CN1332476C - 高频谐振电路 - Google Patents

高频谐振电路 Download PDF

Info

Publication number
CN1332476C
CN1332476C CNB2004800005372A CN200480000537A CN1332476C CN 1332476 C CN1332476 C CN 1332476C CN B2004800005372 A CNB2004800005372 A CN B2004800005372A CN 200480000537 A CN200480000537 A CN 200480000537A CN 1332476 C CN1332476 C CN 1332476C
Authority
CN
China
Prior art keywords
wiring
spiral conductor
spiral
conductor wiring
resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800005372A
Other languages
English (en)
Other versions
CN1771624A (zh
Inventor
菅野浩
崎山一幸
寒川潮
藤岛丈泰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of CN1771624A publication Critical patent/CN1771624A/zh
Application granted granted Critical
Publication of CN1332476C publication Critical patent/CN1332476C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/185Edge coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/201Filters for transverse electromagnetic waves
    • H01P1/203Strip line filters
    • H01P1/20327Electromagnetic interstage coupling
    • H01P1/20354Non-comb or non-interdigital filters
    • H01P1/20381Special shape resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/12Coupling devices having more than two ports
    • H01P5/16Conjugate devices, i.e. devices having at least one port decoupled from one other port
    • H01P5/18Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers
    • H01P5/184Conjugate devices, i.e. devices having at least one port decoupled from one other port consisting of two coupled guides, e.g. directional couplers the guides being strip lines or microstrips
    • H01P5/187Broadside coupled lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/082Microstripline resonators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P7/00Resonators of the waveguide type
    • H01P7/08Strip line resonators
    • H01P7/084Triplate line resonators

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

一种高频电路,形成在至少具有两层导体布线层的多层电介质衬底(1)上,其特征在于,具有形成在第1导体布线层上的至少具有1圈以上的第1螺旋导体布线(4)、以及形成在与第1螺旋导体布线层不同的第2导体布线层上并且不与第1螺旋导体布线导通的至少具有1圈以上的第2螺旋导体布线(5),使第1螺旋导体布线与第2螺旋导体布线高度不同且重叠,而且第1螺旋导体布线的卷绕方向与第2螺旋导体布线的卷绕方向相反。

Description

高频谐振电路
技术领域
本发明涉及传送或辐射微波频段和毫米波频段等的高频信号的高频电路,尤其涉及能发生谐振现象的高频电路。
背景技术
近年来,无线通信设备的小型化、高功能化不断发展,从而使便携电话能爆发性地普及。可预计今后会进一步要求小型化、高功能化、低成本化。
装在便携电话等无线通信设备的高频电路内,为了构成滤波器和天线等电路,需要谐振器作为构成单元。
例如,作为谐振器,利用由两端开路的传输线各组成的二分之一波长谐振器。图25A是已有的二分之一波长谐振器的俯视图。图25B是图25A所示已有的二分之一波长谐振器的截面图。
图25A所示的两端开路传输线900构成的二分之一波长谐振器例如将2GHz作为谐振频率时,需要7.5cm的长度。因此,电路规模小型化需要用某种方法减小谐振器的长度。通常知道对电路衬底901采用高介电常数材料,则能相对于两端开路传输线900的长度减小传输线组成的谐振器的规模。
另一方面,通常也知道电磁耦合传输线组成的多个谐振器,则最低次谐振频率降低。图26A是电磁耦合2个谐振器的已有谐振器的俯视图。图26B是图26A所示电磁耦合2个谐振器的已有谐振器的截面图。如文献1(MicrowaveSolid State Circuit Design(微波固态电路设计),第2版,第275页,Wiley-Interscience,2003),使2个谐振器包含的2条平行耦合线902和903之间的距离接近地进行耦合,则存在1个谐振器时,不引起谐振频率f0上产生的谐振现象。而代之以引起谐振频率f1(<f0)上的偶模谐振现象和谐振频率f2(>f0)上的奇模谐振现象。2个谐振器偶合越强,f和f2分别越是偏离f0。因此,通过进一步使谐振频率为f0的2个谐振器加强耦合能提供在较低的谐振频率f1(较长的波长)谐振的谐振器,从而对希望的谐振频率提供谐振器长度短于用1个谐振器时的谐振器。
然而,具有低介电常数特性的树脂等衬底材料比具有高介电常数的衬底材料价廉,因而在电路衬底采用高介电常数材料以减小谐振器规模的方案即使采用以高介电常数材料的衬底形成整个电路的方法或仅谐振器处以高介电常数材料形成的方法,也都存在成本高的问题。
为了提高两个谐振器包含的2条平行耦合线之间的耦合度,以便使谐振频率偏移,必须极端缩短平行配置的线之间的距离。因此,必须飞跃性地提高布线的形成精度。然而,在要求制造工序降低成本的现状下,仅极端缩短谐振器中平行配置的线条间的距离并不现实。因此,通过缩短平行耦合线间隔提供谐振器长度短的谐振器也不现实。
因此,以可用于半导体工序、低温烧结陶瓷衬底的制造工序、树脂衬底多层电路工序等的电路结构谋求谐振器小型化才是实用上较佳的解决手段。
考虑对2条传输线作多层布线,并使厚度方向上交叉,从而在平行耦合线之间获得高耦合度。图27是对2条传输线904和905作多层布线,并使厚度方向上交叉,从而在平行耦合线之间获得高耦合度的已有的谐振器的截面图。然而,如图27所示,对2条传输线作多层布线并使厚度方向上交叉的方法也存在下面所述的两个课题。
第1课题是因通过使2条传输线904和905平行交叉获得的电容而降低的谐振频率,其值有限。即使利用上述方法强化电磁耦合,新的谐振频率f1也不会低于基频f0很多。此方法仅在耦合线长度为二分之一电磁波波长时才产生谐振,在耦合线的线长需要与二分之一波长程度相同方面没有变。因此,小型化有限。
第2课题是平行耦合线中获得的谐振现象难以取得良好的杂波抑制特性。实际的通信装置中,例如带通滤波器不仅需要所希望频带的通过特性和紧邻所希望频带的频率上的阻止特性,而且需要目的为滤除前级部件的各种有源元件中产生的高次谐波分量的杂波抑制特性。基于平行耦合线的谐振器不能抑制在基频的2倍频上产生谐振,因而存在不适合用于通信模件的问题。
因此,本发明的目的是提供一种小型谐振器,结构简单,不新用特殊材料,不在基本谐振频率的2倍附近的频率产生谐振,并且结构的尺寸相对于传送频带的电磁波波长飞跃性地缩短。又一本发明目的是提供对传送频率的2倍频具有抑制功能的小型滤波器电路。
发明内容
为了解决上述课题,本发明具有以下特征。
本发明是一种高频电路,形成在至少具有两层以上导体布线层的多层电介质衬底上,其特征在于,具有形成在第1导体布线层上的至少具有1圈以上的第1螺旋导体布线、以及形成在与第1螺旋导体布线层不同的第2导体布线层上并且不与第1螺旋导体布线导通的至少具有1圈以上的第2螺旋导体布线,使第1螺旋导体布线与第2螺旋导体布线位于不同高度且重叠,而且第1螺旋导体布线的卷绕方向与第2螺旋导体布线的卷绕方向相反。
本发明的高频电路中,第1螺旋导体布线与第2螺旋导体布线位于不同高度且立体交叉的部分附近产生使第1螺旋导体布线与第2螺旋导体布线耦合的交叉耦合电容。因此,流过第1螺旋导体布线的第1高频电流通过交叉耦合电容移动到第2螺旋导体布线,由此在第2螺旋导体布线流过第2高频电流。产生第1高频电流与第2高频电流的流动方向相同的耦合时,可将第1螺旋导体布线与第2螺旋导体布线的交叉部分看作感应电流同向流动的偶模的状态的平行耦合线。沿第2螺旋导体布线流的第2高频电流通过交叉耦合电容也能进一步移动到第1螺旋导体布线。因此,本发明的高频电路作为对超过物理尺寸的长波长的电磁波产生谐振现象的谐振器起作用。电容电路具有作为高通滤波器的功能,因而本发明的高频电路为了在较低的谐振频率产生谐振现象,减少本发明高频谐振电路上流过的高频电流以交叉耦合电容中介的次数,有效利用第1或第2螺旋导体布线,让谐振器长度在实效上增大。这种配置是有效的。因此,通过使第1螺旋导体布线的卷绕方向与第2螺旋导体布线的卷绕方向形成反向,能取得在较低的谐振频率产生谐振现象的效果。
本发明的高频谐振电路中,捕获基频的谐振现象时,视为两螺旋导体布线的最外圈导体布线的开路端分别相当于整个结构的开路端。因此,该开路端的电流分布为零。另一方面,本发明的高频电路中,流过两螺旋导体布线的电流通过螺旋导体布线之间的交叉耦合电容相互移动,因而在两螺旋导体布线的交叉处附近电流分布密度不能为零。同样,由于相对于产生基本模谐振的频率的2倍频波长的信号产生谐振现象,两螺旋导体布线的最外圈导体布线的开路端分别相当于整个结构的开路端,而且在两螺旋导体布线的交叉处附近需要电流分布密度为零。然而,两螺旋导体布线已不作为个别螺旋导体布线起作用,只能出现利用两螺旋导体布线之间的耦合的谐振现象,因而不能满足两螺旋导体布线交叉处附近电流分布密度为零的条件。满足两螺旋导体布线最外圈的开路端上分布电流密度为零,而且两螺旋导体布线交叉处附近电流密度不为零时产生谐振的条件的是基频的3倍频。若用贯通导体等,以机械方式将两螺旋导体布线之间连接,则不能取得此效果。
因此,不用特殊材料,而用简单的结构,以低成本提供一种高功能谐振器,比以往小型,在基本谐振频率的2倍频上不产生谐振现象,而且相对于传送频带的电磁波波长,结构的尺寸飞跃性缩短。
最好多层电介质衬底具有3层以上的导体布线层,同时该电路还具有形成在与第1和第2导体布线层不同的至少1个以上的第3导体布线层上并且不与所述第1和第2螺旋导体布线导通的至少具有1圈以上的第3螺旋导体布线,使至少1个以上的第3螺旋导体布线与第1和第2螺旋导体布线位于不同高度且重叠,并且第1~第3螺旋导体布线中,相邻的螺旋导体布线相互间具有相反的卷绕方向。
上述结构中,第1螺旋导体布线上流的电流使垂直贯通第1螺旋导体布线中心的方向产生磁场。产生的磁场也垂直贯通相邻交叉的第2螺旋导体布线中心。第1螺旋导体布线和第2螺旋导体布线之间由于在交叉处产生使两者耦合的电容,第2螺旋导体布线上也与第1螺旋导体布线同方向地流通电流。垂直横切形成第2螺旋导体布线的导体布线层的磁场也横切相邻交叉的第3螺旋导体布线。第2螺旋导体布线和第3螺旋导体布线之间由于在交叉处产生使两者耦合的电容,第3螺旋导体布线上也与第2螺旋导体布线同方向地流通电流。因此,第3螺旋导体布线上也与第1螺旋导体布线上同方向地流通电流。相邻交叉的螺旋导体布线数量为4以上,此现象也成立。
为了组合多个相邻交叉螺旋导体布线导体对的结构作为谐振器长度更长的谐振器起作用,多个相邻交叉螺旋导体布线对中需要满足达到相邻交叉的螺旋导体布线对作为谐振器长度最长的谐振器起作用的条件。因此,相邻螺旋导体布线的全部组合中,设定成卷绕方向分别相反成为实现最长谐振器长度的条件。
于是,利用本发明的结构,不用特殊材料,而用单纯的结构,就能以低成本提供比以往小型的谐振器。
最好配置各螺旋导体布线,使其相互叠合成各自的螺旋中心的位置一致时,各自的外缘的外形一致。
最好配置相邻的2个螺旋导体布线的最外圈导体布线的开放终端部位,使从螺旋中心看,处在反向。
最好还具有直接连接所述第1~第3螺旋导体布线中的任一个的最外圈导体布线的一部分的输入输出线。
由此,能以简单且小型的电路实现小型谐振器与外部电路强耦合。
为了简化电路结构,在同一导体布线层上形成螺旋导体布线和输入输出线较佳。然而,将螺旋导体布线和输入输出线配置在不同的导体布线层上,并且用贯通导体电连接螺旋导体布线和输入输出线,也能获得同样的效果。
最好还具有形成在多层电介质衬底上并且具有与第1~第3螺旋导体布线构成的叠层螺旋导体布线谐振器相同的结构的至少一个以上的叠层螺旋导体布线谐振器,其中相邻配置各叠层螺旋导体布线谐振器。
上述结构中,相邻配置的两个叠层螺旋导体布线谐振器都具有叠层结构,因而叠层的各螺旋导体布线之间产生空间电容。此外,在一叠层螺旋导体布线谐振器流通电流时,贯穿该叠层螺旋导体布线谐振器内侧产生的磁场在该叠层螺旋导体布线谐振器的外侧,也使磁通闭路。因此,该磁场朝向对多层电介质衬底垂直的方向。于是,如果配置另一叠层螺旋导体布线谐振器,使该***产生的磁场以足够的强度贯穿另一叠层螺旋导体布线谐振器,则另一叠层螺旋导体布线谐振器也流通电流。因此,只要相邻配置两个叠层螺旋导体布线谐振器,就能获得希望的谐振器间耦合。不需要使用高介电常数材料等添加工序就能获得可利用配置间隔调整叠层螺旋导体布线谐振器之间的耦合的有利效果,因而能低成本制造上述结构的高频电路。
最好叠层螺旋导体布线谐振器中的至少一个包含与第1螺旋导体布线相邻地形成在第1螺旋导体布线层上并且卷绕方向与第1螺旋导体布线相同的至少1圈以上的第4螺旋导体布线、与第2螺旋导体布线相邻地形成在第2螺旋导体布线层上并且卷绕方向与第2螺旋导体布线相同的至少1圈以上的第5螺旋导体布线、以及与第3螺旋导体布线相邻地形成在第3螺旋导体布线层上并且卷绕方向与第3螺旋导体布线相同的至少1圈以上的第6螺旋导体布线,使第4~第6螺旋导体布线相互位于不同高度且重叠。
最好还具有分别耦合各叠层螺旋导体布线谐振器的多条输入输出线。
上述结构用多个谐振器长度大于各螺旋导体布线的谐振器长度的叠层螺旋导体布线谐振器实现带通滤波器电路。各叠层螺旋导体布线谐振器本身比以往的平面谐振器节省占用面积,因而比用以往的平面谐振器的带通滤波器电路节省占用面积。用单层平面电路形成的以往的二分之一波长谐振器在基频的2倍频处也出现谐振现象,因而由二分之一波长谐振器构成的以往的带通滤波器也在基频的2倍频的频带具有不需要的通过特性。然而,上述结构的滤波器电路具有组成滤波器电路的叠层螺旋导体布线谐振器本身抑制基频的2倍频上的谐振现象的特性,因而具有在基频的2倍频的频带不呈现非所需的通过特性的有利效果。又能以低成本制造上述结构的高频电路,不必添加使用高介电常数材料等工序就能获得减小电路面积和抑制基本通带的2倍频上的非所需通过特性等有利效果。
为了外部电路与叠层螺旋导体布线谐振器之间获得强耦合,最好直接连接部分螺旋导体布线和部分输入输出线,使其耦合。
由此,不仅能提高从外部电路到叠层螺旋导体布线谐振器或从叠层螺旋导体布线谐振器到外部电路的能量传递效率,而且能获得频带宽的滤波器特性。
最好配置第1和第2螺旋导体布线,使其相互叠合成各自的螺旋中心的位置一致时,各自的外缘的外形一致。
因此,在第1螺旋导体布线与第2螺旋导体布线之间的交叉部分附近,为了使两者耦合而产生的电容增大。因此在较低的频率也能出现两螺旋导体布线之间通过交叉耦合电容的电流移动,从而可提供谐振频率进一步降低(即进一步小型化)的谐振器。
最好配置第1和第2螺旋导体布线,使从第1螺旋导体布线的螺旋中心看,第1螺旋导体布线的最外圈导体布线的开放终端部位与第2螺旋导体布线的最外圈导体布线的开放终端部位处在反向。
因此,以螺旋导体布线的螺旋中心为中心点时的每单位旋转的距离最长的最外层导体布线中,能实现两螺旋导体布线之间的有效交叉状态。因此,能在较低的频率出现两螺旋导体布线之间通过交叉耦合电容的电流移动,从而可提供谐振频率进一步降低(即进一步小型化)的谐振器。
最好还具有直接连接第1或第2螺旋导体布线的最外圈导体布线的一部分的输入输出线。
由此,能以简单且小型的电路实现小型谐振器与外部电路的强耦合。
为了简化电路结构,最好在同一导体布线层上形成螺旋导体布线和输入输出线。然而,将螺旋导体布线和输入输出线配置在不同的导体布线层上,并且用贯通导体电连接螺旋导体布线和输入输出线,也能取得同样的效果。
最好还具有形成在多层电介质衬底上并且具有与第1和第2螺旋导体布线构成的叠层螺旋导体布线谐振器相同的结构的至少一个以上的叠层螺旋导体布线谐振器,其中相邻配置各叠层螺旋导体布线谐振器。
上述结构中,相邻配置的两个叠层螺旋导体布线谐振器都具有叠层结构,因而叠层的各螺旋导体布线之间产生空间电容。此外,在一叠层螺旋导体布线谐振器流通电流时,贯穿该叠层螺旋导体布线谐振器内侧产生的磁场在该叠层螺旋导体布线谐振器的外侧,也使磁通闭路。因此,该磁场朝向对多层电介质衬底垂直的方向。于是,如果配置另一叠层螺旋导体布线谐振器,使该***产生的磁场以足够的强度贯穿另一叠层螺旋导体布线谐振器,则另一叠层螺旋导体布线谐振器也流通电流。因此,只要相邻配置两个叠层螺旋导体布线谐振器,就能获得希望的谐振器间耦合。不需要使用高介电常数材料等添加工序就能获得可利用配置间隔调整叠层螺旋导体布线谐振器之间的耦合的有利效果,因而能低成本制造上述结构的高频电路。
较佳实施方式中,叠层螺旋导体布线谐振器中的至少一个包含与第1螺旋导体布线相邻地形成在所述第1螺旋导体布线层上并且卷绕方向与第1螺旋导体布线相同的至少1圈以上的第7螺旋导体布线、以及与第2螺旋导体布线相邻地形成在第2螺旋导体布线层上并且卷绕方向与第2螺旋导体布线相同的至少1圈以上的第8螺旋导体布线,而且使第7螺旋导体布线和第8螺旋导体布线位于不同高度且重叠。
最好还具有分别耦合各叠层螺旋导体布线谐振器的多条输入输出线。
上述结构用多个谐振器长度大于各螺旋导体布线的谐振器长度的叠层螺旋导体布线谐振器实现带通滤波器电路。各叠层螺旋导体布线谐振器本身比以往的平面谐振器节省占用面积,因而比用以往的平面谐振器的带通滤波器电路节省占用面积。用单层平面电路形成的以往的二分之一波长谐振器在基频的2倍频处也出现谐振现象,因而由二分之一波长谐振器构成的以往的带通滤波器也在基频的2倍频的频带具有不需要的通过特性。然而,上述结构的滤波器电路具有组成滤波器电路的叠层螺旋导体布线谐振器本身抑制基频的2倍频上的谐振现象的特性,因而具有在基频的2倍频的频带不呈现非所需的通过特性的有利效果。又能以低成本制造上述结构的高频电路,不必添加使用高介电常数材料等工序就能获得减小电路面积和抑制基本通带的2倍频上的非所需通过特性等有利效果。
综上所述,本发明能提供一种小型谐振器,结构简单,不新用特殊材料,并且在基本谐振频率的2倍频附近没有谐振;又能提供对传输频率的2倍频具有阻止功能的小型带通滤波器电路。
附图说明
图1A是本发明实施方式1的高频电路沿AB线的概略剖视图。
图1B是示出多层电介质衬底1的高端导体布线层的最外层表面2上形成的螺旋导体布线4的图案的俯视图。
图1C是示出多层电介质衬底1的低端导体布线层的内部面3上形成的螺旋导体布线5的图案的俯视图。
图2A是为说明实施方式1的高频电路的工作原理而示出偶模的图。
图2B是为说明实施方式1的高频电路的工作原理而示出奇模的图。
图3A是为说明平行耦合线的线间耦合度的结构依赖性而示出完全平行配置传输线时的图。
图3B是为说明平行耦合线的线间耦合度的结构依赖性而示出在长度方向将传输线错开一半且平行配置两者时的图。
图3C是为说明平行耦合线的线间耦合度的结构依赖性而示出配置成通过将图3B的结构弯成圆状使内侧信号导体布线与外侧导体布线在两处耦合时的图。
图4是为说明电流的流动而示出螺旋导体布线4和5上的点的图。
图5是说明本发明高频电路中产生基频上的谐振现象的原理用的图。
图6是示出在相同旋转方向形成2层螺旋导体布线时的螺旋导体布线图案的图。
图7A是示出最外圈形状为圆形的螺旋导体布线4的图案的俯视图。
图7B是示出最外圈形状为圆形的螺旋导体布线5的图案的俯视图。
图8A是示出从两螺旋导体布线的中心点对视时两螺旋导体布线的开路终端部位处在相同方向的状态的图。
图8B是示出从图8A所示的状态以螺旋导体布线中心点为中心将一螺旋导体布线在平面内旋转90度的状态的图。
图8C是示出从图8A所示的状态以螺旋导体布线中心点为中心将一螺旋导体布线在平面内旋转180度的状态的图。
图8D是示出从图8A所示的状态以螺旋导体布线中心点为中心将一螺旋导体布线在平面内旋转270度的状态的图。
图9A是本发明实施方式2的高频电路沿CD线的概略剖视图。
图9B是示出多层电介质衬底1的高端导体布线层的最外层表面2上形成的螺旋导体布线4的图案的俯视图。
图9C是示出多层电介质衬底1的中端导体布线层的内部面3上形成的螺旋导体布线5的图案的俯视图。
图9D是示出多层电介质衬底1的最下端导体布线层的内部面8上形成的螺旋导体布线8的图案的俯视图。
图10A是本发明实施方式3的高频电路沿EF线的概略剖视图。
图10B是示出多层电介质衬底1的高端导体布线层的最外层表面2上形成的螺旋导体布线4和输入输出线12的图案的俯视图。
图10C是示出多层电介质衬底1的下端导体布线层的内部面3上形成的螺旋导体布线5的图案的俯视图。
图11A是本发明实施方式4的高频电路沿GH线的概略剖视图。
图11B是示出多层电介质衬底1的高端导体布线层的最外层表面2上形成的螺旋导体布线4、14的图案的俯视图。
图11C是示出多层电介质衬底1的下端导体布线层的内部面3上形成的螺旋导体布线5、15的图案的俯视图。
图12A是本发明实施方式5的高频电路沿IJ线的概略剖视图。
图12B是示出多层电介质衬底1的高端导体布线层的最外层表面2上形成的螺旋导体布线4、14和输入输出线12、17的图案的俯视图。
图12C是示出多层电介质衬底1的下端导体布线层的内部面3上形成的螺旋导体布线5、15的图案的俯视图。
图13A是用于测量的评价用高频电路的概略剖视图。
图13B是示出用于测量的评价用高频电路的螺旋导体布线4和输入输出线12的图案的俯视图。
图13C是示出用于测量的评价用高频电路的螺旋导体布线5的图案的俯视图。
图14是示出因上下螺旋导体布线配置位置的相对偏移距离而引起的基本谐振频率的变化的图。
图15是示出测量使添加层表面上形成的螺旋导体布线的形成方向各旋转45度的若干高频电路特性的结果的图。
图16是示出各螺旋导体布线的圈数为2.25圈时的测量结果的图。
图17是示出各螺旋导体布线的圈数为2圈时的测量结果的图。
图18是示出从输入输出线对直接连接螺旋导体布线和输入输出线的实施方式3的实施例的高频电路供电时的反射强度的频率特性的图形。
图19A是使输入输出线12的方向对螺旋导体布线4的最外层布线旋转90度,以便作为线间距离200微米的平行耦合线起作用时的高频电路的概略截面图。
图19B是图19A所示高频电路的螺旋导体布线4和输入输出线12的图案的俯视图。
图19C是图19A所示高频电路的螺旋导体布线5的图案的俯视图。
图20是示出使两谐振器的配置间隔变化时的耦合度的图形。
图21是示出实施方式5的实施例的第1带通滤波器的通过特性的图形。
图22是示出实施方式5的实施例的第1带通滤波器的通过特性的图形。
图23是示出实施方式5的实施例的第2带通滤波器的通过特性的图形。
图24是示出实施方式5的实施例的第2带通滤波器的通过特性的图形。
图25A是已有的二分之一波长谐振器的俯视图。
图25B是图25A所示二分之一波长谐振器的截面图。
图26A是使2个谐振器电磁耦合时的已有谐振器的俯视图。
图26B是使图26A所示的2个谐振器电磁耦合时的已有谐振器的俯视图。
图27是通过对2条传输线904、905作多层布线,使其在厚度方向交叉,以提高耦合度的已有谐振器的截面图。
具体实施方式
下面参照附图说明本发明高频电路的实施方式。本发明不限于下面阐述的实施方式。为了方便,不同的附图中,授给具有相同功能的部分相同的符号,这并不表示带有相同符号的部分必然完全相同。
实施方式1
图1A是本发明实施方式1的高频电路的沿AB线的概略剖视图。本发明的高频电路形成在具有2层导体布线层的多层电介质衬底1上。图1B是示出多层电介质衬底1的高端导体布线层的最外层表面2上形成的螺旋导体布线4的图案的俯视图。图1C是示出多层电介质衬底1的低端导体布线层的内部面3上形成的螺旋导体布线5的图案的俯视图。
实施方式1的高频电路中,在多层电介质衬底1的最高端导体布线层的表面形成螺旋导体布线4,在低端导体布线层上形成螺旋导体布线5。使最外层表面2与内部面3重叠时,图1B画的螺旋导体布线4的螺旋中心点O4与图1C画的螺旋导体布线5的螺旋中心点O5一致。将最外层表面2和内部面3叠成各自的螺旋中心一致时,螺旋导体布线4的外缘与螺旋导体布线5的外缘一致。螺旋导体布线4与螺旋导体布线5的旋转方向相反。螺旋导体布线4中,从电路上面看的卷绕方向是从螺旋外侧往中心的顺时针回转。后文的说明中,螺旋的卷绕方向表示从电路上面看时的从螺旋外侧往中心的卷绕方向。形成在多层电介质衬底1的内部的螺旋导体布线5的卷绕方向是反时针回转。螺旋导体布线4和5的圈数分别为2.5圈。下面说明实施方式1的高频电路的工作原理。
图2A和2B用于说明实施方式1的高频电路的工作原理。螺旋导体布线4流通过高频电流I4时,螺旋导体布线5中与部分螺旋导体布线4上下高度不同且交叉的区域中,通过交叉耦合电容产生电荷移动,因而高频电流I5流过螺旋导体布线5。将交叉区视为具有任意长度的2条平行耦合线。螺旋导体布线4中流通高频电流I4时,感应2种模:螺旋导体布线4中流通的高频电流I4的方向与螺旋导体布线5中流通的高频电流I5方向相同的情况(如图2A所示)和螺旋导体布线4中流通的高频电流I4的方向与螺旋导体布线5中流通的高频电流I5方向不同的情况(如图2B所示)。把交叉区看作平行耦合线时,前者相当于偶模,后者相当于奇模。
图3A~3C用于说明平行耦合线之间的耦合度与结构的关系。图3A~3C中,省略传输线的接地导体,仅示出信号导体布线。如图3A所示,完全平行配置传输线时,不能得到高耦合度。其原因是两导体上流通同方向的电流,而且在两导体的两开路终端满足开路条件时,在相邻两导体的开路终端处配置符号相同的电荷,从而相互排斥,不会耦合。
反之,如图3B所示,在长度方向将传输线错开一半,且平行配置两者时,可提高耦合度。
如图3C所示,取为通过将图3B的结构弯成圆状结构,使内侧信号导体布线和外侧信号导体布线在两处耦合的配置,则两者的耦合度最大,并且谐振频率保持最低值。在该谐振模式中,两信号导体布线上同方向流通电流,电流连续流动,通过两布线之间的电容从外侧信号导体布线流到内侧信号导体布线,又从内侧信号导体布线流到外侧信号导体布线。因此,图3C的高频电路可对远长于电路结构占用尺寸的电磁波产生谐振现象。然而,使图3C的结构对达到多长的电磁波起作用仅取决于高频电流能在两线路之间移动多大的程度。本发明的高频电路进一步扩充避开在图3C的结构得到的电磁波波长的限制的小型谐振器的原理,规定各线结构中的布线结构形状,以便能获得最小型的谐振器。
如图3C所示本发明原理那样,本发明的高频电路中,通过将上下形成的两个螺旋导体布线的螺旋回转方向设定成反向能有效取得增加谐振器长度(即谐振器小型化)的有利效果。
图4为说明电流的流动,示出螺旋导体布线4和5上的点。流过螺旋导体布线4上的点B4的电流单元因两螺旋导体布线之间交叉处存在的分布电容而耦合到螺旋导体布线5上的点C5。因此电流按F4→E4→D4→C4→B4→C5→D5→E5→F5的顺序流通。这时的谐振器长度Lcp-eve远长于按F4→E4→D4→C4→B4→A4的顺序在一螺旋导体布线4内流通电流并产生谐振时的单一螺旋导体布线谐振器的谐振器长度Lind。因此,通过上下设置两螺旋导体布线4、5,使产生的谐振现象的谐振频率低于各个螺旋导体布线4、5产生的最低谐振频率。
图5用于说明本发明高频电路中产生基频上的谐振现象的原理。下面,参照图5说明本发明高频电路中产生基频上的谐振现象的原理。将两螺旋导体布线4、5的最外圈导体布线开路终端处4o、5o视为分别相当于整个结构的开路端时,开路终端处4o、5o的电流分布密度为0。最低频率上的基本谐振条件只能是:因在螺旋导体布线4和5的交叉处6产生的交叉耦合电容7而在两螺旋导体布线之间相互移动的电流分布密度高。本发明的高频电路中,由于螺旋导体布线4和5因交叉处的交叉耦合电容7而耦合,两螺旋导体布线交叉处6附近电流分布密度不能为0。然而,为了在基本谐振频率的2倍频处产生谐振现象,需要两螺旋导体布线的最外圈导体布线的开路终端处4o、5o相当于谐振结构的开路终端,而且在两螺旋导体布线交叉处6附近电流分布密度为0。但是,此条件不能成立。即,本发明的高频电路具有原理上可在基本谐振频率的约2倍频处抑制谐振现象的产生。为了取得上述效果,本发明的高频电路中,不用贯通导体那样的机械手段使两螺旋导体布线之间导通。
满足在两螺旋导体布线的最外圈导体布线之间的开路终端处分布电流密度为0,而且在两螺旋导体布线交叉处附近电流密度不为0地产生谐振的条件的是基本频率的3倍频的情况。
作为结构与本发明高频电路类似的高频电路,可考虑将2层螺旋导体布线形成得旋转方向相同的高频电路。图6示出将2层螺旋导体布线形成得旋转方向相同时的螺旋导体布线图案。然而,考虑2螺旋导体布线内电流流动,则可知图6的结构不能实现电路规模有效小型化。考虑螺旋导体布线5在与螺旋导体布线4方向相同的顺时针回转方向流通电流的条件时,设想流过螺旋导体布线5上的点A5的电流因素因2螺旋导体布线之间存在的分布电容而耦合到螺旋导体布线4上的点A4。由于方向相同的两螺旋导体布线4、5大致重叠,电流按F4→E4→D4→C4→B4→C5→D5→B5→A5的顺序流通。这时的谐振器长度Lcp-odd对按A4→B4→C4→D4在螺旋导体布线4内流通电流并产生谐振时的单一螺旋导体布线谐振器的谐振器长度Lind变化不大。因此,不能发现将两螺旋导体布线卷绕方向做成相同时螺旋导体布线叠层带来的谐振器长度加大(即谐振频率降低)的效果。即,为了取得本发明的效果,上下交叉的两螺旋导体布线的卷绕方向必须相反。
本发明的高频电路中,最好对上侧螺旋导体布线最外圈形状和下侧螺旋导体布线最外圈形状制作图案,使其高度不同且重叠。举图3的正方形螺旋导体布线为例时,最外圈的形状为正方形。最好对两螺旋导体布线制作图案,使该正方形重叠。同样,最外圈形状为圆形和正方形以外的多边形时,也以同样的条件为佳。图7 A、B是示出最外圈形状为圆形的螺旋导体布线4、5的图案的俯视图。两螺旋导体布线之间高度不同且重叠的部位的面积越增大,越顺畅地进行两螺旋导体布线之间的高频电路相互移动。因此,为了降低谐振频率,最好将叠层配置的两螺旋导体布线的最外圈形状配置成以最大面积进行交叉。
本发明的高频电路中,最好将上侧螺旋导体布线的最外圈导体布线的开路终端处和下侧螺旋导体布线的最外圈导体布线的开路终端处配置成从上侧螺旋导体布线的螺旋中心点对视,方向相反。举图1中说明的实施方式1的正方形螺旋导体布线为例时,作为两螺旋导体布线最外圈形状一致的配置,考虑全部4种的组合,如图8A~B所示。该4种组合如图8A所示,使从两螺旋导体布线中心点对视,两螺旋导体布线的开路终端部位处在相同方向的状态为0度。图8B所不的状态是从图8A所不的作态,便一条螺旋导体布线以螺旋导体布线的中心点为中心,在平面内旋转90度后形成的组合。图8C所示的状态是从图8A所示的作态,使一条螺旋导体布线以螺旋导体布线的中心点为中心,在平面内旋转180度后形成的组合。图8D所示的状态是从图8A所示的作态,使一条螺旋导体布线以螺旋导体布线的中心点为中心,在平面内旋转270度后形成的组合。图8A~D中用十字图案表示的部位示出形成在下面的螺旋导体布线中与相当于配置在上面的螺旋导体布线上从最外圈导体布线开路终端部位卷绕0.5圈的部分的部位交叉的部位。用十字图案表示的区域获得两螺旋导体布线之间产生的交叉耦合电容,因而以较低的频率也能获得两螺旋导体布线间的电流移动,有助于降低谐振频率。另一方面,图8A、B、C、D中示为空白的部位示出形成在下面的螺旋导体布线的最外圈导体布线中不能与上面的最外导体布线的从开路终端处卷绕0.5圈为止的部位交叉的部位。示为空白的区域不能产生有效交叉耦合电容,不能对降低有效基本谐振频率做出贡献。示为空白的区域可与不靠近上面的螺旋导体布线的最外圈导体布线的终端处的部位耦合,或与内圈的导体布线耦合。然而,考虑最外圈导体布线开路终端处附近最靠一边的长度长时,显然示为空白的区域减小的结构最能降低基本谐振频率。根据以上理由,最外圈导体布在两螺旋导体布线开路终端处附近线以最大概率交叉的状态(即相当于图8C的状态)为本发明高频电路实施方式的4种选择项中最佳的例子。其次为图8D所示的状态。再次为图8B所示的状态。最不好的是图8A所示的状态。各螺旋导体布线的最外圈形状为圆形(参考图7A、图7B)和正方形以外的多边形时,也最好满足上述条件。
图1示出在多层电介质衬底1的最外层表面形成上面的螺旋导体布线4,但也可在多层电介质衬底1的内部面形成螺旋导体布线4。即使覆盖形成螺旋导体布线4的导体布线层,也同样可获得本发明的有利效果。多层电介质衬底1为3层以上时,可在螺旋导体布线4与与螺旋导体布线5之间形成2层以上的导体布线层。
本发明的高频电路中,使构成螺旋导体布线的圈数为1圈以上,这是因为可将2个叠层螺旋导体布线之间的邻近交叉区设定得大。
如以上所说明,根据实施方式1,能提供一种小型谐振器,结构简单,不新用特殊材料,基频的2倍频附近的频率上未发现谐振现象,而且尺寸远小于波
实施方式2
图9A是本发明实施方式2的高频电路沿CD线的概略剖视图。在具有3层电介质布线层的多层电介质衬底1形成本发明实施方式2的高频电路。图9B是示出形成在多层电介质衬底1的最高端导体布线层的最外层表面2上的螺旋导体布线4的图案的俯视图。图9C是示出形成在多层电介质衬底1的中端导体布线层的内部面3上的螺旋导体布线5的图案的俯视图。图9D是示出形成在多层电介质衬底1的最低端导体布线层的内部面8上的螺旋导体布线9的图案的俯视图。
在最外层表面2、内部面3和内部面8重叠时,图9B画的螺旋导体布线4的螺旋中心点O4、图9C画的螺旋导体布线5的螺旋中心点O5和图9D画的螺旋导体布线9的中心点O9一致。将最外层表面2、内部面3和内部面8重叠成螺旋导体布线4、5、9各自的螺旋中心点O4、O5、O9一致时,3个螺旋导体布线4、5、9的外缘一致。
螺旋导体布线4的卷绕方向为顺时针回转。螺旋导体布线5的卷绕方向为反时针回转。螺旋导体布线9的卷绕方向为顺时针回转。因此,3个叠层螺旋导体布线的卷绕方向从最高端开始依次相反。即,相邻的螺旋导体布线具有相反的卷绕方向。各螺旋导体布线的圈数分别为2.5圈。
下面说明实施方式2的高频电路的工作原理。
由于螺旋导体布线4与螺旋导体布线5的交叉区中存在的交叉耦合电容,流过螺旋导体布线4的高频电流移动到螺旋导体布线5。这时,将该交叉区看作平行耦合线时,与螺旋导体布线4中流通高频电流的方向同方向地流通高频电流的部分螺旋导体布线5相当于平行耦合线的偶模电流分布。在该部分发现有效介电常数增大,因而相信耦合区长度增大。又由于螺旋导体布线5与螺旋导体布线9的交叉区中存在的交叉耦合电容,流过螺旋导体布线5的高频电流移动到螺旋导体布线9。这时,将该交叉区看作平行耦合线时,与螺旋导体布线5中流通高频电流的方向同方向地流通高频电流的部分螺旋导体布线9相当于平行耦合线的偶模电流分布。在该部分获得邻近的各螺旋导体布线之间的高耦合度。根据这些原理,即使邻近交叉的螺旋导体布线数超过3也在各螺旋导体布线内同方向流通电流的模式在最低频率出现谐振现象。产生这种电流分布时,相邻交叉的螺旋导体布线4和5的对或螺旋导体布线5和9的对分别成为谐振器长度最大的叠层螺旋导体布线谐振器用的条件与3个螺旋导体布线4、5、9组成的叠层螺旋导体布线谐振器的谐振器长度成为最大用的条件一致。因此,将全部相邻交叉的螺旋导体布线的组合设定成反向,成为使谐振器长度最大且在最低频率出现基本谐振频率的条件。
例如3层以上的螺旋导体布线交叉,其中相邻交叉螺旋导体布线组合不配置成全部反向(比如一个组合旋转方向相同),即使由这种螺旋导体布线叠层结构组成谐振器,由其它组合产生的本发明有利效果也不消失。
图9A示出在多层电介质衬底1的最外层表面2形成螺旋导体布线4的情况,但也可在多层电介质衬底1的内部面形成螺旋导体布线4。即使覆盖形成螺旋导体布线4的导体布线层,也同样可获得本发明的有利效果。即使多层电介质衬底为4层以上,并形成4层以上的螺旋导体布线,也能得到同样效果。可在各螺旋导体布线之间形成2层以上的导体布线层。
如以上所说明,根据实施方式2,能提供一种小型谐振器,结构简单,不新用特殊材料,在基频的2倍频附近的频率上未发现谐振现象,而且尺寸远小于波长。
实施方式3
图10A是本发明实施方式3的高频电路沿EF线的概略剖视图。在具有2层电介质布线层的多层电介质衬底1形成实施方式3的高频电路。图10B是示出形成在多层电介质衬底1的最高端导体布线层的最外层表面2上的螺旋导体布线4和输入输出线12的图案的俯视图。图10C是示出形成在多层电介质衬底1的低端导体布线层的内部面3上的螺旋导体布线5的图案的俯视图。
图10B画的点O4和图10C画的点O5与实施方式1同样,平面内的位置分别相同。叠层的螺旋导体布线4、5构成叠层螺旋导体布线谐振器11。在多层电介质衬底1的最外层表面2形成与叠层螺旋导体布线谐振器11耦合的输入输出线12。把螺旋导体布线4和输入输出线12配置在同一平面内,并且在接点13上直接连接其一部分。
为了使从外部电路到谐振器或从谐振器到外部的能量传递效率不降低或构成频带宽的滤波器电路,谐振器与外部电路的强耦合不可少。例如,为了使2条传输线耦合,可平行配置两者,并能通过改变配置间隔,调整其耦合度。例如,若减小传输线间的距离,则两传输线间的交叉耦合电容增大,耦合度增加。能将耦合的线长设定成4分之一波长或2分之一波长等,则耦合传输线结构呈现谐振现象,可从一传输线对另一传输线高效率传递能量。然而,由多个叠层螺旋导体布线组成的叠层螺旋导体布线谐振器的电路占用面积变小,因而即使将输入输出线相邻配置,也难以获得强耦合。由于加长耦合距离,通过以间隙为中介,折弯螺旋导体布线的最外圈导体布线的周边进行配置,可获得耦合度,但需要非所需电路的占用面积。因此,实施方式3的高频电路中,通过将输入输出线12直接连接构成叠层螺旋谐振器的部分螺旋导体布线4,加强两者的耦合。
将2分之一波长谐振器与输入输出线直接连接时,一般在直流方面连接两者,因而具有在太宽的频带取得强耦合的问题。因此,需要不直接连接两者,而用短的耦合区长度取得电容,所以考虑采用高介电常数材料的电容器的连接、极端缩小布线间距的耦合、使用层间距离非常小的多层电介质衬底的耦合等解决策略。然而,都难以维持低成本性。实施方式3的高频电路中,由2个以上的空间上分开的螺旋导体布线结构的组合构成叠层螺旋导体布线谐振器,因而限定具有可在空间上分开的螺旋导体布线之间顺畅移动的电流的频带。因此,不产生直流耦合,不在宽频带非所需地产生非常强的耦合。如果改变直接连接的部位的连接宽度,还能使耦合度变化。
图10A中,使同一导体层上形成输入输出线12和与它直接连接的螺旋导体布线4,但也可在多层电介质衬底1内不同的导体层形成与输入输出线12直接连接的螺旋导体布线。该结构的情况下,用贯通多层电介质衬底1的至少一部分的贯通连接体实现两者的直接连接。
图10A中,取为在多层电介质衬底1的最外层表面2形成上面的螺旋导体布线4,但将螺旋导体布线4形成在多层电介质衬底1的内部面,或覆盖形成螺旋导体布线4的导体布线层,都能同样取得本发明的有利效果。
图10A使多层电介质衬底1的最外层表面2形成输入输出线12,但也可将输入输出线12形成在多层电介质衬底1内的内部导体层。
图10A中,取为在2层的导体层上形成2条螺旋导体布线,但如实施方式2所示,也可在3层以上的导体布线层上形成3以上的螺旋导体布线。
如以上所说明,根据实施方式3,能用简单且小型的电路取得叠层螺旋导体布线谐振器与输入输出线之间的强耦合。
实施方式4
图11A是本发明实施方式4的高频电路沿GH线的概略剖视图。在具有2层电介质布线层的多层电介质衬底1形成实施方式4的高频电路。图11B是示出形成在多层电介质衬底1的最高端导体布线层的最外层表面2上的螺旋导体布线4、14的图案的俯视图。图11C是示出形成在多层电介质衬底1的低端导体布线层的内部面3上的螺旋导体布线5、15的图案的俯视图。
图11B画的点O4和图11C画的点O5与实施方式1同样,平面内的位置相同。图11B画的点O14与图11C画的点O15在平面内的位置相同。由叠层的螺旋导体布线4、5构成叠层螺旋导体布线谐振器11。由叠层的螺旋导体布线14、15构成叠层螺旋导体布线谐振器16。叠层螺旋导体布线谐振器11、16中,在上下形成的螺旋导体布线4、5和14、15分别具有相反的卷绕方向。将叠层螺旋导体布线谐振器11和叠层螺旋导体布线谐振器16相邻配置。
作为多个谐振器之间耦合的方法,有利用受耦合的谐振器之间的电容进行耦合的方法和将一谐振器产生的磁场耦合到另一谐振器的方法。实施方式4的高频电路中,为了使层叠螺旋旋转方向相反的螺旋导体布线而形成的叠层螺旋导体布线谐振器之间产生耦合,以空间为中介,将两个叠层螺旋导体布线谐振器以面相邻方式配置。各叠层螺旋导体布线谐振器是实现远低于构成该谐振器的螺旋导体布线出现的谐振频率的基本谐振频率的小型谐振器。因此,难以用与相邻传输线之间产生的空间电容取得与外部电路适当耦合。这是起因于叠层螺旋导体布线谐振器不顾谐振器长度大地减小占用面积,使得与基本谐振频率的波长相比,螺旋导体布线与传输线能相邻配置的距离短。然而,实施方式4的高频电路中,相邻配置的两个叠层螺旋导体布线谐振器都具有叠层结构,因而叠层的各布线之间产生多个空间电容。而且,调整配置的位置,使电流沿一叠层螺旋导体布线谐振器流通时产生贯穿叠层螺旋导体布线谐振器内侧的磁场在叠层螺旋导体布线谐振器外侧也贯穿另一叠层螺旋导体布线谐振器的中央,从而可在另一叠层螺旋导体布线谐振器也流通感应电流。因此,只要将两个叠层螺旋导体布线谐振器相邻配置,就能获得希望的谐振器之间的耦合。
由于不需要使用高介电常数材料等添加工序就能取得实现叠层螺旋导体布线谐振器之间的耦合这种有利效果,因而实施方式4的高频电路具有可按低成本进行制造的优点。
图11A中,示出在同一导体层上分别形成螺旋导体布线4和14或5和15时的本发明实施方式,但分别将其形成在不同的导体层,也同样能取得本发明的有利效果。
图11A中,示出在多层电介质衬底1的最外层表面形成叠层螺旋导体布线谐振器11、16的上面的螺旋导体布线4、14时的本发明实施方式,但将螺旋导体布线4、14形成在多层电介质衬底1的内部面,或覆盖形成螺旋导体布线4、14的导体布线层,也同样能取得本发明的有利效果。
上文中,使两个叠层螺旋导体布线谐振器偶合,但也可构成使3个以上的叠层螺旋导体布线谐振器偶合。
如以上所说明,根据实施方式4,利用简单的结构,不使用特殊材料,就能实现比以往小型的谐振器(即叠层螺旋导体布线谐振器)之间耦合。
实施方式5
图12A是本发明实施方式5的高频电路沿IJ线的概略剖视图。沿IJ线的剖视图上看不到输入输出线12、17,但图12A将输入输出线12、17投影并标在剖视图上。图12B是示出形成在多层电介质衬底1的最高端导体布线层的最外层表面2上的螺旋导体布线4、14和输入输出线12、17的图案的俯视图。图12C是示出形成在多层电介质衬底1的低端导体布线层的内部面3上的螺旋导体布线5、15的图案的俯视图。
图12B画的点O4和图12C画的点O5与实施方式1同样,平面内的位置一致。图12B画的点O14与图12C画的点O15在平面内的位置一致。由叠层的螺旋导体布线4、5构成叠层螺旋导体布线谐振器11。由叠层的螺旋导体布线14、15构成叠层螺旋导体布线谐振器16。螺旋导体布线4、5各自的卷绕方向相反。螺旋导体布线14、15各自的卷绕方向相反。形成在两叠层螺旋导体布线谐振器的上表面的螺旋导体布线4、14的卷绕方向相同。将叠层螺旋导体布线谐振器11和叠层螺旋导体布线谐振器16相邻配置,使其耦合。将输入输出线12配置成与螺旋导体布线4相邻,以实现外部电路与叠层螺旋导体布线谐振器11的耦合。将输入输出线17配置成与螺旋导体布线14相邻,以实现外部电路与叠层螺旋导体布线谐振器16的耦合。
实施方式5的高频电路中,实现由叠层螺旋导体布线谐振器构成的带通滤波器。通过使用在低于作为组成单元的各螺旋导体布线的基本谐振频率的频率呈现基本谐振现象的小型谐振器(即叠层螺旋导体布线谐振器),实施方式5的高频电路中也能实现电路小型化。用单层平面电路形成的已有二分之一波长谐振器在基频的2倍频处也出现谐振现象,因而由二分之一波长谐振器构成的已有带通滤波器在基频的2倍频的频带也有通过特性。与此相比,叠层螺旋导体布线谐振器中,不拘二分之一波长谐振器,在基本谐振频率的2倍频处不呈现谐振现象。因此,实施方式5的高频电路中,取得在通带的2倍频附近的频带不呈现通过特性的有利效果。
图12A中,为了取得叠层螺旋导体布线谐振器11与输入输出线12的耦合以及叠层螺旋导体布线谐振器16与输入输出线17的耦合,利用空间电容,但也可用电容器部件分别将螺旋导体布线4与输入输出线12之间、螺旋导体布线14与输入输出线17之间加以连接。这时,调整电容器的电容值,就能得到最佳耦合度,以取得希望的特性。分别将螺旋导体布线4与输入输出线12以及螺旋导体布线14与输入输出线17直接连接,也可取得耦合,并且通过改变连接的宽度,可调整最佳耦合度,以取得希望的特性。
图12A中,使同一导体层上形成与输入输出线12、17耦合的螺旋导体布线4、14但分别将其形成在不同的导体层,也同样能取得本发明的有利效果。
图12A中,使多层电介质衬底1的最外层表面2上形成叠层螺旋导体布线谐振器11、16的上面的螺旋导体布线4、14,但将螺旋导体布线4、14形成在多层电介质衬底1的内部面,或覆盖形成螺旋导体布线4、14的导体布线层,也同样能取得本发明的有利效果。
图12A中,使多层电介质衬底1的最外层表面2上形成输入输出线12,但也可将输入输出线形成在多层电介质衬底1内的内部导体层。
上文中,使两个叠层螺旋导体布线谐振器偶合,但也可构成使3个以上的叠层螺旋导体布线谐振器偶合。
如以上所说明,根据实施方式5,利用简单的结构,不使用特殊材料,就能提供具有在通带的2倍频的频带无通过特性的带通滤波器特性的、比以往小型的高频电路。
实施方式1的实施例
本发明人制成作为实施方式1的实施例的高频电路,并测量其谐振特性。图13A~C示出用于测量的评价用高频电路的概略结构。图13A是评价用高频电路沿KL线的概略剖视图。图13A将输入输出线12投影并标出上。图13B是示出形成在多层电介质衬底1的最高端导体布线层的最外层表面2上的螺旋导体布线4和输入输出线12的图案的俯视图。图13C是示出形成在多层电介质衬底的低端导体布线层的内部面3上的螺旋导体布线5的图案的俯视图。
评价用高频电路中,在使对叠层螺旋导体布线谐振器11的耦合度低的状态下,接近成为探头的微带结构的输入输出线12,以便本发明人测量一个端子的反射。本发明人根据谐振频率和反射频带估算Q值。本发明人进行对基本谐振和二次谐振的评价。
表1示出本发明高频电路的实施例和比较例的参数和特性。实施例和比较例中,将评价衬底材料设为介电常数为10.2、电介质损耗角正切为0.003的RT/Duroid衬底。多层衬底的结构为:以厚640微米的该材料为基底,在其两面施加厚40微米的铜布线后,粘贴厚130微米的该材料作为添加层。在添加层的上表面形成的铜布线统一为厚度40微米。设全部布线的布线宽度为200微米。面内的相邻布线之间的间隙统一为200微米。形成的各螺旋导体布线的外形统一为2500微米的正方形。多层电介质衬底的背面全粘贴铜导体,作为高频接地部起作用。不管有没有队多层衬底结构添加的添加层,将测量端子形成在最上端的表面。
表1
螺旋旋转方向 基本谐振  二次谐振 备考
频率  Q值  频率  Q值
第1实施例 上面 顺时针 1.42GHz 75.4 4.45GHz 76.5 有追加层
下面 反时针
第1比较实施例 上面 顺时针 2.62GHz 65.8 3.39GHz 63.3
下面 反时针
第2比较实施例 上面 顺时针 3.31GHz 96.6 8.01GHz 94.9
下面
第3比较实施例 上面 3.35GHz 103.5 8.00GHz 98.9     无追加层
下面 顺时针
第4比较实施例 上面 2.54GHz 89.4 5.84GHz 83.5     有追加层
下面 顺时针
实施例1和比较实施例1都包含叠2层2.5圈的螺旋导体布线的结构。实施例1中,螺旋导体布线的卷绕方向上下相反。反之,比较实施例1的螺旋导体布线卷绕方向上下相同。实施例1在1.42GHz呈现谐振现象,而比较实施例1在2.62GHz呈现谐振现象。
比较实施例2具有仅在添加层的表面形成顺时针回转的一个螺旋导体布线的结构。比较实施例2中,谐振频率为3.31GHz,Q为96.6。
比较实施例3具有在厚640微米的基础衬底的表面形成卷绕方向为顺时针回转的一个螺旋导体布线的结构,不设添加层。比较实施例3中,谐振频率为3.35GHz,Q为103.5。
比较实施例4具有的结构在厚640微米的基础衬底的表面形成卷绕方向为顺时针回转的一个螺旋导体布线后,覆盖添加层,在添加层的表面不形成螺旋导体布线的导体图案。比较实施例4中,谐振频率为2.66GHz,Q为91.6。
根据这些结果,显然与比较实施例1相比,实施例1所示的谐振频率降低46%。与改变多层衬底条件的比较实施例2~4中的任一个相比,可以说实施例1所示的谐振频率使有效谐振器长度增加近2倍。因此可以确认,第1实施例是小型的谐振器。
实施例1中,二次谐振频率为基频的3倍左右,不在基本谐振频率的2倍频处产生谐振现象。
接着,为了掌握上下螺旋导体布线的配置位置相对错开造成的对基本谐振频率的影响,对与实施例1相同的螺旋导体布线结构制作共6个高频电路。图14示出基于上下螺旋导体布线配置位置相对错开距离的基本谐振频率的变化。从图14可知,在叠层的螺旋导体布线的外缘形状一致的条件下,获得最低基本谐振频率。这表示由于两螺旋导体布线之间的高度不同且重叠的交叉部位的面积越增加,越顺畅地进行两螺旋导体布线之间的高频电流相互移动,最好将叠层配置的两螺旋导体布线的外缘形状配置成以最大的面积相交,以便降低谐振频率。
接着,为了掌握两螺旋导体布线的交叉方式变化时的影响,将基础衬底表面上形成的螺旋导体布线形状和方向都固定,并且测量使添加层表面上形成的螺旋导体布线的形成方向每旋转45度的若干高频电路特性,示于图15。也同样测量各螺旋导体布线的圈数为2.25圈时的结果,示于图16。还测量各螺旋导体布线的圈数为2圈时的结果,示于图17。
图15~图17中,把从螺旋导体布线中心点对视,两螺旋导体布线的开路终端部位处在相同方向时的状态定义为0度的角度。螺旋导体布线数置于任何值,角度为180度时的高频电路呈现最低的基本谐振频率。
即,判明从螺旋导体布线的中心点对视,两螺旋导体布线的开路终端部位处在相反方向时,能提供最小型的谐振器。还判明作为对于任一配置角度,谐振器长度都比个别螺旋导体布线具有的谐振器长度大34%以上的谐振器起作用。
实施方式2的实施例
接着,本发明人制作将表面上粘合以厚130微米的RT/Duroid衬底为添加衬底的3层电介质衬底用作电路衬底的实施方式2的实施例。包含最外层表面的3层导体布线层上分别形成厚40微米的铜布线组成的等效螺旋导体布线,从而制作叠层螺旋导体布线谐振器结构。螺旋导体布线的形状与实施例1相同。与实施例1同样,也利用形成在最外层表面的探头结构估计谐振器的基本谐振频率和Q值以及二次谐振频率和Q值。在多层电介质衬底的背面全面贴铜导体,作为高频接地部起作用。
表2示出本发明实施例2~4、比较例5的参数和特性。实施例2是3层螺旋导体布线全部具有相反旋转方向的结构。实施例3的结构具有第1层与第2层反向、第2层与第3层同向的螺旋回转方向。实施例4的结构具有第1层与第2层同向、第2层与第3层反向的螺旋回转方向。比较实施例5所有的3层螺旋导体布线的螺旋回转方向相同。
从表2可知,将全部交叉邻近的螺旋导体布线之间的螺旋回转方向设定成反向的实施例2呈现最低基本谐振频率。反之,将3层全部设定成螺旋回转方向的比较实施例5只能呈现与个别螺旋导体布线作为二分之一波长谐振器呈现的基本谐振频率大致相同的基本谐振频率。交叉相邻螺旋导体布线的两个组合中,仅将一个组合设定成螺旋回转方向相反的实施例3和4不是实施例2的情况,但与比较实施例5相比,基本谐振频率降低。比较实施例5在基本谐振频率的2倍频处产生谐振现象,但实施例2~4二次谐振频率为基频的3倍左右,在基本谐振频率的2倍频处不产生谐振现象。
表2
螺旋旋转方向 基本谐振  二次谐振
频率  Q值  频率  Q值
第2实施例     第一层 顺时针 0.96GHz 66 3.00GHz 47
    第二层 反时针
    第三层 顺时针
第3实施例     第一层 顺时针 1.30GHz 68.9 2.73GHz 42.2
    第二层 反时针
    第三层 反时针
第4实施例     第一层 顺时针 1.25GHz 64.7 3.24GHz 44.1
    第二层 顺时针
    第三层 反时针
    第5比较实施例     第一层 顺时针 2.52GHz 62.5 2.91GHz 42.4
    第二层 顺时针
    第三层 顺时针
实施方式3的实施例
实施方式3的实施例的高频电路,其基础衬底是厚640微米的介电常数为10.2、电介质损耗角正切为0.003的RT/Duroid衬底。通过在基础衬底层叠与基础衬底材料相同的厚130微米的添加衬底,将该高频电路构成为2层的多层电介质衬底。在表面和内部导体层上,利用导体宽200微米、面内布线间距200微米、导体厚40微米的铜图案层叠2层具有一边为900微米的正方形的最外圈形状的1.5圈的螺旋导体布线。由此,构成叠层螺旋谐振器。多层电介质衬底的最上层表面上形成宽400微米的输入输出线。图18是示出从输入输出线对把螺旋导体布线与输入输出线直接连接的实施方式的实施例3的高频电路供电时的反射强度的频率特性的图形。在多层电介质衬底的背面全面贴铜导体,使其作为高频接地部起作用。对上面的螺旋导体布线的连接点13的相对位置与图10B所示的位置相同。
如图18所示,不使2.37GHz的基本谐振频率变化,就能获得反射损耗14dB的高强度反射峰。因此,判明叠层螺旋导体布线谐振器与外部电路之间得到强耦合。
以和上述高频电路相同的设定,用通过200微米间隙的比较例在宽400微米的输入输出线与叠层螺旋导体布线之间进行供电。这时,在反射强度测量范围内,不能对反射特性确认峰。因此,判明仅缩短耦合距离不能得到对叠层螺旋导体布线的强耦合。如图19A~C所示,使输入输出线12的方向相对于螺旋导体布线4的最外圈布线旋转90度,以便作为线间距离200微米的平行耦合线起作用。这时,将连接点13附近作为开路终端进行供电的情况下,谐振频率上的反射损耗只能达到0.55dB。因此,判明仅缩短耦合距离不能得到对叠层螺旋谐振器的强耦合。
实施方式4的实施例
实施方式4的实施例的高频电路,其基础衬底是厚640微米的介电常数为10.2、电介质损耗角正切为0.003的RT/Duroid衬底。通过在基础衬底层叠与基础衬底材料相同的厚130微米的添加衬底,将该高频电路构成为2层的多层电介质衬底。在表面和内部导体层上,利用导体宽200微米、面内布线间距200微米、导体厚40微米的铜图案层叠2层具有一边为2500微米的正方形的最外圈形状的2.5圈的螺旋导体布线,从而构成2个叠层螺旋谐振器。本发明人估算以距离为中介配置2个叠层螺旋导体布线谐振器时,叠层螺旋导体布线谐振器基本谐振频率分开的2个谐振器之间的耦合度。在多层电介质衬底的背面全面贴铜导体,使其作为高频接地部起作用。可从对谐振频率的偶模和奇模的分离量计算耦合的谐振器之间的耦合度。图20是示出改变两谐振器的配置间隔时的耦合度的图形。图20也示出基本谐振频率因耦合而分离的偶模和奇模的2个谐振频率的变化。
例如,由栅极谐振器构成频带率5%、带内通过损耗偏差0.2dB的切比雪夫特性的带通滤波器时,谐振器之间的耦合度为0.0424。如果使频带率为10%,则带内通过损耗偏差为0.2dB时,耦合度在理论上需要0.0848的值。然而,从图20显然可确认,实施方式的实施例4中,通过调整2个叠层螺旋导体布线谐振器之间的配置距离,在作为小型谐振器叠层螺旋导体布线谐振器之间可实现实际滤波器设计中所要求程度的耦合度。
实施方式5的实施例
作为实施方式5的实施例,制作使用2个叠层螺旋导体布线谐振器的第1带通滤波器。设基础衬底为厚640微米的RT/Duroid衬底(介电常数10.2、电介质损耗角正切0.003)。设添加衬底为与基础衬底材料相同的厚130微米的衬底。由此,构成2层的多层电介质衬底。在表面和内部导体层上,利用导体宽200微米、面内布线间距200微米、导体厚40微米的铜图案层叠2层具有一边为1800微米的正方形的最外圈形状的1.5圈的螺旋导体布线,从而构成2个叠层螺旋谐振器。将两叠层螺旋导体布线谐振器的间隔设定为相当于取得频带率6%所需的0.07耦合度的300微米。使构成两叠层螺旋导体布线谐振器的上面的螺旋导体布线或下面的螺旋导体布线的螺旋回转方向相同。两叠层螺旋导体布线谐振器的上面的螺旋导体布线的最外圈导体布线直接连接形成相同频率状的宽400微米的输入输出线,以获得外部电路与谐振器结构之间的耦合。连接点为从螺旋导体布线的最外圈导体布线的开路终端部位移动正方形一条边份额的部位。在多层电介质衬底的背面全面贴铜导体,使其作为高频接地部起作用。
图21和图22是示出上述第1带通滤波器的通过特性的图形。图21示出通带附近的窄带特性。图22示出达到相当于4倍通带的频率的12GHz的宽带特性。如图21所示,实现中心频率2.95GHz、频带率5.9%的滤波器。通带内的***损耗最小值为1.8dB。从图22可知,不能确认在相当于2倍中心频率的6GHz附近的频带存在非所需的通带。
又同样制作使用2个叠层螺旋谐振器的第2带通滤波器。设基础衬底为厚640微米的RT/Duroid衬底(介电常数10.2、电介质损耗角正切0.003)。设2层的添加衬底为与基础衬底材料相同的分别厚130微米的衬底。由此,构成3层的多层电介质衬底。在表面和内部导体层上,利用导体宽200微米、面内布线间距200微米、导体厚40微米的铜图案层叠3层具有一边为1700微米的正方形的最外圈形状的2圈的螺旋导体布线,从而构成流过3层叠层螺旋谐振器。即,第2带通滤波器的结构将上述第1带通滤波器的叠层螺旋导体布线谐振器的叠层数2增加到3。将两c的间隔设定为相当于取得频带率5%所需的0.06耦合度的650微米。使构成两叠层螺旋导体布线谐振器的上面的螺旋导体布线相互间或下面的螺旋导体布线相互间的螺旋旋转方向相同。两叠层螺旋导体布线谐振器的上面的螺旋导体布线的最外圈导体布线直接连接形成相同平面状的宽400微米的输入输出线,以获得外部电路与谐振器结构之间的耦合。连接点为从螺旋导体布线的最外圈导体布线的开路终端部位移动正方形一条边份额的部位。在多层电介质衬底的背面全面贴铜导体,使其作为高频接地部起作用。
图23和图24是示出上述第2带通滤波器的通过特性的图形。图23示出通带附近的窄带特性。图24示出达到相当于5倍通带的频率的12GHz的宽带特性。如图23所示,实现中心频率2.38GHz、频带率3.1%的滤波器。通带内的***损耗最小值为5.0dB。不能确认在相当于2倍中心频率的4.8GHz附近的频带存在非所需的通带。
至此,利用已有技术组成的高频电路、比较实施例、本发明高频电路实施例的特性比较,已完成对本发明有意义效果的证明。
生产事业上的可用性
本发明的高频电路是一种高功能谐振器,不用特殊材料,而用简单结构,比以往小型,在基本谐振频率的2倍频处不产生谐振现象,而且相对于传送频带的电磁波波长,结构尺寸飞跃性缩短,因而在无线通信设备中有用。

Claims (16)

1.一种谐振器,其特征在于,由具有1圈以上的一条导体布线构成的第1螺旋导体布线和1圈以上的一条导体布线构成的第2螺旋导体布线的多层电介质衬底构成,
所述第1螺旋导体布线与所述第2螺旋导体布线不导通,
使所述第1螺旋导体布线与所述第2螺旋导体布线位于不同高度且重叠,并且
所述第1螺旋导体布线的卷绕方向与所述第2螺旋导体布线的卷绕方向相反,
所述第1螺旋导体布线的端部开放,
所述第2螺旋导体布线的端部开放。
2.如权利要求1中所述的谐振器,其特征在于,堆叠所述第1螺旋导体布线和所述第2螺旋导体布线,使所述第1螺旋导体布线和所述第2螺旋导体布线的螺旋中心的位置相互一致时,所述第1螺旋导体布线和所述第2螺旋导体布线的外缘的外形一致。
3.如权利要求1中所述的谐振器,其特征在于,配置第1螺旋导体布线和所述第2螺旋导体布线所具有的各自的最外圈导体布线的开放端部,使其从第1螺旋导体布线和第2螺旋导体布线的螺旋中心看来处在对角相反方向上。
4.如权利要求1中所述的谐振器,其特征在于,还具有与所述第1螺旋导体布线和第2螺旋导体布线中的任一布线的最外圈导体布线耦合的输入输出线。
5.如权利要求1中所述的谐振器,其特征在于,所述多层电介质衬底还包括由具有1圈以上的导体布线构成的第3螺旋导体布线,
所述第3螺旋导体布线与所述第1螺旋导体布线和所述第2螺旋导体布线都不导通,
使所述第3螺旋导体布线与所述第1螺旋导体布线和所述第2螺旋导体布线中的每一个都位于不同高度且相互重叠,
将所述第2螺旋导体布线夹在所述第1螺旋导体布线与所述第3螺旋导体布线之间,并且
所述第2螺旋导体布线的卷绕方向与所述第3螺旋导体布线的卷绕方向相反,
所述第3螺旋导体布线的端部开放。
6.如权利要求5中所述的谐振器,其特征在于,堆叠所述第1螺旋导体布线、所述第2螺旋导体布线和第3螺旋导体布线,使所述第1螺旋导体布线、所述第2螺旋导体布线和第3螺旋导体布线的螺旋中心的位置相互一致时,所述第1螺旋导体布线、所述第2螺旋导体布线和第3螺旋导体布线的外缘的外形一致。
7.如权利要求5中所述的谐振器,其特征在于,配置第1螺旋导体布线和所述第2螺旋导体布线各自的最外圈导体布线的开放端部,使其从所述第1螺旋导体布线和所述第2螺旋导体布线的螺旋中心看来处在对角相反方向上;
配置第2螺旋导体布线和所述第3螺旋导体布线各自的最外圈导体布线的开放端部,使其从第2螺旋导体布线和所述第3螺旋导体布线的螺旋中心看来处在对角相反方向上。
8.如权利要求1中所述的谐振器,其特征在于,
所述多层电介质衬底还包括:
与所述第1螺旋导体布线横向相邻形成,卷绕方向与所述第1螺旋导体布线相同,且由1圈以上的导体布线构成的一条第3螺旋导体布线、以及
与所述第2螺旋导体布线横向相邻形成,卷绕方向与所述第2螺旋导体布线相同,且由1圈以上的导体布线构成的一条第4螺旋导体布线,其中
所述第3螺旋导体布线与所述第4螺旋导体布线不导通,
使所述第3螺旋导体布线与所述第4螺旋导体布线位于不同高度且相互重叠,
所述第3螺旋导体布线的卷绕方向与第4螺旋导体布线的卷绕方向相反,
所述第3螺旋导体布线的端部开放,
所述第4螺旋导体布线的端部开放。
9.如权利要求8中所述的谐振器,其特征在于,堆叠所述第1螺旋导体布线和第2螺旋导体布线,使所述第1螺旋导体布线和第2螺旋导体布线的螺旋中心的位置相互一致时,所述第1螺旋导体布线和第2螺旋导体布线的外缘的外形一致;
堆叠所述第3螺旋导体布线和第4螺旋导体布线,使所述第3螺旋导体布线和第4螺旋导体布线的螺旋中心的位置相互一致时,所述第3螺旋导体布线和第4螺旋导体布线的外缘的外形一致。
10.如权利要求8中所述的谐振器,其特征在于,配置第1螺旋导体布线和所述第2螺旋导体布线各自的最外圈导体布线的开放端部,使其从第1螺旋导体布线和所述第2螺旋导体布线的螺旋中心看来处在对角相反方向上;
配置第3螺旋导体布线和所述第4螺旋导体布线各自的最外圈导体布线的开放端部,使其从第3螺旋导体布线和所述第4螺旋导体布线的螺旋中心看来处在对角相反方向上。
11.如权利要求1中所述的谐振器,其特征在于,
第1螺旋导体布线的开放端部的电流分布密度为0,且
第2螺旋导体布线的开放端部的电流分布密度为0。
12.如权利要求5中所述的谐振器,其特征在于,
还具有与所述第1螺旋导体布线、第2螺旋导体布线和第3螺旋导体布线中的任一布线的最外圈导体布线耦合的输入输出线,
所述输入输出线连接到除所述第1螺旋导体布线、第2螺旋导体布线和第3螺旋导体布线的开放端部之外的部分。
13.如权利要求5中所述的谐振器,其特征在于,
还具有与所述第1螺旋导体布线、第2螺旋导体布线和第3螺旋导体布线中的任一布线的最外圈导体布线耦合的输入输出线,
所述输入输出线与所述第1螺旋导体布线、第2螺旋导体布线和第3螺旋导体布线相互隔离。
14.如权利要求8中所述的谐振器,其特征在于,
还具有与所述第1螺旋导体布线、第2螺旋导体布线、第3螺旋导体布线和第4螺旋导体布线中的任一布线的最外圈导体布线耦合的多个输入输出线,
所述输入输出线连接到除所述第1螺旋导体布线、第2螺旋导体布线、第3螺旋导体布线和第4螺旋导体布线的开放端部之外的部分。
15.如权利要求8中所述的谐振器,其特征在于,
还具有与所述第1螺旋导体布线、第2螺旋导体布线、第3螺旋导体布线和第4螺旋导体布线中的任一布线的最外圈导体布线耦合的多个输入输出线,
所述输入输出线与所述第1螺旋导体布线、第2螺旋导体布线、第3螺旋导体布线和第4螺旋导体布线相互隔离。
16.如权利要求1中所述的谐振器,其特征在于,
所述谐振器抑制频率两倍于基频的谐振出现,并呈现频率为基频大于等于3的整数倍的谐振。
CNB2004800005372A 2003-04-24 2004-04-01 高频谐振电路 Expired - Fee Related CN1332476C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003120024 2003-04-24
JP120024/2003 2003-04-24

Publications (2)

Publication Number Publication Date
CN1771624A CN1771624A (zh) 2006-05-10
CN1332476C true CN1332476C (zh) 2007-08-15

Family

ID=33308123

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800005372A Expired - Fee Related CN1332476C (zh) 2003-04-24 2004-04-01 高频谐振电路

Country Status (4)

Country Link
US (1) US7183888B2 (zh)
JP (1) JP3800555B2 (zh)
CN (1) CN1332476C (zh)
WO (1) WO2004095624A1 (zh)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4236663B2 (ja) 2005-07-28 2009-03-11 Tdk株式会社 電子デバイスおよびフィルタ
JP4596266B2 (ja) * 2005-12-27 2010-12-08 Tdk株式会社 フィルタ
JP4596269B2 (ja) * 2006-03-03 2010-12-08 Tdk株式会社 積層型共振器およびフィルタ
US9019057B2 (en) * 2006-08-28 2015-04-28 Avago Technologies General Ip (Singapore) Pte. Ltd. Galvanic isolators and coil transducers
US8427844B2 (en) * 2006-08-28 2013-04-23 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Widebody coil isolators
US8061017B2 (en) * 2006-08-28 2011-11-22 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Methods of making coil transducers
US7948067B2 (en) * 2009-06-30 2011-05-24 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Coil transducer isolator packages
US20080278275A1 (en) * 2007-05-10 2008-11-13 Fouquet Julie E Miniature Transformers Adapted for use in Galvanic Isolators and the Like
US7791900B2 (en) * 2006-08-28 2010-09-07 Avago Technologies General Ip (Singapore) Pte. Ltd. Galvanic isolator
US9105391B2 (en) * 2006-08-28 2015-08-11 Avago Technologies General Ip (Singapore) Pte. Ltd. High voltage hold-off coil transducer
US7852186B2 (en) * 2006-08-28 2010-12-14 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Coil transducer with reduced arcing and improved high voltage breakdown performance characteristics
US8385043B2 (en) * 2006-08-28 2013-02-26 Avago Technologies ECBU IP (Singapoare) Pte. Ltd. Galvanic isolator
US8093983B2 (en) * 2006-08-28 2012-01-10 Avago Technologies Ecbu Ip (Singapore) Pte. Ltd. Narrowbody coil isolator
JP4835334B2 (ja) * 2006-09-06 2011-12-14 国立大学法人徳島大学 高周波信号伝送装置
US8258911B2 (en) 2008-03-31 2012-09-04 Avago Technologies ECBU IP (Singapor) Pte. Ltd. Compact power transformer components, devices, systems and methods
JP4915747B2 (ja) * 2008-03-31 2012-04-11 国立大学法人徳島大学 高周波信号伝送装置
FR2938979B1 (fr) * 2008-11-25 2010-12-31 Thales Sa Coupleur radiofrequence compact.
US7969359B2 (en) * 2009-01-02 2011-06-28 International Business Machines Corporation Reflective phase shifter and method of phase shifting using a hybrid coupler with vertical coupling
CN102281714A (zh) * 2010-06-09 2011-12-14 鸿富锦精密工业(深圳)有限公司 印刷电路板
WO2012002133A1 (ja) * 2010-06-28 2012-01-05 株式会社村田製作所 積層型セラミック電子部品およびその製造方法
US9379678B2 (en) * 2012-04-23 2016-06-28 Qualcomm Incorporated Integrated directional coupler within an RF matching network
DE102012110787B4 (de) * 2012-11-09 2015-05-13 Sma Solar Technology Ag Koppelstruktur zur galvanisch getrennten Signalübertragung, Kommunikationsstruktur und Wechselrichter
WO2019127412A1 (en) * 2017-12-29 2019-07-04 Telefonaktiebolaget Lm Ericsson (Publ) Harmonic control circuit apparatus and method for manufacturing the same
CN112557339A (zh) * 2019-09-25 2021-03-26 天津大学 一种双频率太赫兹近场成像***及方法
CN112557761A (zh) * 2019-09-25 2021-03-26 天津大学 一种高分辨率简易太赫兹近场成像阵列单元

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514010A (ja) * 1991-07-05 1993-01-22 Toko Inc ストリツプラインフイルタ
JPH0514009A (ja) * 1991-06-27 1993-01-22 Toko Inc ストリツプラインフイルタ
EP0877437A1 (en) * 1997-05-07 1998-11-11 Murata Manufacturing Co., Ltd. Strip-line resonator and variable resonator

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3833872A (en) * 1972-06-13 1974-09-03 I Marcus Microminiature monolithic ferroceramic transformer
US4959631A (en) * 1987-09-29 1990-09-25 Kabushiki Kaisha Toshiba Planar inductor
JP3381392B2 (ja) * 1994-06-03 2003-02-24 株式会社村田製作所 フィルタ
US6075427A (en) 1998-01-23 2000-06-13 Lucent Technologies Inc. MCM with high Q overlapping resonator
JP2000091805A (ja) 1998-09-16 2000-03-31 Toko Inc 空洞共振フィルタ
US6198374B1 (en) * 1999-04-01 2001-03-06 Midcom, Inc. Multi-layer transformer apparatus and method
JP3551899B2 (ja) * 2000-06-26 2004-08-11 株式会社村田製作所 共振器、フィルタ、デュプレクサおよび通信装置
US6635948B2 (en) * 2001-12-05 2003-10-21 Micron Technology, Inc. Semiconductor device with electrically coupled spiral inductors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0514009A (ja) * 1991-06-27 1993-01-22 Toko Inc ストリツプラインフイルタ
JPH0514010A (ja) * 1991-07-05 1993-01-22 Toko Inc ストリツプラインフイルタ
EP0877437A1 (en) * 1997-05-07 1998-11-11 Murata Manufacturing Co., Ltd. Strip-line resonator and variable resonator

Also Published As

Publication number Publication date
JPWO2004095624A1 (ja) 2006-07-13
US7183888B2 (en) 2007-02-27
CN1771624A (zh) 2006-05-10
WO2004095624A1 (ja) 2004-11-04
US20050077993A1 (en) 2005-04-14
JP3800555B2 (ja) 2006-07-26

Similar Documents

Publication Publication Date Title
CN1332476C (zh) 高频谐振电路
US5973651A (en) Chip antenna and antenna device
US6906682B2 (en) Apparatus for generating a magnetic interface and applications of the same
EP1791139A1 (en) Inductive component
EP0778633B1 (en) Chip antenna having dielectric and magnetic material portions
US7164332B2 (en) Resonator
US7679475B2 (en) Bandpass filter and high frequency module using the same and radio communication device using them
TW293955B (zh)
US11114994B2 (en) Multilayer filter including a low inductance via assembly
EP1704583A1 (en) Capacitor
US7420452B1 (en) Inductor structure
US20090154056A1 (en) Low inductance capacitor and method of manufacturing same
Rano et al. Interdigital based EBG: compact and polarization stable for MBAN and Wi-Fi
US20100077582A1 (en) Method of manufacturing chip capacitor including ceramic/polymer composite
CN205069829U (zh) 联接结构、通讯结构和逆变器
CN100566148C (zh) 噪声滤波器
JP2006222691A (ja) 電子部品
CN101127271B (zh) 电感结构
CN1340875A (zh) 滤波器、双工器及通信设备
JP2020021997A (ja) Lcフィルタ
JP2003283284A (ja) 平面化フィルタ
CN107454734A (zh) 层叠电容器的安装构造以及层叠电容器的安装方法
JP2022147904A (ja) 電子回路および回路基板
JP3161211B2 (ja) 積層型誘電体フィルタ
CN116632484A (zh) 一种巴伦结构及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070815

Termination date: 20200401

CF01 Termination of patent right due to non-payment of annual fee