CN1351954A - 一种用于甲烷与二氧化碳重整反应的微波催化剂 - Google Patents

一种用于甲烷与二氧化碳重整反应的微波催化剂 Download PDF

Info

Publication number
CN1351954A
CN1351954A CN00123255A CN00123255A CN1351954A CN 1351954 A CN1351954 A CN 1351954A CN 00123255 A CN00123255 A CN 00123255A CN 00123255 A CN00123255 A CN 00123255A CN 1351954 A CN1351954 A CN 1351954A
Authority
CN
China
Prior art keywords
catalyst
microwave
hours
methane
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN00123255A
Other languages
English (en)
Other versions
CN1142086C (zh
Inventor
张劲松
徐兴祥
曹小明
杨永进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Metal Research of CAS
Original Assignee
Institute of Metal Research of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Metal Research of CAS filed Critical Institute of Metal Research of CAS
Priority to CNB00123255XA priority Critical patent/CN1142086C/zh
Publication of CN1351954A publication Critical patent/CN1351954A/zh
Application granted granted Critical
Publication of CN1142086C publication Critical patent/CN1142086C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/40Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts characterised by the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J2219/0873Materials to be treated
    • B01J2219/0892Materials to be treated involving catalytically active material
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0238Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a carbon dioxide reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0855Methods of heating the process for making hydrogen or synthesis gas by electromagnetic heating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1005Arrangement or shape of catalyst
    • C01B2203/1029Catalysts in the form of a foam
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1047Group VIII metal catalysts
    • C01B2203/1052Nickel or cobalt catalysts
    • C01B2203/1058Nickel catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

一种用于甲烷与二氧化碳重整反应的微波催化剂,由载体和活性成分组成,其特征在于:催化剂活性组分为氧化镍,其担载量为3~20%重量;所用的催化剂载体为表面涂覆γ-Al2O3的泡沫陶瓷,泡沫陶瓷的主组分为碳化硅、铁氧体的吸波材料,次组分为用作粘接剂的二氧化硅,载体的重量组成为2~25%的粘接剂,70~90%的吸波材料,5~25%的γ-Al2O3。本发明可以使反应在温和的条件下进行,并且具有较高的合成气收率,很低的反应积炭。

Description

一种用于甲烷与二氧化碳重整反应的微波催化剂
本发明涉及甲烷与二氧化碳重整反应,特别提供了一种用于甲烷与二氧化碳重整反应的微波催化剂。
甲烷与二氧化碳重整反应是有效利用储量丰富的天然气与二氧化碳的最有效途径之一。该反应以其生成低H2/CO比的合成气而倍受研究者重视。为克服该反应反应温度高、积炭严重的缺点,采用微波强化该反应不失为一条有效的途径。微波能在化学中的应用近年来取得了很大的进展,利用其快速、选择性加热的特点,可以得到许多常规加热所不能得到的结果,尤其是在催化反面的研究,更是取得了许多很好的结果,由此微波催化作为一门交叉学科应运而生。微波催化发展的关键问题是寻找具有良好的微波可加热性的微波催化剂,近几年的实践也证明微波催化剂已越来越成为制约微波催化发展的瓶颈问题。开发研制微波催化剂的关键是寻找吸波性能良好的催化剂或催化剂载体,由于在多数催化剂中活性组分所占的比例很小,尤其是在贵金属催化剂中表现更为突出,载体的微波吸收能力将对整个催化剂的吸波能力起到关键作用。传统催化剂中用作载体的氧化铝、二氧化硅及多数碱土金属和过渡金属氧化物的吸波能力都是很弱的。据B.Vos等报道对Ni/Al2O催化剂采用微波加热,难以加热到300℃以上,这将难以达到使用要求。为此开发研制全新具有强吸波能力的催化剂就显的极为重要。
本发明的目的在于提供一种用于甲烷与二氧化碳重整反应的微波催化剂,其可以使反应在温和的条件下进行,并且具有较高的合成气收率,很低反应积炭。
本发明提供了一种用于甲烷与二氧化碳重整反应的微波催化剂,由载体和活性成分组成,其特征在于:催化剂活性组分为氧化镍,其担载量为3~20%重量;所用的催化剂载体为表面涂覆γ-Al2O3的泡沫陶瓷,泡沫陶瓷的主组分为碳化硅、铁氧体的吸波材料,次组分为用作粘接剂的二氧化硅,载体的重量组成为2~25%的粘接剂,70~90%的吸波材料,5~25%的γ-Al2O3
本发明还提供了上述用于甲烷与二氧化碳重整反应的微波催化剂的制备方法,其特征在于:
载体的制备:
(1)将正硅酸乙酯、酒精、水、冰醋酸和盐酸按一定比例配制成水解液,水解液的重量份数组成为:100正硅酸乙酯,50~90酒精,5~25水,1~5冰醋酸,0.1~2浓盐酸;
(2)将80~200目的吸波材料与过程1中配制的水解液按比例混合均匀,二者重量比为100碳化硅,20~50水解液,并将其挂在泡沫塑料上,然后置于烘箱中60~120℃烘干固化,再在1000~2200℃下焙烧处理2~10小时,即可制得具有超强吸波能力的泡沫陶瓷;
(3)用水解液在过程(2)制成的泡沫陶瓷表面浸渍、涂覆一层γ-Al2O3,然后置于烘箱中120℃,8~24小时烘干,再在400~800℃下焙烧处理2~10小时,即可制得具有超强吸波能力的泡沫状催化剂载体。
催化剂的制备:
将Ni(NO3)2配成溶液,将过程(3)制成的催化剂载体浸渍于Ni(NO3)2溶液中,取出后吹扫掉悬浮的Ni(NO3)2溶液,置于烘箱中120℃,8~24小时烘干,再在400~800℃下焙烧处理2~10小时,即可制得具有超强吸波能力的泡沫状催化剂。
本发明通过强吸波泡沫陶瓷的研制,制得了具有超强吸波能力的泡沫状陶瓷作为催化剂基体,通过在泡沫陶瓷表面涂覆γ-Al2O3,有效的增加了泡沫陶瓷的比表面积,使其适合于用作催化剂载体,最后用浸渍法制备成泡沫陶瓷担载的镍催化剂。
本发明研制的泡沫状吸波催化剂为三维连通网络结构。其连通结构使催化剂床整体连续,从而克服了传统颗粒状催化剂微波加热时的颗粒间放电导致加热不均匀现象,使催化剂床加热更均匀;泡沫陶瓷所独有的三维手性特征使其具有更优异的电损耗和磁损耗,更有利于微波加热;所选用泡沫陶瓷材料原有的高热导率,更有利于催化剂床层的温度内外均一。总之,吸波泡沫状催化剂所特有的结构,使其具有更优异的微波可加热性和微波加热均匀性。
本发明研制的泡沫状吸波催化剂用于甲烷与二氧化碳重整制合成气反应,采用微波辐照进行该反应时实现了温和反应条件下,高合成气收率,很低反应积炭的目的。
总之,本发明具有下述技术特点:
1.本发明研制的吸波泡沫状催化剂载体,基体为碳化硅、铁氧体等吸波材料,孔径均匀,强度高。
2.本发明研制的吸波泡沫状催化剂载体,具有低比重和高热导率。
3.本发明研制的吸波泡沫状催化剂载体,在碳化硅表面涂覆一层γ-Al2O3,涂层均匀,有效的增加了载体的比表面积。
4.本发明研制的吸波泡沫状催化剂,具有超强的吸收微波能力和微波加热均匀性。
5.本发明研制的吸波泡沫状催化剂,具有生产过程简单,成本低,易于工业化等特点。
6.采用微波辐照本发明研制的吸波泡沫状催化剂,进行甲烷与二氧化碳重整制合成气反应,具有反应温度低,合成气收率高,合成气中CO/H2比合理等优点。
附图1为泡沫碳化硅SEM照片;
附图2为催化剂载体A的SEM照片;
附图3为催化剂载体B2的SEM照片;
附图4为催化剂载体B2微波加热红外热像图;
附图5为泡沫吸波催化剂在微波场中的升温曲线;
附图6为不同加热方式下合成气收率随温度变化曲线(B2催化剂,空速为2000h-1);
附图7为不同加热方式下产物中H2/CO随温度变化曲线(B2催化剂,空速为2000h-1);
附图8为不同加热方式下空速对合成气受率的影响(B2催化剂,T=1073K);
附图9为B2催化剂常规反应后SEM照片;
附图10为B2催化剂微波反应后SEM照片;
附图11为B2催化剂反应前后X-Ray衍射图。
实施例1:高比表面泡沫吸波催化剂载体的制备
将SiC粉500克与50克二氧化硅混合均匀后,制成泡沫状,经1800℃焙烧3小时,再用由正硅酸乙酯配制的粘接剂在其表面涂覆55克γ-Al2O3,并于600℃下焙烧处理6小时,即得催化剂载体A。正硅酸乙酯配制的粘接剂的组成重量比为:(100)正硅酸乙酯,(70)酒精,(12)水,(4)冰醋酸,(1.2)浓盐酸。
该催化剂载体的BET比表面积可达46m2/g。由扫描电子显微镜也可以看出涂覆γ-Al2O3前后泡沫陶瓷表面有明显变化(如图1、2所示)。
实施例2:
将实施例1中碳化硅和二氧化硅分别换作锰锌铁氧体,然后按照实施例1的制备过程,制备出催化剂载体B。
实施例3:泡沫吸波催化剂的制备
用实施例1所述催化剂载体A,抽真空浸渍Ni(NO3)2溶液,然后120℃烘干16小时,经600℃焙烧6小时,所得催化剂称为催化剂An。其活性组分以NiO计为3~20%。其中NiO含量为5%、9%和17%的催化剂分别称为催化剂A1、A2、和A3。催化剂A2的SEM照片如图3所示,X-Ray衍射图谱如图11所示。
实施例4:泡沫吸波催化剂的微波加热性实验
用实施例2制备的泡沫吸波催化剂A2、B2,置于石英管中,用单模微波谐振腔进行微波加热实验,微波功率为2~30W/ml催化剂。采用红外热像仪对加热温度和加热均匀性进行观测。从图5所示的催化剂升温曲线可以看出,催化剂温度随微波功率的变化基本呈线性变化;从图4所示的红外热像图可以看出泡沫吸波催化剂具有很好的微波加热均匀性。
实施例5~7:用甲烷与二氧化碳重整反应表征催化剂的反应性能
在连续流动固定床反应装置上分别装填4ml实施例2所制的B2催化剂,在0.1Mpa,750~900℃,2000~6000h-1,CO2/CH4=1的反应条件下,分别采用常规和连续微波加热进行催化剂反应性能评价实验1~3,其反应结果如图6--8所示。微波源为2450MHz,800W连续微波源,实验用微波功率为6W/ml催化剂。实验结果表明采用微波时可以明显降低反应温度,提高合成气收率,优化H2/CO比。
实施例10:反应后催化剂表征
对微波及常规加热反应后的催化剂B2进行了SEM(图9~10)及X-Ray衍射(图11)表征。通过对反应前及反应后催化剂X-Ray衍射的结果进行对比表明,用微波加热本发明研制的微波催化剂进行甲烷与二氧化碳重整反应,对反应积炭有很明显的抑制作用。

Claims (2)

1、一种用于甲烷与二氧化碳重整反应的微波催化剂,由载体和活性成分组成,其特征在于:催化剂活性组分为氧化镍,其担载量为3~20%重量;所用的催化剂载体为表面涂覆γ-Al2O3的泡沫陶瓷,泡沫陶瓷的主组分为碳化硅、铁氧体的吸波材料,次组分为用作粘接剂的二氧化硅,载体的重量组成为2~25%的粘接剂,70~90%的吸波材料,5~25%的γ-Al2O3
2、一种权利要求1所述用于甲烷与二氧化碳重整反应的微波催化剂的制备方法,其特征在于:
载体的制备:
(1)将正硅酸乙酯、酒精、水、冰醋酸和盐酸按比例配制成水解液,水解液的重量份数组成为:100正硅酸乙酯,50~90酒精,5~25水,1~5冰醋酸,0.1~2浓盐酸;
(2)将80~200目的吸波材料与过程1中配制的水解液按比例混合均匀,二者重量比为100碳化硅,20~50水解液,并将其挂在泡沫塑料上,然后置于烘箱中60~120℃烘干固化,再在1000~2200℃下焙烧处理2~10小时,即可制得具有超强吸波能力的泡沫陶瓷;
(3)用水解液在过程(2)制成的泡沫陶瓷表面浸渍、涂覆一层γ-Al2O3,然后置于烘箱中120℃,8~24小时烘干,再在400~800℃下焙烧处理2~10小时,即可制得具有超强吸波能力的泡沫状催化剂载体。
催化剂的制备:
将Ni(NO3)2配成溶液,将过程(3)制成的催化剂载体浸渍于Ni(NO3)2溶液中,取出后吹扫掉悬浮的Ni(NO3)2溶液,置于烘箱中120℃,8~24小时烘干,再在400~800℃下焙烧处理2~10小时,即可制得具有超强吸波能力的泡沫状催化剂。
CNB00123255XA 2000-11-15 2000-11-15 一种用于甲烷与二氧化碳重整反应的微波催化剂及其制备方法 Expired - Fee Related CN1142086C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB00123255XA CN1142086C (zh) 2000-11-15 2000-11-15 一种用于甲烷与二氧化碳重整反应的微波催化剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB00123255XA CN1142086C (zh) 2000-11-15 2000-11-15 一种用于甲烷与二氧化碳重整反应的微波催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN1351954A true CN1351954A (zh) 2002-06-05
CN1142086C CN1142086C (zh) 2004-03-17

Family

ID=4589719

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB00123255XA Expired - Fee Related CN1142086C (zh) 2000-11-15 2000-11-15 一种用于甲烷与二氧化碳重整反应的微波催化剂及其制备方法

Country Status (1)

Country Link
CN (1) CN1142086C (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2864528A1 (fr) * 2003-12-31 2005-07-01 Total France Procede de traitement des melanges methane/dioxyde de carbone
CN100388975C (zh) * 2005-09-29 2008-05-21 北京化工大学 一种甲烷二氧化碳重整制合成气的金属载体催化剂及其制备方法
US7393877B2 (en) 2003-12-31 2008-07-01 Total France Process for the conversion of a synthesis gas to hydrocarbons in the presence of beta-SiC and effluent from this process
WO2011035852A3 (de) * 2009-09-22 2011-05-19 Clariant International Ltd Vorrichtung zur kontinuierlichen durchführung heterogen katalysierter chemischer reaktionen bei hohen temperaturen
CN101757919B (zh) * 2009-12-28 2012-12-26 中国科学院广州能源研究所 一种应用于生物油重整制氢的整体型催化剂及其制备方法和用途
US8884040B2 (en) 2008-04-04 2014-11-11 Clariant Finance (Bvi) Limited Continuous method for producing fatty acid amides
US8974743B2 (en) 2009-06-30 2015-03-10 Clariant Finance (Bvi) Limited Device for continuously carrying out chemical reactions at high temperatures
US9000197B2 (en) 2009-09-22 2015-04-07 Clariant Finance (Bvi) Limited Continuous transesterification method
US9039870B2 (en) 2006-10-09 2015-05-26 Clariant Finance (Bvi) Limited Method for producing alkaline (meth)acrylamides
US9221938B2 (en) 2010-12-30 2015-12-29 Clariant Finance (Bvi) Limited Polymers carrying hydroxyl groups and ester groups and method for the production thereof
US9243116B2 (en) 2010-12-30 2016-01-26 Clariant International Ltd. Method for modifying polymers comprising hydroxyl groups
CN106008188A (zh) * 2016-05-30 2016-10-12 浙江工业大学 一种甘油催化脱水制备丙烯醛的新方法
CN107337446A (zh) * 2017-07-07 2017-11-10 福建省德化县联达陶瓷有限公司 一种功能性陶瓷产品及其制作工艺
CN110772890A (zh) * 2018-07-30 2020-02-11 天津大学 一种负载四氧化三铁的SiC泡沫陶瓷及其制备方法和应用
CN110772911A (zh) * 2018-07-30 2020-02-11 天津大学 一种去除生物气溶胶的微波反应装置、反应***及其应用
CN112604702A (zh) * 2020-12-10 2021-04-06 南昌大学 一种微波驱动型催化剂的制备方法及应用
CN116253288A (zh) * 2023-01-17 2023-06-13 中国林业科学研究院林产化学工业研究所 一种变频微波催化甲烷裂解制氢的方法

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005072867A1 (fr) * 2003-12-31 2005-08-11 Total France Procede de traitement des melanges methane/dioxyde de carbone
US7393877B2 (en) 2003-12-31 2008-07-01 Total France Process for the conversion of a synthesis gas to hydrocarbons in the presence of beta-SiC and effluent from this process
FR2864528A1 (fr) * 2003-12-31 2005-07-01 Total France Procede de traitement des melanges methane/dioxyde de carbone
CN100388975C (zh) * 2005-09-29 2008-05-21 北京化工大学 一种甲烷二氧化碳重整制合成气的金属载体催化剂及其制备方法
US9039870B2 (en) 2006-10-09 2015-05-26 Clariant Finance (Bvi) Limited Method for producing alkaline (meth)acrylamides
US8884040B2 (en) 2008-04-04 2014-11-11 Clariant Finance (Bvi) Limited Continuous method for producing fatty acid amides
US8974743B2 (en) 2009-06-30 2015-03-10 Clariant Finance (Bvi) Limited Device for continuously carrying out chemical reactions at high temperatures
US9302245B2 (en) 2009-09-22 2016-04-05 Clariant International Ltd. Apparatus for continuously carrying out heterogeneously catalyzed chemical reactions at elevated temperatures
WO2011035852A3 (de) * 2009-09-22 2011-05-19 Clariant International Ltd Vorrichtung zur kontinuierlichen durchführung heterogen katalysierter chemischer reaktionen bei hohen temperaturen
US9000197B2 (en) 2009-09-22 2015-04-07 Clariant Finance (Bvi) Limited Continuous transesterification method
CN101757919B (zh) * 2009-12-28 2012-12-26 中国科学院广州能源研究所 一种应用于生物油重整制氢的整体型催化剂及其制备方法和用途
US9221938B2 (en) 2010-12-30 2015-12-29 Clariant Finance (Bvi) Limited Polymers carrying hydroxyl groups and ester groups and method for the production thereof
US9243116B2 (en) 2010-12-30 2016-01-26 Clariant International Ltd. Method for modifying polymers comprising hydroxyl groups
CN106008188A (zh) * 2016-05-30 2016-10-12 浙江工业大学 一种甘油催化脱水制备丙烯醛的新方法
CN106008188B (zh) * 2016-05-30 2018-05-29 浙江工业大学 一种甘油催化脱水制备丙烯醛的新方法
CN107337446A (zh) * 2017-07-07 2017-11-10 福建省德化县联达陶瓷有限公司 一种功能性陶瓷产品及其制作工艺
CN110772890A (zh) * 2018-07-30 2020-02-11 天津大学 一种负载四氧化三铁的SiC泡沫陶瓷及其制备方法和应用
CN110772911A (zh) * 2018-07-30 2020-02-11 天津大学 一种去除生物气溶胶的微波反应装置、反应***及其应用
CN110772911B (zh) * 2018-07-30 2021-11-09 天津大学 一种去除生物气溶胶的微波反应装置、反应***及其应用
CN110772890B (zh) * 2018-07-30 2021-11-19 天津大学 一种负载四氧化三铁的SiC泡沫陶瓷及其制备方法和应用
CN112604702A (zh) * 2020-12-10 2021-04-06 南昌大学 一种微波驱动型催化剂的制备方法及应用
CN112604702B (zh) * 2020-12-10 2022-06-14 南昌大学 一种微波驱动型催化剂的制备方法及应用
CN116253288A (zh) * 2023-01-17 2023-06-13 中国林业科学研究院林产化学工业研究所 一种变频微波催化甲烷裂解制氢的方法

Also Published As

Publication number Publication date
CN1142086C (zh) 2004-03-17

Similar Documents

Publication Publication Date Title
CN1142086C (zh) 一种用于甲烷与二氧化碳重整反应的微波催化剂及其制备方法
EP3053880B1 (en) Method for controlling bulk density of carbon nanotube agglomerate
WO2009140791A1 (en) Process for producing silicon carbide
CN103908976B (zh) 选择性可调的金属有机骨架zif-8膜包覆负载型贵金属高效核壳催化剂的制备方法
Zhao et al. The synergistic catalytic effect between graphene oxide and three-dimensional ordered mesoporous Co3O4 nanoparticles for low-temperature CO oxidation
CN108355668B (zh) 一种甲烷化催化剂及其制备方法和应用
CN1038412A (zh) 蒸汽转化催化剂
JP2012000614A (ja) タングステン酸塩含有触媒の製造方法
CN109665512A (zh) 一种多壁碳纳米管的制备方法
CN114249300A (zh) 一种特定微观结构氧化铝负载Ni催化剂在等离子体催化甲烷干重整制合成气中的应用
WO2010115320A1 (zh) 一种整体式多孔吸附剂及其制备方法
Lu et al. Preparation of meso-macroporous carbon nanotube-alumina composite monoliths and their application to the preferential oxidation of CO in hydrogen-rich gases
CN110885069A (zh) 一种三维大孔超轻氮化碳材料及其制备方法
CN1301793C (zh) 一种纳米碳材料改性的铜基催化剂及其制备方法
KR101466125B1 (ko) 메조-마크로 기공을 갖는 산화마그네슘 구조체의 제조방법
CN118384887A (zh) 一种用于微波驱动的甲醇-水重整制氢催化剂
CN113600223B (zh) 一种Fe2P/氮空位g-C3N4纳米片光催化剂的制备方法与用途
KR20130081921A (ko) 카본나노튜브용 균질 담지 촉매의 제조방법 및 이에 사용되는 장치
CN1736558A (zh) 微波催化净化氮氧化物的新型催化剂及其制备方法和应用
CN115041230B (zh) 一种金属负载型镍锰尖晶石纳米球气凝胶及其制备方法及应用
CN110961109A (zh) 一种超声-微波协同辅助制备Ni-Al2O3催化剂的方法及其在CO2加氢中的应用
CN1131170C (zh) 一种微波强化甲烷与二氧化碳重整制合成气的方法
CN114984997B (zh) 一种三维多孔氮化碳基Zn单原子光催化剂、制备方法和应用
KR100962062B1 (ko) 나노 결정질의 나노 다공성 전이금속 산화물의 제조 방법
Yao et al. Vapor phase transport synthesis of SAPO-34 films on cordierite honeycombs

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee