CN1313798C - 有形装药的衬 - Google Patents

有形装药的衬 Download PDF

Info

Publication number
CN1313798C
CN1313798C CNB028224833A CN02822483A CN1313798C CN 1313798 C CN1313798 C CN 1313798C CN B028224833 A CNB028224833 A CN B028224833A CN 02822483 A CN02822483 A CN 02822483A CN 1313798 C CN1313798 C CN 1313798C
Authority
CN
China
Prior art keywords
lining
adhesive
tungsten
mixture
shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB028224833A
Other languages
English (en)
Other versions
CN1585888A (zh
Inventor
B·伯恩
K·G·考恩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qinetiq Ltd
Original Assignee
Qinetiq Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qinetiq Ltd filed Critical Qinetiq Ltd
Publication of CN1585888A publication Critical patent/CN1585888A/zh
Application granted granted Critical
Publication of CN1313798C publication Critical patent/CN1313798C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B1/00Explosive charges characterised by form or shape but not dependent on shape of container
    • F42B1/02Shaped or hollow charges
    • F42B1/032Shaped or hollow charges characterised by the material of the liner

Landscapes

  • General Engineering & Computer Science (AREA)
  • Engineering & Computer Science (AREA)
  • Powder Metallurgy (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Ceramic Products (AREA)
  • Paper (AREA)
  • Road Paving Structures (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Liquid Crystal (AREA)
  • Photoreceptors In Electrophotography (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种有形装药的衬,由重量比超过90%的钨粉和重量比最高10%的粉末状粘合剂混合组成。这种混合物被制成为一个基本上为圆锥形状的主体和颗粒粒径在25纳米~1微米之间的均一颗粒的晶体结构。

Description

有形装药的衬
技术领域
本发明涉及***装药领域,特别是涉及一种有形装药的衬及其成分。
背景技术
有形装药包括一个外壳、大量的烈性***如RDX:三次甲基三硝基胺和一个***烈性***中的衬。在石油和天然气开采业中,有形装药的衬常常通过将金属粉末挤压成圆锥形,不过采用其它等效的形状也可以。在大多数情况下,是以锻造金属和合金为原料,通过各种工艺加工成各种形状和粒径的衬。当烈性***被引爆后,冲击力将***包的衬冲破并将***从装药的一端以一股很长的物质流的形式高速喷出,形成一个喷流。这种喷流被用来穿透目标。
有形装药被用于军事和工商业的很多方面。例如,在石油开采业中,有形装药被称作穿孔器,用于穿透油井的外层及周围的储油岩石层。
目前已经有很多关于有形装药弹头的研究,设计者尽力试图获得能达到穿孔要求和满足限制条件的弹头或穿孔器的最高效率。
在许多应用中,希望喷流能尽可能深地穿透目标材料。在本领域一种已知的方法是通过在有形的装药外壳内增加***量来提高穿透深度。而这种方法的缺点是在***引爆时有些能量就会消耗在非喷流方向的其他方向。在油井开发中,这会对井口和相关设备造成不应有的损坏。
另一种使穿透深度最大化的方法是优化整个弹头/穿孔器的设计包括引爆方法和衬的形状。即便如此,传递衬上的能量还是受到***的几何形状和***量的限制。
使穿透深度最大化的一种又进一步的方法是改变有形装药的衬的材料。在过去,最初的有形装药的衬典型地由锻造铜来制成,而在本领域中已经知道,在某些应用中其他材料展示出了更好的优点。例如,在油井穿透器中,使用了包括相对高含量的钨金属粉和软金属、非金属粘合剂压坯的衬。美国专利5656791和5567906揭示的有形装药的衬含有高达90%的钨。这种衬的穿透深度被证明超过传统材料制作的防护面,但其缺点是易碎。
发明内容
因此本发明的目的是提供一种用于制作有形装药衬,使其能够增加穿透深度,并且能解决上述的钨增强衬垫的问题。
据此本发明提供一种有形装药的衬,其由重量超过90%的钨粉和重量最多10%的粉末状粘合剂组成。这种混合物被制成圆锥的形状和均一的颗粒,其颗粒的粒径在25纳米~~1微米之间。
众所周知,穿透深度与(喷流长度)×(有形装药衬的材料密度比率)1/2成比例的。所以,增加衬材料的密度将会提高喷流的穿透深度。钨具有较高的密度,因而用重量超过90%的钨制作衬,其穿透深度超过其他现有的衬,尤其是在石油和天然气工业中。
但是,喷流长度也影响穿透深度。为获得较长的喷流,衬必须被设计成能使喷流具有长的喷流衰减时间,基于Zerilli-Armsrong的材料运算法则(参见Ramachandran V,Zerilli F J,Armstrong R W,在关于钨和钨合金的最新进展的美国温度测量学会第120次年会,美国新奥尔良1991年2月17~~21日)和Goldthorpe的张力不稳定测试方法(第19届国际弹道学讨论会2001年5月3~~7日瑞士)的有形装药的衬的动力学分析已被发明人员接受,该分析表明:喷流的衰减时间与塑性颗粒的速率成反比关系,该塑性颗粒的速率只是由衬材料的组成颗粒的粒径的单调函数决定的。因此,小的颗粒物粒径将会增加喷流的衰减时间,进而增加穿透深度。
使用小于1微米或更小粒径的组成颗粒物,钨衬垫的穿透能力证明将会大大的提高。这里的术语“颗粒物粒径”是指采用美国材料实验协会指定的:E112截取程序(Heyn)测量的颗粒物平均直径。
进一步,如果高钨含量衬垫的颗粒粒径小于1微米,获得的喷流的特性至少可以与贫铀材料(DU)获得的特性相比。所以,钨也是一种不太容易得到的用于代替贫铀材料的材料。
上述的颗粒物粒径和喷流的衰减时间之间的关系要求组成颗粒物的粒径在25纳米。若低于这一下限,则材料的微观结构特性将改变。低于25纳米,成型变形机理就受组成物质的小角度和颗粒物的高角颗粒物边界控制。大于25纳米,材料的变形过程将由错位控制,同时在微观结构中存储能量的效率也比小粒径颗粒物结构低。微观结构变形机理的不同将导致不同的微观结构,最终使材料的物理特性也不同。这种微观结构机械性能不受生产纳米材料的工艺过程控制。
颗粒物的粒径小于100纳米的钨材料能提高材料的动态塑性,因此其作为有形装药的衬的材料是非常有前景的。在这里颗粒粒径优选地小于100纳米的材料被定义为“纳米晶体材料”。
衬通过压缩混合物形成压坯或者通过烧结混合物来制作。在压缩形成压坯的情况下,粘合剂可由任何的金属粉末或非金属材料,但优选地地由软性高密度材料如铅、钽、钼、石墨来构成。更方便的作法是,钨涂上一层粘合剂材料的涂层,粘合剂由如铅等金属或非金属材料如聚合材料来构成。
方便地,但是,衬通常通过烧结以得到更加坚固的结构。这种情况下,适合的粘合剂由铜、镍、铁、钴的单一物质或它们的组合物来构成。
纳米晶体钨能够经由许多生产工艺如化学气相沉积法(CVD)如通过用氢还原六氟化物气体来得到超细的钨粉末来得到。
超细的钨通过气体冷凝浓缩技术从气相中得到,有许多不同的物理气相沉积法(PVD)可供选用。
包含纳米晶体颗粒的超细粉末也可以用PCT/GB01/00553和WO93/02787中叙述的等离子弧反应器来生产。
附图说明
图1示出了根据本发明具有固态衬的有形装药。
图2示出了在显微镜下的钨---铜材料组成的衬样本的微观结构
具体实施方式
如图1所示,传统的有形装药包括由圆锥形或金属材料的圆柱体外壳1和根据本发明的圆锥形金属衬2,一般以衬直径的1~5%作为壁厚,极端情况下会超过10%。衬2紧密地连结在圆柱体外壳1的一端。烈性***3储藏在圆柱体和衬围成的空间内。
适合的衬的引发材料可以由重量占90%的粉末状纳米晶体钨粉和余下重量占10%的粉末状纳米晶体粘合剂组成。粘合剂由软金属如铅、钽、钼或石墨组成。这些粉末状纳米晶体混合物材料可以由上述的任何一种生产工艺得到。
一种生产衬的方法是通过挤压在模具中紧密混合各种粉末的固定量来生产出衬作为压坯的衬。根据本专利在其他情况下,可使用与上述几乎相同的生产工艺紧密混合粉末材料,但生产出来的压坯产品应当为允许某些烧结或渗透而接近网状的形状。
图2示出由钨-铜材料组成的衬的微观结构。这种衬由重量占90%的纳米晶体钨粉和余下重量占10%的粉末状纳米晶体粉末粘合剂材料的混合物组成,这里用铜作为粘合剂。通过烧结混合物来制作衬。
图2显示的是放大100倍的表面显微照片。衬的微观结构是由粒径约在5~~10微米钨颗粒物10(暗灰色)和铜颗粒物20(亮灰色)组成的。如果衬作为压坯的话,则颗粒物粒径实际上会更小,如1微米或更小。
对本发明的具体实施例的变换对于本领域的技术人员来说是显而易见的。因而也将被认为落入本发明的保护范围。例如,可以采用生产细颗粒衬的其他方法。

Claims (11)

1、一种有形装药的衬,由重量比超过90%的钨粉和重量比最高至10%的粉末状粘合剂混合组成,这种混合物被制成为一个圆锥形状的主体和具有颗粒粒径在25纳米~~1微米之间的均一颗粒的晶体结构。
2、根据权利要求1的衬,其特征在于,该混合物中的颗粒粒径在25纳米~~100纳米之间。
3、根据权利要求1或2的衬,其特征在于,该衬混合物被压缩形成压坯。
4、根据权利要求3的衬,其特征在于,该粘合剂含有纳米晶体金属粉末。
5、根据权利要求4的衬,其特征在于,该粘合剂从铅、铜、钽、钼或它们的组合物中选择。
6、根据权利要求3要求的衬,其特征在于,该粘合剂含有纳米晶体非金属粉末。
7、根据权利要求6要求的衬,其特征在于,该粘合剂是非金属材料聚合体。
8、根据权利要求1或2的衬,其特征在于,该粘合剂材料涂在钨上。
9、根据权利要求1或2的衬,其特征在于,该粘合剂混合物是烧结的。
10、根据权利要求9的衬,其特征在于,该粘合剂包含有纳米晶体粉末铜、镍、铁、钴或它们的混合物。
11、一种有形装药,由一外壳、填入到外壳中的一些烈性***、和根据前述任一权利要求所述的一个***到外壳中的衬组成,该烈性***填入到该外壳和该衬之间的空间。
CNB028224833A 2001-11-14 2002-11-12 有形装药的衬 Expired - Fee Related CN1313798C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0127296A GB2382122A (en) 2001-11-14 2001-11-14 Shaped charge liner
GB0127296.2 2001-11-14

Publications (2)

Publication Number Publication Date
CN1585888A CN1585888A (zh) 2005-02-23
CN1313798C true CN1313798C (zh) 2007-05-02

Family

ID=9925740

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028224833A Expired - Fee Related CN1313798C (zh) 2001-11-14 2002-11-12 有形装药的衬

Country Status (11)

Country Link
US (1) US7261036B2 (zh)
EP (1) EP1444477B1 (zh)
CN (1) CN1313798C (zh)
AT (1) ATE334375T1 (zh)
AU (1) AU2002363806B2 (zh)
CA (1) CA2467103C (zh)
DE (1) DE60213446T2 (zh)
GB (1) GB2382122A (zh)
NO (1) NO328843B1 (zh)
RU (1) RU2258195C1 (zh)
WO (1) WO2003042625A1 (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0323675D0 (en) 2003-10-10 2003-11-12 Qinetiq Ltd Improvements in and relating to perforators
GB0323717D0 (en) * 2003-10-10 2003-11-12 Qinetiq Ltd Improvements in and relating to oil well perforators
US7360488B2 (en) * 2004-04-30 2008-04-22 Aerojet - General Corporation Single phase tungsten alloy
US8584772B2 (en) * 2005-05-25 2013-11-19 Schlumberger Technology Corporation Shaped charges for creating enhanced perforation tunnel in a well formation
US7762193B2 (en) * 2005-11-14 2010-07-27 Schlumberger Technology Corporation Perforating charge for use in a well
US7849919B2 (en) * 2007-06-22 2010-12-14 Lockheed Martin Corporation Methods and systems for generating and using plasma conduits
US20100132946A1 (en) 2008-12-01 2010-06-03 Matthew Robert George Bell Method for the Enhancement of Injection Activities and Stimulation of Oil and Gas Production
US8171851B2 (en) 2009-04-01 2012-05-08 Kennametal Inc. Kinetic energy penetrator
GB201012716D0 (en) * 2010-07-29 2010-09-15 Qinetiq Ltd Improvements in and relating to oil well perforators
DE102012007203B4 (de) * 2012-04-12 2015-03-05 TDW Gesellschaft für verteidigungstechnische Wirksysteme mbH Verfahren und Einrichtung zur Erhöhung der Leistung einer Hohlladung mit kunststoffgebundenem Sprengstoff bei tiefen Temperaturen
US8985024B2 (en) * 2012-06-22 2015-03-24 Schlumberger Technology Corporation Shaped charge liner
GB201222474D0 (en) * 2012-12-13 2013-01-30 Qinetiq Ltd Shaped charge and method of modifying a shaped charge
US9175940B1 (en) 2013-02-15 2015-11-03 Innovation Defense, LLC Revolved arc profile axisymmetric explosively formed projectile shaped charge
RU2540759C1 (ru) * 2013-10-08 2015-02-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Сибирская государственная геодезическая академия" (ФГБОУ ВПО "СГГА") Взрывной генератор плоской волны для кумулятивных перфораторов
US9651509B2 (en) 2014-03-19 2017-05-16 The United States Of America As Represented By The Secretary Of The Navy Method for investigating early liner collapse in a shaped charge
US20160091290A1 (en) * 2014-09-29 2016-03-31 Pm Ballistics Llc Lead free frangible iron bullets
US9976397B2 (en) 2015-02-23 2018-05-22 Schlumberger Technology Corporation Shaped charge system having multi-composition liner
US9360222B1 (en) 2015-05-28 2016-06-07 Innovative Defense, Llc Axilinear shaped charge
US9995562B2 (en) * 2015-12-11 2018-06-12 Raytheon Company Multiple explosively formed projectiles liner fabricated by additive manufacturing
US10364387B2 (en) 2016-07-29 2019-07-30 Innovative Defense, Llc Subterranean formation shock fracturing charge delivery system
US9862027B1 (en) 2017-01-12 2018-01-09 Dynaenergetics Gmbh & Co. Kg Shaped charge liner, method of making same, and shaped charge incorporating same
WO2018234013A1 (en) 2017-06-23 2018-12-27 Dynaenergetics Gmbh & Co. Kg HOLLOW LOAD COATING, PROCESS FOR MANUFACTURING SAME, AND HOLLOW LOAD INCORPORATING SAME
RU174806U1 (ru) * 2017-07-28 2017-11-02 Амир Рахимович Арисметов Облицовка кумулятивного заряда
RU179027U1 (ru) * 2018-02-12 2018-04-25 Амир Рахимович Арисметов Композиционная порошковая облицовка сложной формы для кумулятивных зарядов
RU191145U1 (ru) * 2019-05-20 2019-07-25 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Новосибирский Государственный Технический Университет" Кумулятивный заряд
DE102019116153A1 (de) 2019-06-13 2020-12-17 Kennametal Inc. Panzerungsplatte, Panzerungsplattenverbund und Panzerung
RU2771470C1 (ru) * 2021-12-14 2022-05-04 Акционерное общество "Научно-производственное объединение "СПЛАВ" им. А.Н. Ганичева Способ изготовления облицовки кумулятивного заряда

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0160118A2 (de) * 1983-10-07 1985-11-06 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Hohl- oder Flachladungsauskleidung
EP0266557A2 (de) * 1986-10-09 1988-05-11 DIEHL GMBH & CO. Einlage für Hohlladungen bzw. Penetratoren oder Wuchtkörper für Geschosse
US5331895A (en) * 1982-07-22 1994-07-26 The Secretary Of State For Defence In Her Britanic Majesty's Government Of The United Kingdon Of Great Britain And Northern Ireland Shaped charges and their manufacture
US5656791A (en) * 1995-05-15 1997-08-12 Western Atlas International, Inc. Tungsten enhanced liner for a shaped charge
US6248150B1 (en) * 1999-07-20 2001-06-19 Darryl Dean Amick Method for manufacturing tungsten-based materials and articles by mechanical alloying

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766813A (en) * 1986-12-29 1988-08-30 Olin Corporation Metal shaped charge liner with isotropic coating
SE470204B (sv) * 1991-05-17 1993-12-06 Powder Tech Sweden Ab Sätt att framställa en legering med hög densitet och hög duktilitet
GB9116446D0 (en) 1991-07-31 1991-09-11 Tetronics Research & Dev Co Li A twin plasma torch process for the production of ultra-fine aluminium nitride
US5567906B1 (en) 1995-05-15 1998-06-09 Western Atlas Int Inc Tungsten enhanced liner for a shaped charge
US6152040A (en) * 1997-11-26 2000-11-28 Ashurst Government Services, Inc. Shaped charge and explosively formed penetrator liners and process for making same
AU2001232063A1 (en) 2000-02-10 2001-08-20 Tetronics Limited Plasma arc reactor for the production of fine powders
CA2335694A1 (en) * 2000-02-14 2001-08-14 Jerry L. Walker Oilwell perforator having metal coated high density metal power liner
US6564718B2 (en) * 2000-05-20 2003-05-20 Baker Hughes, Incorporated Lead free liner composition for shaped charges
US6634300B2 (en) * 2000-05-20 2003-10-21 Baker Hughes, Incorporated Shaped charges having enhanced tungsten liners
US7011027B2 (en) * 2000-05-20 2006-03-14 Baker Hughes, Incorporated Coated metal particles to enhance oil field shaped charge performance
US6588344B2 (en) * 2001-03-16 2003-07-08 Halliburton Energy Services, Inc. Oil well perforator liner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5331895A (en) * 1982-07-22 1994-07-26 The Secretary Of State For Defence In Her Britanic Majesty's Government Of The United Kingdon Of Great Britain And Northern Ireland Shaped charges and their manufacture
EP0160118A2 (de) * 1983-10-07 1985-11-06 Messerschmitt-Bölkow-Blohm Gesellschaft mit beschränkter Haftung Hohl- oder Flachladungsauskleidung
EP0266557A2 (de) * 1986-10-09 1988-05-11 DIEHL GMBH & CO. Einlage für Hohlladungen bzw. Penetratoren oder Wuchtkörper für Geschosse
US5656791A (en) * 1995-05-15 1997-08-12 Western Atlas International, Inc. Tungsten enhanced liner for a shaped charge
US6248150B1 (en) * 1999-07-20 2001-06-19 Darryl Dean Amick Method for manufacturing tungsten-based materials and articles by mechanical alloying

Also Published As

Publication number Publication date
CN1585888A (zh) 2005-02-23
DE60213446D1 (de) 2006-09-07
DE60213446T2 (de) 2007-02-22
RU2258195C1 (ru) 2005-08-10
US7261036B2 (en) 2007-08-28
NO328843B1 (no) 2010-05-25
AU2002363806B2 (en) 2006-08-10
RU2004117863A (ru) 2005-06-10
US20040255812A1 (en) 2004-12-23
WO2003042625A1 (en) 2003-05-22
NO20041980L (no) 2004-06-14
GB0127296D0 (en) 2002-01-02
ATE334375T1 (de) 2006-08-15
CA2467103C (en) 2009-10-27
CA2467103A1 (en) 2003-05-22
EP1444477A1 (en) 2004-08-11
EP1444477B1 (en) 2006-07-26
GB2382122A (en) 2003-05-21

Similar Documents

Publication Publication Date Title
CN1313798C (zh) 有形装药的衬
AU2002363806A1 (en) Shaped charge liner
EP1812771B1 (en) Improvements in and relating to oil well perforators
US6840178B2 (en) Shaped charge liner
US6564718B2 (en) Lead free liner composition for shaped charges
CA2409846C (en) Coated metal particles to enhance shaped charge
EP1671013B1 (en) Improvements in and relating to oil well perforators
EP2598830B1 (en) Improvements in and relating to oil well perforators
US3388663A (en) Shaped charge liners
CN1503894A (zh) 用于聚能射孔弹的烧结钨衬套
CN110770530A (zh) 聚能射孔弹衬里、其制造方法以及包含其的聚能射孔弹
CA2409849C (en) Shaped charges having enhanced tungsten liners
EP1457578B1 (en) Tungsten-tin composite material for lead-free ammunition
US6461564B1 (en) Metal consolidation process applicable to functionally gradient material (FGM) compositions of tantalum and other materials
Yücel et al. The fabrication of boron carbide-aluminium composites by explosive consolidation
US20020129726A1 (en) Oil well perforator liner with high proportion of heavy metal
RU2188708C1 (ru) Способ изготовления активированного трубчатого каталитического элемента (варианты)
GB2235145A (en) Metal matrix composite materials

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20070502

Termination date: 20101112