CN1385909A - 碱性蓄电池 - Google Patents

碱性蓄电池 Download PDF

Info

Publication number
CN1385909A
CN1385909A CN02118977A CN02118977A CN1385909A CN 1385909 A CN1385909 A CN 1385909A CN 02118977 A CN02118977 A CN 02118977A CN 02118977 A CN02118977 A CN 02118977A CN 1385909 A CN1385909 A CN 1385909A
Authority
CN
China
Prior art keywords
volume
battery
dividing plate
plate
pole plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN02118977A
Other languages
English (en)
Other versions
CN1303704C (zh
Inventor
森下展安
植田利史
谷口明宏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Toyota Motor Corp
Publication of CN1385909A publication Critical patent/CN1385909A/zh
Application granted granted Critical
Publication of CN1303704C publication Critical patent/CN1303704C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/34Gastight accumulators
    • H01M10/345Gastight metal hydride accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M2010/4292Aspects relating to capacity ratio of electrodes/electrolyte or anode/cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

对于具有将正极板与负极板隔着它们之间的隔板而叠层的极板组的碱性蓄电池,使得初次充放电前的隔板的体积占极板组的体积的比例为30~60%。

Description

碱性蓄电池
技术领域
本发明涉及碱性蓄电池,特别地涉及通过对隔板进行性改良来延长电池使用寿命的碱性蓄电池。
背景技术
参照图2对于作为碱性蓄电池一示例的镍氢蓄电池进行说明。在图2中,在镍氢蓄电池1的构造中,将氢氧化镍作为正极活性物质的正极板与将氢气吸留合金作为主要负极构成材料的负极板隔着隔板叠层形成的、作为供电元件的极板组3与电解液一同收容在电槽2内。利用设有安全阀4的盖5封闭电槽2的开口部,从各正极板的一侧部上端向上方引出导线6并且在该上部连接正极端子7,同样地,从负极板的另一侧部上端向上方引出导线6并在其上部连接负极端子8,将所述的正极端子7以及负极端子8安装在盖5上。
对于这种碱性蓄电池,为了增大电池容量,在隔板能够发挥吸收必要的电解液并同时防止短路的功能这样的范围内,尽量使得隔板较薄而将隔板体积通常设定为不到极板组体积的30%。
然而,当反复进行充放电时,极板会逐渐膨胀,如上所述,当将隔板的体积设定为不到极板组体积的30%时,由于极板的膨胀而会押碎隔板,隔板所吸收的电解液减少。结果,电池的内部电阻上升,由此,会产生发热,并且随着内压的上升安全阀也会进行动作,所产生的气体会释放到电池之外,结果,电解液完全枯竭,在短期内就不能够使用电池。
本发明鉴于上述以往的问题,目的在于提供一种通过改良隔板来延长使用寿命的碱性蓄电池。
发明内容
本发明的碱性蓄电池是具有将正极板与负极板隔着它们之间的隔板进行叠层的极板组的碱性蓄电池,至少使得初次充放电前(电池组装后到最初进行充放电的期间)的隔板体积占极板组体积的比例为30~60%。通过使得极板组的隔板的体积比例为30%以上,能够防止导致电池寿命缩短的隔板的压缩。当所述比例超过60%时,在电池内产生的热量很难释放到外部,会导致寿命特性恶化。因此,使得该比例为30~60%,能够延长电池可充放电的总电气量,改善寿命特性,能够提供一种长期可靠性高的电池。
又,最好初次充放电前的隔板的空穴率为50~70%。当超过70%时,容易产生短路,而小于50%时,能够保存电解液的体积减少,寿命特性也会恶化。
又,最好初次充放电前的极板组的体积相对于电槽容积的比例为85~95%。当小于85%时,由于极板间的距离变大,输出特性恶化,内部电阻增大寿命特性也会产生恶化,当超过95%时,会压缩隔板而很难保存电解液,由此导致寿命特性恶化。
附图说明
图1是表示本发明一实施形态以及以往示例的碱性蓄电池的寿命试验结果的曲线。
图2表示碱性蓄电池的部分剖视外观立体图。
具体实施形态
以下,参照图1、图2对于本发明的镍氢蓄电池的一实施形态进行说明。
在端部设有5mm宽的未填充部的发泡镍中,填充主要成分为氢氧化镍的正极材料,在未填充部设置镍导线,形成容量为1Ah、反应面积为39.3cm2的正极板。又,在端部设有5mm宽的未涂布部的冲孔金属上,涂布主要成分为平均粒径20μm的氢气吸留合金的负极材料,在未涂布部上设置镍导线,形成电容为1.24Ah、反应面积为39.3cm2的负极板。
在正极板上,被覆以比重为0.91的聚丙烯纤维构成的厚度为0.18mm的非织布形成的袋状的隔板,相互重合正极板7与负极板8并形成极板组3,并且将它们收容在合成树脂制的电槽2中。又,与外部端子的连接是汇集各极板的镍导线6并且在上部利用电阻焊接将正极与负极的极端子7、8接合。注入20g主要成分为氢氧化钙的电解液并且用具有安全阀4的盖5进行密封,由此构成镍氢蓄电池1。此后,为了使之活性化,以0.1C进行充放电。容量约为7Ah。
采用这样的镍氢蓄电池进行寿命试验。寿命试验的条件是首先以1A充电5小时,从第2次循环开始以1A放电4小时、以1A充电4小时4分钟。
(试验例1)
分别构成隔板厚度为0.10、0.14、0.18、0.27、0.41、0.62、0.96mm的电池。初次充放电前,隔板体积占极板组体积的比例分别为20、25、30、40、50、60、70%。隔板体积占极板组体积的比可如下述这样求得,将初次充放电前的电池对于极板组沿直角方向切断,计测剖面上隔板的厚度,据此求出该比例。测定上述各电池的寿命特性。采用容量比例作为寿命特性,将相对于各个电池的初期容量的容量在65%以下时看作为寿命结束。将隔板体积比例为30%的电池设计时的寿命特性作为100进行相对评价。结果如图1所示。又,电池的体积容量密度也在图1表示。
从该结果可知,隔板的体积比例为20或25%时寿命特性极端恶化。认为这是由于充放电引起极板膨胀而导致隔板压缩以及不能够保持电解液。又,当比例为70%时,由于隔板体积较大,电池的容量密度下降为隔板体积为30%时的80%,电池内发出的热量很难释放到外部,对于寿命特性,也相对于60%时为低。由此,可知隔板体积比例最好为30~60%。
(试验例2)
作成采用下述隔板的电池,即使得隔板的厚度为0.18mm、相对于初次充放电前的极板组的体积比例为30%并且使空穴率变化为45、50、60、70、75%。进行与试验例1相同的寿命试验。又,测定各电池的输出特性。对于输出特性上,调整各电池为SOC60%,进行大电流放电,在直到达到1V为止的时间能够维持10秒以上的电流值上乘以1V作为输出功率。其单位为W。又,测定值是10个电池的平均值。该试验结果如表1所示。
                        表1
    空穴率(%)   寿命特性(循环次数)     输出特性(W)
    45   1000     100
    50   5000     130
    60   6000     140
    70   5000     150
    75   短路     短路
从该结果可知,当空穴率为75%以上时,会在试验过程中发生短路,不能够确保可靠性。又,在45%以下时,能够保存电解液的体积减少,而且,由于极板的膨胀而压缩隔板,则保存的电解液量减少,寿命特性会产生恶化。由此,可知隔板的空穴率为50~70%较为适当。
(试验例3)
组合了正极板、负极板以及隔板的极板组,使得隔板的厚度为0.18mm并且相对于初次充放电前的极板组的体积比例为30%,分别作成极板组的体积与电槽的容积的比例为83%、85%、90%、95%、97%的电池,进行与试验例1相同的寿命试验。又,与试验例2同样地测定各电池的输出特性。该试验结果如表2所示。
                            表2
    极板组相对于电槽容积的比例     寿命特性(循环次数)   输出特性(W)
    83     1000   80
    85     5000   120
    90     6000   130
    95     5000   130
    97     1000   130
从结果可知,极板组相对于电槽容积的比例为97%以上时,因极板膨胀而压缩隔板,很难保持电解液,故寿命变短。当为83%时,极板因充放电而膨胀之后,由于未导致隔板被压碎而极板间的距离增大,电子不能够平滑移动,故输出特性劣化,而且,由于内部电阻增高,寿命特性也会恶化。如上所述,可知相对于电槽容积极板组的比例为85%~95%较为适当。
又,本发明不仅限于镍氢蓄电池,也适用于镍镉电池。而且,不仅限于方形的电池,也适用于圆筒形电池。
根据本发明的碱性蓄电池,能够抑制决定电池寿命的隔板的压缩,同时不存在因电池内产生的热量很难释放到外部而导致寿命特性恶化的问题,电池总的可充放电的电能增加,能够改善电池的寿命特性,能够提供可靠性长期间高的电池。

Claims (3)

1.一种碱性蓄电池,具有将正极板与负极板在其间隔着隔板进行叠层的极板组,其特征在于,
初次充放电前的隔板的体积占极板组的体积的比例为30~60%。
2.如权利要求1所述的碱性蓄电池,其特征在于,
初次充放电前的隔板的空穴率为50~70%。
3.如权利要求1所述的碱性蓄电池,其特征在于,
初次充放电前的极板组的体积相对于电槽容积的比例为85~95%。
CNB021189773A 2001-05-11 2002-05-10 碱性蓄电池 Expired - Lifetime CN1303704C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001140964 2001-05-11
JP2001-140964 2001-05-11
JP2001140964A JP4126684B2 (ja) 2001-05-11 2001-05-11 ニッケル水素二次電池

Publications (2)

Publication Number Publication Date
CN1385909A true CN1385909A (zh) 2002-12-18
CN1303704C CN1303704C (zh) 2007-03-07

Family

ID=18987482

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB021189773A Expired - Lifetime CN1303704C (zh) 2001-05-11 2002-05-10 碱性蓄电池

Country Status (5)

Country Link
US (1) US6835501B2 (zh)
EP (1) EP1256994B1 (zh)
JP (1) JP4126684B2 (zh)
CN (1) CN1303704C (zh)
DE (1) DE60215253T2 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031620B2 (ja) 2001-04-09 2008-01-09 松下電器産業株式会社 ニッケル水素蓄電池およびその使用方法
JP3709197B2 (ja) * 2003-08-25 2005-10-19 松下電器産業株式会社 円筒形電池及びその製造方法
AU2006255054A1 (en) 2005-06-08 2006-12-14 Powercast Corporation Powering devices using RF energy harvesting
US20090102296A1 (en) * 2007-01-05 2009-04-23 Powercast Corporation Powering cell phones and similar devices using RF energy harvesting
KR101084909B1 (ko) * 2009-12-07 2011-11-17 삼성에스디아이 주식회사 전극조립체블록 및 그 제조 방법, 이차전지 및 그 제조 방법
EP3676937A4 (en) 2017-09-01 2021-06-02 Powercast Corporation METHODS, SYSTEMS AND APPARATUS FOR AUTOMATIC RF POWER TRANSMISSION AND SINGLE ANTENNA ENERGY RECOVERY
US10763687B2 (en) 2017-12-04 2020-09-01 Powercast Corporation Methods, systems, and apparatus for wireless recharging of battery-powered devices

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3377201A (en) * 1964-03-24 1968-04-09 Yardney International Corp Spiral battery cell
JPS4841866B1 (zh) * 1970-02-02 1973-12-08
JPS5937292B2 (ja) * 1977-10-03 1984-09-08 旭化成株式会社 ポリオレフイン樹脂多孔膜およびアルカリ蓄電池セパレ−タ−ならびにミクロフイルタ−
US5318866A (en) * 1993-04-23 1994-06-07 Pall Corporation Battery separators
JPH06333552A (ja) 1993-05-21 1994-12-02 Japan Storage Battery Co Ltd 非水電解液二次電池
US5492781A (en) * 1994-01-18 1996-02-20 Pall Corporation Battery separators
JP3519775B2 (ja) 1994-03-16 2004-04-19 三洋電機株式会社 密閉型ニッケル−水素蓄電池
DK1092243T3 (da) * 1998-06-05 2003-06-30 Dsm Nv Fremgangsmåde til fremstilling af en mikroporøs film
US6265101B1 (en) * 1998-08-21 2001-07-24 Eveready Battery Company, Inc. Battery constructions having increased internal volume for active components
AU2045700A (en) * 1998-12-15 2000-07-03 Duracell Inc. Electrochemical cell closure
JP2001006748A (ja) * 1999-06-22 2001-01-12 Sony Corp 非水電解質電池
JP4659187B2 (ja) * 1999-09-14 2011-03-30 日本バイリーン株式会社 電池用セパレータ

Also Published As

Publication number Publication date
EP1256994A3 (en) 2004-11-17
JP4126684B2 (ja) 2008-07-30
EP1256994A2 (en) 2002-11-13
DE60215253T2 (de) 2007-01-18
EP1256994B1 (en) 2006-10-11
JP2002343417A (ja) 2002-11-29
CN1303704C (zh) 2007-03-07
US6835501B2 (en) 2004-12-28
US20030003366A1 (en) 2003-01-02
DE60215253D1 (de) 2006-11-23

Similar Documents

Publication Publication Date Title
US5554455A (en) Resealable safety vent and a sealed alkaline rechargeable battery provided with the safety vent
EP2521200B1 (en) Stacked constructions for electrochemical batteries
WO2009128482A1 (ja) 蓄電装置
KR20110120914A (ko) 에너지 저장 장치의 가변 체적 내포
US20100304191A1 (en) Energy storage devices having cells electrically coupled in series and in parallel
JP3293287B2 (ja) 角形密閉式アルカリ蓄電池とその単位電池
CN1303704C (zh) 碱性蓄电池
CN1198353C (zh) 镍氢蓄电池的充放电方法
CN101587965B (zh) 一种内连接方形塑壳蓄电池
KR100224464B1 (ko) 알칼리 2차 전지 제조방법, 알칼리 2차전지의 양전극, 알칼리2차전지,및 초기충전 알칼리 2차전지 제조방법
EP2728641B1 (en) Low maintenance alkaline electrochemical cell
JPH05326024A (ja) 積層密閉型酸化金属−水素蓄電池及び群電池システムとそれらの充電方法
JPH0536442A (ja) 酸化金属−水素蓄電池とその充電方法
KR100754918B1 (ko) 사이드 단자식 전지
US6653023B1 (en) Rectangular battery
CN1178398A (zh) 电池组冷却方法
CN112886075B (zh) 镍氢蓄电池的制造方法
JP2856855B2 (ja) 角形ニッケル水素蓄電池の製造方法
CN117559068A (zh) 一种提高锌银贮备电池强度的结构及安装方法
CN202217722U (zh) 一种集流效果经改善的圆柱形蓄电池
JP2022052959A (ja) 二次電池
CN114975896A (zh) 镍氢蓄电池的制造方法
CN102368541A (zh) 一种集流效果经改善的圆柱形蓄电池及制作方法
JPH07254430A (ja) 密閉型ニッケル−水素蓄電池
JPH05314970A (ja) 水素吸蔵電極

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20070307