach CW和Dveksler GS,1995,PCR Primer,a LaboratoryManual,Cold Spring Harbor Press,Plainview NY.
Eckert,K.A.和Kunkel,T.A.,1991,PCR Methods Applic.1:17-24.
Eckstein,Oligonucleotides and Analogues:A Practical Approach,Oxford University Press.
Edge等,Anal.Biochem.,118:131(1981).
Egholm(1992)J.Am.Chem.Soc.114:1895.
Ehrlich,K.C.,Montalbano,B.G.,Mullaney,E.J.,DischingerJnr.,H.C.& Ullah,A.H.J.(1993).Identification and cloningof a second phytasegene(phy B)from Aspergillus niger(ficus).Biochemical and Biophysical Research Communications 195,53-57.
Elander,R.P.,Microbial screening,Selection and StrainImprovement,in Basic Biotechnology,J.Bullock和B.Kristiansen Eds.,Academic Press,New York,1987,217.
Evan等,Molecular and Cellular Biology,5:3610-3616(1985).
Field等,Mol.Cell.Biol.,8:2159-2165(1988).
Finkelstein,DB 1992 Transformation.In Biotechnology ofFilamentous Fungi.Technology and Products(eds by Finkelstein&Bill)113-156.
Fiske,C.H.和SubbaRow,Y.(1925).Journal of BiologicalChemistry 66:375-392.
Fromant等,Anal.Biochem.224(1):347-353(1995).
Fungaro等(1995)Transformation of Aspergillus nidulans bymicroprojection bombardment on intact conidia,FEMSMicrobiology Letters 125 293-298.
Gelvin等.,J.Bacteriol.172(3):1600-1608(1990).
Gish,W.& States,D.J.(1993)″Identification of proteincoding regions by database similarity search.″Nature Genet.3:266-272.
Glover,DM和Hames,BD(Eds.),DNA Cloning:A PracticalApproach,Vols1 and 2,Second Edition.
Glover,DM和Hames,BD(Eds.),1995,DNA Cloning 1:A PracticalApproach,Oxford University Press,Oxford).
Glover,DM和Hames,BD(Eds.),1995,DNA Cloning 2:A PracticalApproach,Oxford University Press,Oxford).
Golovan等,Can.J.Microbiol.46:59-71(2000).
Greiner等,Arch.Bbiochm,biophys.303:107-113(1993).
Groot等(1998)Agrobacterium tumefaciens-mediatedtransformation of filamentous fungi,Nature Biotechnology 16839-842.
Grunstein,M.和Hogness,D.,1975,Proc.Natl.Acad.Sci.USA72:3961.
Hakimuddin,等,Arch.Biochem.Biophys.,259:52(1987).
Hale & Marham,THE HARPER COLLINS DICTIONARY OF BIOLOGY,HarperPerennial,NY(1991).
Harayama,Trends Biotechnol.16(2):76-82(1998).
Henikoff & Henikoff,Proc.Natl.Acad.Sci.USA 89:10915(1989).
Henke等,Biol.Chem.380(7-8):1029-1033(1999).
Hershey等,美国专利NO.5,268,526(1993).
Higgins D.G.,Bleas by A.J.,Fuchs R.(1992)CLUSTAL V:improved software for multiple sequence alignment.Comput.Appl.Biosci.8:189-191.
Hobbs S or Murry LE(1992)in McGraw Hill Yearbook of Scienceand Technology,McGraw Hill,New York,N.Y.,pp 191-196.
Hodges等,美国专利NO.5,677,175(1997).
Hopp等,BioTechnology,6:1204-1210(1988).
Houdebine等,美国专利NO.6,268,545(2001).
Inoue等,Gene 96:23-28(1990).
Jaynes等,美国专利NO.5,597,945(1997).
Jeffs等,J.Biomolecular NMR 34:17(1994).
Jenkins等.,Chem.Soc.Rev.(1995)pp 169-176.
Jeroch等,Bodenkultur Vo.45(4):361-368(1994).
Karatzas等,美国专利NO.5,907,080(1999).
Karlin & Altschul,Proc.Nat′l.Acad.Sci.USA  90:5873-5787(1993).
Kerovuo,J.,Lauraeus,M.,Nurminen,P.,Kalkkinen,N.,Apajalahti,J.(1988)Isolation,characterization andmolecular gene cloning,and sequencing of a novel phytase fromBacillus subtilis.Appl.Environ.Micro.,64,6,2079-2085.
Kerovuo等,Biochem.J.352(pt.3):623-628(2000).
Kiedrowshi等,Angew.Chem.Intl.Ed.English 30:423(1991).
Kornegay,E.T.,D.M.Denbow,Z.Yi.,和V.Ravindran.1996.
Response of broilers to graded levels of Natuphosa phytase addedto corn-soybean meal-based diets containing three levels ofnonphytate phosphorus.Br.J.Nutr.
Kostrewa等,Nat.Struct.Biol.4(3):185-190(1997).
Kretz,K.,美国专利NO.5,876,997(1999).
Kretz,K.,美国专利NO.6,110,719(2000).
Kretz,K.,美国专利NO.6,190,897(2001).
Lebrun等,美国专利NO.5,510,471(1996).
Lehmann等,Protein Engineering 13:49-57(2000).
Letsinger,J.Org.Chem.35:3800(1970).
Letsinger等,Nucleoside & Nucleotide 13:1597(1994).
Letsinger等(1988)J.Am.Chem.Soc.110:4470.
Letsinger等(1986)Nucl.Acids Res.14:3487.
Leung,D.W.,Chen,E.,和Goeddel,D.V.,1989,Technique 1:11-15.
Lim等,Nature Struct.Biol.7:108-113(2000).
Ling等,Anal.Biochem.254(2):157-178(1997).
Lubon等,美国专利NO.6,262,336(2001).
Lundquist等,美国专利NO.5,780,708(1998).
Lundquist等,美国专利NO.5,538,880(1996);
Lutz-Freyermuth等.,Proc.Natl.Acad.Sci.USA,87:6393-6397(1990).
Madden,T.L.,Tatusov,R.L.&Zhang,J.(1996)″Applicationsof network BLAST server″Meth.Enzymol.266:131-141.
Mag等.(1991)Nucleic Acids Res.19:1437.
Martin等,Science,255:192-194(1992).
Meier等(1992)Chem.Int.Ed.Engl.31:1008.
Melnikov等,Nucleic Acids Res.27(4):1056-1062(1999).
The Merck Veterinary Manual(Seventh Edition,Merck&Co.,Inc.Rahway,N.J.,USA,1991,page 1268).
Myers,R.M.,Lerman,L.S.,和Maniatis,T.,1985,Science229:242-247.
Mitchell,D.B.,Vogel,K.,Weimann,B.J.,Pasamontes,L.和van Loon,A.P.,Microbiology 143(Pt 1),245-252(1997)).
Moloney等,美国专利NO.5,750,871(1998).
Mullis,Kary B.,美国专利NO.4,683,202(1990).
Needleman & Wunsch,J.Mol.Biol.48:443(1970).
Nielsen(1993)Nature,365:566.
Oakley等,Gene 61(3):385-99(1987).
Ostanin等,J.Biol.Chem.267:22830-22836(1992).
Ostanin等,J.Biol.Chem.268:20778-28784(1993).
Paborsky等,Protein Engineering,3(6):547-553(1990).
Pandey等,Bioresource Technol.77(3):203-214(2001).
Pasamontes,L.,Haiker,M.,Henriquez-Huecas,M.,Mitchell,D.B.和van Loon,A.P.,Cloning of the phytasesfrom Emericellanidulans and thethermophilic fungusTalaromyces thermophilus,Biochim.Biophys.Acta 1353(3),217-223(1997).
Pasamontes,L.,Haiker,M.,Wyss,M.,Tessier,M.和van Loon,A.P.,Gene cloning,purification,and characterization of aheat-stable phytase from the fungusAspergillusfumigatus,Appl.Environ.Microbiol.63(5),1696-1700(1997).
Pauwels等(1986)Chemica Scripta 26:141.
Pearson & Lipman,Proc.Na t′l.Acad.Sci.USA 85:2444(1988).
Piedrahita等,美国专利NO.6,271,436(2001).
Piddington,C.S.,Houston,C.S.,Paloheimo,M.,Cantrell,M.,Miettinen-Oinonen,A.,Nevalainen,H.&Rambosek,J.(1993).The cloning and sequencing of the genesencoding phytase(PAlyA)and pH 2.5-optimum acidphosphatase(aph)from Aspergillusnigervar.awamori.Gene133,55-62.
Powar,V.K.和Jagannathan V.,(1982)J.Bacteriology,151(3),1102-1108.
Qi等,J.Bacteriol.179:2534-2539(2000).
Rawls,C&E News June 2,1997 page 35.
Rodriguez等,Biochem.Biophys.Res.Comm.257:117-123(1999).
Rodriguez等,Arch.Biochem.Biophys.382:105-112(2000).
Roland等,Poultry Science,75(1):62-68(1996).
Sambrook,J.,Fritsch,E.F.和Maniatis,T.(1989).MolecularCloning-A Laboratory Manual,2nd Ed.Cold Spring Harbour Press.
Sambrook等(2001).Molecular Cloning,A Laboratory Manual,3dEd.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York.
Sanchez,O.和J.Aguirre.1996.Efficient transformation ofAspergillus nidulans by electroporation of germinated conidia.Fungal Genetics Newsletter 43:48-51.
Sanger,F.,Nilken,S.和Coulson,A.R.(1977).Proc.Nat′l.Acad.Sci.USA,74:5463-5467.
Sanghvi等美国专利NO.5,386,023(1995)
Sawai等(1984)Chem.Lett.805.
Schwartz,R.M.&Dayhoff,M.O.(1978)″Matrices for detectingdistant relationships.″In″Atlas of Protein Sequence andStructure,vol.5,suppl.3.″M.O.Dayhoff(ed.),pp.353-358,Natl.Biomed.Res.Found.,Washington,DC.
Scopes,Protein Purification:Principles and Practice,Springer-Verlag,New York(1982).
Shimizu,M.,(1992)Biosci.Biotech.Biochem.,56(8),1266-1269.
Shimizu,M.,Japanese Patent Application 6-38745(1994).
Simons等,Br.J.Nutrition 64:525-540(1990).
Singleton,等,DICTIONARY OF MICROBIOLOGY AND MOLECULAR BIOLOGY,2D ED.,John Wiley and Sons,New York(1994).
Skinner等,J.Biol.Chem.,266:15163-15166(1991).
Smith & Waterman,Adv.Appl.Math.2:482(1981).
Somers等,美国专利NO.5,773,269(1998).
Sprinzl等(1977)Eur.J.Biochem.81:579.
Stemmer,Nature 370(6488):324-325(1994).
Summerton等,美国专利NO.5,235,033(1993).
Summerton等,美国专利NO.5,034,506(1991).
Takamatsu等(1987)EMBO J 6:307-311.
Thotakura等,Meth.Enzymol.,138:350(1987).
Tjalsma等,Microbiol.Mol.Biol.Rev.64(3):515-547(2000).
T′so等,美国专利NO.4,469,863(1984).
Ullah,H.J.和Gibson,D.M.,Preparative Biochemistry,17(1)(1987),63-91.
van Gorcom,Robert Franciscus Maria;van Hartingsveldt,Willem;van Paridon,Peter Andreas;Veenstra,AnnemarieEveline;Luiten,Rudolf Gijsbertus Marie;Selten,GerardusCornelis Maria;EP 420 358(1991).
van Hartingsveldt,W.,van Zeijl,C.M.J.,Harteveld,G.M.,Gouka,R.J.,Suykerbuyk,M.E.G.,Luiten,R.G.M.,vanParidon,P.A.,Selten,C.G.M.,Veenstra,A.E.,van Gorcom,R.F.M.&van den Hondel,C.A.J.J.(1993).Cloning,characterization and over expression of the phytase-encodinggene(PlzyA)of Aspergillus niger.Gene 127:87-94.
Van Loon,A.和Mitchell,D.;EP 684 313(1995).
Weber,K.L.等.,Biotechniques 25(3):415-9(1998).
Weidner,G.,d′Enfert,C.,Koch,A.,Mol,P.,和Brakhage,A.A.(1998)Development of a homologous transformation systemfor the human pathogenic fungus Aspergillus fumigatus based onthe pyrG gene encoding orotidine monophosphate decarboxylase.Current Genet.33:378-385.
Weissbach和Weissbach(1988)Methods for Plant MolecularBiology,Academic Press,New York,N.Y.,pp 421-463.
Wheeler,Mathew B.,美国专利NO.5,942,435(1999).
Winter J和Sinibaldi RM(1991)Results Probl Cell Differ 17:85-105.
Wyss等,Appl.Env.Microbiol.65:367-373(1999).
Yau,Eric K.,美国专利NO.5,644,048(1997).
Yamada等,Agr.Biol.Chem.,32(10)(1968),1275-1282.
发明背景
磷(P)对于生长来说是一种重要的元素。在传统家畜饲料例如谷粒,含油种子粗粉以及源于这些种子的产品中发现的大量磷是以共价结合于肌醇六磷酸(myo-inositol hexakisphosphate)分子中的形式存在的。对于非反刍类动物例如家禽和猪而言,这种形式的磷的生物利用度一般很低,这是因为它们缺乏能将磷从肌醇六磷酸分子分离开来的消化酶。
对于非反刍类动物无法利用肌醇六磷酸有几个重要的结果应当注意。例如,当为了满足动物对于磷的营养需要而加入无机磷(例如磷酸二钙,脱氟磷酸盐)或动物制品(例如肉和骨粉,鱼粉)时,带来一笔开销。此外,由于肌醇六磷酸在胃肠道能够结合或螯合许多矿物质(例如钙,锌,铁,镁,铜)从而导致其无法被吸收。
此外,在饲料中大多数的肌醇六磷酸流经胃肠道,从而提高了粪便的含磷量(参见,如Common等,1989)。这给环境带来一种生态学磷负担(参见,如Cromwell等,1991)。
相反,由于一种由瘤胃微生物产生的酶即通常所说的肌醇六磷酸酶的原因,反刍动物例如牛能够容易地利用肌醇六磷酸。肌醇六磷酸酶催化肌醇六磷酸水解成(1)肌醇和/或(2)其单-,二-,三-,四-和/或五-磷酸盐(3)无机磷酸盐。已知有两种不同的肌醇六磷酸酶:(1)一种称为3-肌醇六磷酸酶(肌醇六磷酸3-磷酸水解酶,EC 3.1.3.8)和(2)一种称为6-肌醇六磷酸酶(肌醇六磷酸6-磷酸水解酶,EC 3.1.3.26)。该3-肌醇六磷酸酶优先水解3-位点的酯键,而6-肌醇六磷酸酶优先水解6-位点的酯键。
已经发现微生物的肌醇六磷酸酶作为一种饲料添加剂能够提高典型的非反刍动物饮食中的肌醇六磷酸磷的生物利用度(参见,如Cromwell,等,1993)。结果是加入动物饲料中的无机磷量得以减少,同时动物分泌的粪便中含磷量也得以降低(参见,如Kornegay,等,1996)。
尽管具有这些优点,已知的肌醇六磷酸酶在饲料工业中尚未得到广泛认可。其中原因根据酶的不同而各有差异。具有代表性的顾虑在于高生产成本和/或酶在所需应用的环境中的低稳定性/活性。如果要使肌醇六磷酸酶对于在动物饲料工业中广泛使用具有吸引力,必须使肌醇六磷酸酶满足许多酶标准。这些标准包括整体的高比活力,低pH最适值,耐胃肠蛋白酶性以及热稳定性(参见,如Simons等,1990)。因为包括肌醇六磷酸酶在内的所有组分在饲料粒化过程中被短暂暴露于60至95℃下,所以热稳定性可能是成功应用饲料酶的最重要的先决条件。由于所有已知的肌醇六磷酸酶在56-78℃间去折叠,因此能克服这种限制的基因工程化酶在饲料应用中具有显而易见的优势。
因此,通常也希望发现和研发具有良好的稳定性和肌醇六磷酸酶活性的新酶以用于与动物饲料相关的应用中,并希望在生产这些酶的发酵工艺中应用先进技术从而使得这些酶可通过商业手段获得。同时也希望确定出可用于生产能够表达适于产业化生产数量的肌醇六磷酸酶的更有效的基因工程微生物的核苷酸序列。更希望的是通过基因工程手段研发出一种肌醇六磷酸酶表达***,使得纯化和使用工作量的相对纯的酶成为可能。
大肠杆菌appA基因编码一种细胞周质酶,该酶同时呈现出酸性磷酸酶和肌醇六磷酸酶活性(参见Greiner等,1993)。基于一项关于几种微生物来源的纯化的肌醇六磷酸酶的调查,源于大肠杆菌的天然酶呈现出最高的活性(参见Wyss等.,1999)。此外,该酶呈现出对于肌醇六磷酸酶活性的单一pH最适值为4.5,最适温度为约60℃。因此,基于其确定的高固有活性,低pH最适值和固有的耐温性,大肠杆菌肌醇六磷酸酶代表一个极好的起点,从此开始定向地发展适于商业饲料和其它不同肌醇六磷酸酶应用的热稳定性的肌醇六磷酸酶。
完整的大肠杆菌K-12appA基因的DNA序列最早是由Dassa等(1990)发表的。自从最早的发表以来,已经对许多appA基因的变异体(天然存在或实验室生产的)进行了描述。Ostanin等人(1992)采用定点诱变检验了在许多酸性磷酸盐中保守的2组氨酸和4精氨酸残基的催化重要性。大肠杆菌AppA蛋白质N-末端RHGXRXP基序中保守的Arg16(R16A)或His17(H17N)的替换使得对对硝基苯磷酸(pNPP)的活性完全丧失。Arg20(R20A),Arg92(R92A)和His303(H303A)的诱变导致产生仅具有野生型酶(WT)0.4%活性的蛋白质,而替换Arg63(R63A)并不改变其活性。设计成探究Asp304作为质子供体的作用的定点诱变实验证明了突变体D304A和D304Q对底物pNPP的Km值略有下降(Ostanin等,1993)。然而,Vmax值却极大地减小了。
已发现几个分离自猪结肠内含物的菌株产生肌醇六磷酸酶活性。其中被鉴定为大肠杆菌的一个菌株具有最高的活性。已发现分离自该大肠杆菌菌株的appA基因(称为appA2)与大肠杆菌K-12appA基基序列95%相同(Rodriguez等,1999)。这与两个蛋白质之间的六个氨基酸差异相符合:S102P,P195S,S197L,K202N,K298M和T299A。然而,纯化的AppA2蛋白质(在巴斯德毕赤酵母(Pichia pastoris)中表达的)与纯化的AppA酶相比,其活性明显低(Greiner等,1993;Wyss等,1999;Golovan等,2000)。
在巴斯德毕赤酵母中表达出野生型AppA以及由定点诱变产生的几种突变体以研究N端连接的糖基化对于AppA蛋白质的热稳定性曲线的影响(Rodriguez等,2000)。对AppA突变体A131N/V143N/D207N/S211N,C200N/D207N/S211N和A131N/V134N/C200N/D207N/S211N的糖基化水平和肌醇六磷酸酶活性进行了检测。尽管糖基化作用没有提高,但突变体C200N/D207N/S211N在pH 3.5-5.5下活性更高些,经热处理后比巴斯德毕赤酵母产生的野生型蛋白质保留了更高活性。另外,其对肌醇六磷酸的表观催化效率(kcat/Km)比AppA蛋白质提高了5.3X。作者推测C200N突变可能消除了蛋白质的α区域中G螺旋与GH环之间的二硫键(Lim等,2000),从而调节了区域的柔软性、催化效率和热稳定性。
最近Kretz的三篇US专利(5,876,997,6,110,719和6,190,897)中描述了大肠杆菌B菌株的appA基因的序列。菌株K-12和B的AppA蛋白质除了两个氨基酸不同其余相同,这两个氨基酸是K276M和T277A(残基编号基于成熟多肽)。已经发现appA2基因中存在同样的两个氨基酸的改变(Rodriguez等,1999)。
用于定向进化研究的可能的遗传多样性的主要来源存在于自然中,肌醇六磷酸酶就广泛分布在大自然中(Wodzinski等,″Phytase″,In Advances in Applied Microbiology,vol.42,Academic Press,San Diego,CA(1996)pp.263-302)。它们也被发现存在于许多细菌,真菌和植物中。在包括肠细菌大肠杆菌(Dassa等,1990),肠杆菌属(Enterobacter spp.)和克雷伯氏菌属(Klebsiella spp.)(Yoon等,1996;Greiner等,1997;Shah等,1990)在内的几种细菌来源的细菌中检测到了肌醇六磷酸酶活性。已经从由猪结肠中分离的大肠杆菌菌株(Rodriguez等,1999)和大肠杆菌菌株B(9)中成功获得扩增具有活性的肌醇六磷酸酶(AppA)基因变异体。
除了AppA基因产物之外,大肠杆菌agp基因也编码具有葡萄糖-1-磷酸酶和肌醇六磷酸酶活性的酶(Golovan等,2000;Kretz,USPN6,110,719)。如果这两种蛋白质具有包括在保守活性位点的许多氨基酸残基在内的大约30%序列同一性,那么这就是不足为奇的(Dassa等1990)。因此从肠菌株(例如属于埃希氏菌属,沙门氏菌属,志贺氏杆菌属,肠杆菌属和克雷伯氏菌属)中扩增和/或克隆出肌醇六磷酸酶变异体可能产生出有利于具有商业可行性的大肠杆菌肌醇六磷酸酶(AppA)定向进化的AppA基因变异体。
发明概述
本发明提供了重组肌醇六磷酸酶蛋白质和编码所述蛋白质的核酸和表达所述蛋白质的转化细胞。还提供了制备和使用所述肌醇六磷酸酶蛋白质的方法。
值得注意的是,本发明的一个优点在于已经分离出多核苷酸,其提供了分离其它编码具有肌醇六磷酸酶活性的蛋白质的多核苷酸的可能性。
本发明的一个方面是,提供了一组编码大肠杆菌AppA肌醇六磷酸酶变异体或AppA大肠杆菌肌醇六磷酸酶天然变异体的经修饰的氨基酸序列。这些经修饰的肌醇六磷酸酶氨基酸序列提高了肌醇六磷酸酶性状,其进一步包括对至少一个氨基酸序列位点的修饰,所述位点选自对应于成熟肌醇六磷酸酶的26,43,54,73,113,126,184,228,384和410残基(s)的残基(s)。本发明的另一方面在于,这些经修饰的肌醇六磷酸酶氨基酸序列包括对至少一个氨基酸序列位点的修饰,所述位点位于对应于选自26,43,54,73,113,126,184,228,384和410残基的氨基酸序列位点的上游或下游的5个氨基酸残基内。本发明的另一方面是,就成熟的经折叠的蛋白质而言,这些经修饰的肌醇六磷酸酶氨基酸序列包括对至少一个氨基酸序列位点的修饰,所述位点其α碳至少位于选自于下组氨基酸残基α碳的6Δ中:对应于成熟肌醇六磷酸酶的26,43,54,73,113,126,184,228,384和410残基。本发明的另一方面是,所述经修饰的肌醇六磷酸酶含有至少两种上述修饰的组合。
本领域会理解的是本发明所提供的编码AppA肌醇六磷酸酶或AppA肌醇六磷酸酶的天然变异体的氨基酸序列的任一条多核苷酸序列能够作为用于诱变筛选肌醇六磷酸酶性状得以改良的肌醇六磷酸酶的起始序列。此外,已经经历一轮诱变的多核苷酸序列也可以作为其它轮如上所述的诱变的起始序列,该多核苷酸序列的密码子编码由原始序列经诱变改变而来的氨基酸残基。
本发明的一个方面在于,筛选出肌醇六磷酸酶性状得以改良的各种经修饰的AppA序列。本领域会理解的是改良的肌醇六磷酸酶性状包括改良的表达;改良的耐热性;改良的特异性活性以及改良的pH最适值。
值得注意的是,本发明的一个优点是由于提供了一种具有肌醇六磷酸酶活性的蛋白质,使得通过重组方式生产一种能够产生相对大量具有肌醇六磷酸酶活性的蛋白质的宿主细胞成为可能。
然而本发明的另一优点在于具有肌醇六磷酸酶活性的蛋白质的商业应用成为可行。例如,本发明提供了整合了所述肌醇六磷酸酶的动物饲料。
通过下面的详细描述,本发明的其它目的和优点将会变得显而易见。
附图概述
图1示意性描述了来自质粒pLE18的a ppA基因(上部)整合进枯草芽孢杆菌(B.subtilis)菌株OS21.10的基因组(染色体的表达基因座)中(下部)。***的序列含有PstS启动子序列(P),编码成熟大肠杆菌K-12AppA的序列(appA),合成的芽孢杆菌信号序列(***P和appA之间)和抗氯霉素序列(cat)。
图2描述了枯草芽孢杆菌(Bacillus subtilis)菌株18B2的基因组图谱。OSBS-1和OSBS-8表示用于扩增含appA区域的引物与芽孢杆菌基因组的杂交的大致位点。
图3表示的是在枯草芽孢杆菌菌株18B2中表达的融合肌醇六磷酸酶蛋白中发现的合成的芽孢杆菌信号序列和成熟AppA蛋白质的序列。该芽孢杆菌菌株通过实施例1中描述的方式生产出来。
图4概括出用于提供表达于芽孢杆菌中的AppA肌醇六磷酸酶的定向进化的筛选策略。实施例2中详细描述了该策略。
图5表示的是以肌醇六磷酸作为唯一磷酸来源的杆菌克隆的相对生长。通过使用光细胞计量术(photocytometry),测量出与细胞浓度相关的600nm相对吸收度来表示细胞生长。该图表表示在3个随机诱变循环后经筛选的所有克隆(黑条)和一群以肌醇六磷酸作为磷酸来源的生长得以明显改良的50个筛选出的克隆(命名为PHY859-908;亮条)相对于具有克隆18B2(即未诱变的序列)中发现的序列的克隆的%频率。37℃下各个克隆在加有50μM肌醇六磷酸的MES-1培养基中生长47小时后,进行测量。
图6表示的是以肌醇六磷酸作为唯一磷酸来源的3组芽孢杆菌克隆的相对生长。细胞以图5描述的方式生长和被测量。该图显示编码具有克隆18B2中序列的AppA的2383个克隆(亮条),经历了三个诱变循环的2134个克隆(黑条),和称为PHY844-858克隆的选自后一组的15个克隆(用交叉的平行线画出阴影的条)的%-频率。
图7表示的是如图例所示的表达具有18B2序列的肌醇六磷酸酶的芽孢杆菌克隆(封闭的菱形)和表达不同突变肌醇六磷酸酶的克隆的相对生长率。在37℃下含有50μM肌醇六磷酸和5μg/ml氯霉素的MES-1培养基(pH 6.0)中以250rpm振荡培养所述克隆。与18B2克隆相比,图中表示的所有突变克隆以明显更快的速率生长。
图8表示的是一张关于生长于不含磷酸盐的高密度培养基中的不同克隆的肌醇六磷酸酶活性的累积图。芽孢杆菌克隆首先被培养于含有氯霉素的5mL LB培养基中。对由稳定期培养物中分离的细胞进行清洗并以大约相同的密度将其重悬于缺少磷源的P1培养基中。采用钼酸盐-钒酸盐磷酸测试对整个过程中肌醇六磷酸酶活性进行检测,其中在415nm下测量颜色(吸收度)。在这些条件下,与对照菌株18B2相比,几个突变克隆在整个过程中积累了更多的活性。
图9表示的是由芽孢杆菌突变菌株(PHY902)和对照菌株18B2产生的肌醇六磷酸酶的pH活性的曲线图。将克隆培养于LB培养基中,然后将其重悬于不含磷源的P1培养基中。在培养之后,检测培养物的上清液的肌醇六磷酸酶活性。两个克隆都显示出其pH最适值约在4.5,但是PHY902培养物上清液的肌醇六磷酸酶活性比对照克隆高4倍。
图10表示的是包括对照菌株18B2 appA的枯草芽孢杆菌(B.subtilis)克隆(菱形)和PHY902突变体(方形)的培养物和转化有扩增自PHY902突变体的appA基因的枯草芽孢杆菌(R-PHY902;圆圈)的培养物上清液中的相对肌醇六磷酸酶活性。以图8描述的方式获得上清液。与对照18B2相比经再转化的枯草芽孢杆菌克隆的活性提高了3倍,这证实了PHY902突变体活性的提高与appA基因有关。
图11表示的是含有18B2,PHY850或R-PHY902appA基因的各个枯草芽孢杆菌克隆的培养物上清液的相对肌醇六磷酸酶活性。将每一克隆接种于含有100μMPO4的4mLP1培养基(pH 7.3)中,在37℃下振荡培养过夜。将这些培养物的稀释物以终浓度为3.2×106细胞/25mL接种于含有25mL P1培养基(pH 7.3)和100μMPO4的带障板的振荡烧瓶中。18B2菌株的平均值为43FTU/L,而R-PHY902培养物的平均值为180FTU/L(比对照组高4倍),PHY850平均值为462FTU/L(几乎比对照组高11倍)。
图12表示的是对照18B2AppA肌醇六磷酸酶的氨基酸序列和本发明中不同突变体的序列变化的位点。合成的芽孢杆菌信号序列(残基1-30)由下划线示出,组胺酸磷酸酶的保守的RHGXRXP基序特征表示为粗斜体。仅仅表示出突变体的AppA序列与对照序列的差别。每一个突变的氨基酸序列包括残基143的替换(对应于成熟的大肠杆菌K-12AppA肌醇六磷酸酶的残基113)。图中所示的表达一种AppA突变体的枯草芽孢杆菌宿主与表达对照AppA的克隆相比,其肌醇六磷酸酶活性获得了提高。
图13表示的是芽孢杆菌克隆文库成员的培养物上清液中的相对肌醇六磷酸酶活性。该文库是通过用由PHY850appA的诱变PCR扩增获得的扩增产物转化宿主细胞而产生的。通过在钼-钒酸盐测试中测定415nm的吸收度对肌醇六磷酸酶中磷酸的释放进行检测。文库的生产和筛选方法描述于实施例5中。表达亲本PHY850的克隆在该检测条件下通常会下降1.2-1.4。
图14表示的是几种AppA蛋白质的氨基酸序列。对照组18B2序列以图12的方式表示,PHY850突变体的AppA序列也以与图12相同方式表示。在实施例5中描述的测试中具有最高活性并被表示于图13的三个克隆也被测序。列出了PHY1361和PHY1363的序列。第三个突变体,PHY1373,具有与1363相同的序列。所有具有更高活性的突变体都含有残基414的改变(对应于成熟的大肠杆菌K-12AppA肌醇六磷酸酶的残基384)。
图15表示的是表达不同appA基因的芽孢杆菌的培养物上清液中的肌醇六磷酸酶活性。在生长42小时(对于每一克隆为左条)和73小时(对于每一克隆为右条)后检测活性。以实施例7A描述的方式在指定时间点从培养物中取出上清液试样并测试。
图16表示的是表达不同appA基因并且在不同的搅动条件下生长的芽孢杆菌的培养物上清液中的肌醇六磷酸酶活性。在含有100μMPO4和5ug/mL氯霉素的25mLP7培养基中以75rpm或200rpm的振荡速度培养24,48和72小时后,检测活性。以实施例7A描述的方式在指定时间点从培养物中取出上清液试样并测试。含有appA基因突变体的克隆是经由诱变文库中分离的细胞的appA基因的扩增产物所转化的,其证实了肌醇六磷酸酶活性的提高与appA突变有关。
图17表示的是SDS-PAGE凝胶的免疫印迹。如实施例7B所描述的方式,对图16所述的培养物和其它培养物的上清液进行分析。泳道编号/培养物:1/75rpm下18B2;2/75rpm下R-PHY850;3/75rpm下R-PHY1361;4/75rpm下R-PHY1363;5/75rpm下R-PHY1373;6/200rpm下18B2;7/200rpm下R-PHY850;8/200rpm下R-PHY1361;9/200rpm下R-PHY1363;10/200rpm下R-PHY1373;11/7rpm下未转化枯草芽孢杆菌菌株OS21.10;12/75rpm下表达枯草芽孢杆菌蛋白酶基因盒的枯草芽孢杆菌;13/150rpm下表达枯草芽孢杆菌蛋白酶基因盒的枯草芽孢杆菌;14/DBT-MO;15/分子量标记。AppA肌醇六磷酸酶蛋白质用箭头指出。
图18表示的是如实施例7C中所述,与活性培养物上清液于37℃时相比较,加热升温时相同上清液中肌醇六磷酸酶活性百分比。上清液取自表达不同appA基因的芽孢杆菌克隆的培养物。该图显示,所有被测试的突变体的热稳定性与18B2克隆的对照appA相似。
图19表示的是用于扩增appA相关序列的寡核苷酸引物及其组合。
图20表示的是大肠杆菌K-12和AppA天然变异体(全长和部分序列)的氨基酸序列比对表。
图21表示的是大肠杆菌和AppA天然变异体(全长和部分序列)的多核苷酸序列比对表。
发明详述
本发明描述了一组新的AppA基因突变型或AppA基因突变型的天然变异体的产生,鉴定和表征。这些肌醇六磷酸酶突变体通过能产生遗传多样性的随机诱变途径构建而来。
本发明所公开的突变体的肌醇六磷酸酶的活性获得提高,和/或其宿主细胞分泌所述突变体的数量也有所提高。这些突变体含有无法通过理性设计途径预测的独特的氨基酸变化。本发明也提供了用于使大肠杆菌肌醇六磷酸酶在通常认为安全的宿主(Generally RegardedasSafe)(GRAS)中实现最优化分泌的方法,所述宿主例如枯草芽孢杆菌。
本发明还描述了一组新的编码大肠杆菌AppA基因天然变异体的核苷酸基因序列的分离和表征。这些基因变异体或其片段是通过PCR从不同的分离的肠菌株或从肌醇六磷酸富集的培养物的细菌群落中扩增而来。所述天然变异体为产生与已知和/或天然存在的肌醇六磷酸酶相比具有新特性和改良性状的嵌合肌醇六磷酸酶的序列提供了多种来源。
I.定义
除非另有说明,本发明所使用的所有技术和科学用语的含义与本发明所述领域的普通技术人员所理解的相同。Singleton,等,《微生物学和分子生物学词典》(DICTIONARY OF MICROBIOLOGY ANDMOLECULAR BIOLOGY),2D ED.,John Wiley and Sons,New York(1994),和Hale & Marham,THE HARPER COLLINS DICTIONARY OF BIOLOGYHarper Perennial,NY(1991)为本领域普通人员提供了本发明所使用的许多术语的一般解释。尽管与本发明所述方法和材料类似或等同的任意方法和材料都能用于实施或检验本发明,本发明仍然描述了优选的方法和材料。数字范围包括定义该范围的数字本身。除非另有说明,核酸序列是按5’至3’方向从左到右书写;氨基酸序列按氨基至羧基方向从左至右书写。本发明所提供的标题不构成对本发明的各方面或实施方案的限制,本发明的各方面或实施方案应参考整个说明书而获得。因此,下面即将定义的术语通过参考整个说明书而获得更为全面的定义。
说明书中所使用的“蛋白质”包括蛋白质,多肽和肽。值得本领域技术人员注意的是,如下文定义的和本发明进一步描述的本发明的核酸序列可用于生产蛋白质序列。
这里所使用的术语“肌醇六磷酸酶”或“肌醇六磷酸酶活性”指的是能催化肌醇六磷酸水解成(1)肌醇和/或(2)其单-,二-,三-,四-和/或五-磷酸和(3)无机磷酸的蛋白质或多肽。例如,具有如酶学委员会EC号3.1.3.8,或EC号3.1.3.26所定义的催化活性的酶。
所述“AppA肌醇六磷酸酶”指的是从埃希氏菌属(Eschericiaspecies)中尤其是大肠杆菌菌株最优选从大肠杆菌K-12菌株中获得的肌醇六磷酸酶蛋白质。在一个实施方式中,所述AppA肌醇六磷酸酶包含GenBank登陆号P07102和M58708中所公开的氨基酸序列,Genbank登陆号NC_000913中公开的AppA基因的翻译物,它们均并入本发明中。同样,本语“appA”“appA基因”或“编码AppA的基因”和其语法上的等同物指的是含有编码AppA的序列的核酸,优选由一种埃希氏菌属(Eschericia species)中获得的核酸,更优选的是由一种大肠杆菌菌株例如大肠杆菌K-12菌株中获得的核酸。在一个实施方式中,appA基因具有在GenBank登陆号M58708中公开的序列或GenBank登陆号NC_000913中公开的称为“appA基因”的序列,它们均并入本发明中。在一个优选的实施方式中,appA基因包含编码附图12中称为EBC18B2的氨基酸序列的第31-440位残基的序列。
这里所使用的术语“等同于......的氨基酸残基”,“对应于......的氨基酸”和其语法等同物是指与特定蛋白质的特定的氨基酸序列中指明的残基具有相似位点和作用的蛋白质的氨基酸残基。例如,相当于附图12中EBC18B2 AppA蛋白质的第46位残基的AppA蛋白质的残基是等同于组胺酸磷酸酶如大肠杆菌肌醇六磷酸酶的特征性保守RHGXRXP基序的第一个精氨酸的残基。许多肌醇六磷酸酶的氨基酸序列和晶体结构是已知的(参见,如Lim等,2000;Pandey等,2001;Kerovuo等,2000;和Kostrewa等,1997)。本领域技术人员能识别出可比的肌醇六磷酸酶蛋白质中的指定残基的等同物。
“成熟肌醇六磷酸酶”和其语法等同物是指经信号处理例如切除分泌信号序列后的肌醇六磷酸酶。在一个优选实施方式中,“附图12的成熟AppA肌醇六磷酸酶”和其语法等同物是指具有附图12的命名为EBC18B2序列的第31位残基至第440位残基的序列的肌醇六磷酸酶。该序列对应于由大肠杆菌K-12菌株的appA基因编码的AppA蛋白质的第23位残基至第432位残基。
这里所用的词“合成的芽孢杆菌信号序列”,“合成的芽孢杆菌来源的信号序列”和其语法等同物是指一种具有附图12中称为EBC18B2的序列的第1-30位残基的信号序列,优选分泌信号序列。这里所使用的“核酸序列”,“多核苷酸”“寡核苷酸”或其语法等同物最宽泛的含义是指至少两个共价结合的核苷酸。尽管有时如下文所述,本发明的核酸序列包含具有其它主链的核酸序列类似物,其包括例如氨基磷酸酯(Beaucage等,Tetrahedron 49(10):1925(1993)以及其参考文献;Letsinger,J.Org.Chem.35:3800(1970);Sprinzl等,Eur.J.Biochem.81:579(1977);Letsinger等,Nucl.Acids Res.14:3487(1986);Sawai等,Chem.Lett.805(1984),Letsinger等,J.Am.Chem.Soc.110:4470(1988);和Pauwels等,Chemica Scripta 26:14191986)),硫代磷酸酯(Mag等,Nucleic Acids Res.19:1437(1991);和U.S.专利No.5,644,048),二硫代磷酸酯(Briu等,J.Am.Chem.Soc.111:2321(1989)),O-甲基亚磷酰胺键(参见Eckstein,Oligonucleotides andAnalogues:A Practical Approach,Oxford University Press),和肽核酸主链和键(参见Egholm,J.Am.Chem.Soc.114:1895(1992);Meier等.,Chem.Int.Ed.Engl.31:1008(1992);Nielsen,Nature,365:566(1993);Carlsson等人Nature 380:207(1996),所有均作为参考文献引用),本发明的核酸序列通常含有磷酸二酯键。其它核酸类似物包括正链核酸(Denpcy等,Proc.Natl.Acad.Sci.USA 92:6097(1995);非离子链核酸(U.S.专利号5,386,023,5,637,684,5,602,240,5,216,141和4,469,863;Kiedrowshi等,Angew.Chem.Intl.Ed.English 30:423(1991);Letsinger等,J.Am.Chem.Soc.110:4470(1988);Letsinger等,Nucleoside & Nucleotide 13:1597(1994);Chapters 2 and 3,ASCSymposium Series 580,″Carbohydrate Modifications in AntisenseResearch″,Ed.Y.S.Sanghui and P.Dan Cook;Mesmaeker等,Bioorganic & Medicinal Chem.Lett.4:395(1994);Jeffs等,J.Biomolecular NMR 34:17(1994);Tetrahedron Lett.37:743(1996))和非核糖链核酸,包括在美国专利NO.5,235,033和5,034,506,和Y.S.Sanghui和P.Dan Cook所著ASC Symposium Series 580,″Carbohydrate Modifications in Antisense Research″,Ed.Y.S.,Chapters 6和7中描述的序列。含有一个或多个碳环形糖的核酸也包含在核酸的定义内(参见Jenkins等,Chem.Soc.Rev.(1995)pp169-176)。在Rawls,C&E News June 2,1997 page 35中也描述了几种核酸类似物。因此,所有这些文献被清楚地收录在参考文献中。对磷酸核糖链进行修饰可能是由于许多原因,例如为了提高这些分子在生理环境或食品处理环境中的稳定性和半衰期。
值得本领域技术人员注意的是,所有这些核酸类似物可以在本发明中找到应用。此外,天然存在的核酸及其类似物的混合物也能被制备;或者,不同的核酸类似物的混合物和天然存在的核酸和类似物的混合物可以被制备。
尤为优选的是包括肽核酸类似物在内的肽核酸(PNA)。这些主链在中性条件下主要是非离子的,这与天然存在的核酸的带有强电荷的磷酸二酯主链相反。这带来两个优点。第一,PNA主链呈现出改良的杂交动力学。与完全正确的碱基配对相比,碱基发生错配的PNAs的解链温度(Tm)发生更大的变化。由于发生内部错配,DNA和RNA的Tm通常下降2-4℃。至于非离子PNA主链,其降幅接近7-9℃。同样地,由于其非离子的性质,连在这些主链上的碱基的杂交对于盐浓度相对不敏感。此外,PNAs不会被细胞酶降解,因此可以更为稳定。
这些核酸序列可以是单链或双链,或含有双链或单链序列的一部分。本领域技术人员会理解的是一条单链(″Watson″)的描述也定义了另一条链(″Crick″)的序列;因此这里所述的序列也包括所述序列的互补物。该核酸序列可以是DNA,基因组DNA和cDNA,RNA或杂交体,其中核酸序列含有脱氧核糖核苷酸和核糖核苷酸的任意组合,以及包括尿嘧啶,腺嘌呤,胸腺嘧啶,胞嘧啶,鸟嘌呤,次黄苷,黄嘌呤,次黄嘌呤,异胞嘧啶(isocytosine),异鸟嘌呤(isoguanine)等在内的碱基的任意组合。这里所使用的术语“核苷”包括核苷酸、核苷、核苷酸类似物和修饰的核苷例如氨基修饰的核苷。此外,“核苷”包括非天然存在的类似物结构。因此例如肽核酸序列的单个单位(每个单位含有一个碱基)这里称为核苷。
在两个核酸序列或多肽序列的内容中的术语“相同”是指为了获得最大对应而进行比对时这两个序列中的相同残基,其可以采用下列序列对比或分析算法进行测量。
“最佳比对”定义为得到同一性百分比分数最高的比对。这种序列比对可以通过采用多种商业途径获得的序列分析程序进行,例如采用1的ktup,默认参数和默认PAM的局部比对序列程序LALIGN。序列比对优选采用MACVECTOR中的CLUSTAL-W程序进行成对比对,该程序采用默认参数,包括10.0的开放缺口罚分,0.1的延伸缺口罚分,和BLOSUM30相似性矩阵,以“慢”比对模式进行。如果为了使第一序列以最佳方式与第二序列排列在一起而需要***一个缺口时,则仅采用与相应氨基酸残基配对的残基来计算同一性百分比(例如,这种计算方法并不考虑第二序列中处于第一序列的“缺口”中的残基)。
为了进行比较,还可以通过例如Smith & Waterman,Adv.Appl.Math.2:482(1981)的局部同源性算法,Needleman & Wunsch,J.Mol.Biol.48:443(1970)的同源性比对算法,Pearson & Lipman,Proc.Nat′l.Acad.Sci.USA 85:2444(1988)的相似性检索方法,通过计算机执行这些算法(the Wisconsin Genetics Software Package中的GAP,BESTFIT,FASTA,和TFASTA,Genetics Computer Group,575Science Dr.,Madison,WI),或通过目视检查进行序列的最佳比对。为了进行比较,可以在AppA肌醇六磷酸酶的天然变异体中进行序列的最佳比对以寻找AppA肌醇六磷酸酶中对应于AppA肌醇六磷酸酶天然变异体中相同残基的残基。
对于两个氨基酸或多核苷酸序列,“序列同一性百分比”指的是两条序列以最佳方式比对时序列中相同残基的百分比。因此,80%的氨基酸序列同一性意味着两条以最佳方式比对的多肽序列中80%的氨基酸相同。可通过以下方式确定同一性百分比:例如通过序列比对,计算两条比对序列中匹配的确切数字,除以较短序列的长度,并将结果乘以100。可以采用容易获得的计算机程序帮助分析,例如ALIGN,Dayhoff,M.O.in″Atlas of Protein Sequence and Structure″,M.O.Dayhoffed.,*5 Suppl.3:353-358,National BiomedicalResearch Foundation,Washington,DC,其中采用Smith和Waterman(1981)Advances in Appl.Math.2:482-489的局部同源性算法用于肽分析。用于确定核苷酸序列同一性的程序可由WisconsinSequence Analysis Package,Version 8(可从Genetics ComputerGroup,Madison,WI中获得)获得,例如,BESTFIT,FASTA和GAP程序,这些程序用的也是Smith和Waterman算法。这些程序可采用由生产商提供的默认参数和上文提到的Wisconsin Sequence AnalysisPackage中描述的参数进行简单操作。
适于确定序列相似性的算法的一个实例是BLAST算法,其描述在Altschul,等,J.Mol.Biol.215:403-410(1990)中。公众可通过National Center for Biotechnology Information(http://www.ncbinlm.nih.gov/)获得进行BLAST分析的软件。这种算法包括首先通过在查询序列中确定当与序列数据库中相同长度的字串进行比对时,匹配或满足某个具有正阈值分数T的长度为W的短字串,从而鉴定出高评分序列对(HSPs)。以这些最初邻近的命中字串作为起点寻找含有它们的更长的HSPs。命中字串(the word hits)沿着进行对比的两条序列每一条向两头延伸,只要累积比对分数提高。当:累计比对分数由获得的最大值减少量X;累计分降至0或更低;或者到达任一条序列的末端时,命中字串的延伸停止。BLAST算法的参数W,T,和X决定比对的敏感度和速度。BLAST程序采用11的字长(W),BLOSUM62评分矩阵(参见Henikoff & Henikoff,Proc.Natl.Acad.Sci.USA 89:10915(1989))50的比对(B),10的期望值(E),M′5,N′-4和双链比较作为默认参数。
BLAST算法然后进行两条序列间的相似性统计学分析(参加,例如Karlin & Altschul,Proc.Nat′l.Acad.Sci.USA 90:5873-5787(1993))。由BLAST算法提供的一种相似性量度标准是最小总和几率(P(N)),其表示两条寡核苷酸序列或两条氨基酸序列之间随机发生匹配的几率。例如,如果待测核酸序列与肌醇六磷酸酶核酸序列对比中的最小总和几率小于约0.1,优选小于约0.01,更优选小于约0.001,那么该核酸序列被认为与本发明的肌醇六磷酸酶核酸序列相似。待测核酸编码一种肌醇六磷酸酶多肽的情况下,如果对比的结果是最小总和几率小于大约0.5,更优选小于大约0.2,则该待测核酸被认为与指定肌醇六磷酸酶核酸序列相似。
因此,在两条核酸序列或两条多肽的相关内容中的词“基本相同”典型地指含有与参考序列具有至少60%同一性,优选至少80%,更优选至少90%,最优选至少95%的序列的多核苷酸或多肽,其中与参考序列进行的比较使用的是采用标准参数的上述程序(例如BLAST,ALIGN,CLUSTAL)。两条多肽基本相同的一个指征是第一条多肽与第二条多肽发生免疫学交叉反应。典型的是,由于保守氨基酸替代而产生差别的两条多肽之间会发生免疫学交叉反应。因此,例如两条多肽之间的区别仅在于保守性替代时,这两条多肽基本相同。两条核酸序列基本相同的另一个指征是这两个分子在严紧条件下相互杂交(例如在中度至高度严紧范围内的条件)。
“杂交”包括一条核酸链通过碱基配对与另一条核酸链结合的任何过程。因此,严格的说,该术语指的是靶序列与测试序列的结合能力,反之亦然。
“杂交条件”典型的是根据测量杂交时所用条件的“严紧”程度来分类。严紧程度可以以例如结合复合物或探针的核酸序列的计算出的(估计的)解链温度(Tm)为依据。Tm的计算在现有技术(参见例如Sambrook(1989)的第9.50-9.51页,下述)中已知。例如,“最高严紧性”通常发生在大约Tm-5℃(低于探针Tm 5℃);“高度严紧性”发生在大约Tm以下5-10℃;“中度严紧性”发生在探针的Tm以下约10-20℃;“低严紧性”发生在Tm以下约20-25℃。一般说来,杂交条件在高离子强度条件下进行,例如使用6XSSC或6XSSPE。在高严紧条件下,在计算出的温度下,在杂交后用低盐溶液冲洗两次,例如使用0.5XSSC。在中度严紧条件下,杂交后用中浓度的盐溶液清洗两次,例如2XSSC。在低严紧条件下,杂交后用高浓度的盐溶液清洗两次,例如6XSSC。就其功能而言,可采用最高严紧条件识别与杂交探针具有严格同一性或近乎严格的同一性的核酸序列;而高严紧条件可用于识别与探针具有约80%或更高序列同一性的核酸序列。
对于要求高选择性的应用,通常需要采用相对严紧的条件进行杂交,例如要选择相对高温度条件。包括中等严紧和高度严紧在内的杂交条件由Sambrook等人的Molecular Cloning:A Laboratory Manual,Second Edition,Cold Spring Harbor Press(1989);Sambrook等人,Molecular Cloning,A Laboratory Manual,3d Ed.,Cold SpringHarbor Laboratory Press,Cold Spring Harbor,New York(2001)提供,其并入本文作为参考。
在核酸序列内容中涉及的术语“互补的”是指一条核酸序列与第二条核酸序列存在一定关系,使得这两条全长核酸序列上的Watson-Crick碱基对存在着完美比对。
术语“分离的”或“基本纯化的”是指物质从其最初环境(例如,如果是天然存在的物质就是从自然环境)中被分离出来。例如,当该物质以高于或低于其在天然或野生型生物中的浓度存在于某种组合物中时或与天然或野生型生物正常不表达的成分结合在一起时,该物质即被称为“基本纯化”。例如,存在于活体动物中的天然多核苷酸或多肽不是分离的,但是相同的天然多核苷酸或多肽当它与天然***中的部分或全部共存物质中分开时是分离的。这种多核苷酸可以是载体的一部分,和/或这种多核苷酸或多肽可以是组合物的一部分,并且仍然是分离的,这是因为这些载体或组合物不是其自然环境的组成部分。例如,如果核酸序列或蛋白质在凝胶电泳中基本上只跑出一条带,那么该核酸序列或蛋白质被认为是纯化的。
本发明提供了重组核酸和蛋白质的生产。“重组的”及其语法等同物是指采用重组技术生产,由此制备出新的核酸(重组核酸)和蛋白质(重组蛋白质)。这些技术在现有技术中已知,并且许多在此已有非常详细的描述。广义上说,一种重组核酸序列可以是任意不以天然存在形态存在的核酸序列,不论它是与天然存在的毗邻序列相分离的序列或是与其它序列以非自然形式结合以形成新的核酸序列的序列,例如载体。重组核酸序列也包括那些由重组核酸序列生产得来的序列,例如通过聚合制得的互补序列,通过复制获得的额外的拷贝,或由重组DNA转录的RNA。重组蛋白质是通过重组核酸序列的翻译产生而来的。
当涉及肌醇六磷酸水解酶(肌醇六磷酸酶)时,本文中所使用的术语“衍生自”不仅是指通过由所研究的生物的株系产生的或可产生的肌醇六磷酸酶,而且还指由分离于该株系的DNA序列编码的、并在含有该DNA序列的宿主生物体中产生的肌醇六磷酸酶。此外,该术语意欲表明由合成的和/或cDNA来源的DNA序列编码的并且具有所研究的肌醇六磷酸酶的识别性状的肌醇六磷酸酶。作为例子,“衍生自大肠杆菌的肌醇六磷酸酶”是指由大肠杆菌天然产生的具有肌醇六磷酸酶活性的酶,也指与由大肠杆菌来源产生的那些肌醇六磷酸酶相似,但是通过基因工程技术由转化有编码所述肌醇六磷酸酶的核酸序列的非大肠杆菌生物体产生的肌醇六磷酸酶。
本发明包括与衍生自所述具体微生物菌株的肌醇六磷酸水解酶等同的肌醇六磷酸水解酶。文中的“等同”是指肌醇六磷酸水解酶由一种能够与具有如附图**中任一个所示序列的多核苷酸在中严紧条件至高严紧条件下杂交的多核苷酸编码。等同意味着肌醇六磷酸水解酶含有与具有图20所示任一氨基酸序列的肌醇六磷酸水解酶具有至少50%同一性,优选至少55%,更优选至少60%,更优选至少65%,更优选至少70%,更优选至少75%,更优选至少80%,更优选至少85%,更优选至少95%,最优选至少96%,97%,98%或99%,直至100%的同一性。
本发明也包含了本发明的肌醇六磷酸水解酶的突变体,变异体及其衍生物,只要肌醇六磷酸水解酶的所述突变体,变异体或其衍生物能够保留天然存在的肌醇六磷酸水解酶的至少一种特征性活性即可。
当涉及肌醇六磷酸水解酶时,本文所用术语“突变体或变异体”指的是通过改变天然氨基酸序列和/或其结构获得的肌醇六磷酸水解酶,例如通过改变结构基因的DNA核苷酸序列和/或通过直接取代和/或改变肌醇六磷酸水解酶的氨基酸序列和/或结构。
本文所指的“AppA肌醇六磷酸酶的天然变异体”是指当采用本文所述的序列对比和分析算法进行比较时,显示与图12中称为EBC18B2的成熟大肠杆菌肌醇六磷酸酶发生免疫学交叉反应并与其具有基本同一性的氨基酸序列。“基本同一性”描述在此。当按本文所述方法进行最佳比对算法分析时,图12中的称为EBC18B2的成熟肌醇六磷酸酶的一个特定氨基酸残基对应于EBC18B2的天然变异体的一个相同的氨基酸残基。
“天然变异体”(AppA肌醇六磷酸酶的)指的是编码具有肌醇六磷酸酶活性的酶的天然氨基酸序列,其由非大肠杆菌来源分离,例如但不限于费氏志贺氏菌(Shigella flexnerii),索氏志贺氏菌(Shigellasonnei),产气巴斯德氏菌(Pasturella aerogenes),阴沟肠杆菌(Enterobacter cloacae),成团泛菌(Enterobacter agglomerans),大肠杆菌菌株B,和普通变形菌(Proteus vulgaris)。“天然变异体”含有与图12中的称为EBC18B2的成熟大肠杆菌肌醇六磷酸酶序列的氨基酸序列“基本相同”(如上定义)的天然氨基酸序列。天然变异体包括图12中所列的除了大肠杆菌序列之外的其它任意氨基酸序列。
当涉及肌醇六磷酸酶时,术语“衍生物”或“功能性衍生物”在本文中指的是具有本发明的肌醇六磷酸酶的功能性特征的肌醇六磷酸酶衍生物。肌醇六磷酸酶的功能性衍生物包括天然的,合成的或重组产生的肽或肽片段,突变体或变异体,其可能含有一个或多个氨基酸残基缺失,***或取代并具有本发明的肌醇六磷酸酶的一般特征。
当涉及编码肌醇六磷酸酶的核酸时,术语“功能性衍生物”在整个说明书中指的是具有编码肌醇六磷酸酶的核酸序列的功能性特征的核酸序列衍生物。编码本发明的肌醇六磷酸酶的核酸序列的功能性衍生物包括天然的,合成的或重组产生的核酸序列或片段,其突变体或变异体,其可能含有一个或多个核酸的缺失,***或替换并编码本发明的肌醇六磷酸酶特征。编码本发明的肌醇六磷酸酶的核酸序列变异体包括等位基因和基于本领域已知遗传密码简并性的变异体。编码本发明的肌醇六磷酸酶的核酸序列的突变体包括通过定点诱变技术(参见例如Botstein,D.和Shortle,D.,1985,Science 229:1193-1201和Myers,R.M.,Lerman,L.S.,和Maniatis,T.,1985,Science229:242-247),易出错PCR(参见例如,Leung,D.W.,Chen,E.,和Goeddel,D.V.,1989,Technique 1:11-15;Eckert,K.A.和Kunkel,T.A.,1991,PCR Methods Applic.1:17-24;和Cadwell,R.C.和Joyce,G.F.,1992,PCR Methods Applic.2:28-33)和/或本领域已知的化学诱变技术(参见例如,Elander,R.P.,Microbial screening,Selection and Strain Improvement,in BasicBiotechnology,J.Bullock和B.Kristiansen Eds.,Academic PressNew York,1987,217)生产的突变体。
“表达载体”指的是含有如下DNA序列的DNA构建体,该DNA序列可操作地与能够实现该DNA在适合宿主中表达的合适的控制序列相连接。这种控制序列可包括实现转录的启动子,控制该转录的可选择的操纵基因序列,编码mRNA上合适的核糖体结合位点的序列,以及控制转录和翻译的终止的序列。不同的细胞类型优选与不同表达载体一起使用。里氏木霉(Trichoderma reesei)的优选启动子是cbhl。对于在枯草芽孢杆菌中所使用的载体,其优选启动子是PstS和AprE启动子;大肠杆菌中所使用的优选启动子是Lac启动子,黑曲霉(Aspergillus niger)中所使用的优选启动子是glaA。所述载体可以是一种质粒,一种噬菌体颗粒,或仅仅是一种潜在的基因组***片段。一旦载体转化至合适的宿主中,该载体会独立于宿主基因组进行复制并发挥功能或可在合适的条件下自身整合到基因组中。
在本说明书中,质粒和载体有时可互换使用。然而,本发明旨在包括在现有技术中已知或即将已知的具有相同功能的其它形式的表达载体。因此,多种宿主/表达载体组合可以用于表达本发明的DNA序列。例如,有用的表达载体可由染色体的,非染色体的和合成的DNA序列片段组成,例如各种已知的SV40衍生物和已知细菌质粒,如源自大肠杆菌的质粒,包括colE1,pCR1,pBR322,pMb9,pUC19及其衍生物,更宽宿主范围的质粒,例如RP4,噬菌体DNA(如λ噬菌体的多种衍生物,如NM989,和其它DNA噬菌体例如M13,丝状单链DNA噬菌体),酵母质粒(例如2m质粒或其衍生物),真核细胞中使用的载体(例如在动物细胞中使用的载体)和来源于质粒和噬菌体DNA的组合的载体(例如经修饰以采用噬菌体DNA或其它表达控制序列的质粒)。
采用本发明的表达载体的表达技术是现有技术中已知的,并且在Sambrook等,Molecular Cloning:A Laboratory Manual,SecondEdition,Cold Spring Harbor Press(1989);和Sambrook等,Molecular Cloning,A Laboratory Manual,3d Ed.,Cold SpringHarbor Laboratory Press,Cold Spring Harbor,New York(2001)中有一般的描述。通常,这些包含本发明的DNA序列的表达载体通过借助整合事件直接***到特定物种的基因组中来转化单细胞宿主(参见例如Bennett & Lasure,More Gene Manipulations in Fungi,Academic Press,San Diego,pp.70-76(1991)以及其中引用的描述在真菌宿主中靶向基因组***的文章,这些均被并入本文作为参考)。
“宿主菌株”或“宿主细胞”指的是一种适于含有本发明DNA的表达载体的宿主。本发明中有用的宿主细胞一般是原核或真核宿主,包括任意可以在其中实现表达的可转化的微生物。例如,宿主可以是里氏木霉,枯草芽孢杆菌,大肠杆菌(Escherichia coli),长枝木霉(Trichoderma longibrachiatum),和酿酒酵母(Saccharomycescerevisiae)。
用通过重组DNA技术构建的载体转化或转染宿主细胞。这样转化的宿主细胞能够复制编码肌醇六磷酸酶和其变异体(突变体)的载体或能够表达所需肽产物。
合适的表达宿主的例子包括:细菌细胞,例如大肠杆菌,链霉菌(Streptomyces),鼠伤寒沙门氏菌(Salmonella typhimurium);真菌细胞,如芽孢杆菌属(Bacillus),木霉属(Trichoderma),曲霉菌属(Aspergillus)和青霉菌属(Penicillium);昆虫细胞,如果蝇(Drosophila)和粘虫(Spodoptera)Sf9;动物细胞,如CHO,COS,HEK293或Bowes黑素瘤;植物细胞等等。合适宿主的选择被认为属于本领域技术人员可从本文教导内容得到的范围。应该注意的是本发明不受所用具体宿主细胞的限制。
II.肌醇六磷酸酶和编码肌醇六磷酸酶的核酸序列
本发明的一个方面提供能够催化肌醇六磷酸水解和释放无机磷酸的蛋白质或多肽;例如具有酶学委员会EC 3.1.3.8或EC 3.1.3.26中定义的催化活性的酶。在一个优选实施方案中,本发明提供了一种称为3-肌醇六磷酸酶。此外,本发明还包含编码这种肌醇六磷酸水解蛋白质或多肽的多核苷酸(例如,DNA)。
优选的是,本发明的肌醇六磷酸酶和编码肌醇六磷酸酶的多核苷酸衍生自细菌或为其衍生物。优选的是,所述细菌是一种肠细菌例如埃希氏菌属,包括大肠杆菌K-12和大肠杆菌B;肠杆菌属,包括阴沟肠杆菌,成团泛菌;克雷伯氏菌属;沙门氏菌属;和志贺氏杆菌属(Shigella spp.),包括费氏志贺氏菌,索氏志贺氏菌,和其它细菌如巴斯德氏菌属(Pasturella spp.),包括产气巴斯德氏菌;和变形杆菌属(Proteus spp.),包括普通变形菌。
根据一个优选的实施方式,所述肌醇六磷酸酶和/或编码本发明的肌醇六磷酸酶的多核苷酸以基本纯化的形式存在,即以高于或低于天然或野生型生物中的浓度存在于某种组合物中,或与天然或野生型生物中正常不表达产生的成分结合。
本发明包含与具有图12,14或20中公开的氨基酸序列的肌醇六磷酸水解酶具有至少50%,优选至少55%,更优选至少60%,更优选至少65%,更优选至少70%,更优选至少75%,更优选至少80%,更优选至少85%,更优选至少95%,最优选至少96%,97%,98%或99%,直至约100%的同一性的肌醇六磷酸水解蛋白质和多肽。
本发明还含有多核苷酸,例如编码分离自细菌的肌醇六磷酸水解酶的DNA,或其功能性衍生物。所述细菌来源可以包括埃希氏菌属,肠杆菌属,志贺氏杆菌属,巴斯德氏菌属和变形杆菌属。所述多核苷酸包含与图21中公开的任意一条多核苷酸序列具有至少65%,至少70%,至少75%,至少80%,至少85%,至少90%,至少95%,96%,97%,98%,99%和100%同一性的序列,只要由该多核苷酸编码的酶能够催化肌醇六磷酸水解并能够释放无机磷酸即可。在一个优选实施方式中,编码肌醇六磷酸水解酶的多核苷酸具有如图21所示的任意一条多核苷酸序列,或者其能够与图21所示的任意一条多核苷酸序列或其互补链相杂交,或者与图21所示任意一条多核苷酸序列互补。本领域技术人员会理解的是,由于遗传密码的简并性,多种多核苷酸能够编码图21中所公开的肌醇六磷酸水解酶。本发明包含所有这些多核苷酸。
III.获得编码肌醇六磷酸水解酶的多核苷酸
编码肌醇六磷酸水解酶的核酸序列可以通过本领域已知的标准程序从例如经克隆的DNA(例如DNA″文库″)中获得,通过化学合成,cDNA克隆,PCR或者从所需细胞如细菌种属中基本纯化的基因组DNA或其片段的克隆获得(参见,例如Sambrook等人于2001所著的MolecularCloning,A Laboratory Manual,3d Ed.,Cold Spring HarborLaboratory Press,Cold Spring Harbor,New York;Glover,DM andHames,BD(Eds.),1995,DNA Cloning 1:A Practical Approachand DNA Cloning 2:A Practical Approach,Oxford University Press,Oxford)。源于基因组DNA的核酸序列及其衍生物可包含编码区和调节区。
在基因组DNA分子克隆基因时,制备出DNA片段,其中的一些会至少含有目的基因的一部分。可以用各种限制性酶在特定位点切割该DNA。作为选择,可以利用DNA酶在锰存在时使DNA片段化,或者可以通过例如超声波降解法物理切割DNA。然后,通过标准技术根据大小分离线性DNA片段,所述标准技术包括但不限于琼脂糖和聚丙烯酰胺凝胶电泳,PCR和柱层析。
一旦产生核酸序列片段,就可以通过许多方法完成编码肌醇六磷酸水解酶的特定DNA片段的鉴定。例如,对本发明的肌醇六磷酸水解酶的编码基因或其特异RNA或其片段,例如探针或引物进行分离标记,然后用于杂交测试中以检测产生的基因(Benton,W.和Davis,R.,1977,Science 196:180;Grunstein,M.和Hogness,D.,1975,Proc.Natl.Acad.Sci.USA 72:3961)。这些与探针具有基本序列相似性的DNA片段在中等至高度严紧条件下发生杂交。
本发明包括分离自细菌菌属(例如,埃希氏菌属,肠杆菌属,志贺氏杆菌属,巴斯德氏菌属和变形杆菌属)的肌醇六磷酸水解酶及其衍生物,其是采用图21所公开的任意一条序列或其合适的部分或片段(例如,至少约10-15个连续的核苷酸)作为探针或引物对基因组或cDNA来源的核酸序列进行筛选而以核酸序列杂交技术进行鉴定的。可以通过采用所公开序列的部分或片段作为探针的DNA-DNA或DNA-RNA杂交或扩增对与图21的其中一条序列或其部分或片段具有至少80%同一性的编码分离自细菌种属的肌醇六磷酸水解酶的核酸序列及其衍生物进行检测。因此,本发明提供了一种用于检测编码本发明的肌醇六磷酸水解酶的核酸序列的方法,该方法包括用基因组或cDNA来源的核酸序列与图21的部分或全长核酸序列进行杂交。
能够在中度至高度严紧条件下与图21公开的其中一条核苷酸序列杂交的多核苷酸序列也包扩在本发明的范围内。在一个实施例中,杂交条件以Berger和Kimmel所教授的核酸序列结合复合物的解链温度(Tm)为基础(1987,Guide to Molecular Cloning Techniques,Methods in Enzymology,Vol 152,Academic Press,San Diego CA,该文献并入本文作为参考),并给予了确定的严紧性。在一个实施方式中,“最高严紧性”通常发生在大约Tm-5℃(低于探针Tm 5℃);“高度严紧性”发生在大约Tm以下5-10℃;“中度严紧性”发生在探针的Tm以下约10-20℃;“低严紧性”发生在Tm以下约20-25℃。最高严紧性杂交可被用于鉴定和检测相同或近乎相同的多核苷酸序列,而中度或低度严紧性杂交可被用于鉴定或检测多核苷酸序列同系物。
在聚合酶链反应(PCR)技术中进行的扩增过程描述于DieffenbachCW和GS Dveksler(1995,PCR Primer,a Laboratory Manual,ColdSpring Harbor Press,Plainview NY)。具有图21的序列的至少约10个核苷酸以及多达约60个核苷酸,优选约12-30个核苷酸,更优选约25个核苷酸的核酸序列可被用作探针或PCR引物。
用于从cDNA或基因组文库中分离本发明的核酸序列构建体的一种优选方法是通过使用采用基于具有图12,14或20所示氨基酸序列的蛋白质的氨基酸序列制备的简并寡核苷酸引物的聚合酶链反应(PCR)进行的。例如,PCR可以使用US专利4,683,202中描述的技术进行。
基于上述内容,应当理解的是图21中提供的多核苷酸序列对于从其它物种尤其是从细菌中获得编码具有肌醇六磷酸酶活性的酶的多核苷酸的相同或同源片段是有用的。
IV.获得肌醇六磷酸水解酶的衍生物或变异体
在一个实施方式中,与野生型序列相比,所述肌醇六磷酸酶蛋白质是肌醇六磷酸酶衍生物或变异体。如下文所更为全面的描述,肌醇六磷酸酶肽衍生物会包含至少一个氨基酸替换,缺失或***,尤为优选的是氨基酸替换。所述氨基酸替换,***或缺失可以发生在肌醇六磷酸酶肽内的任意残基上。
氨基酸序列变异体也包括在本发明的肌醇六磷酸酶蛋白质的一个实施方式中。这些变异体落入三类中的一类或多类:替换、***或缺失变异体。这些变异体可以采用盒式或PCR诱变或其它现有技术中已知技术对编码肌醇六磷酸酶蛋白质的DNA的核苷酸进行定点诱变来制备,从而生产出编码所述变异体的DNA,从而在如上所述的重组细胞培养物中表达该DNA。
然而,具有约100-150个残基的肌醇六磷酸酶蛋白质变异体片段可通过采用已知技术的体外合成来制备。氨基酸序列变异体通过预先确定的变异性质来识别,即:将它们与天然存在的肌醇六磷酸酶蛋白质氨基酸序列的等位基因变异体或种间变异体分离开来的特征。尽管这些具有经修饰的性质的变异体也能够被筛选出来,这些变异体通常表现出与天然存在的类似物相同性质的定性生物活性,下文将进行更为全面的描述。
虽然用于***氨基酸序列变异的位点或区域可以被预先确定,而突变本身不需要被预先确定。例如,为了在指定位点进行的突变实现最优化,随机诱变可在靶密码子或区域上进行,并筛选出具有所需活性的最佳组合的表达的变异体。在具有已知序列的DNA的预先确定的位点上进行替换突变的技术是已知的,例如,M13引物诱变和PCR诱变。突变体的筛选是采用肌醇六磷酸酶蛋白质活性测试进行的。
在一个优选实施方式中,进行诱导突变并且通过定向进化识别优选的突变。“定向进化”以及其语法等同物是指将随机突变引入到肌醇六磷酸酶编码序列中并对这种突变的产物进行活性测试的过程。接着筛选出编码具有优选活性的突变体的序列并进一步进行随机诱变,借此以相似方法识别具有优选或更为优选的活性突变体。
在一个优选实施方式中,采用易出错PCR得到突变序列。“易出错PCR”、“诱变PCR”及其语法等同物是指如下文所述模板核酸序列的突变发生的频率足以通过标准测试识别出突变产物的任何方式的PCR反应。在大多数例子中,约0.1%的诱变频率是足够的,尽管可以采用产生更高或更低诱变频率的易出错PCR方法。和生产突变序列的其它方法一样(参见,例如Stemmer,1994;Ling等,1997;Harayama,1998;Henke等,1999),易出错PCR方法在现有技术中已知(参见,例如Cadwell等,1992;Fromant等,1995;Melnikov et al.,1999)。可以使用随机诱变方法加上筛选测试对具有无法通过理性设计方法预测的性质的肌醇六磷酸酶突变体进行鉴定。
氨基酸替换通常是替换单一的残基;***通常会是从大约1至20个氨基酸的级别,尽管相当大的***可以被耐受,并且可以在所编码的蛋白质的内部或其任一末端发生。缺失的范围是1个至约20个残基,尽管在某些情况下缺失可以更大。
替换,缺失,***或其任意组合可被用于获得最终衍生物。为了分子的改变减到最小,一般来说仅对一些氨基酸进行改变。但是在某些情况下也可以容忍大的改变。当需要对肌醇六磷酸酶的性质稍作改变时,替换通常是在与下表中的保守替换残基相一致的残基上进行。
表I
原始残基            示范性替换
Ala                 Ser
Arg                 Lys
Asn                 Gln,His
Asp                 Glu
Cys                 Ser
Gln                 Asn
Glu                 Asp
Gly                 Pro
His                 Asn,Gln
Ile                 Leu,Val
Leu                 Ile,Val
Lys                 Arg,Gln,Glu
Met                 Leu,Ile
Phe                 Met,Leu,Tyr
Ser                 Thr,
Thr                 Ser
Trp                 Tyr
Tyr                 Trp,Phe
Val                 Ile,Leu
功能和免疫学特性的实质性变化是由比表I所列的更为不保守的选择替换造成的。例如,可以进行能产生更为显著效果的替换,该效果影响下列:位于改变区域的多肽主链的结构,例如α-螺旋状结构或β-折叠结构;靶位点的电荷或分子疏水性;或侧链大小。
一般认为所产生多肽性质变化最大的替换是(a)亲水残基,如丝氨酰基,或苏氨酰基替换或被替换为疏水残基,如亮氨酰基,异亮氨酰基,苯丙氨酰基,缬氨酰基或丙氨酰基;(b)半胱氨酸或脯氨酸替换或被替换为其它任意残基;(c)具有正电侧链的残基如赖氨酰基,精氨酰基,或组胺酰基替换或被替换为负电残基,如谷氨酰基或天冬氨酰基;或(d)具有大体积侧链的残基如苯丙氨酸,替换或被替换为不具有侧链的残基,如甘氨酸。
尽管这些变异体也被筛选出来以修饰所需肌醇六磷酸酶蛋白质的性质,但是这些变异体通常呈现出与天然存在的类似物相同性质的生物学活性并且可引起与天然存在的类似物相同的免疫学反应。可供选择的是,这些变异体也可被设计成其肌醇六磷酸酶的活性发生改变。例如,可改变或移除糖基化位点。这种改变也可导致免疫原性的改变。
本发明一方面还提供了生产一种具有经修饰的活性的AppA肌醇六磷酸酶的方法。在一个优选实施方式中,这种方法包括提供一种含有编码在芽孢杆菌中,优选枯草芽孢杆菌中可操作的信号序列和编码成熟AppA肌醇六磷酸酶或其突变体的序列,优选含有图12中命名为PHY679,PHY735,PHY736,PHY846或PHY902的序列。该方法还包括对所述核酸序列进行易出错扩增,将含有扩增产物的表达构建体转化到一种宿主细胞中,在适于所述细胞表达扩增产物的条件下培养所述细胞。在一个实施方式中,该方法还包括回收所述肌醇六磷酸酶。还提供了一种由该方法生产的具有肌醇六磷酸酶活性的经分离和/或纯化的酶。
本发明的另一个方面,提供了一种重组改良的AppA肌醇六磷酸酶。优选的是,AppA肌醇六磷酸酶含有一种在对应于成熟大肠杆菌AppA肌醇六磷酸酶或其天然变异体的第113位残基的位置被修饰的氨基酸序列。在一个优选实施方式中,所述修饰是替换。在一个实施方式中,所述修饰是精氨酸替换组胺酸。在一个优选实施方式中,所述AppA肌醇六磷酸酶含有图12中命名为PHY850或PHY902的序列的第31-440位残基的序列。“天然变异体”指天然存在的氨基酸序列,其编码一种具有肌醇六磷酸酶活性的酶,其分离自非大肠杆菌的其它来源,例如但不限于费氏志贺氏菌,索氏志贺氏菌,产气巴斯德氏菌,阴沟肠杆菌,成团泛菌,大肠杆菌菌株B,和普通变形菌。
在另一个实施方式中,AppA肌醇六磷酸酶或其天然变异体中对应于成熟大肠杆菌AppA肌醇六磷酸酶或其天然变异体的第26,43,46,54,73,113,126,184,228,384和410位的一个或多个氨基酸残基被修饰。除了能给予改良的肌醇六磷酸酶性质的突变的位点之外,邻近突变位点的残基也可能在所获得的肌醇六磷酸酶的折叠和分泌中同样起到重要的作用。对线性序列中上游或下游5个位点的邻近残基的修饰可以提供具有改良性质的肌醇六磷酸酶。在另一个实施方式中,所述AppA肌醇六磷酸酶含有对位于线性序列中下列残基的上游或下游5个残基内的一个或多个残基的修饰:第26位残基(上游和下游残基包括第21,22,23,24,25,27,28,29,30,31位残基),第43位残基(上游和下游残基包括第38,39,40,41,42,44,45,46,47,48位残基),第46位残基(上游和下游残基包括第41,42,43,44,45,47,48,49,50,51位残基),第54位残基(上游和下游残基包括第49,50,51,52,53,55,56,57,58,59位残基),第73位残基(上游和下游残基包括第68,69,70,71,72,74,75,76,77,78位残基),第126残基位(上游和下游残基包括第121,122,123,124,125,127,128,129,130,131位残基),第113位残基(上游和下游残基包括第108,109,110,111,112,114,115,116,117,118位残基),第184位残基(上游和下游残基包括第179,180,181,182,183,185,186,187,189位残基),第228位残基(上游和下游残基包括第223,224,225,226,227,229,230,231,232,233位残基),第384位残基(上游和下游残基包括第379,380,381,382,383,385,386,387,388,389位残基),第410位残基(上游和下游残基包括第405,406,407,408,409,411,412,413,414,415位残基)。在一个优选实施方式中,AppA肌醇六磷酸酶含有位于上述残基的4个残基内的修饰,更优选位于上述氨基酸残基的3个残基内,更为优选位于上述氨基酸残基的2个残基内,最优选位于上述氨基酸残基的1个残基内。在一个优选实施方式中,AppA肌醇六磷酸酶含有图12中名为PHY679,PHY735,PHY736,或PHY846,PHY850或PHY902或图14中称为PHY1361或PHY1363的序列的第31-440位氨基酸的序列。然而,在另一个优选实施方式中,AppA肌醇六磷酸酶含有成熟大肠杆菌AppA肌醇六磷酸酶或图20所列任一AppA肌醇六磷酸酶天然变异体的第31-440位氨基酸的序列。
此外,对于成熟折叠的肌醇六磷酸酶,邻近残基的修饰包括对至少在对应于成熟大肠杆菌AppA肌醇六磷酸酶或其天然变异体的第26,43,46,54,73,113,126,184,228,384和410位氨基酸残基的α碳的6Δ内具有α碳原子的残基的修饰,优选在折叠蛋白质的上述氨基酸残基的α碳的5Δ内,更优选在上述残基的α碳的4Δ内,更优选在上述残基的α碳的3Δ内,最优选在成熟的折叠肌醇六磷酸酶的上述氨基酸残基的2Δ内。该折叠蛋白质的结构能够通过本领域已知的x-射线晶体学或NMR确定。
本发明的范围也包括肌醇六磷酸酶多肽的共价修饰。共价修饰的一种类型包括将肌醇六磷酸酶多肽的靶氨基酸残基与有机衍生剂反应,该衍生剂能够与肌醇六磷酸酶多肽的选择出的侧链或N-或C-末端残基反应。双功能试剂的衍生作用有助于例如将肌醇六磷酸酶与另一种蛋白质交联。通常使用的交联剂包括,例如1,1-二(重氮乙酰基)-2-苯乙烷,戊二醛,N-羟基琥珀酰亚胺酯,如与4-叠氮水杨酸形成的酯,同双功能(homobifunctional)亚胺酯,包括二琥珀酰亚胺酯,例如3,3′-二硫代二(琥珀酰亚胺丙酸酯),同双功能马来酰亚胺例如二-N-马来酰亚胺-1,8-辛烷和试剂例如甲基-3-[(对叠氮苯基)二硫代]丙酸亚胺酯。
其它修饰包括将谷氨酰胺酰和天冬酰胺酰残基分别转化成对应的谷氨酰和天冬氨酰残基的脱酰胺作用,脯氨酸和赖氨酸羟基化作用,丝氨酰,苏氨酰或酪氨酰残基的羟基的磷酸化,赖氨酸,精氨酸和组胺酸侧链的α-氨基的甲基化作用[T.E.Creighton,Proteins:Structure and Molecular Properties,W.H.Freeman & Co.,SanFrancisco,pp.79-86(1983)],N-末端胺的乙酰化,以及C-末端羧基的酰胺化。
包含在本发明范围内的肌醇六磷酸酶多肽的共价修饰的另一种类型包括多肽的天然的糖基化模式的改变。这里的“改变天然的糖基化模式”目的是指缺失天然肌醇六磷酸酶中存在的一个或更多碳水化合物部分,和/或添加一个或更多的不存在于天然多肽的糖基化位点。
多肽上糖基位点的添加可以通过改变其氨基酸序列来实现。这种改变可以通过例如在肌醇六磷酸酶多肽的天然序列上添加上或取代为一个或更多个丝氨酸或苏氨酸残基(O-连接的糖基化位点)。该肌醇六磷酸酶氨基酸序列可以通过DNA水平上的变化被可选择的改变,尤其是通过对编码肌醇六磷酸酶多肽的DNA在预先选择的碱基上进行突变以便所产生的密码子能够翻译成所需氨基酸。
提高肌醇六磷酸酶多肽上的碳水化合物部分数量的另一种方法是通过将糖苷化学偶联或酶偶联至多肽上。这些方法在现有技术例如1987年9月11日公开的WO 87/05330,以及Aplin和Wriston所著的Crit.Rev.Biochem.,pp.259-306(1981)中有描述。
肌醇六磷酸酶上的碳水化合物部分的切除可以通过化学或酶学方法实现或通过对编码作为糖基化目标的氨基酸残基的密码子进行突变替换实现。化学去糖基化作用在现有技术中已知并被描述,例如Hakimuddin等人在Arch.Biochem.Biophys.,259:52(1987)中和由Edge等人于Anal.Biochem.,118:131(1981)中所描述的。多肽上碳水化合物部分的酶切除可以通过如Thotakura等人在Meth.Enzymol.,138:350(1987)中所描述的使用各种内切-和外切-糖苷酶实现。
肌醇六磷酸酶的共价修饰的另一种类型包括以美国专利NO.4,640,835;4,496,689;4,301,144;4,670,417;4,791,192或4,179,337中提出的方式将肌醇六磷酸酶多肽与多种非蛋白质聚合物的其中一种结合,例如聚乙二醇,聚丙二醇,或聚氧化烯。
也可以对本发明的肌醇六磷酸酶进行修饰以形成嵌合分子,该嵌合分子中肌醇六磷酸酶多肽与另一个异源多肽或氨基酸序列相融合。在一个实施方式中,这种嵌合分子含有肌醇六磷酸酶多肽与标记多肽的融合体,所述标记多肽能提供抗标记抗体可选择性结合的表位。所述表位标记一般位于肌醇六磷酸酶多肽的氨基-或羧基-末端。这种肌醇六磷酸酶的表位-标记的形式能够通过抗标记多肽的抗体进行检测。同样,表位标记也使得采用抗标记抗体或其它类型结合该表位标记的亲和性基质的亲和纯化能够容易地纯化出所述肌醇六磷酸酶。在一个优选实施方式中,所述嵌合分子可含有肌醇六磷酸酶多肽与不同肌醇六磷酸酶或其它蛋白质的起始序列或信号多肽(如分泌信号)融合的融合体。这种融合可以包括添加一种蛋白质的序列,例如一种原产于表达肌醇六磷酸酶的宿主细胞的肌醇六磷酸酶。下文的实施例部分提供了这方面具体的例子。在一个优选实施方式中,一种嵌合肌醇六磷酸酶含有与成熟肌醇六磷酸酶蛋白质或其突变体融合的图12中称为EBC18B2的序列的第1-30位残基的分泌信号。
各种标记多肽及其相应的抗体在现有技术中已知。例子包括聚-组氨酸(poly-his)或聚-组氨酸-甘氨酸(poly-his-gly)标记;flu HA标记多肽及其抗体12CA5[Field等,Mol.Cell.Biol.,8:2159-2165(1988)];c-myc标记及其抗体8F9,3C7,6E10,G4,B7和9E10[Evan等Molecular and Cellular Biology,5:3610-3616(1985)];和单纯疱疹病毒糖蛋白D(gD)标记及其抗体[Paborsky等,ProteinEngineering,3(6):547-553(1990)]。其它标记多肽包括Flag-多肽[Hopp等,BioTechnology,6:1204-1210(1988)];KT3表位肽[Martin等,Science,255:192-194(1992)];微管蛋白表位肽[Skinner等,J.Biol.Chem.,266:15163-15166(1991)];和T7基因10蛋白质肽标记[Lutz-Freyermuth等,Proc.Natl.Acad.Sci.USA,87:6393-6397(1990)]。
在一个实施方式中,肌醇六磷酸酶的定义还包括分离自其它生物的、以下述方式克隆并表达的肌醇六磷酸酶蛋白质。因此,探针或聚合酶链反应(PCR)简并引物序列可以被用于从真菌或其它生物中寻找其它相关肌醇六磷酸酶。本领域技术人员会理解的是,尤其有用的探针和/或PCR引物序列包括高度保守的氨基酸序列和已知的结合或催化性序列。例如,于各种真菌产生的肌醇六磷酸酶的磷酸结合区域是高度保守的。本领域中通常会知道的是,优选PCR引物长度为约15至约35个核苷酸,优选约20个至约30个,并可以依所需含有肌苷。PCR反应的条件在本领域中已知。
本发明还提供了编码所述酶的多核苷酸序列,其含有如附图21所列的DNA序列;一种编码附图12,14或20所列氨基酸序列中任一条的多核苷酸;编码含有不同于附图12,14或20中序列的氨基酸片段的肌醇六磷酸酶的多核苷酸,前提是这些多核苷酸编码本文所详细描述的肌醇六磷酸酶的衍生物;和编码含有不同于附图12,14或20中序列的氨基酸序列的肌醇六磷酸酶的多核苷酸,前提是这些多核苷酸在中度至高度严紧条件下与一种含有附图21中核酸序列之一的全长或部分的核酸序列杂交。
本发明还提供了一种编码具有肌醇六磷酸水解活性的酶并含有附图21中所列核酸序列的多核苷酸;一种编码附图12,14或20所列氨基酸序列的多核苷酸;编码含有不同于附图12,14或20中所列的氨基酸片段的肌醇六磷酸酶的多核苷酸,前提是这些多核苷酸编码本文所详细描述的肌醇六磷酸酶的一种衍生物;和一种编码含有不同于附图12,14或20中序列的氨基酸片段的肌醇六磷酸酶的多核苷酸,前提是这些多核苷酸在中度至高度严紧条件下与附图21中的核酸序列杂交。
此外,本发明还包括包含上述多核苷酸序列的载体,由这些多核苷酸或载体转化的宿主细胞或含有所述宿主细胞和所述宿主细胞表达的由所述多核苷酸编码的肌醇六磷酸酶蛋白质的发酵培养基。优选的是,本发明的多核苷酸是纯化形式或分离形式,并被用于制备能够产生其所编码的蛋白质产物的经转化的宿主细胞。此外,上述多核苷酸的表达产物的多肽属于本发明的范围。
根据一个实施方式,所述多核苷酸编码一种肌醇六磷酸-水解酶,其包含与附图12,14或20公开的氨基酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%的同一性的氨基酸序列。
本发明的另一方面提供了分离的编码具有肌醇六磷酸酶活性的酶的多核苷酸,其中该酶由埃希氏菌属来源分离。这种来源可以是,例如,大肠杆菌。
在另一个实施方式中,编码肌醇六磷酸水解酶的多核苷酸与附图21中所公开的核苷酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%的同一性,或能够与源自于附图21中所列的任一核苷酸序列的探针在中度至高度严紧条件下杂交,或与图21中公开的其中一条核苷酸序列互补。
然而,本发明的另一方面还提供了一种包含多核苷酸序列的表达载体,其中该多核苷酸序列(i)与附图21中所公开的核苷酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%的同一性,或(ii)能够与源自于附图21中所列的任一核苷酸序列的探针在中度至高度严紧条件下杂交,或(iii)与附图21中公开的其中一条核苷酸序列互补。还提供了一种包括这种表达构建体的载体(例如一种质粒)和经这种载体转化的宿主细胞(例如芽孢杆菌,如枯草芽孢杆菌)。
另一方面,本发明提供了一种用于检测分离自微生物来源的编码具有肌醇六磷酸酶活性的酶的核酸序列的探针,包括:一种(i)与附图*中所公开的核苷酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%的同一性,或(ii)能够与附图*中所列的任一核苷酸序列在中度至高度严紧条件下杂交,或(iii)与附图21中公开的任一条核苷酸序列互补的多核苷酸序列。
在一个实施方式中,所述微生物来源是一种细菌来源,例如埃希氏菌属种类,如大肠杆菌。
本发明还提供了一种含有具肌醇六磷酸酶活性的酶的食品或动物饲料,所述酶含有一种与附图12,14或20中所公开的氨基酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%的同一性的氨基酸序列,并且该酶分离自细菌来源如大肠杆菌。
本发明另一方面提供了一种生产具有肌醇六磷酸酶活性的酶的方法,包括:
(a)提供一种经含有编码肌醇六磷酸酶的多核苷酸的表达载体转化的宿主细胞,所述肌醇六磷酸含有此处所述的至少一个氨基酸残基的至少一种修饰;
(b)在适于宿主细胞生产肌醇六磷酸酶的条件下培养转化的宿主细胞;和
(c)回收肌醇六磷酸酶。
在一个实施方式中,该宿主细胞是一种植物细胞。在该实施方式中,细胞或完整的转化植物可以生长并被使用。
本发明的另一方面提供了一种生产具有肌醇六磷酸酶活性的酶的方法,包括:
(a)提供一种经含有编码肌醇六磷酸酶的多核苷酸的表达载体转化的宿主细胞,所述肌醇六磷酸酶包含此处所述的至少一种氨基酸残基的至少一种修饰;
(b)在适于宿主细胞生产肌醇六磷酸酶的条件下培养转化的宿主细胞。无需进一步分离所述酶,就可以使用所述转化的细胞以及从这些细胞长成的生物。
另一方面,本发明提供了一种由上述方法生产的具有肌醇六磷酸酶活性的纯化的酶。
本发明还提供了一种从肌醇六磷酸中分离磷的方法,包括用含有与附图12,14或20中所公开的氨基酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%的同一性的氨基酸序列的酶处理肌醇六磷酸。
本发明还提供了一种从肌醇六磷酸分离磷的方法,包括用如上定义的酶处理肌醇六磷酸。
本发明还提供了一种含有上述表达构建体的载体(例如质粒)和经上述载体转化的宿主细胞(例如枯草芽孢杆菌)。
本发明还提供了一种用于检测分离自微生物来源的编码具有肌醇六磷酸酶活性的酶的核酸序列的探针,所述核酸序列包括:一种(i)与附图21中所公开的核苷酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%的同一性,或(ii)能够与包含附图21中所列的序列的多核苷酸序列在中度至高度严紧条件下杂交,或(iii)与附图21中公开的核苷酸序列互补的多核苷酸序列。
本发明还提供了一种从肌醇六磷酸中分离磷的方法,包括用具有肌醇六磷酸水解活性并包括与附图*中所公开的氨基酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%同一性的氨基酸序列的酶处理肌醇六磷酸的步骤。在另一方面,本发明提供了一种从肌醇六磷酸中分离磷的方法,包括用具有肌醇六磷酸水解活性并包括与图*或*中所公开的氨基酸序列具有至少55%同一性,优选至少60%同一性,更优选至少65%同一性,更优选至少70%同一性,更为优选至少75%同一性,更优选至少80%同一性,更优选至少85%同一性,更优选至少90%同一性,最优选至少95%直至约100%同一性的氨基酸序列的酶处理肌醇六磷酸的步骤。
本发明的另一方面,提供了一种含有芽孢杆菌种属中可操作的信号序列和至少一个氨基酸序列位点被修饰的成熟肌醇六磷酸酶的序列的重组AppA肌醇六磷酸酶。在一个优选实施方式中,该信号序列具有附图12或14中称为EBC18B2的序列第1-30位氨基酸的氨基酸序列。在一个优选实施方式中,该重组肌醇六磷酸酶含有附图12中的称为PHY679,PHY735,PHY736,PHY846或PHY902序列的氨基酸序列。
本发明的另一方面还提供了一种重组AppA肌醇六磷酸酶,其含有经修饰的附图12或14中称为EBC18B2的序列的1-30位氨基酸的分泌信号和成熟AppA肌醇六磷酸酶或其天然变异体或突变体的序列。在一个优选实施方式中,这种修饰是第11位残基的修饰,优选是替换。在一个优选实施方式中,这种替换是用亮氨酸替换丝氨酸。在一个优选实施方式中,AppA肌醇六磷酸酶含有附图12中称为PHY850或附图14中称为PHY850,PHY1361或PHY1363序列的氨基酸序列。
本发明还提供了一种核酸序列,其含有如上所述编码AppA肌醇六磷酸酶的序列,还提供了含有该核酸序列的表达构建体。此外,还提供了一种含所述表达构建体的载体和经所述表达构建体转化的宿主细胞。在一个优选实施方式中,所述宿主细胞是一种芽孢杆菌种类,优选枯草芽孢杆菌。
本发明的另一个不同的方面,提供了一种生产具有肌醇六磷酸酶活性的酶的方法。在一个优选实施方式中,该方法包括提供一种上述经表达构建体转化的宿主细胞和在适于宿主细胞产生肌醇六磷酸酶的条件下培养宿主细胞。在一个实施方式中,该方法还包括回收该肌醇六磷酸酶。优选的是,该宿主细胞是一种芽孢杆菌种类,优选枯草芽孢杆菌。
本发明还提供了一种在芽孢杆菌种类,优选枯草芽孢杆菌中生产具有肌醇六磷酸酶活性的异源多肽的方法。在一个优选实施方式中,该方法包括提供一种带有表达载体的宿主芽孢杆菌,所述表达载体含有编码芽孢杆菌信号序列的多核苷酸,所述多核苷酸连接于编码成熟AppA肌醇六磷酸酶或其突变体的多核苷酸,从而编码嵌合多肽,并在适于所述芽孢杆菌产生所述嵌合多肽的条件下培养所述宿主芽孢杆菌。在一个优选实施方式中,该信号序列是一种合成(composite)的信号序列。在一个优选实施方式中,所述AppA肌醇六磷酸酶源自大肠杆菌。在一个优选实施方式中,所述表达载体含有编码附图12中称为EBC18B2,PHY679,PHY735,PHY736,PHY846,HY850或PHY902或附图14中称为EBC18B2,PHY850,PHY1361或PHY1363序列的序列。还提供了由这种方法生产的具有肌醇六磷酸酶活性的多肽。
本发明还提供了从肌醇六磷酸中分离磷的方法,包括用上述AppA肌醇六磷酸酶处理肌醇六磷酸。此外,也提供了含有所述AppA肌醇六磷酸酶的食品或动物饲料。
V.肌醇六磷酸水解酶的表达和回收
可以根据本领域熟知的方法,通过将本发明的多核苷酸序列操作性连接到一种合适的表达载体的表达控制序列上,并将该表达载体转化一种合适的宿主来表达出本发明的多核苷酸序列。本发明的核酸序列所表达产生的多肽可以从细胞发酵培养物中分离,并可以通过多种本领域熟知技术得以基本纯化。本领域技术人员能够选择最合适的分离和纯化技术。
更具体的是,本发明提供了宿主细胞,表达方法和用于生产源于微生物如埃希氏菌属种的肌醇六磷酸水解酶及其衍生物的***。一旦获得了编码本发明的肌醇六磷酸水解酶的核酸序列,含有该核酸序列的重组宿主细胞可以通过本领域已知技术构建出来。Sambrook等人在Molecular Biology Cloning:A Laboratory Manual,SecondEdition(1989)Cold Spring Harbor Laboratory Press,Cold SpringHarbor,NY(1989)和Sambrook等人,Molecular Cloning,ALaboratory Manual,3d Ed.,Cold Spring Harbor Laboratory Press,Cold Spring Harbor,New York(2001)中公开了分子生物学技术。
在一个实施方式中,获得了编码源于大肠杆菌菌株的肌醇六磷酸水解酶且与附图21中所公开的任一核酸序列或其功能衍生物具有至少60%同一性,至少70%同一性,至少80%同一性,至少85%同一性,至少90%同一性,至少95%,96%,97%,98%和至少99%的同一性,或能够与附图21中所列的任一核酸序列在中度至高度严紧条件下杂交,或与附图21中公开的任一条核酸序列互补的核酸序列,并采用合适的载体将其转化到宿主细胞中。
编码肌醇六磷酸水解酶的核酸序列可以包括能够使得所编码的肌醇六磷酸酶得以分泌的前导序列。根据肌醇六磷酸酶是在胞内表达还是被分泌,可以构建本发明的DNA序列或表达载体,以便表达带有或不带有信号序列的肌醇六磷酸酶的成熟形式,其中所述信号序列是天然肌醇六磷酸酶信号序列或在细菌(例如,枯草芽孢杆菌),其它原核生物或真核生物中起作用的信号序列。表达也可通过切除或部分切除所述信号序列来实现。
适于在细菌、真菌、酵母、昆虫和植物细胞中克隆,转化和表达的许多载体以及转化和表达盒是本领域技术人员已知的。典型的是,所述载体或盒含有指导核酸序列转录和翻译的序列,选择性标记,和允许自主复制或染色体整合的序列。合适的载体包括含有转录起始控制序列的基因的5′区,和控制转录终止的DNA片段的3′区。这些控制区域可以来源于与宿主同源或异源的基因,或者可以是天然序列的衍生物,只要所选择的控制区域能够在宿主细胞中起作用即可。
在宿主细胞中有助于驱动肌醇六磷酸水解酶表达的起始控制区域或启动子是本领技术人员已知的。将一种编码肌醇六磷酸水解酶的核酸序列通过启始密码子操作性连接到为了有效表达这种酶而选择的表达控制区域上。一旦构建出合适的盒,就可以使用它们去转化宿主细胞。
如果使用植物表达载体,编码肌醇六磷酸酶的序列的表达可以通过许多启动子驱动。例如,可以单独或联合TMV中的ω前导序列(Takamatsu等人(1987)EMBO J 6:307-311)使用病毒启动子,例如CaMV的35S和19S启动子(Brisson等人(1984)Nature 310:511-514)。可供选择的是,也可以使用植物启动子例如RUBISCO的小亚基(Coruzzi等人(1984)EMBO J 3:1671-1680;Broglie等人(1984)Science 224:838-843);或热休克启动子(Winter J和SinibaldiRM(1991)Results Probl Cell Differ 17:85-105)。这些构建体可以通过直接DNA转化或病原体介导的转染导入到植物细胞中。关于这些技术的综述,参见Hobbs S或Murry LE(1992)《McGraw HillYearbook of Science and Technology》,McGraw Hill,New York,N.Y.,pp 191-196;or Weissbach和Weissbach(1988)Methods forPlant Molecular Biology,Academic Press,New York,N.Y.,pp421-463。
一般转化方法在Current Protocols In Molecular Biology(第3版,Ausubel等,1995,Chapter 9)和Molecular Cloning,ALaboratory Manual(3d Ed.,Sambrook等.,2001,Chapter 1)中有教导,这些方法包括磷酸钙法,采用PEG的转化和电穿孔。细菌的转化在本领域中是常规技术(参见,例如Inoue等,Gene 96:23-28(1990)),一些细菌,例如芽孢杆菌属,链球菌属(Streptococcus spp.)和嗜血菌属(Haemophilus spp.)具有一种天然能力能够吸收DNA并将其整合至宿主的基因组中。对于丝状真菌,可以采用PEG和钙介导的原生质体转化(Finkelstein,DB 1992 Transformation.InBiotechnology of Filamentous Fungi.Technology and Products(由Finkelstein & Bill编)113-156)。原生质体的电穿孔公开于Finkelestein,DB 1992 Transformation.In Biotechnology ofFilamentous Fungi.Technology and Products(由Finkelstein &Bill编)113-156中。Fungaro等人(1995)Transformation ofAspergillus nidulans by microprojection bombardment on intactconidia,FEMS Microbiology Letters 125 293-298中描述了对分生孢子的微粒轰击。农杆菌介导的转化公开于Groot等人(1998)Agrobacterium tumefaciens-mediated transformation offilamentous fungi,Nature Biotechnology 16839-842中。对于糖酵母属的转化,乙酸锂介导的转化和PEG和钙介导的原生质体转化以及电穿孔技术是本领域中已知的。
含有编码本发明的肌醇六磷酸水解酶的序列并且表达该蛋白质的宿主细胞可以通过本领域技术人员已知的多种方法来鉴定。这些方法包括但不限于,DNA-DNA或DNA-RNA杂交和蛋白质生物测定或免疫测定技术,其包括用于对核酸序列或蛋白质进行检测和/或定量化的基于膜的,基于溶液的或基于芯片的技术。本发明提供了具体检测的实施例。
还应当注意的是本发明考虑了本发明所述肌醇六磷酸酶的体外表达。
在本发明的一个优选实施方式中,肌醇六磷酸酶产生于细菌细胞中。在本发明的一个实施方式中,分离出编码来源于大肠杆菌(保藏于ATCC*****25404;29947?*****)的肌醇六磷酸水解酶的多核苷酸序列或其衍生物并将其在枯草芽孢杆菌中进行表达。在该实施方式中,肌醇六磷酸酶可以在通常不被表达的条件下表达,或者其会在固有的肌醇六磷酸酶表达的条件下被过度表达。然后可以如下文描述方式回收表达的肌醇六磷酸酶。
在本发明一个优选实施方式中,所述肌醇六磷酸酶表达于植物。本发明所述“转基因植物”指的是一种含有通常不见于这种类型植物的重组基因材料的植物,并且所述材料通过人为操作被导入到所研究的植物(或导入到该植物的祖代中)中。因此,由通过转化导入了重组DNA的植物细胞生长而来的植物就是转基因植物,含有导入的转基因的该植物的后代(无论是有性生殖产生的还是无性生殖产生的)也是转基因植物。应理解的是,术语转基因植物包括完整的植物和所述植物的一部分,例如谷粒,种子,花,叶,根,果实,花粉,茎等等。
本发明适用于双子叶植物(例如西红柿,马铃薯,大豆,棉花,烟草等等)和单子叶植物,包括但不限于禾本科单子叶植物例如小麦(小麦属物种),稻(稻属物种),大麦(大麦属物种),燕麦(燕麦属物种),黑麦(黑麦属物种),玉米(玉蜀黍),高梁(高粱属物种)和黍(狼尾草属物种)。例如,本发明可以应用于大麦基因型,包括但不限于Morex,Harrington,Crystal,Stander,Moravian III,Galena,Salome,Steptoe,Klages,Baronesse,以及小麦基因型,包括但不限于Yecora Rojo,Bobwhite,Karl和Anza。一般说来,本发明对于谷类尤其有用。
标准分子生物学方法和植物转化技术可以被用于生产能产生含有肌醇六磷酸酶种子的转基因植物。下文提供了关于筛选特定构建体和转化方法的一般性指导方法。
本发明采用了与非转化的植物种子相比适于在植物种子中获得肌醇六磷酸酶表达的重组构建体。这些构建体的最基本的形式可以表示为Pr-Ph,其中Pr是一种种子特异性启动子,Ph是一种编码肌醇六磷酸酶的核酸序列。在另一个实施方式中,可以应用一种将肌醇六磷酸酶多肽在细胞内体靶向表达的肽信号序列。这种构建体可以表示为Pr-SS-Ph,其中SS是信号肽。可以用作这些组成成分来源的核酸分子在前述定义部分已有描述。
每一种成分被可操作连接于下一个成分。例如,在构建体含有大麦醇溶蛋白D-启动子(P),编码大麦醇溶蛋白信号肽的大麦醇溶蛋白D-信号序列(SS),和编码肌醇六磷酸酶的开放性阅读框(Ph)的情况下,该大麦醇溶蛋白启动子连接到编码大麦醇溶蛋白信号序列的5′端上,该大麦醇溶蛋白信号序列可操作地连接到编码肌醇六磷酸酶的开放阅读框的5′端上,这样所述信号肽的C末端被连接到了编码蛋白质的N-末端。
该构建体也通常在编码蛋白质的ORF的3’端后包括一种转录终止区。作为例子的转录终止区包括农杆菌Ti质粒的nos终止子和水稻α-淀粉酶终止子。
标准分子生物学方法,例如聚合酶链反应,限制性酶切和/或连接可以被用于生产含有任一编码肌醇六磷酸酶蛋白质或多肽的核酸分子或序列的构建体。
通常采用标准转化技术将筛选出的构建体导入植物中。基本的方法是:(a)将该构建体克隆到一种转化载体中;(b)然后通过多种技术(例如电穿孔,微粒轰击,农杆菌感染)中的一种将其导入到植物细胞中;(c)鉴定被转化的植物细胞;(d)从所识别的植物细胞中再生出完整植物,并(d)筛选出含有导入构建体的后代植物。优选的是所述转化载体的整体或部分会稳定整合到植物细胞的基因组中。整合入植物细胞并含有导入的Pr-Ph或Pr-SS-Ph序列(导入的“肌醇六磷酸酶转基因”)的转化载体的部分可被称为是重组表达盒。
可以根据在种子中检测肌醇六磷酸酶表达或根据因整合入转化载体的显性选择标记基因而导致的对化学试剂(例如一种抗生素)抗性的提高来筛选出含有导入的转基因的后代植物。
在技术类文献和科学类文献中不乏通过用克隆的核酸序列进行转化来对植物性质修饰的成功例子。作为用于阐明本领域知识的选择出的例子包括:
美国专利NO.5,571,706(植物病毒抗性基因和方法″Plant VirusResistance Gene and Methods″);
美国专利NO.5,677,175(植物病原体诱导的蛋白质″PlantPathogen Induced Proteins″);
美国专利NO.5,510,471(用于植物转化的嵌合体基因″ChimericGene for the Transformation of Plants″);
美国专利NO.5,750,386(病原体抗性转基因植物″Pathogen-Resistant Transgenic Plants″);
美国专利N0.5,597,945(通过基因手段提高抗病性的植物″Plants Genetically Enhanced for Disease Resistance″);
美国专利NO.5,589,615(通过表达经修饰的2S储存清蛋白而生产营养值提高的转基因植物的方法″Process for the Production ofTransgenic Plants with Increased Nutritional Value Via theExpression of Modified 2S Storage Albumins″);
美国专利NO.5,750,871(在芸苔物种中转化和外源基因表达″Transformation and Foreign Gene Expression in BrassicaSpecies″);
美国专利NO.5,268,526(在转基因植物中光敏色素的过表达″Over expression of Phytochromein Transgenic Plants″);
美国专利NO.5,780,708(多产转基因谷类植物″FertileTransgenic Corn Plants″);
美国专利NO.5,538,880(制备多产谷类植物的方法″Method ForPreparing Fertile Transgenic Corn Plants″);
美国专利NO.5,773,269(多产转基因燕麦植物″FertileTransgenic Oat Plants″);
美国专利NO.5,736,369(生产转基因谷类植物的方法″MethodFor Producing Transgenic Cereal Plants″);
美国专利NO.5,610,049(稳定转化小麦的方法″Methods ForStable Transformation of Wheat″)。
这些例子(完整地并入本文)包括转化载体筛选,转化技术和设计成表达导入的转基因的构建体的描述。
本发明的转基因表达构建体可以在大范围的高等植物中表达从而获得所选多肽的种子或谷粒特异性表达。本发明被期望尤其可应用于单子叶谷类植物,包括大麦,小麦,水稻,黑麦,玉米,黑小麦,稷,高粱,燕麦,饲料,和草皮草。尤其是,本发明所述转化方法使得本发明能够用于包括Morex,Harrington,Crystal,Stander,Moravian III,Galena,Golden Promise,Steptoe,Klages和Baronesse在内的大麦基因型以及包括Yecora Rojo,Bobwhite,Karl和Anza在内的商业上重要的小麦基因型。
本发明也可以应用于双子叶植物,包括但不限于大豆、糖用甜菜、棉花、豆、rape/canola、紫花苜蓿、亚麻、向日葵、红花、芸苔、棉花、亚麻、花生、苜蓿;植物,比如莴苣、番茄、葫芦、木薯、马铃薯、胡萝卜、萝卜、豌豆、小扁豆、卷心菜、花椰菜、椰菜、抱子甘蓝、胡椒;和树果实,比如柑桔、苹果、梨、桃、杏和胡桃。
包括Weissbach和Weissbach,(1988),和Gelvin等人J.Bacteriol.172(3):1600-1608(1990)在内的文献中已经描述了许多适于植物细胞稳定转化或适于建立转基因植物的重组载体。
典型的是,植物转化载体含有在5′和3′调控序列的转录控制下的一个或多个ORFs和在5′和3′调控序列下的显性选择性标记。适于本发明构建体的5′和3′调控序列的选择在上文中已经进行过讨论。能够允许转化体得以易于筛选的显性选择性标记基因包括编码抗生素抗性的基因(例如抗潮霉素、卡那霉素、博来霉素,G418、链霉素或奇霉素)和除草剂抗性基因(例如膦丝菌素转乙酰酶)。
单子叶植物和双子叶植物转化和再生的方法是已知的,专业人员能够确定合适的转化技术。方法的选择依据所转化植物的类型的不同而不同;本领域技术人员会认识到对于指定植物类型所使用的特定方法的适合性。合适的方法可以包括,但不限于:植物原生质体的电穿孔;脂质体介导的转化;聚乙二醇(PEG)介导的转化;采用病毒的转化;植物细胞的显微注射;植物细胞的微粒轰击;真空渗入;和农杆菌介导的转化。用于转化和再生植物的典型方法在这一部分开头所列的专利文献中已经进行了描述。
在转化之后,优选通过使用显性选择性标记选出转化体。典型的是,这种标记会赋予转化细胞的幼苗抗生素抗性或除草剂抗性,这种转化体的筛选可以通过将幼苗暴露于适当浓度的抗生素或除草剂中来完成。在筛选出转化细胞并在其生长至成熟以允许种子形成后,可以收获这些种子并检测其肌醇六磷酸酶的表达。
本发明的肌醇六磷酸酶可以从培养基或从宿主细胞溶解产物中回收。如果是与膜结合的,可以采用适当的去污剂溶液(如Triton-X100)或通过酶切将其从膜上释放出来。在肌醇六磷酸酶表达中采用的细胞可以通过多种物理或化学方法被裂解,例如冰冻-融解循环,超声波法,机械破坏,或细胞溶解剂。也可以期望从重组细胞蛋白质或多肽中纯化肌醇六磷酸酶。下面的方法是适当纯化方法的范例:在离子交换柱上进行分级分离;乙醇沉淀;反向HPLC;在硅石上或阳离子交换树脂如DEAE上层析;色谱聚焦;SDS-PAGE;硫酸铵沉淀;采用如SephadexG-75进行的凝胶过滤;用于去除杂质的A蛋白Sepharose柱;以及用于结合肌醇六磷酸酶的表位标记形式的金属螯合柱。可以采用多种纯化蛋白质的方法,并且这些方法在本领域中已知,描述于例如Deutscher,Methods in Enzymology,182(1990);Scopes,Protein Purification:Principles and Practice,Springer-Verlag,NewYork(1982)中。所选纯化步骤取决于例如所用的制备方法的性质和所生产肌醇六磷酸酶的具体形式。
在一个优选实施方式中,所述肌醇六磷酸酶生产于转基因非人类动物中。生产所述转基因动物的方法描述于例如美国专利NO.6,291,740中。现有技术中已有成功生产转基因牛(例如,美国专利NO.6,080,912和6,066,725),猪(例如美国专利NO.6,271,436和5,942,435),山羊(例如美国专利NO.5,907,080)和鱼(例如美国专利NO.5,998,697)。而且,器官特异性表达,尤其是在转基因动物产生的乳汁中的表达属于本领域普通技术人员掌握的技术范围内(例如美国专利NO.6,268,545和6,262,336)。每一篇专利的公开内容都并入本文。
VI.肌醇六磷酸酶活性的测试
对肌醇六磷酸酶活性进行检测的测定法是本领域中熟知的。也许最广泛应用的是Fiske和SubbaRow,Journal of BiologicalChemistry 66:375-392(1925)研究出的检测无机磷酸释放的标准检测法。Mitchell等,Microbiol.143:245-252(1997)描述了这种方法的一种变异方法。在Food Chemicals Codex,4th Edition,Committee on Food Chemicals Codex,Institute of Medicine,National Academy Press,Washington,DC,1996,809-810页中描述了一种优选方法。上述每篇文献都并入本文。本文中也描述了这些测定法的具体例子。
一般说来,这种检测法包括允许一种确定重量或体积的肌醇六磷酸酶试样在确定时间内与溶液中的肌醇六磷酸反应。反应停止,在反应溶液中加入一种含有钼酸铵(AM)的有色溶液。然后采用一种分光光度计进行比色法,与已知浓度的无机磷酸(Pi)的对照和/或由与具有已知肌醇六磷酸酶活性的酶反应产生的对照进行比较。一个活性单位被定义为在定义的反应条件下每分钟从肌醇六磷酸中释放1μmol Pi所需的酶试样的量。
酶反应经常在pH 5.5和37℃下发生。然而,可以对pH和温度条件进行改变从而确定一种特定肌醇六磷酸酶的最佳反应条件和耐受性。当检测不同的反应条件时,活性单位应该仍然与反应条件的单一的具体设置相关。
可以将反应停止,然后可加入有色溶液,或使用停止/有色溶液,它们均能阻止该酶活性,并加入一种产物,Pi浓度对该产物光谱吸收度的显著影响是可预见和可测量的。
如上所述,有色溶液通常含有AM。这种溶液的不同例子存在于相关文献中。在美国专利NO.6,039,942中,采用三氯乙酸(TCA)停止反应,此后加入含硫酸亚铁和AM的有色溶液。在反应是首先采用TCA停止的其它例子中,不同的有色溶液含有硫酸,AM和抗坏血酸(美国专利NO.6,221,644)以及硫酸,AM和硫酸亚铁(美国专利NO.6,190,897)。在其它例子中,有色溶液和停止溶液是相同的。例如,在美国专利NO.6,139,902和6,261,592中,溶液含有硫酸,AM和丙酮,其后加入含有乙酸的溶液。在一个优选实施方式中,所述有色/停止溶液含有钒酸铵,AM和硝酸(参见上述Food Chemicals Codex)。
通过分光光度计对含有反应液和有色/停止溶液的终溶液的波长特异性吸收进行测定。很多这样的仪器在本领域中可获得并且其使用也是常规技术。用于光吸收测定的波长可根据有色溶液的成分的不同而不同。例如上述引用的文献在380,415,690,700或750nm测量吸收度。它们中任意一个可以提供足够的指示,表明这些溶液中的Pi浓度。然而,所用波长一般应该是已经在已知技术中描述过的。本领域技术人员通过对已知Pi浓度的连续稀释对照溶液在不同波长下的吸收变化的线性对比能够根据经验容易地确定能够提供Pi浓度差异的最佳分辨力的波长。
VII.肌醇六磷酸水解酶的应用
本文所教导的所述肌醇六磷酸酶及其衍生物可以在需要从肌醇六磷酸中分离磷的多种应用中得以使用。以下给出了几个应用的例子。
例如,本发明提供了能产生本发明肌醇六磷酸酶的细胞和孢子作为益生菌或直接喂食的微生物制品的应用。所述应用的优选实施方式是本发明的产肌醇六磷酸芽孢酶杆菌属物种。
此外,本发明还考虑了如本文所述肌醇六磷酸酶在食品或动物饲料中的应用。
本发明提供了包含本发明所述肌醇六磷酸酶的食品或动物饲料。优选的是,所述食品或动物饲料含有作为添加剂的肌醇六磷酸酶,其在家畜如家禽和猪、以及水生动物包括鱼和虾的消化道中,优选在嗉囊和/或小肠内有活性。所述添加剂优选在食品或饲料生产过程中也有活性。
在一个可供选择的实施方式中,肌醇六磷酸酶或产生肌醇六磷酸酶的生物作为一种预处理物加入到食品或动物饲料中,例如在食品或饲料加工过程中。在这个实施方式中,所述肌醇六磷酸酶在食品或饲料消费之前有活性,但在食品或动物饲料消费时可以有活性也可没有活性。
含有具有肌醇六磷酸酶活性的多肽或蛋白质的组合物可以根据本领域已知的方法进行制备,可以是液体形式也可以是干的组合物形式。包含于该组合物中的多肽可以通过本领域已知方法进行稳定。
本发明还提供了含有能够表达本文所述肌醇六磷酸酶的细胞、孢子或植物部分(包括种子)的食品或动物饲料。
此外,本发明还考虑了一种生产食品或动物饲料的方法,其特征在于本发明的肌醇六磷酸酶与所述食品或动物饲料混合。所述肌醇六磷酸酶以干品形式在加工前加入或者以液体形式在加工前或后加入。根据一个采用了干粉的实施方式,该酶以液体形式被稀释于一种干载体如碾磨过的颗粒上。
液体组合物不需要含有肌醇六磷酸酶之外的任何物质,所述肌醇六磷酸酶或是基本纯化形式或是纯化形式,优选是基本纯化形式。然而,通常也加入稳定剂,例如甘油,山梨醇,或单丙二醇。该液体组合物也可含有一种或多种其它添加剂,例如盐,糖,防腐剂,pH-调节剂(如缓冲剂),蛋白质或肌醇六磷酸(肌醇六磷酸酶的底物)。典型的液体组合物是含水浆液或基于油的浆液。所述组合物可以在食品或饲料可选择的粒化过程后被加入到食品或饲料中。
干燥组合物可以是喷雾干燥的组合物,组合物中不需含有除干燥形式的酶之外的其它成分。然而,通常干燥组合物是可以与例如食品或饲料组分容易混合或更优选形成预混合料的成分的颗粒。这些酶颗粒的尺寸优选与混合物中的其它成分相容。这提供了一种将酶整合到如动物饲料中的既安全又方便的方法。
在一种高剪切混合机(例如,Lodige)内,在填充材料和酶共聚集形成颗粒的过程中采用凝聚技术制备凝集颗粒。通过使载体材料的核心吸附酶/被酶涂布来制备吸收颗粒。
典型的填充材料是盐,例如硫酸钠。其它填充物为高岭土、滑石、硅酸铝镁和纤维素纤维。可选择地,在凝集颗粒中也可以包含粘合剂,如糊精。
典型的载体材料是淀粉,例如以木薯,玉米,马铃薯,大米和小麦的形式。也可以用盐。
可供选择的是,这些颗粒被包裹上涂层混合物。这种混合物包括涂层剂,优选疏水涂层剂,例如氢化棕榈油和牛脂,如果需要其它添加剂,可包含例如碳酸钙或高岭土。
此外,肌醇六磷酸酶组合物可以含有其它成分,例如着色剂,香味化合物,稳定剂,维生素,矿物质,其它饲料或食品增强酶等等。尤其对于所谓的预混合料,也是如此。
“饲料”和“食品”依次指的是任意天然或人工饮食,膳食等等或者打算用于或适于动物和人类进食、吸收、消化的膳食的成分。
“食品或饲料添加剂”是一种打算用于或适于加入到食品或饲料中的基本纯化的化合物或一种多成分组合物。其通常含有一种或多种化合物,例如维生素,矿物质或饲料增强酶和合适的载体和/或赋形剂,并且通常是以适于加入动物饲料的形式提供的。
本发明的肌醇六磷酸酶也能够被使用于家禽食物中以便提高蛋壳质量(减少由破裂造成的损失),参见例如The Merck VeterinaryManual(Seventh Edition,Merck & Co.,Inc.,Rahway,N.J.,USA,1991,page 1268);Jeroch等Bodenkultur Vo.45(4):361-368(1994);Poultry Science,75(1):62-68(1996);CanadianJournal of Animal Science 75(3):439-444(1995);PoultryScience 74(5):784-787(1995)和Poultry Science 73(10):1590-1596(1994)。
食品或饲料中所述多肽的有效量通常是从约10至50,000U/kg食品或饲料;优选从大约10-15,000,更优选从约10至10,000,尤其是从100至5,000,尤其是从大约100至约2,000U/kg饲料和食品。
本发明还提供了一种生产食品或动物饲料的方法,其特征在于能够表达本发明的肌醇六磷酸酶的细胞,植物部分,包括种子,和/或孢子,被加入到所述食品或动物饲料中。这种细胞或孢子可以是任意来源,细菌,植物或动物。
此外,本发明提供了本发明所述肌醇六磷酸酶在存在或不存在辅助的磷酸酶情况下在肌醇和无机磷酸的生产中的用途,以及肌醇六磷酸中间体。
还提供了一种降低动物肥料中的磷水平的方法,其特征在于用本发明的动物饲料以能转化包含于所述动物饲料中的肌醇六磷酸的有效量饲喂动物。
在一个实施方式中,所述转基因蛋白酶,例如用此处所述的方法表达于植物,尤其是表达于种子或谷粒中的肌醇六磷酸酶,被应用于生产和合成肌醇六磷酸酶。由本发明的重组核酸表达的转基因肌醇六磷酸酶可以在蛋白质表达开始后的任意时间收获。当从例如植物的种子或谷粒或其它部分中收获时,种子或谷粒或植物的其它部分不必在收获前经历成熟。例如,转基因表达可能出现于种子或谷粒成熟前或者可以在种子或谷粒成熟前达到最佳水平。如果需要,该转基因蛋白质可以通过传统的蛋白质纯化方法从这些种子或谷粒中分离出来。例如,磨碎种子或谷粒,然后用含水的或有机换取介质进行提取,然后纯化所提取的肌醇六磷酸酶蛋白质。可供选择的是,根据所需用途的性质,该转基因蛋白质可以被部分纯化,或者可以在未对转基因蛋白质纯化下直接将所述种子或谷粒使用于食品或动物饲料,食品加工或其它用途。
α-淀粉酶降解淀粉1-4键。淀粉酶是酿造焙烤工业的基础用酶。淀粉酶需要在缺少所加糖或其它碳水化合物下进行的麦芽制造中和某些焙烤过程中降解淀粉。在麦芽制造工业中,获得这些酶的足够活性尤其困难。在一段时间内,已知肌醇六磷酸对于淀粉酶具有抑制作用。用一种生理学上可接受的***充分提高淀粉酶活性的方法产生了更迅速的麦芽制造工艺,以及由于升高的糖可获得性而产生的碳水化合物减少的酒精饮料,例如啤酒。
因此,具有肌醇六磷酸酶表达的种子或谷粒为生产麦芽和生产发酵过程所产生的酒精饮料提供了优势。谷粒中的淀粉酶提高的活性提高了麦芽制造中重要的出芽效率和速率,该过程中产生出酶活性提高的麦芽,其使得淀粉水解成更多的发酵性碳水化合物,从而改善酒精饮料例如啤酒和苏格兰威士忌生产中的发酵效率。改善的发酵过程也能用于生产非人类消费的酒精,例如工业酒精。
本发明的肌醇六磷酸酶和肌醇六磷酸衍生的中间体也可应用于许多其它农业、工业、医学和营养领域。例如,肌醇六磷酸酶和肌醇六磷酸衍生的中间体也可用于谷粒湿磨法中。在清洁产品,除锈产品中以及从不同的材料如废品和碳酸饮料中分离金属和其它聚阳离子中使用了肌醇六磷酸。肌醇六磷酸和肌醇六磷酸酶可以用于分离和回收稀有金属。肌醇六磷酸酶可用于生产肌醇六磷酸的低磷酸同系物,其可用于牙膏和其它牙齿护理产品中,也可用于骨吸收(例如用于骨质疏松)以及肾结石的潜在疗法或预防法中。已经发现肌醇六磷酸及其衍生物可用于生产豆腐,用肌醇六磷酸鳌合矿物质(例如铁,锌,钙或镁)中的用途,其后加入肌醇六磷酸酶释放也是一种提供这些营养素的独特方式。肌醇六磷酸酶可以在食品生产中用于由肌醇六磷酸生产肌醇。肌醇六磷酸酶也可用于化学和生物化学合成含有磷酸的材料中。已经发现肌醇六磷酸酶,肌醇六磷酸和低磷酸肌醇六磷酸衍生物在个人护理产品,医疗产品和食品及营养产品,以及各种工业,尤其是在清洁,纺织品,印刷术和化学技术中的其它多种应用。
下面提供的例子目的仅在于阐明,并不是想要以任何方式限制本发明的范围。技术人员能够理解的是所公开的方法可以应用于其它任何物种,包括获得本文所公开的序列。说明书中所引用的所有专利和参考文献均以参考文献的形式完整地并入本文。
实施例
实施例1
制备编码肌醇六磷酸酶的基因组DNA
为了采取PCR反应以确定编码肌醇六磷酸酶的大肠杆菌AppA的天然变异体的序列,包括转录区的3′和5′序列和任一内含子的序列,从不同的生物来源中制备基因组DNA。
从基因组DNA(大肠杆菌K-12),表II中所列各种肠菌株的单个菌落(由Texas A&M,Dept.of Biology捐赠的菌株),以及从肌醇六磷酸培养富集物(动物园肥料(comost)和土壤)的生物质中制备出PCR模板。根据标准方法获得并分离基因组DNA。技术人员会认识的是用于基因组核酸序列的探针可容易地从附图21中公开的任意一条大肠杆菌肌醇六磷酸酶cDNA序列中获得。可以遵循下述PCR方法使用这种探针以获得基因组序列。
下面是获得基因组肌醇六磷酸酶序列的另一种方法。
对几种已知肌醇六磷酸酶序列进行比对,包括源于费氏志贺氏菌(Shigella flexnarii),索氏志贺氏菌(Shigella sonnei),产气巴斯德氏菌(Pasturella aerogenes),阴沟肠杆菌(Enterobactercloacae),成团泛菌(Enterobacter agglomerans),和普通变形菌(Proteus vulgaris)的序列。
构建下列DNA引物以用于扩增由不同微生物构建的文库中的肌醇六磷酸酶基因。
AppA3F 5′-atgaaagcgatcttaat
AppA5F 5′-cgtcatggtgtgcgtgctcc
AppA6F 5′-cgccagaggttgcccg
AppA7R 5′-gcggctggcaacctctgg
AppA4R 5′-ttacaaactgcacgccggtatgcgtgcgtgcttcatt
引物组合包括:
AppA3F+4R=1.3kb产物
AppA3F+7R=0.86kb产物
AppA5F+4R=1.19kb产物
AppA6F+4R=0.44kb产物
AppA5F+7R=0.75kb产物
PCR是在一种标准PCR机器上进行的,例如MJ ResearchInc.(Watertown,Ma)的PTC-150Mini Cycler或一种EppendorfMastercycler(hamburg,germany)。在下述实验中,PCR是采用HybaidTouchdown热循环仪(Midddlesex,UK)进行的。
已经研究了两种从基因组DNA中扩增肌醇六磷酸酶基因的方法:
A)第一次PCR采用BOX1和BOX6引物进行;其产物在琼脂凝胶上跑胶,分离出大约1kb片段,用嵌套引物对其进行第二次PCR。进行第二次PCR时,采用BOX1-BOX5或BOX5-BOX6或BOX2.5/BOX4′中的引物获得了最好的结果。
方案A:
PCR1:-94℃下2′(1个循环)
-94℃下45″;40℃下1′30″;72℃下1′30″(30个循环)
-72℃下7′(1个循环)
-控制在4℃
片段被置于1%低熔点胶上,从胶中切下大约所需大小(0.0-1.2kb)的片段,将其分离并作为第二PCR(PCR2)的模板使用。PCR2采用与PCR1相同的循环方式。
B)采用BOX2.5/BOX4′引物进行Touchdown PCR。采用这种技术,可以分离出一种特定的片段并将其克隆至TOPO载体(InvitrogenCorp.,Carlsbad,CA)中,然后不再进行进一步加工而进行测序。
方案B:
-95℃下3′(1个循环)
-在95℃下1′;在60℃下1′,降至50℃;在72℃下30″(20个循环,这样在退火过程中每循环温度降低0.5℃)
-在95℃下1′;在50℃下1′;在72℃下30″(10个循环)
-控制在4℃
从测序的片段中,采用RAGE技术(基因组末端快速扩增)可以快速获得全长基因的序列。采用Clontech Laboratories,Inc(Palo Alto,CA)的GenomeWalkerTM试剂盒和生产商提供的规程(GenomeWalkerTMKits User Manual,公开于1999年11月10日,清楚地并入本文),从片段序列中分离出接头连接片段以进一步确定上游基因序列。从各种物种的染色体DNA中确定肌醇六磷酸酶基因的序列。
实施例2
AppA变异体的序列分析
对各种肠菌株(包括大肠杆菌-12作为对照)的PCR检测分离出三个完整的和四个部分AppA基因片段。菌株大肠杆菌K-12,费氏志贺氏菌和索氏志贺氏菌都产生出与全长AppA基因大小一致的PCR产物。产气巴斯德氏菌,阴沟肠杆菌,成团泛菌和普通变形菌菌株仅产生截短的AppA片段。
这些克隆产物的序列分析显示出与大肠杆菌AppA基因显著的同源性。费氏志贺氏菌和索氏志贺氏菌变异体的预测的氨基酸序列与所公开的大肠杆菌序列的差别分别在于由单个碱基对改变产生的第一,六氨基酸位点。此外,费氏志贺氏菌基因中含有8个沉默核苷酸改变(A267G,G285A,C297T,C477T,G756A,A882G,G957A和C966T),而索氏志贺氏菌基因中不含有沉默改变。
部分肠AppA基因少至没有氨基酸发生改变(产气巴斯德氏菌),多至含有三个氨基酸改变(阴沟肠杆菌)。阴沟肠杆菌和成团泛菌AppA非常相似,其区别仅在于两个氨基酸位点不同。用由动物园肥料的液体培养肌醇六磷酸富集物产生的生物量制备用于PCR扩增的基因组DNA。所扩增的产物被直接克隆到T/A克隆载体中,分析转化体中AppA-相关序列的存在性。如同一些肠菌株,仅回收到部分AppA-基因序列。由肥料富集物中回收的基因片段与大肠杆菌AppA基因相比含有2个氨基酸改变。
实施例3
液体培养物中的肌醇六磷酸水解活性的证据
挑选出来的细菌菌株生长于含有不同浓度无机磷酸的合成培养基中,检测和比较生长性状和肌醇六磷酸酶的产量。用悬浮液接种一种基本培养基(Vogels),其中通过改变培养基中磷酸浓度从而观察浓度是如何影响生长和肌醇六磷酸酶产量的。培养物于25℃至30℃在50ml培养基中通过摇瓶培养进行生长。在24,48,72和96小时收获培养物。使用Fiske和SubbaRow,Journal of Biological Chemistry 66:375-392(1925)的方法检测培养物上清液的肌醇六磷酸酶活性。生长可以通过干重或OD读数来确定。
3A.不同培养基条件对生长和形态学的影响
制出一系列微生物生长曲线以观察培养基中可用的P对生长和肌醇六磷酸酶产量的影响。在一些实例中,当P水平降低时,观察到细菌的生长的形态学发生改变(例如,细菌形态学,粒化,不均匀生长,并且整体呈现出浅黄色),其与应激状态有关。这种生理菌株在处于生长曲线中的某一点时可能与肌醇六磷酸酶活性的存在相关,例如接近对数生长期末期时。可以在生长24小时后加入1mM肌醇六磷酸作为磷源的补加低P(如0.57mM)的培养物中观察到肌醇六磷酸利用的形态学证据。不添加肌醇六磷酸时所观察到的形态学改变可能是不明显的,事实上这些补加样品与P不受限制的高P培养基中的培养物类似。这种反应表明产生了肌醇六磷酸特异水解活性,其使得P能够供应给正在生长中的细菌。需要注意的是,所添加肌醇六磷酸浓度更高(例如5mM)的培养物可能导致细胞无法生长。该结果提示培养基中的高水平肌醇六磷酸螯合必需矿物质,从而导致培养基无法支持细菌的生长和营养。
在一个示例性研究中,微生物所生长的培养基含有
-高磷酸(1.14mM)
-低磷酸(0.57mM)
-低磷酸加上1mM补充的肌醇六磷酸。
在0,24,48,72和96小时通过测量干重监控生长情况,并观察响应不同培养基条件所出现的形态学特征。当肌醇六磷酸水解活性能实现从肌醇六磷酸中释放磷酸,并由此防止培养物遭受本要面临的磷酸饥饿应激压力时,所期望的主要观察结果是:
1.在高磷酸中有良好的生长,一致的细菌形态表明是健康培养物。
2.在低磷酸条件下生长明显较差,细菌的形态不均匀,有成团的迹象,培养物可能呈现出病态黄色。
3.与(2)类似的培养物,当加入肌醇六磷酸(底物)后,看起来不再像处于相同生理压力下。生物量的生长与条件(1)相似,其细菌形态与高磷酸条件相同。
4.生长曲线和照片证据支持上述观察结果。
3B.培养物上清液中的肌醇六磷酸酶活性
可以测量出生长于含有不同无机P水平的培养基上的细菌的上清液中的肌醇六磷酸酶活性。用上清液样品比较接种后特定时间的活性。肌醇六磷酸酶活性可以表示为每ml培养上清液每分钟所释放的P的毫摩尔数。样品的活性根据三个相同培养瓶计算,所述培养瓶中上清液的肌醇六磷酸酶活性被检测了两遍。活性表示为平均值_SD。除了上述观察之外,可能观察到与磷酸水平有限的培养基有关的一种明显的生理应激,其可不利地作用于生长,并且这种应激与肌醇六磷酸酶活性的出现联系在一起。
3C.培养物上清液的浓缩
肌醇六磷酸酶活性的另一证据可望从浓缩的上清液(浓缩蛋白质)中获得。例如,浓缩的蛋白质样品可从以下物质中获得:
1.在应激和低磷酸条件下的细菌培养物(即肌醇六磷酸酶预期表达于其中),
2.高磷酸和非应激条件下的培养物,预期其中不会产生肌醇六磷酸酶,和
3.添加低磷酸和补充肌醇六磷酸的培养物。
这些浓缩蛋白质样品的银染SDS-PAGE凝胶预期显示出一个蛋白质分布图,其中条件1(上文)的浓缩蛋白质中出现一条蛋白质条带(推定的肌醇六磷酸酶条带),该条带在条件2中不出现。在条件3中预期也出现一条与之类似的条带,尽管水平较低。根据特定肌醇六磷酸酶的氨基酸序列,以及根据其是否表现为一种胞外酶,可以估计出该蛋白质的大小。然而,应当注意的是,对胞外酶的糖基化修饰作用(如果表达在能够进行翻译后修饰的生物中时)可能提高MW。
实施例4
肌醇六磷酸酶基因片段的PCR扩增
在标准PCR仪如MJ Research Inc.(Watertown,MA)的PTC-150Mini Cycler、the Eppendorf Mastercycler(Hamburg,Germany)或Hybaid Touchdown热循环仪(Middlesex,UK)上进行PCR。
Pwo聚合酶(Boehringer Mannheim,Cat #1644-947)的PCR条件包括100微升溶液,其由下列物质配制成:10微升10X反应缓冲液(10X反应缓冲液含有100mM Tris HCl,pH 8-8.5;250mM KCl;50mM(NH4)2SO4;20mM MgSO4);0.2mM dATP,0.2mM dTTP,0.2mM dGTP,0.2mM dCTP(终浓度),1微升100毫微克/微升基因组DNA,1微升浓度为1单位每微升的PWO,500mM引物(终浓度),加水至100微升。该溶液用矿物油覆盖。
4A.简并引物的设计
根据已公开的肌醇六磷酸酶氨基酸序列的比对,设计出许多针对保守的结构和催化区域的简并引物。这些区域包括肌醇六磷酸酶中高度保守的区域和对于蛋白质结构和功能重要的已知区域。
例如,对已公开的肌醇六磷酸酶的氨基酸序列进行了比对。应该注意的是许多肌醇六磷酸酶序列可从GenBank中公开获得,每个都被并入本文作为参考。
选择了特定区域以满足上述标准,然后从这些氨基酸序列中设计出许多正向和反向引物。采用用于密码子利用的遗传密码,合成出简并核苷酸PCR引物。
另一个例子是,根据同一物种(例如费氏志贺氏菌)中的不同肌醇六磷酸酶的已公开的氨基酸序列设计出引物。这些引物可以下列方式设计:
1.引物1:来自例如肌醇六磷酸酶的磷酸结合区域的正向(5′-3′)引物,该区域是催化活性所必需的。
2.引物2:来自肌醇六磷酸酶的一个中央区域的反向引物,该中央区域似乎具有相对好的保守性。
所有的引物可以按5′-3′方向合成。采用标准的遗传密码将氨基酸改为三联密码子,对于混合碱基位点采用标准I UB密码(例如将A/C/T/G命名为I)。
以上述方式设计的引物可以被用于从其它物种中通过PCR以下文描述方式扩增肌醇六磷酸酶编码区域。
4B.肌醇六磷酸酶基因片段的PCR扩增
采用源自一种目的物种中的基因组DNA作为模板,并采用以上述方式制备的引物组合对推测的肌醇六磷酸酶基因片段进行PCR扩增。PCR采用Amersham Pharmacia的PCR Ready-to-go Beads进行。反应条件由各个实验决定,但通常在Techne热循环仪中运行三十个循环。通过在1%琼脂糖凝胶上对PCR反应产物进行电泳验证扩增是否成功。由引物扩增的PCR肌醇六磷酸酶产物可通过正确的期望大小预测到。然后采用Qiagen的Qiaquick Spin Gel Extraction试剂盒进行凝胶提取从而纯化所述产物。然后将经纯化的PCR产物连接到商业pGEM-TEasy载体***(Promega公司)中以便克隆。连接反应物在4℃培养过夜,其总体积为10ml,其中含有0.1体积的10X连接缓冲液和1ml(1U.ml-1)T4DNA连接酶。典型地在反应中按***片段与载体DNA之间1-4∶1的摩尔比率使用***DNA。从-80℃储存中取出100ml等分试样的CaCl2感受态大肠杆菌XL-1 Blue细胞,将其在冰上融化以用以转化。31连接混合物被加入到细胞中,所得混合物置于冰上20分钟。然后在42℃下热休克所述细胞1分钟,然后重置于冰上5分钟。所述转化混合物被加入到0.9mL的L-培养基中。在不进行筛选情况下以振荡方式培养所述细胞,以使得氨苄青霉素抗性基因产物能够在筛选实施之前表达(37℃,1小时)。然后将所述培养物的200,300和400ml试样直接涂布于筛选性琼脂平板上。37℃下培养平板过夜。通过蓝色/白色筛选显现出含有重组质粒的菌落。为了快速筛选出重组转化体,从推测的阳性(白色)菌落的培养物中制备出质粒DNA。通过Birnboim和Doly方法按照Sambrook等人(1989)的步骤分离出DNA。通过限制性酶切分析确认重组质粒中存在正确的***片段(650bp)。在37℃采用限制性酶(例如Notl-pPstl)消化DNA过夜,通过琼脂糖凝胶电泳显示出消化产物。许多克隆可能含有正确大小的***片段,可以将这些克隆筛选出来进行人工测序以观察***片段是否就是肌醇六磷酸酶基因片段。应用双脱氧链终止法,使用T7DNA聚合酶(Sequenase version2.0)的修饰体对***片段进行测序。该反应采用由Sequenase version2.0试剂盒(Amersham Life Science-United States BiochemicalCorporation)中提供的试剂,按厂商操作指南进行。来自克隆末端的部分序列可以表明已经克隆了肌醇六磷酸酶基因片段。对来自这些克隆的质粒DNA进行双链***片段的全长测序。
5C.序列分析
通过BLAST和蛋白质翻译序列工具分析这些序列。核苷酸水平的BLAST比较可以显示与已公开肌醇六磷酸酶序列不同水平的同源性。最初,通过访问环球网上的BLAST数据库将核苷酸序列提交到BLAST(2.0版本Basic BLAST)中。所用网址是http://ncbi.nlm.nih.gov/cgi-bin/BLAST。所选程序是blastn,所选数据库是nr。采用标准/默认参数值。推测的基因片段序列数据以FASTA格式的序列形式输入,然后向BLAST提交查询,以便对这些序列与数据库中已有的序列进行比较。
然后采用一种称为Protein machine的DNA至蛋白质的翻译工具处理所述序列。该工具也可从http://medkem.gu.se/edu/translat.html网址获得。另一种合适的翻译工具是Translation Machine,在http://www2.ebi.ac.uk/translate/网址上获得。将推测的肌醇六磷酸酶基因片段的DNA序列***到分析块中,采用标准的遗传密码作为翻译的基础。在所有三个阅读框中以及正向链和反向链中进行翻译。用分析软件将翻译的氨基酸序列以单字母密码氨基酸序列的形式传送到屏幕上。理想的是,氨基酸序列的分析会显示所述片段含有两个正确的末端(如用于设计引物的),含有主要的P结合基序以及或许存在于已公开的肌醇六磷酸酶序列中的其它残基。由此,可以得出结论,所克隆的片段是一种肌醇六磷酸酶基因片段。
采用ALIGN程序(Alignment Editor Version 4/97;DominickHepperle,Fontanestr.9c,D016775,Neuglobsow,Germany)程序进行核苷酸和氨基酸水平的序列比对和这些比对的分析。在进行所述分析时,输入主题序列,采用PHYLIP Interleaved格式。采用该程序的“Analyze”部分进行同源性分析,具体是采用题为“DistanceAnalysis”的选项。这样采用最少两个氨基酸序列(例如,两个“物种”)计算出物种间的%同源性和不同位点数目。最小同源性和最大同源性按%计算。同源性分析的基础是%同一性,即计算“相同氨基酸(或碱基)数除以所有氨基酸(或碱基)数再乘以100”所得出的百分数。将氨基酸序列与已公开的肌醇六磷酸酶序列一起置于ALIGN程序中,进行氨基酸水平的人工比对。由此,可以获得通过简并引物获得的PCR产物的推导翻译。
实施例6
文库生产的Southern分析
于37℃用一组限制性酶消化源自不同物种的基因组DNA过夜。在1%的琼脂糖凝胶上电泳成功消化的DNA以备转移到尼龙膜上。在电泳结束后,将琼脂糖凝胶浸泡在0.2M HCl中10分钟以使DNA脱嘌呤,然后在ddH2O中短暂清洗。通过碱性毛细管印迹将该DNA转移到HybondTM-N+膜(Amersham International PLC)上。安装所述印迹以使得所述尼龙膜正好夹在凝胶与一叠吸水纸巾之间。在横跨转移缓冲液(0.4M NaOH)槽的玻璃平板上准备一个Whatman 3MM纸(Schleicherand Schuell,Dassel,Germany)芯。将凝胶倒置在纸芯上,小心避免形成空气泡,用Nescofilm条带环绕在凝胶周围以防止纸巾的印迹活动从边缘绕过凝胶。用一张等大小的HybondTM-N+膜覆盖凝胶,该膜角上经剪切与凝胶相匹配并在3xSSC中预湿。接下来,将3-5张3MM纸置于滤膜上方,然后加上一叠10cm吸水纸然后加上0.5kg重物从而完成印迹的安装。该印迹维持8-24小时以转移DNA。然后RT下在2xSSC中短暂洗涤该膜,并于80℃在真空烤箱中烘烤以使DNA固定到膜上。上述过程中分离出的片段被用于探测Southern印迹。首先,通过使用High Prime DNA标记试剂盒(Boehringer Mannheim)标记上32p同位素。将变性的片段加入到随机引发的标记反应中,该反应整合放射性标记的腺嘌呤。Southern印迹于42℃在杂交管中的12mL Easy-Hyb缓冲液(Boehringer Mannheim)中预杂交1小时。使放射性标记的探针变性,然后加入到5mL Easy-Hyb杂交缓冲液,于42℃杂交过夜。杂交之后,通过42℃下在40ml 3xSSC,0.1%SDS中温育15分钟洗涤所述印迹。用新鲜洗液重复这种低严紧性洗涤。在严紧性洗涤后,将此印迹在3xSSC中冲洗,封入干净的塑料,曝光于X-光胶片上。这持续2小时,然后对该胶片进行显影。特定物种消化物中可以观察到强杂交带。这些结果表明该片段可用作用于文库筛选的探针。
实施例7
从所研究的物种基因组中分离编码肌醇六磷酸酶的多核苷酸序列
7A.基因组文库产生和筛选
在Southern杂交分析后,为了克隆出肌醇六磷酸酶全长基因可以构建出部分基因组文库。生产出一种靶向消化片段(由Southern分析估计)的限制大小的质粒文库。在1.25%的琼脂糖凝胶上电泳消化的基因组DNA。从凝胶中萃取优选大小的消化片段,然后通过Glass-Max(Gibco-BRL,Scotland)进行纯化。将纯化的基因组片段和经限制性核酸酶线性化的pSK II Bluescript载体(Stratagene)用于鸟枪连接反应中。该载体在连接反应前先被脱去磷酸,连接反应在14℃反应过夜。通过转化大肠杆菌XL-10 Gold超感受态细胞(Stratagene)产生文库。从-80℃储存中取出100ml细胞试样,将其在冰上融化以用以转化。在冰上将4mL β-巯基乙醇加入到所述细胞中。将3ml连接混合物加入到所述混合物中,所得混合物置于冰上20分钟。然后在42℃下热休克所述细胞30秒,然后重置于冰上2分钟。所述转化混合物被加入到0.9mL NZY-培养基中。在不进行筛选情况下以振荡方式培养所述细胞,以使得氨苄青霉素抗性基因能够表达。然后将所述转化细胞涂布于蓝/白筛选性LB琼脂琼脂平板上。37℃下培养平板过夜。通过使用Maniatis(10%SDS-裂解,3分钟;1.5M NaOH-变性,5分钟;1.5MTricHCl-中和,5分钟;3xSSC-冲洗,5分钟)的方法将菌落转移至硝化纤维素滤膜上。然后在真空条件下80℃烘烤滤膜2小时以固定DNA。使用经32p放射性标记的636bp探针以与Southern杂交同样方式筛选文库。杂交之后,42℃下在3xSSC,0.1%SDS中洗涤所述滤膜15分钟。然后,将此滤膜在3xSSC中冲洗,封入塑料,曝光于X-光胶片上,在-80℃下曝光过夜。在胶片上识别出阳性杂交斑点。将这些斑点与含有所述转化体的琼脂平板相对照。这些杂交斑点可能与琼脂平板上一个以上单菌落相匹配。用无菌环挑取杂交斑点半径内的所有菌落,并接种2mL Luria培养基。在37℃培养所述培养物2小时。培养物进行稀释,由10-1至10-5,并且将每个试样各100mL平铺在LB-amp琼脂培养基上,37℃培养过夜。选择出涂布有10至150个菌落的平板以进一步进行第二次筛选。按前述方式转移菌落,以相同方法加工滤膜。制备新鲜的32p标记探针,然后以前述方式筛选滤膜。通过42℃下在2xSSC,0.1%SDS中温育15分钟进行严紧性洗涤。然后在2xSSC中冲洗滤膜,封入塑料,于X-光胶片上曝光2小时。经显影的胶片应该显示出杂交斑点,其与首次筛选时获得的阳性菌落的扩增相一致。然后将该胶片与所述平板相对照,然后调整这些斑点以观察它们是否与单个分离的菌落对应。挑取与单菌落相匹配的最佳阳性斑点,用以接种Luria培养基以制备质粒DNA。用QiaspinMini-Prep试剂盒(Qiagen)纯化质粒DNA,并进行限制性分析以估计***片段的大小。具有相同限制性图谱的克隆可用以提示***片段的大小。可以对克隆进行部分测序以确定它们是否是正确的基因/基因片段。然后再测定这些克隆的完整序列。
7B.细菌肌醇六磷酸酶之间的同一性百分比
对所克隆肌醇六磷酸酶基因片段的推导的多肽产物与已公开的肌醇六磷酸酶(参见附图20)进行同源性分析。该分析显示同一性百分比,其连同所翻译序列的分析可能为所克隆基因片段是某种肌醇六磷酸酶的同系物提供证据。
7C.制备和筛选基于SalI的大小受限制的基因组文库以分离肌醇六磷酸酶基因的残余部分
为了分离基因的残余部分,可以使用第二限制性酶以制备第二部分基因组文库,然后可以将这些片段亚克隆在一起。采用Webcutter识别出存在于克隆的肌醇六磷酸酶序列中的限制性内切酶识别位点。尤其关注的是上述Southern分析中所使用的酶的位点。特别大的片段(如8Kb)难以克隆在基于质粒的文库中。与特定限制性酶条带的低度杂交使得其无法用于文库筛选,在限制性酶泳道出现的两条带很可能使得筛选过程复杂化。以前述方式在pBluecript SKII中制备文库,采用同样的探针进行筛选。对筛选出的阳性杂交菌落进行选择,并与平板上的菌落进行对比。挑取匹配的菌落以用于制备质粒DNA。限制性分析可以显示出有多少克隆具有***片段。然后对这些克隆进行完全测序。
7D.扩增连续的肌醇六磷酸酶基因用于异源表达
由基因组克隆中生产出合成的肌醇六磷酸酶序列,然后将其用于设计一些可用于扩增连续肌醇六磷酸酶基因序列的上游和下游引物。PCR扩增也被设计成便于在异源表达载体(例如pGAPT-PG,由GenencorInternational,Inc.提供的5.1Kb构建体)中克隆和表达完整的肌醇六磷酸酶基因。确定出在该载体的多克隆位点内的限制性酶位点,其不存在于肌醇六磷酸酶基因序列中。采用肌醇六磷酸酶基因序列可以设计出一些5′和3′侧翼引物,并将其修饰以包括这些酶的限制性酶识别位点。
限制性酶识别位点被设计入引物序列以便于克隆入表达载体中。用于设计引物的上游和下游侧翼区域是分别从自ATG(起始)密码子的上游和自TAG(终止)密码子的下游约100bp区域中任意选择的。所用基因序列也经过选择以尽可能含有等量平衡的碱基。
可以使用基因组DNA和这些引物的组合进行肌醇六磷酸酶基因的PCR扩增。PCR应当扩增对应于全长肌醇六磷酸酶基因的区域。用所述引物扩增获得的所需产物被克隆至载体中,选出含有正确大小***片段的几个克隆进行测序。然后进行克隆序列的同源性分析,然后确定出肌醇六磷酸酶全长序列。
采用5′和3′引物和高精确度DNA聚合酶Taq进行基因组DNA的PCR扩增以使肌醇六磷酸酶基因表达的误差最小化。该聚合酶是Taq DNA聚合酶(Stratagene),其是用于PCR的Taq DNA聚合酶试剂盒的一部分。为了进行该反应,将反应缓冲液,dNTPs,靶DNA和引物混合在一起,将2.5单位Taq聚合酶加入至终体积为50μL的反应液中。扩增后,用凝胶电泳法对反应混合液的5μL试样进行分析。将选出的片段直接克隆至载体pCR-Blunt II TOPO(Invitrogen)中,选择出一些克隆进行分析从而确定其中是否存在正确的***片段。由Taq DNA聚合酶生产的平末端PCR产物被克隆至Zero Blunt-TOPO-PCR克隆试剂盒(Invitrogen)中。该载体含有MCS位点和用于表现抗生素抗性的卡那霉素基因,其还允许采用与蓝-白筛选相反的基于致死性大肠杆菌基因ccdb断裂进行的筛选。在1μL的pCR-BluntII-TOPO载体中加入经纯化的PCR产物(50-200ng),加入无菌水使反应体积增加至5μL。轻轻地混合后在室温孵育5分钟。加入1μL的6x TOPO克隆终止溶液,将反应置于冰上或于-20℃冷冻达24小时以进行转化。被改造的限制性位点的整合也通过该分析得到了确认。制备出一些克隆,并对其测序。序列分析可以证实是否存在肌醇六磷酸酶全长基因。该基因可用以进一步在异源***中表达,并随后对该酶作生化性质分析。
7E.肌醇六磷酸酶序列的分析
将分离的序列与已公开的肌醇六磷酸酶进行比对,并且在同一性百分比基础上进行同源性分析。
7F.肌醇六磷酸酶的生化表征
为了证明所克隆基因表现出特定的肌醇六磷酸酶活性并且为了表征这种活性,在过表达酶中进行一系列生化分析。初步的表征可能表明该基因产生一种肌醇六磷酸水解活性。该分析可以扩展到在不同pH值,温度以及针对不同底物下验证活性。选取转化体以进行进一步分析,以上述方式在最佳表达时间收获培养物。以肌醇六磷酸作为底物,可以显示出pH对酶活性的影响。从培养物上清液中经脱盐获得基本纯化的酶样品,将其稀释于0.025mM pH 5.0乙酸钠中。然后将其加入到于下列缓冲液溶液中制备的底物中:pH 3.0:0.4M甘氨酸-HCl,pH 4.0:0.4M乙酸钠,pH 5.0:0.4M乙酸钠,pH 6.0:0.4咪唑-HCl,pH 7.0:0.4M Tris-HCl,pH 8.0:0.4M Tris-HCl pH 9.0:0.4M Tris-HCl。还可以确定出肌醇六磷酸酶活性的最佳pH值。当以4-硝基苯-磷酸作为底物时所观察到的较弱活性表明其对于肌醇六磷酸底物的高水平特异性。
通过使用pH 5.0缓冲液在一定温度范围内以肌醇六磷酸为底物来表征该酶的温度曲线。可以确定肌醇六磷酸酶温度活性范围和最佳活性温度。也可对肌醇六磷酸酶进行初始的稳定性研究。该蛋白质样品被置于-20℃,4℃和37℃过夜,然后在标准条件下进行检测。可以将样品置于高温度(如85℃下20分钟,和100℃下10分钟)下以确定肌醇六磷酸酶活性的热稳定性。基于与在暴露于每种条件前取出的样品的活性进行比较得出剩余活性。然后,可以在相同检测条件下对样品进行检测。
下面的一组实施例涉及分离和表征大肠杆菌中的AppA肌醇六磷酸酶突变体。
实施例8
构建含有appA的枯草芽孢杆菌菌株
通过一系列步骤构建出一种表达大肠杆菌appA基因的枯草芽孢杆菌菌株。首先将appA基因序列的5′区域(起始于成熟肌醇六磷酸酶序列的第一个氨基酸密码子终止于终止密码子)与一种含有PstS启动子(Qi等人,1997)和编码芽孢杆菌来源(参见例如附图3)的一段30个氨基酸合成信号序列的上游序列融合。这通过使用PCR将appA基因片段与源于质粒pSW4的片段相融合来实现。质粒pSW-4(7.769kb)含有pUC复制起点和用于在大肠杆菌中筛选的卡那霉素(Km)决定子。此外,pSW-4含有枯草杆菌蛋白酶基因盒,其上游侧翼区域是PstS启动子,yhfO和部分yhfP基因,其下游侧翼区域是氯霉素(Cm)抗性基因(cat)和部分yfhN基因。
在由appA基因置换枯草杆菌蛋白酶盒,并将所得产物转化到大肠杆菌后,通过限制性内切酶分析筛选出存在appA序列的Km抗性转化体。选出一个称为pLE18(附图1,上方)克隆以进一步研究,该克隆中所需appA基因与芽孢杆菌转录,翻译和分泌调节序列相融合。
下一步包括将appA基因稳定整合到枯草芽孢杆菌染色体中。质粒pLE18被导入到菌株OS21.10感受态细胞中,通过将其涂布于含有氯霉素的Luria-Bertani(LB)培养基筛选出appA基因整合事件。采用引物OSBS-1和OSBS-8对适当整合的appA构建体进行的PCR扩增预计产生一种6.9kb产物(附图2)。一个称为18B2的Cm抗性转化体在PCR分析后产生一个6.9kb特征性条带。18B2PCR产物的DNA序列分析证实了与芽胞杆菌信号肽按阅读框融合于完整成熟appA基因,并且appA基因上游存在完整PstS启动子(图3)。
实施例9
appA基因的随机诱变和在枯草芽孢杆菌宿主中筛选活性提高的表达
采用随机诱变方法产生表明在枯草芽孢杆菌中活性提高的肌醇六磷酸酶突变体。主要通过使用高通量肌醇六磷酸生长筛选鉴定出改良的appA变异体。然而采用基于荧光的检测从文库#1中筛选出有限数量的克隆(附图4)。
2A.文库构建
按照厂商建议使用Z-TaqTM聚合酶(Takara,由Panvera,Madison,WI获得)以扩增含有appA基因的6.9kb区域。这种处理足以产生约0.1%的诱变频率。在每一次PCR诱变循环后,所述文库被导入到枯草芽孢杆菌菌株S21.10中,转化体最初在含有氯霉素(5μg/mL)的LB平板上得以筛选。通过刮下平板并将细胞重悬于含有100μM的磷酸和氯霉素的P1基本培养基中收集氯霉素抗性菌落。在适当的生长阶段之后,测量细胞培养物的光密度,所述生长阶段由2小时至过夜不等。用一种含有50μM肌醇六磷酸的MES-1培养基(pH 6.0)将细胞稀释至大约细胞浓度为0.5细胞/75μL。稀释的细胞被分加于384孔微量滴定板中,并于37℃孵育41小时。在细胞生长于肌醇六磷酸后,用平板计数器测量细胞浓度(OD600),将其结果与对照菌株18B2所达到的生长水平相比较。
附图4显示每次以前述易出错PCR进行的appA基因诱变循环后的筛选策略。筛选文库#1和#2后,选出的“命中克隆”(即具有优于表达野生型AppA肌醇六磷酸酶的枯草芽孢杆菌菌株18B2的生长特性的克隆)被汇聚起来,用分离自这些克隆的基因组DNA构建第三代文库#3A,#4A和#5A。第三代文库的筛选结果得到许多以肌醇六磷酸作为单一磷源、生长显著优于18B2的命中克隆(附图5)。有时,将从第三代文库中经鉴定的选择出的命中克隆汇集起来,以384-孔形式重新筛选。该过程产生一些优于18B2的命中克隆(附图6)。
实施例10
肌醇六磷酸酶活性提高的表征
对在384-孔板筛选过程中鉴定出的几个命中克隆利用肌醇六磷酸酶以提高的生长速率生长的能力进行了进一步表征。
10A.以肌醇六磷酸作为唯一磷源的生长
将18B2和不同的命中克隆的种子培养物接种于含有5mL MES-1培养基(pH 6.0),50μM肌醇六磷酸和氯霉素的检测管中。于37℃振荡培养65小时后,命中克隆PHY902,PHY883,PHY872,PHY889 andPHY882以比对照菌株18B2显著快的生长速率生长(附图7)。
10B.在磷酸饥饿条件下肌醇六磷酸酶活性的累积
对几个命中克隆进行检测以便将所观察到的在肌醇六磷酸上的提高的生长速率与提高的肌醇六磷酸酶活性相联系。选出的命中克隆PHY902,PHY850,PHY882,PHY889,PHY883,PHY747和亲本菌株18B2首先生长于含有氯霉素的5mL LB培养基中。对稳定期培养物的细胞进行清洗,并将其以大约相同的细胞浓度重悬于缺少磷源的P1培养基中。在19小时内采用一种经修饰的钼-钒酸磷酸检测(在415nm读数)对肌醇六磷酸酶活性进行监控。所有检测的命中克隆比对照菌株18B2的肌醇六磷酸酶活性高三倍(附图8)。
10C.pH对含有appA突变体的芽孢杆菌宿主生长的影响
在pHs范围(3.5-6.5)内对菌株18B2和PHY902的培养物上清液的肌醇六磷酸酶活性进行检测以确定pH-活性曲线中的最佳pH。通过将生长于LB的细胞重悬于缺少磷源的P1培养基中产生出18B2和PHY902样品。在培养后,制备出18B2和PHY902培养物上清液并用于肌醇六磷酸酶检测。其结果显示与PHY902培养物上清液相关的肌醇六磷酸酶活性(表示为肌醇六磷酸酶单位(FTU)/ml)的最佳pH值在4.5左右,其或多或少等同于由菌株18B2表达的野生型肌醇六磷酸酶(附图9)。然而更为重要的是,PHY902肌醇六磷酸酶样品含有几乎高于18B2样品4倍的活性。
10D.将突变基因转移至新宿主中以显示突变/活性关系
为了确定PHY902培养物上清液中观察到的肌醇六磷酸酶活性的提高是否与appA基因遗传上相关,从基因组DNA中PCR扩增出含有菌株PHY902区域的完整appA基因,将所得6.9kb产物用于再次转化枯草芽孢杆菌OS21.10。转化后,选出一个命名为R-PHY902的抗氯霉素单菌落以进行进一步分析。
以上述方式制备出18B2,PHY902和R-PHY902的培养物上清液并将其用以肌醇六磷酸酶检测。R-PHY902的培养物上清液含有高于18B2所产生的3倍的肌醇六磷酸酶活性,这证明活性的提高与PHY902克隆中appA基因的存在有关(附图10)。
10E.生长于游离磷酸的细胞的肌醇六磷酸酶的产生
在生长条件下检测克隆18B2,R-PHY902和PHY850的肌醇六磷酸酶产生/活性。将各个克隆的单一菌落接种于4mL pH7.3含有100μMP04的P1培养基中。37℃振荡培养过夜后,将合适的起始培养物稀释物以终浓度为3.2x106细胞/25mL接种于含有100μM PO4和25mL P1(pH 7.3)培养基的带有障板的振荡烧瓶中(进行三份重复实验)。监控该培养物的细胞浓度(OD600)和肌醇六磷酸酶活性。附图11显示出R-PHY902上清液的平均活性为180FTU/L。这表示其活性高于亲本菌株18B2(43FTU/L)4倍。然而,PHY850上清液的平均活性为462FTU/L。这表明其活性几乎高于亲本菌株18B2的11倍。
从基因组DNA中PCR扩增出含有完整appA基因的菌株PHY850区域,用所得6.9kb产物再次转化枯草芽孢杆菌OS21.10。转化后,选出两个命名为R-PHY850-4和RPHY850-8的抗氯霉素菌落以进行进一步分析。以上述方式在含有有限磷酸的培养基中在生长条件下制备出18B2,R-PHY902,R-PHY850-4和R-PHY850-8的培养物上清液。R-PHY850培养物上清液平均含有比18B2所产生的高8倍的肌醇六磷酸酶活性,因而将活性的提高与克隆PHY850中appA基因的存在联系在一起。
实施例11
appA突变体的序列分析
对肌醇六磷酸酶变异体PHY850和PHY902的appA基因的DNA序列分析表明成熟蛋白质和信号肽序列中均存在氨基酸改变(附图12)。PHY850和PHY902的appA基因均含有143位点处由His至Arg的改变。此外,PHY850appA基因还含有信号肽的密码子位点11处的错义突变,其导致由丝氨酸替换亮氨酸。对大肠杆菌肌醇六磷酸酶的晶体结构的研究显示氨基酸残基143(成熟蛋白质中的残基113)接近于肌醇六磷酸结合口袋,但不是与其密切相关(Lim等人,2000)。此外,PHY850产生的蛋白质中的S11L改变位于信号肽的疏水核心(H结构域),因此其可能是形成肌醇六磷酸酶蛋白质前体的更为有效的膜转位和/或加工的原因。这些改良包括通过理性设计途径无法预料的独特的氨基酸改变。
在第三代易出错PCR文库#4A和5A中分别识别出appA突变体PHY850和PHY902(参见附图4)。然而,克隆PHY735和PHY736的序列分析表明H143R突变早在第二代易出错PCR文库#2就能够被检测(附图12)。发现PHY736含有两个额外的氨基酸改变(W89R和A103V)。在第三代易出错PCR文库#3A和#4A中分别识别出含有H143R的两个突变体PHY679和PHY846作为命中克隆。PHY679含有三个额外的氨基酸改变(T56A,N156K和G258P)。PHY679的T56A改变位于AppA活性位点RHGXRXP基序的4个残基处。克隆PHY846仅含有一个额外的改变,即Q214R。
实施例12
PHY850appA基因的随机诱变以及在枯草芽孢杆菌宿主中筛选活性/产量获得提高者
通过随机诱变产生了在枯草芽孢杆菌宿主中产量获得提高的肌醇六磷酸酶突变体。通过下述方法构建appA文库:使用Ex TaqTM聚合酶(Takara,由Panvera,Madison,WI获得)以上述OSBS-1和OSBS-8引物扩增含有PHY850appA基因的6.9kb区域。根据生产商的说明对PCR反应的条件稍做改动,其中加入6%DMSO。诱变PCR后,将所扩增的产物导入枯草芽孢杆菌菌株OS21.10,在含有Cm(5μg/mL)的LB平板上筛选出转化体。该文库命名为#11A。
appA文库的筛选包括两个生长阶段。在第一阶段,从LB Cm平板中通过BioPickTM仪(BioRobotics,Woburn,MA)自动地挑取文库#11A的单个菌落,并将其铺于含有150μL加有10μM PO4 -3和Cm(5μg/mL)的P7培养基的96-孔聚丙烯微量滴定板中。37℃下振荡(550rpm)培养该滴定板24小时,将所得培养物作为第二生长阶段的接种物。用一种Multimek96TM液体操作仪(Beckman Instruments,Fullerton,CA)将10μL初始生长培养物转移到含有150μL加有10μM PO4 -3和Cm(5μg/mL)的P7培养基的新鲜的96-孔微量滴定板中。允许在37℃下振荡(550rpm)培养该次级培养物44小时。
孵育后,将该平板以3500rpm离心20分钟,从4个96-孔板中将上清液样品转移到384-孔聚苯乙烯微量滴定板中。通过向每一孔中加入肌醇六磷酸底物溶液(25μL的在0.25M HAc(pH 4.5)和1mM CaCl2中的0.7%肌醇六磷酸)进行肌醇六磷酸酶活性检测,并将平板于37℃孵育60分钟。在60分钟孵育阶段后,立即以25μL/孔加入钼-钒酸盐显色试剂(Food Chemicals Codex,p.809)以便检测释放出的磷。在室温下培养14小时(过夜)后,用Perkin Elmer HTS 7000和微量滴定板计数器测定每孔在415nm的光吸收度。
用微量滴定肌醇六磷酸酶检测法对抗Cm文库的总共1344个成员进行筛选。附图13将所检测的克隆的磷酸释放的分布情况表示为它们在文库中的存在频率(representation frequency)的函数。由于相当高的诱变频率,可能的活性范围变化非常大。在这些检测条件下的亲本PHY850典型的是1.2-1.4范围内。吸收读数(A415)少于1.0的文库克隆可能呈现出导致肌醇六磷酸酶活性明显减少或消失的突变。选出命名为PHY1361,PHY1363和PHY1373的三个所释放的磷酸量最高(A>1.7)的克隆以进行进一步分析。
实施例13
PHY850突变体的序列分析
对肌醇六磷酸酶变异体PHY1361,PHY1363和PHY1373的appA基因进行的DNA序列分析表明存在几个氨基酸替换(附图14)。PHY1361的appA基因含有三个氨基酸替换(K73E,E414D和L440S)。发现PHY1363和PHY1373的appA基因相同,它们都含有两个氨基酸替换(I85V和E414V)。此外,这些appA变异体还含有存在于PHY850亲本中的突变(S11L和H143R)。所有这些预知的氨基酸替换都位于成熟蛋白中,信号序列中未发现新的改变。有趣的是,PHY1361和PHY1363/PHY1373的appA基因在靠近蛋白质C-末端的414位点含有一个氨基酸替换。除了形成氨基酸替换的突变之外,发现在1361和1363appA基因的编码序列中有两个相同的沉默突变。这些沉默突变位于密码子5(Lys)和183(Ala),分别表现为aaa>aag和gct>gcc的改变。
实施例14
PHY850突变体的肌醇六磷酸酶活性的表征
14A.生长于游离磷酸环境下的细胞的肌醇六磷酸酶的生产
先对PHY1361,PHY1363和PHY1373培养物上清液相关的肌醇六磷酸酶活性进行研究,所述研究通过将这些菌株生长于含有5mL加有10μM PO4 -3和Cm(5μg/mL)的P7培养基的检测管中进行。37℃下振荡培养48小时后,以上述方式对这三个菌株上清液的从肌醇六磷酸中释放磷酸的能力进行检测。通过标准曲线确定磷酸释放量。一个肌醇六磷酸酶单位(FTU)定义为:37℃下每分钟从肌醇六磷酸钠中释放1μmol无机磷的活性。所有被检测的这三个菌株产生出比前述PHY902突变体(100FTU/L)明显高的肌醇六磷酸酶活性(300-400FTU/L)。
扩大至更多的P7培养基(在250mL带障板的振荡烧瓶中加有25mL培养基+100μM PO4 -3+Cm[5μg/mL];37℃下以200-250rpm振荡培养),然而,这导致所有被检测突变体累积的肌醇六磷酸酶活性水平惊人的低(数据未显示)。随后通过在培养期间采用约75rpm的振荡速度发现,appA突变体克隆积累了高水平的肌醇六磷酸酶活性。附图15显示了在培养73小时后,PHY1361,PHY1363,和PHY1373培养物产生的细胞外肌醇六磷酸酶活性超过1200FTU/L。这些肌醇六磷酸酶水平与亲本18B2所产生的相比有显著的提高(附图15)。
为了确定所观察到的肌醇六磷酸酶活性的提高是否与appA基因遗传上相关,采用HerculaseTM聚合酶(Stratagene,LaJolla,CA)从相应的基因组DNA中PCR扩增出含有完整appA基因的菌株PHY1361,PHY1363和PHY1373的区域,将所得6.9kb产物用于再次转化枯草芽孢杆菌OS21.10。转化后,选出命名为r-PHY1361,r-PHY1363和r-PHY1373的抗氯霉素单菌落以进行进一步肌醇六磷酸酶活性分析。附图16显示在缓慢振荡条件下,r-PHY1361,r-PHY1363和r-PHY1373产生的肌醇六磷酸酶活性水平在1685至2204FTU/L之间,这表明其超过亲本菌株18B2几乎5倍(表1)。该结果证明1300系列突变体的改良的表型与appA基因座有关。值得一提的是相同的突变体PHY1363和PHY1373在高振荡速度(200rpm)下均维持相对高的肌醇六磷酸酶活性。
14B.肌醇六磷酸酶特异活性的分析和产量/分泌量
所观察到的肌醇六磷酸酶活性的提高的生化基础可以解释为产生了具有更高特异活性的肌醇六磷酸酶或者向胞外分泌和/或产生的肌醇六磷酸酶的量提高了。为了区分这两种可供选择的机理,使用所转化菌株的培养物上清液进行定量的Western印迹分析。简而言之,通过TCA沉降对等体积的每种上清液进行浓缩,用80%丙酮清洗,溶解于经加样缓冲液稀释的SDS-PAGE电泳缓冲液中,进行SDS-PAGE分析。电泳后,将蛋白质转移到硝酸纤维膜上,该硝酸纤维膜先暴露于特异于肌醇六磷酸酶蛋白质的兔多克隆抗体,然后暴露于HRP连接的二抗以检测AppA蛋白质。采用光密度分析法测量肌醇六磷酸酶蛋白质的相对量用以与肌醇六磷酸酶相对活性进行比较。
本研究中所用的肌醇六磷酸酶抗体特异于肌醇六磷酸酶蛋白质。该免疫印迹法在所有含有appA基因的菌株中均检测到一个与AppA(~45kD)大小一致的蛋白质(附图17,泳道1-10)。均缺少appA基因的枯草芽孢杆菌菌株OS21.10(本研究中所使用的表达菌株)和一个表达枯草杆菌蛋白酶的菌株(在表达座位具有蛋白酶基因)不能够产生能与该抗体反应的蛋白质(附图17,泳道11-13)。从Western印迹的结果中显而易见的是,所产生/分泌的AppA蛋白质水平的提高是所有被检测突变体(附图16)的培养物上清液中观察到的肌醇六磷酸酶活性提高的直接原因或至少是部分原因(附图17,泳道1-6)。对这些蛋白质的光密度分析显示新的appA变异体所产生的肌醇六磷酸酶蛋白质几乎高于亲本18B2菌株9倍(表1)。同样值得注意的是,在更高的振荡速度(200rpm;附图4)下均维持相对高肌醇六磷酸酶活性的相同突变体PHY1363和PHY1373在这些培养条件下也维持更高的肌醇六磷酸酶产量。
14C.AppA突变体的热稳定性
热稳定性可能是将肌醇六磷酸酶成功应用于动物饲料中的一个最重要的先决条件。为了确定酶产量获得提高的突变体是否以任何方式改变该酶的热稳定性曲线,在升高温度下培养后对经再次转化的1300系列菌株(表1)培养上清液的肌醇六磷酸酶活性进行检测。在检测缓冲液(0.25M NaOAc,1mM CaCl2,pH 4.5)中将这些培养物上清液稀释至1∶20至1∶70,在合适温度下水浴培养15分钟,然后在冰水浴中冷却10分钟(体积为1mL)。将样品分成两份500μL量,在37℃下预热5分钟。通过加入经37℃预热的0.7%肌醇六磷酸钠(在检测缓冲液中制备的,pH 4.5)将每份样品的其中一份稀释至1.5mL,37℃培养1小时。在1小时末,通过加入标准显色试剂将样品进一步稀释至2.5mL,记录A415。通过加入1mL标准显色试剂将每份样品的另一半进一步稀释至1.5mL,然后加入1mL 0.7%的肌醇六磷酸钠将其稀释至2.5mL。记录A415,并从相应反应的A415中减去该值,所得的值用于计算FTU/L。附图18显示新的肌醇六磷酸酶变异体的热稳定曲线与野生型AppA蛋白质相比没有显著的改变。
当然,应当理解的是根据上述优选实施例可以获得大量对其进行的改变和修饰。因此,希望前述详细的说明应被理解为包含在意欲定义本发明范围的包括所有其等同物在内的下列权利要求中。
表1枯草芽孢杆菌中肌醇六磷酸酶活性和产量的分析
  18B2   r-850   r-1361   r-1363   r-1373   18B2   r-850   r-1361   r-1363   r-1373
  振荡rpm   75   75   75   75   75   200   200   200   200   200
  FIU/L(72h)   460   1426   2118   2204   1685   189   299   187   1103   797
  相对活性   1   3.1   4.6   4.8   3.7   1   1.6   1   5.9   4.3
  光密度分析法 16 80 137 122 121 10 27 26 105 74
  相对产量   1   5   8.6   7.6   7.6   1   2.7   2.6   10.5   7.4
具体地,本发明涉及如下20个项目:
1、一种具有改良的肌醇六磷酸酶活性的重组肌醇六磷酸酶,所述重组肌醇六磷酸酶含有选自下组的修饰:
i)对至少一个氨基酸残基的修饰,所述氨基酸残基对应于附图12中称为EBC18B2的成熟大肠杆菌肌醇六磷酸酶的第26,43,46,54,73,113,126,184,228,384或410位残基;
ii)对至少一个氨基酸残基的修饰,所述氨基酸残基位于对应于附图12中称为EBC18B2的成熟大肠杆菌肌醇六磷酸酶的第26,43,46,54,73,113,126,184,228,384或410位残基的氨基酸残基的上游或下游线性序列的5个氨基酸残基内;和
iii)对至少一个氨基酸残基的修饰,所述氨基酸残基其α碳位于选自于下组氨基酸残基α碳的
Figure GSA00000031829700921
中:对应于附图12中称为EBC18B2的成熟大肠杆菌肌醇六磷酸酶的第26,43,46,54,73,113,126,184,228,384或410位残基的氨基酸残基。(请指出其它任何残基)。
1A、根据项目1的重组肌醇六磷酸酶,其中所述修饰包括至少两种上述修饰。
2、根据项目1的重组肌醇六磷酸酶,其中所述修饰是替换。
3、一种编码项目1中所述重组AppA肌醇六磷酸酶的多核苷酸序列,还包括在芽孢杆菌物种中可操作的分泌信号序列。
4、一种含有编码项目1的肌醇六磷酸酶的序列的表达构建体,还包括项目3的信号分泌序列。
5、一种含有项目4的表达构建体的载体。
6、一种经项目5的载体转化的宿主细胞。
7、项目6的宿主细胞,其中所述细胞是芽孢杆菌属物种。
8、项目7的宿主细胞,其中所述细胞是枯草芽孢杆菌。
9、一种生产具有改良的肌醇六磷酸酶活性的酶的方法,包括:
a)提供一种经项目4的表达构建体转化的宿主细胞;并
b)在适于所述细胞产生所述肌醇六磷酸酶的条件下培养所述宿主细胞。
10、项目9的方法,还包括:
c)回收所述肌醇六磷酸酶。
11、项目9的方法,其中所述宿主细胞是芽孢杆菌属物种。
12、项目11的方法,其中所述宿主细胞是枯草芽孢杆菌。
13、一种生产具有改良活性的项目1所述重组肌醇六磷酸酶的方法,所述方法包括:
a)提供一种含有编码AppA肌醇六磷酸酶或其天然变异体的序列的核酸;
b)对所述核酸进行易出错扩增;
c)用含有所述扩增的产物的表达构建体转化宿主细胞;并
d)在适于所述细胞表达所述扩增产物的条件下培养所述宿主细胞。
14、项目13的方法,其中所述宿主细胞是枯草芽孢杆菌。
15、项目13的方法,还包括:
e)回收所述肌醇六磷酸酶。
16、根据项目1的重组肌醇六磷酸酶,其含有附图12中称为PHY850或PHY902的序列中第31-440位氨基酸的氨基酸序列。
17、根据项目1的重组肌醇六磷酸酶,其中所述修饰是替换,并且所述替换位于氨基酸序列第113位点处。
18、根据项目17的重组肌醇六磷酸酶,还包括在一个或多个氨基酸序列位点的修饰,所述氨基酸序列位点选自于对应成熟AppA肌醇六磷酸酶或其天然变异体的第26,43,46,54,73,126,184,228,384和410位残基的残基。
19、根据项目13的方法,其中所述核酸包含选自于附图21中所列序列之一的序列。

Claims (15)

1.一种具有改良的肌醇六磷酸酶活性的重组肌醇六磷酸酶,所述重组肌醇六磷酸酶含有对应于附图12中称为EBC18B2的成熟大肠杆菌肌醇六磷酸酶的第26位残基的氨基酸残基的修饰,其中所述的重组肌醇六磷酸酶是附图12中的HY679及其成熟形式。
2.根据权利要求1的重组肌醇六磷酸酶,其中所述修饰是替换。
3.一种编码权利要求1中所述重组AppA肌醇六磷酸酶的多核苷酸,还包括在芽孢杆菌物种中可操作的分泌信号序列。
4.一种含有编码权利要求1的肌醇六磷酸酶的序列的表达构建体,还包括权利要求3的信号分泌序列。
5.一种含有权利要求4的表达构建体的载体。
6.一种经权利要求5的载体转化的宿主细胞。
7.权利要求6的宿主细胞,其中所述细胞是芽孢杆菌属物种。
8.权利要求7的宿主细胞,其中所述细胞是枯草芽孢杆菌。
9.一种生产具有改良的肌醇六磷酸酶活性的酶的方法,包括:
a)提供一种经权利要求4的表达构建体转化的宿主细胞;并
b)在适于所述细胞产生所述肌醇六磷酸酶的条件下培养所述宿主细胞。
10.权利要求9的方法,还包括:
c)回收所述肌醇六磷酸酶。
11.权利要求9的方法,其中所述宿主细胞是芽孢杆菌属物种。
12.权利要求11的方法,其中所述宿主细胞是枯草芽孢杆菌。
13.一种生产具有改良活性的权利要求1所述重组肌醇六磷酸酶的方法,所述方法包括:
a)提供一种含有编码AppA肌醇六磷酸酶或其天然变异体的序列的核酸;
b)对所述核酸进行易出错扩增;
c)用含有所述扩增的产物的表达构建体转化宿主细胞,其中所述的产物含有对应于附图12中HY679的氨基酸的修饰;并
d)在适于所述细胞表达所述扩增产物的条件下培养所述宿主细胞。
14.权利要求13的方法,其中所述宿主细胞是枯草芽孢杆菌。
15.权利要求13的方法,还包括:
e)回收所述肌醇六磷酸酶。
CN2010101238485A 2002-08-12 2003-08-11 大肠杆菌AppA肌醇六磷酸酶突变体 Expired - Fee Related CN101792749B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US40333002P 2002-08-12 2002-08-12
US60/403,330 2002-08-12

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
CN03824125A Division CN100594239C (zh) 2002-08-12 2003-08-11 大肠杆菌appa肌醇六磷酸酶突变体

Publications (2)

Publication Number Publication Date
CN101792749A CN101792749A (zh) 2010-08-04
CN101792749B true CN101792749B (zh) 2012-09-05

Family

ID=31715975

Family Applications (2)

Application Number Title Priority Date Filing Date
CN2010101238485A Expired - Fee Related CN101792749B (zh) 2002-08-12 2003-08-11 大肠杆菌AppA肌醇六磷酸酶突变体
CN03824125A Expired - Fee Related CN100594239C (zh) 2002-08-12 2003-08-11 大肠杆菌appa肌醇六磷酸酶突变体

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN03824125A Expired - Fee Related CN100594239C (zh) 2002-08-12 2003-08-11 大肠杆菌appa肌醇六磷酸酶突变体

Country Status (9)

Country Link
US (1) US7968342B2 (zh)
EP (1) EP1546316B1 (zh)
CN (2) CN101792749B (zh)
AT (1) ATE490309T1 (zh)
AU (1) AU2003258157A1 (zh)
CA (1) CA2495660A1 (zh)
DE (1) DE60335195D1 (zh)
DK (1) DK1546316T3 (zh)
WO (1) WO2004015084A2 (zh)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8114443B2 (en) * 2002-03-13 2012-02-14 Academia Sinica Phytase-expressing transgenic plants
CN101792749B (zh) * 2002-08-12 2012-09-05 金克克国际有限公司 大肠杆菌AppA肌醇六磷酸酶突变体
DE102004050410A1 (de) 2004-10-15 2006-06-08 Ab Enzymes Gmbh Polypeptid mit Phytaseaktivität und dieses codierende Nucleotidsequenz
GB0423139D0 (en) * 2004-10-18 2004-11-17 Danisco Enzymes
WO2006081825A1 (en) * 2005-02-04 2006-08-10 University Of Aarhus A method for recycling important nutritional elements from waste
MX2008012632A (es) 2006-04-04 2008-10-13 Novozymes As Variantes de fitasa.
CN101460612B (zh) * 2006-04-04 2015-05-06 诺维信公司 肌醇六磷酸酶变体
ES2288126B2 (es) * 2006-06-01 2009-07-06 Universitat De Les Illes Balears Utilizacion de fitato como agente inhibidor de la disolucion de cristales de sales calcicas para la prevencion o tratamiento de la osteoporosis.
EP2049669A2 (en) * 2006-08-09 2009-04-22 DSMIP Assets B.V. Spore surface displays of bioactive molecules
PT2397486E (pt) 2006-09-21 2015-03-23 Basf Enzymes Llc Fitases, ácidos nucleicos que as codificam e métodos para as preparar e utilizar
DE102006053059A1 (de) 2006-11-10 2008-05-15 Ab Enzymes Gmbh Polypeptid mit Phytaseaktivität und erhöhter Temperaturstabilität der Enzymaktivität sowie dieses codierende Nukleotidsequenz
US8143046B2 (en) 2007-02-07 2012-03-27 Danisco Us Inc., Genencor Division Variant Buttiauxella sp. phytases having altered properties
EP2011858B1 (en) 2007-07-06 2012-05-30 Chr. Hansen A/S A bile resistant bacillus composition secreting high levels of phytase
US8673609B2 (en) * 2008-04-18 2014-03-18 Danisco Us Inc. Buttiauxella sp. phytase variants
US8802079B2 (en) 2008-12-19 2014-08-12 Chr. Hansen A/S Bile resistant Bacillus composition
CN101492688B (zh) * 2009-01-08 2010-12-08 西南大学 枯草芽孢杆菌中性植酸酶phyC基因
GB0922467D0 (en) 2009-04-24 2010-02-03 Danisco Feed supplement
CN106011159A (zh) 2009-05-21 2016-10-12 巴斯夫酶有限责任公司 肌醇六磷酸酶、编码它们的核酸及制备和使用它们的方法
WO2011031736A2 (en) * 2009-09-14 2011-03-17 The Rockefeller University Methods of identifying anti-inflammatory compounds
WO2011048046A2 (de) * 2009-10-22 2011-04-28 Basf Se Synthetische phytasevarianten
CN104342418B (zh) * 2013-07-24 2017-05-31 东莞泛亚太生物科技有限公司 具有提升的酶活性的植酸酶
TWI478936B (zh) * 2013-07-24 2015-04-01 Genozyme Biotech Inc 具提升酶活性之植酸酶
DK3072962T3 (en) * 2013-11-12 2019-03-18 Feed Res Inst Caas PROCEDURE FOR THE PREPARATION OF PHYTASE VARIANT WITH IMPROVED THERMOSTABILITY AND A PHYTASE VARIANT AND APPLICATION THEREOF
ES2759083T3 (es) 2014-11-21 2020-05-07 Qingdao Vland Biotech Group Co Ltd Mutantes de fitasa
DK3419991T3 (da) 2016-03-04 2023-01-16 Danisco Us Inc Modificerede ribosomale genpromotorer til proteinproduktion i mikroorganismer
WO2017155803A1 (en) 2016-03-08 2017-09-14 Basf Enzymes Llc Methods for using phytase in ethanol production
US9528096B1 (en) * 2016-06-30 2016-12-27 Fornia Biosolutions, Inc. Phytases and uses thereof
US9605245B1 (en) 2016-06-30 2017-03-28 Fornia BioSoultions, Inc. Phytases and uses thereof
US10351832B2 (en) 2016-06-30 2019-07-16 Fornia Biosolutions, Inc. Phytases and uses thereof
EP3703661A1 (en) 2017-11-02 2020-09-09 Danisco US Inc. Freezing point depressed solid matrix compositions for melt granulation of enzymes
CN108251439B (zh) * 2018-01-11 2021-03-30 山西大学 一种人工改造的耐胰蛋白酶的植酸酶及其制备方法和应用
BR112020016068A2 (pt) 2018-02-08 2020-12-08 Danisco Us Inc. Partículas cera termicamente resistente matriz para encapsulamento de enzima
JP2021521835A (ja) 2018-04-26 2021-08-30 ダニスコ・ユーエス・インク 固体組成物中のフィターゼの安定性を増加させる方法、並びにリン酸塩及びフィターゼを含む顆粒組成物
CN110484455B (zh) * 2019-06-10 2022-05-24 潍坊康地恩生物科技有限公司 一种稳定高产植酸酶的木霉突变菌株
CN111826323A (zh) * 2020-08-05 2020-10-27 福建洛东生物技术有限公司 一种枯草芽孢杆菌及其制剂与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036607A1 (en) * 1999-11-18 2001-05-25 Cornell Research Foundation, Inc. Site-directed mutagenesis of escherichia coli phytase
WO2001090333A2 (en) * 2000-05-25 2001-11-29 Diversa Corporation Recombinant bacterial phytases and uses thereof
WO2002048332A2 (en) * 2000-12-12 2002-06-20 Diversa Corporation Recombinant phytases and uses thereof
CN100594239C (zh) * 2002-08-12 2010-03-17 金克克国际有限公司 大肠杆菌appa肌醇六磷酸酶突变体

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4179337A (en) 1973-07-20 1979-12-18 Davis Frank F Non-immunogenic polypeptides
JPS6023084B2 (ja) 1979-07-11 1985-06-05 味の素株式会社 代用血液
US4640835A (en) 1981-10-30 1987-02-03 Nippon Chemiphar Company, Ltd. Plasminogen activator derivatives
US4496689A (en) 1983-12-27 1985-01-29 Miles Laboratories, Inc. Covalently attached complex of alpha-1-proteinase inhibitor with a water soluble polymer
US5034506A (en) 1985-03-15 1991-07-23 Anti-Gene Development Group Uncharged morpholino-based polymers having achiral intersubunit linkages
US5235033A (en) 1985-03-15 1993-08-10 Anti-Gene Development Group Alpha-morpholino ribonucleoside derivatives and polymers thereof
DE3675588D1 (de) 1985-06-19 1990-12-20 Ajinomoto Kk Haemoglobin, das an ein poly(alkenylenoxid) gebunden ist.
EP0272253A4 (en) 1986-03-07 1990-02-05 Massachusetts Inst Technology METHOD FOR IMPROVING GLYCOPROTE INSTABILITY.
US5750871A (en) 1986-05-29 1998-05-12 Calgene, Inc. Transformation and foreign gene expression in Brassica species
US4791192A (en) 1986-06-26 1988-12-13 Takeda Chemical Industries, Ltd. Chemically modified protein with polyethyleneglycol
US5633076A (en) 1989-12-01 1997-05-27 Pharming Bv Method of producing a transgenic bovine or transgenic bovine embryo
FR2673643B1 (fr) 1991-03-05 1993-05-21 Rhone Poulenc Agrochimie Peptide de transit pour l'insertion d'un gene etranger dans un gene vegetal et plantes transformees en utilisant ce peptide.
US5644048A (en) 1992-01-10 1997-07-01 Isis Pharmaceuticals, Inc. Process for preparing phosphorothioate oligonucleotides
ES2268687T3 (es) 1994-04-25 2007-03-16 Dsm Ip Assets B.V. Polipeptidos con actividad fitasa.
US5571706A (en) 1994-06-17 1996-11-05 The United States Of America As Represented By The Secretary Of Agriculture Plant virus resistance gene and methods
AU2077197A (en) 1996-03-18 1997-10-10 Novo Nordisk Biotech, Inc. Polypeptides having phytase activity and nucleic acids encoding same
WO1997038096A1 (fr) 1996-04-05 1997-10-16 Kyowa Hakko Kogyo Co., Ltd. Nouvelle phytase et gene codant pour ladite phytase
US5773269A (en) 1996-07-26 1998-06-30 Regents Of The University Of Minnesota Fertile transgenic oat plants
CN1231692A (zh) 1996-09-25 1999-10-13 协和发酵工业株式会社 新型肌醇六磷酸酶及其制造方法
US6039942A (en) 1996-12-20 2000-03-21 Novo Nordick A/S Phytase polypeptides
US6855365B2 (en) * 1997-08-13 2005-02-15 Diversa Corporation Recombinant bacterial phytases and uses thereof
US6183740B1 (en) * 1997-08-13 2001-02-06 Diversa Corporation Recombinant bacterial phytases and uses thereof
US5876997A (en) 1997-08-13 1999-03-02 Diversa Corporation Phytase
GB9917975D0 (en) 1999-07-30 1999-09-29 Smithkline Beecham Biolog Novel compounds

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001036607A1 (en) * 1999-11-18 2001-05-25 Cornell Research Foundation, Inc. Site-directed mutagenesis of escherichia coli phytase
WO2001090333A2 (en) * 2000-05-25 2001-11-29 Diversa Corporation Recombinant bacterial phytases and uses thereof
WO2002048332A2 (en) * 2000-12-12 2002-06-20 Diversa Corporation Recombinant phytases and uses thereof
CN100594239C (zh) * 2002-08-12 2010-03-17 金克克国际有限公司 大肠杆菌appa肌醇六磷酸酶突变体

Also Published As

Publication number Publication date
WO2004015084A2 (en) 2004-02-19
AU2003258157A8 (en) 2004-02-25
US20060141562A1 (en) 2006-06-29
US7968342B2 (en) 2011-06-28
AU2003258157A1 (en) 2004-02-25
ATE490309T1 (de) 2010-12-15
EP1546316A2 (en) 2005-06-29
WO2004015084A3 (en) 2004-10-28
CA2495660A1 (en) 2004-02-19
CN100594239C (zh) 2010-03-17
EP1546316B1 (en) 2010-12-01
EP1546316A4 (en) 2007-05-02
CN1688690A (zh) 2005-10-26
CN101792749A (zh) 2010-08-04
DK1546316T3 (da) 2011-02-14
DE60335195D1 (de) 2011-01-13

Similar Documents

Publication Publication Date Title
CN101792749B (zh) 大肠杆菌AppA肌醇六磷酸酶突变体
AU765477B2 (en) Phytase variants
KR100225087B1 (ko) 피타아제의 식물내 발현
Xiao et al. Transgenic expression of a novel M. truncatula phytase gene results in improved acquisition of organic phosphorus by Arabidopsis
CN101671685B (zh) 肌醇六磷酸酶、编码肌醇六磷酸酶的核酸及包含有此核酸的载体和宿主细胞
US7429475B2 (en) Phytase enzymes, nucleic acid sequences encoding phytase enzymes and vectors and host cells incorporating same
US20080219965A1 (en) Phytase Variants
US20090246856A1 (en) Trichoderma Reesei Phytase Enzymes, Nucleic Acids Encoding Such Phytase Enzymes, Vectors and Host Cells Incorporating Same and Methods of Making and Using Same
Tang et al. Overexpression in Escherichia coli and characterization of the chloroplast triosephosphate isomerase from spinach
AU2003270969B2 (en) Phytase Variants
MXPA99011166A (en) Engineering plant thioesterases and disclosure of plant thioesterases having novel substrate specificity

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120905

Termination date: 20210811

CF01 Termination of patent right due to non-payment of annual fee